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Foreword
Advanced Engineering Modeling demand knowledge and use of sophisticated tools of Analysis and

Probability. The goal of this course is to introduce to the most relevant of these tools in a practical and
essential way. This means that we do not privilege the theoretical depth but, rather, we aim to put the
focus on the tools and the methods they are used to solve problems.

Almost all the advanced tools we introduce here are based on the modern theory of Integration
proposed by Lebesgue at the beginning of XXth century. This theory is based on the fundamental
concept of measure, and this is our starting point. We will introduce the concepts of abstract measure
and abstract integrals, illustrating them on the fundamental example of Lebesgue measure and integral
(used in most of Analytical applications). Abstract measure and integral are also the fundamentals for
modern Probability as conceived by Kolmogorov. [...]

As said, our goal is to help students to familiarize with tools and methods. Therefore, proofs are
proposed only when their technical level is not excessive and they provide some insight into what the
corresponding statements say. Sometimes, proofs are proposed with extra assumptions than what actually
needed just to simplify them and to get quickly to the point. Other times proofs are just ”sketch” of proofs,
that is not formally rigorous proofs that could be made 100% true proof with some technical work (omitted
here). Yet, the goal is to help to understand ”why”, rather than providing a complete view of the matter.
I know this approach is controversial. In my experience, it works better for students who do not have a
specific interest in the matter itself and that, nonetheless, need to learn tools to understand their curricular
disciplines.

A good number of solved problems is proposed throughout the notes, as well as several exercises
(without solution) at the end of each Chapter. The student is encouraged to try to solve problems right
after the first few examples have been shown in class. A ˚ legend to distinguish between different levels
for examples and exercises:

‚ p˚q denotes the basic level, that is the minimal and easiest level, where the focus is mostly on
the understanding of the definitions, being able to apply them on simple cases without particular
technical skills required.

‚ p˚˚q denotes the intermediate level, that is the level expected for the majority of the students.
Here the focus is on applying the theory to solve complex problems that, however, require the
application of standard procedures. A p˚˚`q indicates the presence of technical difficulties.

‚ p˚˚˚q denotes the advanced level, that is a level that denotes a deep comprehension of the main
ideas behind the theory, including being able to organize an abstract argument (a proof) of a
general property.

To help the student with conceptual maps, a number of ”checklist” is proposed. They are useful to quickly
remind ”what to do” to respond to a certain question. The checklists are helpful to reach the intermediate
level, but they cannot replace the critical approach which is always required.

A final note. The notes contain a large number of errors of any type (mathematics, english, typos,
etc). Each student can participate to make these note better for the next students will come by pointing
out these. Thanks, and good luck with your job! May the wind be always at your back!
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LECTURE 1

Abstract Measures

A measure is a coherent way to assign positive numbers to sets. Coherent means that an empty set
must have zero measure, and the measure of a disjoint union of sets is the sum of the measures. In a
way, the measure of a set is an extension of the geometrical concept of area or volume. However, its
applications go much beyond Geometry. A probability measure is a measure with total value equal to
1. This Lecture introduces the first important definitions and properties of abstract measures, illustrating
some simple examples.

1.1. 𝜎´algebras of sets

A measure is a set function. Its domain is a suitable family of subsets of a set 𝑋 . According to
the specific context, these subsets can have a geometrical interpretation, a stochastic interpretation (as in
Probability Theory, where they are called events) or others (as in engineering, where they represent the
information). In every case, this family must obey to a few elementary properties:

Definition 1.1.1

A family ℱ Ă 𝒫p𝑋q is called 𝜎´algebra if
i) ∅, 𝑋 P ℱ;

ii) if 𝐸 P ℱ then also 𝐸𝑐 P ℱ;
iii) if 𝐸𝑛 P ℱ, 𝑛 P N, then also

Ť

𝑛 𝐸𝑛 P ℱ.
Elements of a 𝜎´algebra are called measurable sets.

If a family of sets satisfies iii) but only for finite unions, we say that ℱ is an algebra. The 𝜎 is to
remind of countable unions. Apparently, the definition 1.1 is simple. However, it is not so easy to exhibit
non-trivial examples of 𝜎´algebras. Let us start with some easy examples.

Example 1.1.2: p˚q

Let 𝑋 be any set.
‚ ℱ :“ t∅, 𝑋u is a 𝜎´algebra (trivial 𝜎´algebra).
‚ ℱ “ 𝒫p𝑋q (parts of 𝑋) is a 𝜎´algebra.
‚ Let 𝐴 Ĺ 𝑋 and 𝐴 ‰ ∅, then ℱ “ t∅, 𝐴, 𝐴𝑐, 𝑋u is a 𝜎´algebra.
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2 1. ABSTRACT MEASURES

Example 1.1.3: p˚˚q

Let 𝑋 be any set, ℱ :“ t𝐸 Ă 𝑋 : at least one of 𝐸, 𝐸𝑐 is countableu. Then, ℱ is a 𝜎´algebra.

Proof. i) Clearly ∅, 𝑋 P ℱ (for ∅, ∅ itself is finite having zero elements, thus countable; for 𝑋 ,
𝑋𝑐 “ ∅ is countable). ii) Suppose 𝐸 P ℱ. Then 𝐸 or 𝐸𝑐 is countable, thus 𝐸𝑐 or p𝐸𝑐q𝑐 is countable, and
this means that 𝐸𝑐 P ℱ. iii) Suppose p𝐸𝑛q Ă ℱ. For each 𝐸𝑛, one between 𝐸𝑛 and 𝐸𝑐𝑛 is countable. Let
𝐸 :“

Ť

𝑛 𝐸𝑛. We claim that one between 𝐸 and 𝐸𝑐 is countable. We may argue as follows: if all 𝐸𝑛 are
countable, then 𝐸 “

Ť

𝑛 𝐸𝑛 is countable. Otherwise, there exists at least one of 𝐸𝑛, say 𝐸𝑁 which is not
countable. But then, 𝐸𝑐

𝑁
must be countable. Therefore

𝐸𝑐 “

˜

ď

𝑛

𝐸𝑛

¸𝑐

“
č

𝑛

𝐸𝑐𝑛 Ă 𝐸𝑐𝑁 ,

is countable.

Let us see some remarkable example of families that are not 𝜎´algebras.

Example 1.1.4: p˚q

Let 𝑋 “ R𝑑 and ℱ :“ t𝐸 Ă R𝑑 : 𝐸 openu. Then ℱ is not a 𝜎´algebra.

Proof. Indeed, while it is always true that countable (and also uncountable) unions of open sets are
open sets, it is in general false that if 𝐸 is open, then 𝐸𝑐 is open as well (indeed, this happens iff 𝐸 “ ∅,R𝑑).

Example 1.1.5: p˚q

Let 𝑋 “ R, ℱ :“ t𝐼 Ă R : 𝐼 intervalu. Then ℱ is not a 𝜎´algebra.

Proof. We may say that ∅ “s0, 0rP ℱ and 𝑋 “ R “s ´ 8,`8rP ℱ. However, the complementary
𝐼𝑐 of an interval is not an interval (in general, it is the union of two intervals) and the union of two or more
intervals is not (in general) an interval.

Example 1.1.6: extension (˚˚˚)

Let 𝑋 “ R and ℱ :“ t
Ť

𝑛 𝐼𝑛 : 𝐼𝑛 intervalsu. This ℱ is not a 𝜎´algebra.

Proof. This time, ∅, 𝑋 P ℱ and if p𝐸𝑛q Ă ℱ then
Ť

𝑛 𝐸𝑛 P ℱ (countable union of countable unions
is still a countable union). However, if 𝐸 P ℱ it is not true (in general) that 𝐸𝑐 P ℱ. To check this is
a bit tricky. Let Q “ t𝑞𝑛 : 𝑛 P Nu, set 𝐼𝑛 :“ r𝑞𝑛, 𝑞𝑛s and take 𝐸 “ Q “

Ť

𝑛 𝐼𝑛 P ℱ. However,
𝐸𝑐 “ RzQ R ℱ. Indeed, if 𝐸𝑐 “ RzQ “

Ť

𝑛 𝐽𝑛 with 𝐽𝑛 intervals, then 𝐽𝑛 Ă RzQ. Because of the density
of rationals and irrationals in reals, this would force 𝐽𝑛 to have empty interior, that is 𝐽𝑛 “ r𝑥𝑛, 𝑥𝑛s for every
𝑛. But this would imply that RzQ “ t𝑥𝑛 : 𝑛 P Nu, that is RzQ would be countable, which is impossible.
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A number of simple elementary properties follow from the definition of 𝜎´algebra. In summary, we
may say that a 𝜎´algebra is closed for set operations.

Proposition 1.1.7

Let ℱ be a 𝜎´algebra of sets on 𝑋 . Then
‚ if 𝐸, 𝐷 P ℱ, then 𝐸z𝐷 and 𝐸 △ 𝐷 :“ p𝐸z𝐷q Y p𝐷z𝐸q belong to ℱ;
‚ if 𝐸𝑛 P ℱ, 𝑛 P N, then also

Ş

𝑛 𝐸𝑛 P ℱ.

The proof is left as exercise. A general method to construct a 𝜎´algebra is the following. Let
𝒮 Ă 𝒫p𝑋q be a family of subsets of 𝑋 , not necessarily a 𝜎´algebra (for example, 𝒮 :“ t𝐴 Ă R𝑑 :
𝐴 openu). Then, we look for the smallest (the most ”cheap”) 𝜎´algebra of sets containing 𝒮. We call
this 𝜎´algebra, the 𝜎´algebra generated by 𝒮. The existence and uniqueness of such 𝜎´algebra is
ensured by the

Proposition 1.1.8

Let 𝑋 be any set, 𝒮 Ă 𝒫p𝑋q a family of subsets of 𝑋 . Then,

𝜎p𝒮q :“
č

ℱĄ𝒮

ℱ

is the smallest 𝜎´algebra containing 𝒮.

Proof. First, the intersection is not empty: among all ℱ Ą 𝒮 there is ℱ “ 𝒫p𝑋q. Thus, 𝜎p𝒮q is well
posed. It is now straightforward to check that it is also a 𝜎´algebra (exercise) and, of course, it contains
𝒮. Finally, by definition, if ℱ Ą 𝒮, then ℱ Ą 𝜎p𝒮q.

We already noticed that the 𝒮 “ family of open sets of R𝑑 is not a 𝜎´algebra. However, 𝜎p𝒮q “: ℬR𝑑
it is. This is called Borel 𝜎´algebra, its elements are called Borel sets or borelians.

1.2. Definition of Measure

Definition 1.2.1

Let ℱ be a 𝜎´algebra on 𝑋 . A function 𝜇 : ℱ ÝÑ r0,`8s is called measure on ℱ if
i) 𝜇p∅q “ 0;

ii) if 𝐸 “
Ť

𝑛 𝐸𝑛 with 𝐸𝑛 P ℱ, 𝑛 P N and 𝐸𝑛 X 𝐸𝑚 “ ∅ for 𝑛 ‰ 𝑚 (disjoint union of
measurable sets), then

𝜇p𝐸q “
ÿ

𝑛

𝜇p𝐸𝑛q.

The triplet p𝑋,ℱ, 𝜇q is called measure space.
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Property ii) is called countable additivity. We introduce a convenient notation:

ğ

𝑛

𝐸𝑛 :“
ď

𝑛

𝐸𝑛, if 𝐸𝑛 X 𝐸𝑚 “ ∅, 𝑛 ‰ 𝑚, ùñ 𝜇

˜

ğ

𝑛

𝐸𝑛

¸

“
ÿ

𝑛

𝜇p𝐸𝑛q.

Here are some elementary and introductory examples.

Example 1.2.2: p˚q Dirac measure

Let 𝑋 be any set, ℱ a 𝜎´algebra. Let 𝑥 P 𝑋 and define

𝛿𝑥p𝐸q :“

$

&

%

1, if 𝑥 P 𝐸,

0, if 𝑥 R 𝐸.

Then, 𝛿𝑥 is a measure on ℱ. The proof is left as an exercise. □

Example 1.2.3: p˚q counting measure

Let 𝑋 be a countable set, for example 𝑋 “ N (but also 𝑋 “ Q or Q𝑁 ). In other words,
𝑋 “ t𝑥𝑛 : 𝑛 P Nu. Let ℱ “ 𝒫p𝑋q and set

𝜇p𝐸q :“
ÿ

𝑛 : 𝑥𝑛P𝐸

1 ”
ÿ

𝑛

𝛿𝑥𝑛p𝐸q.

Then 𝜇 is a measure on 𝑋 (interpretation: 𝜇p𝐸q counts the number of elements in the set 𝐸).
Check left as exercise.

A fundamental example is the Lebesgue measure on R𝑑 . This is the topic of the next Lecture.

1.3. Basic properties

In this section we illustrate some of the most basic and commonly used properties of any generic
measure. Proofs are generally easy and following natural ideas.

Proposition 1.3.1

Let p𝑋,ℱ, 𝜇q be a measure space. Then,
i) (monotonicity) if 𝐸, 𝐹 P ℱ, 𝐸 Ă 𝐹, then 𝜇p𝐸q ď 𝜇p𝐹q.

ii) (subtractivity) if 𝐸, 𝐹 P ℱ, 𝐸 Ă 𝐹 and 𝜇p𝐸q ă `8, then 𝜇p𝐹z𝐸q “ 𝜇p𝐹q ´ 𝜇p𝐸q

(with agreement that `8 ´ 𝑚 “ `8 for every 𝑚 P r0 ` 8r).
iii) (finite additivity formula) if 𝐸, 𝐹 P ℱ are non necessarily disjoint, then 𝜇p𝐸 Y 𝐹q “

𝜇p𝐸q ` 𝜇p𝐹q ´ 𝜇p𝐸 X 𝐹q provided 𝜇p𝐸 X 𝐹q ă `8.
𝐸 Ă 𝐹, 𝐸, 𝐹 P ℱ, ùñ 𝜇p𝐸q ď 𝜇p𝐹q.
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Proof. i) Just notice that 𝐹 “ 𝐸 \ p𝐹z𝐸q, and since 𝐹z𝐸 P ℱ we have
𝜇p𝐹q “ 𝜇p𝐸q ` 𝜇p𝐹z𝐸q

loomoon

ě0

ě 𝜇p𝐸q.

ii) By previous relation, since 𝜇p𝐸q ă `8, we have the conclusion.
iii) Noticed that 𝐸 Y 𝐹 “ 𝐸zp𝐸 X 𝐹q \ 𝐸 X 𝐹 \ 𝐹zp𝐸 X 𝐹q, we have

𝜇p𝐸 Y 𝐹q “ 𝜇p𝐸zp𝐸 X 𝐹qq ` 𝜇p𝐸 X 𝐹q ` 𝜇p𝐹zp𝐸 X 𝐹qq

𝑖𝑖q
“ 𝜇p𝐸q ´ 𝜇p𝐸 X 𝐹q ` 𝜇p𝐸 X 𝐹q ` 𝜇p𝐹q ´ 𝜇p𝐸 X 𝐹q,

which is the conclusion.

Let p𝐸𝑛q Ă 𝐹 be a sequence of measurable sets. We say that
𝐸𝑛 Õ, ðñ 𝐸0 Ă 𝐸1 Ă . . . Ă 𝐸𝑛 Ă 𝐸𝑛`1 Ă . . . .

By monotonicity,
𝜇p𝐸0q ď 𝜇p𝐸1q ď . . . ď 𝜇p𝐸𝑛q ď 𝜇p𝐸𝑛`1q ď . . . ,

that is, p𝜇p𝐸𝑛qq Ă r0,`8s is an increasing sequence of numbers (accepting `8 as number). Therefore,
D lim

𝑛
𝜇p𝐸𝑛q.

The question is: is the limit of the measures the measure of some limit set? The answer is provided by
the following.

Theorem 1.3.2: continuity form below

Let p𝑋,ℱ, 𝜇q measure space, p𝐸𝑛q Ă ℱq, 𝐸𝑛 Õ. Then

D lim
𝑛
𝜇p𝐸𝑛q “ 𝜇

˜

ď

𝑛

𝐸𝑛

¸

.

Proof. The existence of the limit has been already discussed in the premises. We show the identity.
Let’s start from 𝜇 p

Ť

𝑛 𝐸𝑛q. Since sets are nested, the union is definitely not disjoint. However, we can
transform it into a disjoint union:

𝐸0 Y 𝐸1 Y 𝐸2 Y ¨ ¨ ¨ Y 𝐸𝑛 Y ¨ ¨ ¨ “ 𝐸0 \ p𝐸1z𝐸0q \ p𝐸2z𝐸1q \ ¨ ¨ ¨ \ p𝐸𝑛z𝐸𝑛´1q \ ¨ ¨ ¨

Therefore, setting 𝐸´1 :“ ∅, we have

𝜇

˜

ď

𝑛

𝐸𝑛

¸

“ 𝜇

˜

ğ

𝑛

p𝐸𝑛z𝐸𝑛´1q

¸

“
ÿ

𝑛

𝜇 p𝐸𝑛z𝐸𝑛´1q “ lim
𝑚Ñ`8

𝑚
ÿ

𝑛“0

𝜇 p𝐸𝑛z𝐸𝑛´1q

“ lim
𝑚Ñ`8

𝜇

˜

𝑚
ğ

𝑛“0

𝐸𝑛z𝐸𝑛´1

¸

“ lim
𝑚Ñ`8

𝜇p𝐸𝑚q. □

Similarly, we say that
𝐸𝑛 Œ, ðñ 𝐸0 Ą 𝐸1 Ą . . . Ą 𝐸𝑛 Ą 𝐸𝑛`1 Ą . . . .
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By monotonicity,
𝜇p𝐸0q ě 𝜇p𝐸1q ě . . . ě 𝜇p𝐸𝑛q ě 𝜇p𝐸𝑛`1q ě . . . ,

that is p𝜇p𝐸𝑛qq Ă r0,`8s is a decreasing sequence of numbers (accepting `8 as number). Therefore,

D lim
𝑛
𝜇p𝐸𝑛q.

As above, the point is: is this limit measure the measure of a limit set? The reasonable guess for this set
is

č

𝑛

𝐸𝑛.

Surprisingly, the answer is negative in general, as the following example shows.

Warning 1.3.3

Let 𝑋 “ N, ℱ “ 𝒫pNq and 𝜇 the counting measure. Let
𝐸𝑛 :“ t𝑛, 𝑛 ` 1, 𝑛 ` 2, . . .u.

It is clear that:
‚ 𝐸𝑛 Œ;
‚ 𝜇p𝐸𝑛q “ `8.

However,
𝐸 :“

č

𝑛

𝐸𝑛 “ ∅, 𝜇p𝐸q “ 0 ‰ `8 “ lim
𝑛
𝜇p𝐸𝑛q. □

Nonetheless, the continuity from above becomes true as soon as we add a little (but fundamental)
requirement:

Corollary 1.3.4: continuity from above

Let p𝑋,ℱ, 𝜇q measure space, p𝐸𝑛q Ă ℱq, 𝐸𝑛 Œ. Suppose moreover that 𝜇p𝐸1q ă `8. Then

D lim
𝑛
𝜇p𝐸𝑛q “ 𝜇

˜

č

𝑛

𝐸𝑛

¸

.

In particular: if 𝜇 is a finite measure, that is 𝜇p𝑋q ă `8, then continuity from above always
holds true.

Proof. Call 𝐸 :“
Ş

𝑛 𝐸𝑛 and set
𝐹𝑛 :“ 𝐸0z𝐸𝑛, 𝑛 ě 1.

Since 𝐸𝑛 Œ, 𝐹𝑛 Õ. Thus, by continuity from below,

lim
𝑛
𝜇p𝐹𝑛q “ 𝜇

˜

ď

𝑛

𝐹𝑛

¸

“ 𝜇

˜

𝐸0z
č

𝑛

𝐸𝑛

¸

“ 𝜇p𝐸0q ´ 𝜇p𝐸q,
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by subtractivity. By the same property, 𝜇p𝐹𝑛q “ 𝜇p𝐸0z𝐸𝑛q “ 𝜇p𝐸0q´ 𝜇p𝐸𝑛q thus, being everything finite,
we have

𝜇p𝐸0q ´ lim
𝑛
𝜇p𝐸𝑛q “ 𝜇p𝐸0q ´ 𝜇p𝐸q,

which is the conclusion.

1.4. Exercises

Exercise 1.4.1 (˚). Say whether the following are 𝜎´algebras or not:
i) 𝑋 “ R with ℱ :“ t𝐼 Ă R : 𝐼 intervalu.

ii) 𝑋 any countable set, ℱ :“ t𝐸 Ă 𝑋 : 𝐸 is finite setu.
iii) 𝑋 any infinite set, ℱ :“ t𝐸 Ă 𝑋 : 𝐸 is countable setu.

Exercise 1.4.2 (˚). Let 𝑋 “ t𝑎, 𝑏, 𝑐, 𝑑u, 𝒮 “ tt𝑎u, t𝑎, 𝑐uu. Determine 𝜎pSq.
Exercise 1.4.3 (˚). Let 𝑋 be a non empty set, 𝐴, 𝐵 Ă 𝑋 , 𝐴 ‰ 𝐵. Determine 𝜎pt𝐴, 𝐵uq.
Exercise 1.4.4 (˚). Let 𝑋 be an uncountable set, ℱ :“ t𝐴 Ă 𝑋 : one of 𝐴, 𝐴𝑐 is countableu. Define,

𝜇p𝐴q :“

"

0, if 𝐴 is countable,
1, if 𝐴𝑐 is countable.

Determine if 𝜇 is a measure on p𝑋,ℱq.
Exercise 1.4.5 (˚˚). Let 𝒮1,𝒮2 any two families of subsets of 𝑋 , that is 𝒮1,𝒮2 Ă 𝒫p𝑋q. Prove that

𝜎p𝒮1 Y 𝒮2q “ 𝜎 p𝜎p𝒮1q Y 𝜎p𝒮2qq .

Exercise 1.4.6. Let ℱ1,ℱ2 Ă 𝒫p𝑋q be two 𝜎´algebras of sets.
i) p˚q Prove that also ℱ1 X ℱ2 is a 𝜎´algebra.

ii) p˚˚q Is it true that also ℱ1 Yℱ2 is a 𝜎´algebra? Provide a proof (if true) or a counterexample
(if false).

Exercise 1.4.7 (˚˚). Let p𝑋,ℱ, 𝜇q be a measure space. State and prove a formula for 𝜇p𝐸 Y 𝐹 Y 𝐺q

where 𝐸, 𝐹, 𝐺 P ℱ.
Exercise 1.4.8 (˚˚˚). Let 𝑋 “ r0, 1s, 𝐸 Ă 𝑋 and define

𝜇p𝐸q :“ lim
𝑛Ñ`8

1

𝑛
7

"

𝑘

𝑛
P 𝐴 : 𝑘 P N

*

,

provided the limit exists.
i) Show that if 𝐸 “ r𝑎, 𝑏s Ă r0, 1s then 𝜇p𝐸q “ 𝑏 ´ 𝑎.

ii) Show that 𝜇 is additive, that is if 𝐴 X 𝐵 “ H, then 𝜇p𝐴 Y 𝐵q “ 𝜇p𝐴q Y 𝜇p𝐵q.
iii) Take as 𝐴 the set of dyadic numbers 𝐴 :“ t 𝑘

2𝑚 : 𝑚 P N, 𝑘 “ 0, 1, . . . , 2𝑚u. What can be said
about 𝜇p𝐴q? Use the answer to respond to the question: is 𝜇 a measure?

Exercise 1.4.9 (˚˚˚). Let p𝑋,ℱ, 𝜇q be a measure space, p𝐸𝑛q Ă ℱ. Suppose that
ÿ

𝑛

𝜇p𝐸𝑛q ă `8.

Prove that the set
𝑆 :“

␣

𝑥 P 𝑋 : 𝑥 P 𝐸 𝑗 , for infinitely many 𝑗
(

.
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i) By suitable set operations, express 𝑆 in terms of sets 𝐸𝑛, deducing that 𝑆 P ℱ.
ii) Deduce the measure of 𝑆.



LECTURE 2

Lebesgue Measure

Lebesgue measure is a fundamental tool of Mathematical Analysis. It answers to the aim of having
a geometrical measure on sets of R𝑁 fulfilling few basic properties:

‚ measure of a rectangle is its area;
‚ measure is invariant by rotations and translations;
‚ natural sets as open and closed sets are measurable.

In this Lecture we sketch the construction of such a measure. Most of the proofs are technical and too
long, much beyond our scope, thus are omitted.

2.1. Outer Measure

Definition 2.1.1

A set of type 𝐼 “ r𝑎1, 𝑏1s ˆ ¨ ¨ ¨ ˆ r𝑎𝑑 , 𝑏𝑑s Ă R𝑑 is called (multi) interval. Its measure is, by
definition

|𝐼|𝑑 :“ p𝑏1 ´ 𝑎1q ¨ ¨ ¨ p𝑏𝑑 ´ 𝑎𝑑q.

If not expressely needed, we will write just |𝐼| for |𝐼|𝑑 .

As we know, the family of intervals is not a 𝜎´algebra. However, by exhaustion methods, we can use
intervals to fill any set 𝐸 Ă R𝑑 . We say that a family of intervals p𝐼𝑛q is a covering of 𝐸 if 𝐸 Ă

Ť

𝑛 𝐼𝑛.

I5

I2

I3

I4

EI1

For each covering, the (possibly infinite) sum
ř

𝑛 |𝐼𝑛| represents an approximation by excess of the
measure of 𝐸 . Since there are infinitely many coverings of a set 𝐸 , we have (in general) infinitely many
approximations by excess of the measure of 𝐸 . The best of these approximations is what we call outer
measure of 𝐸 .

9
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Definition 2.1.2: outer measure

For 𝐸 Ă R𝑑 we set

𝜆˚
𝑑p𝐸q :“ inf

#

ÿ

𝑗

|𝐼 𝑗 |𝑑 : 𝐸 Ă
ď

𝑗

𝐼 𝑗 , 𝐼 𝑗 intervals Ă R𝑑

+

.

By definition, 𝜆˚
𝑑
p∅q “ 0. If not explicitly needed, we will write just 𝜆˚p𝐸q for 𝜆˚

𝑑
p𝐸q.

Notice that the outer measure is defined for every set 𝐸 . Here some properties of 𝜆˚.

Proposition 2.1.3

The following properties hold true:
i) (coherence) 𝜆˚p𝐼q “ |𝐼| for every 𝐼 interval;

ii) (translation invariance) 𝜆˚p𝐸 ` 𝑥q “ 𝜆˚p𝐸q, @𝐸 Ă R𝑑 , @𝑥 P R𝑑;
iii) (homogeneity) 𝜆˚p𝑐𝐸q “ |𝑐|𝑑𝜆˚p𝐸q;
iv) (monotonicity) 𝜆˚p𝐸q ď 𝜆˚p𝐹q if 𝐸 Ă 𝐹;
v) (sub-additivity):

𝜆˚

˜

ď

𝑛

𝐸𝑛

¸

ď
ÿ

𝑛

𝜆˚p𝐸𝑛q.

Proof. i) Among all coverings of 𝐼 there is also that one made of 𝐼 only, thus 𝜆˚p𝐼q ď |𝐼| just by
definition. In particular, this shows that 𝜆˚p𝐼q ă `8. For the vice versa, let

Ť

𝑗 𝐼 𝑗 be a covering of 𝐼 made
of rectangles such that

ÿ

𝑗

|𝐼 𝑗 | ď 𝜆˚p𝐼q ` 𝜀.

Since 𝐼 X 𝐼 𝑗 is a rectangle (easy), and 𝐼 “ 𝐼 X
Ť

𝑗 𝐼 𝑗 “
Ť

𝑗 𝐼 X 𝐼 𝑗 , thus

|𝐼| ď
ÿ

𝑗

|𝐼 X 𝐼 𝑗 | ď
ÿ

𝑗

|𝐼 𝑗 | ď 𝜆˚p𝐼q ` 𝜀.

Since 𝜀 can be take arbitrarily small, we conclude that |𝐼| ď 𝜆˚p𝐼q.
ii) Easy, just notice that every covering

Ť

𝑗 𝐼 𝑗 of 𝐸 corresponds to a covering
Ť

𝑗p𝐼 𝑗 ` 𝑥q of 𝐸 ` 𝑥 and vice
versa. And since it is easy to check that |𝐼 ` 𝑥| “ |𝐼|, the conclusion easily follows (fill the details).
iii), iv) Exercise.
v) This is less easy. To begin, we notice that the conclusion is true if some of 𝜆˚p𝐸𝑛q “ `8. Thus we
may assume 𝜆˚p𝐸𝑛q ă `8 for every 𝑛. Then, for every 𝐸𝑛, there is a covering

Ť

𝑘 𝐼𝑛, 𝑗 such that
ÿ

𝑗

|𝐼𝑛, 𝑗 | ď 𝜆˚p𝐸𝑛q `
𝜀

2𝑛
.

Then
ď

𝑛

𝐸𝑛 Ă
ď

𝑛

ď

𝑗

𝐼𝑛, 𝑗 “
ď

𝑛, 𝑗

𝐼𝑛, 𝑗 ,
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thus this is a covering for
Ť

𝑛 𝐸𝑛 made of rectangles. Consequently,

𝜆˚

˜

ď

𝑛

𝐸𝑛

¸

ď
ÿ

𝑛, 𝑗

|𝐼𝑛, 𝑗 | “
ÿ

𝑛

ÿ

𝑗

|𝐼𝑛, 𝑗 | ď
ÿ

𝑛

´

𝜆˚p𝐸𝑛q `
𝜀

2𝑛

¯

“
ÿ

𝑛

𝜆˚p𝐸𝑛q ` 𝜀,

and since 𝜀 ą 0 is arbitrary, the conclusion follows.

Sub-additivity is weaker than countable additivity. Unfortunately, this last is false in general. This is
the consequence of the following difficult result:

Proposition 2.1.4: Vitali

𝜆˚ is not countably additive.

Proof. (sketch for 𝑑 “ 1) The proof is based on showing that there exists a set 𝐸 Ă r´1, 1s such that

r´1, 1s Ă
ğ

𝑛

p𝐸 ` 𝑞𝑛q Ă r´2, 2s,

where p𝑞𝑛q “ QX r´1, 1s. The existence of such a set is difficult and based on subtle logical arguments,
so we omit here. Accepting this, by monotonicity we would have

2 “ 𝜆˚ pr´1, 1sq ď 𝜆˚

˜

ğ

𝑛

𝐸 ` 𝑥𝑛

¸

ď 𝜆˚ pr´2, 2sq “ 4.

If 𝜆˚ were countably additive, we would also have

𝜆˚

˜

ğ

𝑛

𝐸 ` 𝑞𝑛

¸

“
ÿ

𝑛

𝜆˚p𝐸 ` 𝑞𝑛q “
ÿ

𝑛

𝜆˚p𝐸q,

because the translation invariance. But then
2 ď

ÿ

𝑛

𝜆˚p𝐸q ď 4,

and this would be impossible. Indeed, either 𝜆˚p𝐸q ą 0 or 𝜆˚p𝐸q “ 0. In the first case
ř

𝑛 𝜆
˚p𝐸q “ `8,

while in the second
ř

𝑛 𝜆
˚p𝐸q “ 0. In both cases, the previous bound would be impossible. □

2.2. Lebesgue class and measure

The problem with outer measure is that it assigns a measure to each set of R𝑑 . Among these, there
are ”bad sets” as the Vitali’s set, that makes countable additivity fail. To solve this issue, we restrict the
class of sets to which we assign a measure. This class should be large enough to contain ”natural” sets,
such as open and closed sets of R𝑑 . The idea is to consider only sets which are ”well approximated” (in
the sense of measure) by an open set.

Definition 2.2.1: Lebesgue class

ℳ𝑑 :“
␣

𝐸 Ă R𝑑 : @𝜀 ą 0, D𝑂 𝜀 Ą 𝐸, 𝑂 𝜀 open, 𝜆˚p𝑂 𝜀z𝐸q ď 𝜀
(

.
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Here, some easy consequences of this definition:

Proposition 2.2.2

i) Open sets are Lebesgue measurable. In particular, ∅,R𝑑 P ℳ𝑑 .
ii) Intervals are Lebesgue measurable.

iii) Measure 0 sets are Lebesgue measurable.
iv) Any sets that differs by a measurable set by a measure 0 set is measurable.

Proof. i) If 𝐸 is open, take 𝑂 𝜀 :“ 𝐸 , then 𝑂 𝜀z𝐸 “ ∅ hence 𝜆˚
𝑑

p𝑂 𝜀z𝐸q “ 0 ď 𝜀, for every 𝜀 ą 0.
ii) For simplicity, we show this in the case 𝑑 “ 1. Let 𝐼 “ r𝑎, 𝑏s. For 𝜀 ą 0, set 𝑂 𝜀 “s𝑎 ´ 𝜀, 𝑏 ` 𝜀r.
Therefore 𝑂 𝜀z𝐼 “s𝑎 ´ 𝜀, 𝑎rYs𝑏, 𝑏 ` 𝜀r, hence, by sub-additivity,

𝜆˚p𝑂 𝜀z𝐼q ď 𝜆˚ps𝑎 ´ 𝜀, 𝑎rq ` 𝜆˚p𝑏, 𝑏 ` 𝜀rq ď 2𝜀.

iii) Suppose 𝜆˚p𝐸q “ 0. There exists then a covering
Ť

𝑗 𝐼 𝑗 such that
ÿ

𝑗

|𝐼 𝑗 | ď 𝜆˚p𝐸q ` 𝜀 “ 𝜀.

We may enlarge each 𝐼 𝑗 to become an open rectangle 𝐼 𝜀
𝑗

such that |𝐼 𝜀
𝑗
| ď |𝐼 𝑗 | ` 𝜀

2 𝑗
. Then, setting

𝑂 𝜀 :“
ď

𝑗

𝐼 𝜀𝑗 ,

this is open (union of open sets), it contains 𝐸 (because is contains one of its covering) and

𝜆˚p𝑂 𝜀z𝐸q ď 𝜆˚p𝑂 𝜀q ď
ÿ

𝑗

|𝐼 𝜀𝑗 | ď
ÿ

𝑗

´

|𝐼 𝑗 | `
𝜀

2 𝑗

¯

“
ÿ

𝑗

|𝐼 𝑗 | ` 𝜀 “ 2𝜀. □

iv) Indeed let 𝐹 “ 𝐸 Y 𝑁 with 𝜆˚p𝑁q “ 0 and 𝐸 P ℳ𝑑; according to the definition, for every 𝜀 ą 0 there
exists an open set 𝑂 𝜀 such that 𝜆𝑑p𝑂 𝜀z𝐸q ď 𝜀. Since also 𝑁 is measurable (being a null set), there exists
another open r𝑂 𝜀 Ą 𝑁 such that 𝜆˚p r𝑂 𝜀z𝑁q ď 𝜀. Then, 𝑂 𝜀 Y r𝑂 𝜀 is open, contains 𝐸 Y 𝑁 and

𝜆˚

´

p𝑂 𝜀 Y r𝑂 𝜀qzp𝐸 Y 𝑁q

¯

“ 𝜆˚

´

𝑂 𝜀zp𝐸 Y 𝑁q Y r𝑂 𝜀zp𝐸 Y 𝑁q

¯

ď 𝜆˚p𝑂 𝜀zp𝐸 Y 𝑁qq ` 𝜆˚p r𝑂 𝜀zp𝐸 Y 𝑁qq

ď 𝜆˚p𝑂 𝜀z𝐸q ` 𝜆˚p r𝑂 𝜀z𝑁q ď 2𝜀. □

With some technical work it is possible to prove the

Theorem 2.2.3

The family ℳ𝑑 is a 𝜎´algebra of sets called Lebesgue class. Sets of ℳ𝑑 are called Lebesgue
measurable sets. The outer measure 𝜆˚

𝑑
is a measure on ℳ𝑑 , called Lebesgue measure. We

denote the Lebesgue measure by 𝜆𝑑 .

Of course, since the Lebesgue measure is just the outer measure on a sub-family of sets, it inherit
its properties. In particular, it is invariant by translations and it fulfills homogeneity. Actually, these
properties are particular cases of the following one:



2.3. EXERCISES 13

Proposition 2.2.4

Let 𝑇 be a 𝑑 ˆ 𝑑 invertible matrix. Then, if 𝐸 P ℳ𝑑 , also 𝑇𝐸 :“ t𝑇𝑥 : 𝑥 P 𝐸u P ℳ𝑑 and,
(2.2.1) 𝜆𝑑p𝑇𝐸 ` 𝑣q “ |det𝑇 |𝜆𝑑p𝐸q, @𝑣 P R𝑑 .

2.3. Exercises

Exercise 2.3.1 (˚). Let 𝑁 Ă R be a null set. Show that, necessarily, 𝑁𝑐 is dense in R, that is the following
property holds:

@s𝑎, 𝑏rĂ R, 𝑁𝑐Xs𝑎, 𝑏r‰ ∅.

Exercise 2.3.2 (˚˚ Cantor set). Define

𝐶0 :“ r0, 1s,

𝐶1 :“ r0, 13 s Y r23 , 1s “ 𝐶0zs13 ,
2
3 r,

𝐶2 :“ r0, 19 s Y r29 ,
3
9 s Y r69 ,

7
9 s Y r89 , 1s “ 𝐶1z

`

s19 ,
2
9 rYs79 ,

8
9 r
˘

...

𝐶𝑛 :“ r0, 1
3𝑛 s Y r 2

3𝑛 ,
3
3𝑛 s Y . . . Y r3

𝑛´1
3𝑛 , 1s “ 𝐶𝑛´1z

2𝑛´1´1
ď

𝑘“0

ȷ

3𝑘 ` 1

3𝑛
,
3𝑘 ` 2

3𝑛

„

, 𝑛 P N,

and 𝐶 :“
Ş

𝑛ě0𝐶𝑛. Then 𝐶 P ℳ1 and 𝜆p𝐶q “ 0.

Figure 1. Cantor set (left), Sierpinski carpet (right).

Exercise 2.3.3 (˚˚ Sierpinski carpet). The Sierpinki carpet is a bidimensional set of Cantor type. Let
𝑇0 :“ r0, 1s ˆ r0, 1s and define recursively 𝑇𝑛 according to the following rule

𝑇𝑛 :“ 𝑇𝑛´1z

2𝑛´1´1
ď

𝑖, 𝑗“0

ȷ

3𝑖 ` 1

3𝑛
,
3𝑖 ` 2

3𝑛

„

ˆ

ȷ

3 𝑗 ` 1

3𝑛
,
3 𝑗 ` 2

3𝑛

„

, 𝑛 P N.

Define finally 𝑇 :“
Ş

𝑛ě0 𝑇𝑛. Show that 𝑇 is measurable and determine its measure.

Exercise 2.3.4 (˚˚). Construct a Cantor like set by removing, at each step, the middle quarters. Show
that the limit set is Lebesgue measurable and compute its measure.
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Exercise 2.3.5 (˚˚). Let 𝐸 Ă R2 be the set of points p𝑥, 𝑦q P R2 such that 𝑥 and 𝑦 are rationally
dependent, that is

𝐸 “
␣

p𝑥, 𝑦q P R2 : Dp𝑚, 𝑛q P Nˆ N, p𝑚, 𝑛q ‰ p0, 0q : 𝑚𝑥 ` 𝑛𝑦 “ 0
␣

.

Prove that 𝜆2p𝐸q “ 0.

Exercise 2.3.6 (˚˚). Let 𝐴 Ă 𝐸 Ă 𝐵, 𝐴, 𝐵 P ℳ𝑑 with 𝜆p𝐴q “ 𝜆p𝐵q ă `8. Deduce that 𝐸 P ℳ𝑑 .
What about 𝜆𝑑p𝐸q?

Exercise 2.3.7 (˚˚˚). Let 𝐴, 𝐵, 𝐶 Ă r0, 1s be such that the following property holds:
@𝑥 P r0, 1s belongs to at least 2 sets among 𝐴, 𝐵, 𝐶.

Prove that at least one of these sets has measure ě 2
3 . (hint: 1 “ 𝜆pp𝐴X 𝐵q Y p𝐴X𝐶q Y p𝐵X𝐶qq and

argue by contradiction. . . )

Exercise 2.3.8 (˚˚˚). Let 𝑁 Ă r0, 1s be such that 𝜆p𝑁q “ 0. Prove that 𝜆p𝑁2q “ 0, where 𝑁2 “ t𝑥2 :
𝑥 P 𝑁u. What if 𝑁 Ă r´𝑅, 𝑅s (that is 𝑁 bounded)? What if 𝑁 Ă R is generic?

Exercise 2.3.9 (˚˚˚). Let 𝑆 Ă r0, 1s the set of numbers which do not have the digit 5 in their decimal
representation. Is 𝑆 measurable? If yes, what is its measure?



LECTURE 3

Measurable Functions

As we have now a definition of measurable set, we introduce a definition of measurable function. The
idea is simple: we wish that natural sets as level sets of 𝑓 , for instance t𝑥 : 𝑓 p𝑥q ě 𝑎u are measurable
sets. Measurable functions are fundamental to define integrals (next Lecture). In Probability, measurable
functions are called random variables.

3.1. Definiton and first properties

Definition 3.1.1

Let ℱ be a 𝜎´algebra on 𝑋 . We say that 𝑓 : 𝐸 Ă 𝑋 ÝÑ R is ℱ´ measurable (notation
𝑓 P 𝐿p𝐸,ℱq) if

t 𝑓 P 𝐼u ” t𝑥 P 𝐸 : 𝑓 p𝑥q P 𝐼u P ℱ, @𝐼 Ă R, 𝐼 interval.
If the 𝜎´algebra is understood we just write 𝑓 P 𝐿p𝐸q.

Remark 3.1.2

If 𝑓 P 𝐿p𝐸q then, necessarily, 𝐸 P ℱ. Indeed: 𝐸 “ t 𝑓 P Ru P ℱ.

Example 3.1.3: p˚q

Every constant function is measurable.

Proof. Indeed, if 𝑓 ” 𝑐, then

t 𝑓 P 𝐼u “

$

&

%

𝑋, if 𝑐 P 𝐼,

∅, if 𝑐 R 𝐼 .

□

Example 3.1.4: p˚q indicator function

Let

1𝐸 :“

$

&

%

1, 𝑥 P 𝐸,

0, 𝑥 R 𝐸.

Then, 1𝐸 P 𝐿p𝑋q, iff 𝐸 P ℱ.

15
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Proof. Notice that 1𝐸 P t0, 1u. Therefore

t1𝐸 P 𝐼u “

$

’

’

&

’

’

%

𝑋, if 0, 1 P 𝐼,

𝐸, if 1 P 𝐼, 0 R 𝐼,

𝐸𝑐, if 0 P 𝐼, 1 R 𝐼,

∅, if 0, 1 R 𝐼 .

Thus, t1𝐸 P 𝐼u P ℱ iff 𝐸, 𝐸𝑐 P ℱ.

Definition 3.1.5

A simple function is a function assuming only a finite number of values. We may represent such
a function as

𝑠 “

𝑁
ÿ

𝑘“1

𝑐𝑘1𝐸𝑘 , where 𝐸𝑘 “ t𝑠 “ 𝑐𝑘u,
ď

𝑘

𝐸𝑘 “ 𝑋.

It is easy to check that a simple function 𝑠 “
ř

𝑛 𝑐𝑘1𝐸𝑘 is measurable iff 𝐸𝑘 P ℱ for every 𝑘 “ 1, . . . , 𝑁
(exercise). It is sometimes useful to check measurability of a function through simplified conditions.

Proposition 3.1.6

The following properties are equivalent:
i) 𝑓 is ℱ´measurable.

ii) t 𝑓 ě 𝑎u P ℱ, @𝑎 P R.
iii) t 𝑓 ą 𝑎u P ℱ, @𝑎 P R.

Proof. By definition, i) ùñ ii),iii). Let us check that ii) and iii) are equivalent, then that they imply i).
Assume ii) for instance. Notice that

t 𝑓 ą 𝑎u “
ď

𝑛ě1

"

𝑓 ě 𝑎 `
1

𝑛

*

.

Indeed, clearly t 𝑓 ě 𝑎 ` 1
𝑛

u Ă t 𝑓 ą 𝑎u so the union is contained into t 𝑓 ą 𝑎u. Conversely, if 𝑓 p𝑥q ą 𝑎,
choosing 𝑛 in such a way that 𝑓 p𝑥q ě 𝑎` 1

𝑛
(we can do this because 𝑎` 1

𝑛
ÝÑ 𝑎), we have 𝑥 P t 𝑓 ě 𝑎` 1

𝑛
u,

so 𝑥 belongs to the union. Now, since ii) holds, t 𝑓 ě 𝑎` 1
𝑛

u P ℱ for every 𝑛, and since ℱ is a 𝜎´algebra,
also the union belongs to ℱ, so t 𝑓 ą 𝑎u P ℱ. This proves that ii) ùñ iii). With a similar argument we
prove that iii) ùñ ii).
To finish, let us prove that ii) ùñ i). Let 𝐼 be an interval. If 𝐼 “ r𝑎,`8r, then by ii) we have
t 𝑓 P 𝐼u ` t 𝑓 ě 𝑎u P ℱ. If 𝐼 “ r𝑎, 𝑏s we can write

t 𝑓 P 𝐼u “ t𝑎 ď 𝑓 ď 𝑏u “ t 𝑓 ě 𝑎uzt 𝑓 ą 𝑏u.

Since t 𝑓 ě 𝑎u P ℱ (by ii)), t 𝑓 ą 𝑏u P ℱ (by iii), which is equivalent to ii)), and ℱ is a 𝜎´algebra, we
deduce that also their difference belongs to ℱ, so t 𝑓 P 𝐼u P ℱ. With similar arguments we discuss all
possible types of intervals 𝐼.

The class of measurable functions is closed respect to the main algebraic operations:
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Proposition 3.1.7

Let 𝑓 and 𝑔 be ℱ´measurable functions. Then
i) every linear combination 𝛼 𝑓 ` 𝛽𝑔 is ℱ´measurable.

ii) algebraic product 𝑓 ¨ 𝑔 is ℱ´measurable.
iii) ratio 𝑓 {𝑔 is ℱ´measurable if 𝑔 ‰ 0.

Proof. i) We will limit to prove that 𝑓 ` 𝑔 is ℱ´measurable. The remainder of the proof is left as
exercise (see Exercise 3.4.4). We prove that t 𝑓 ` 𝑔 ą 𝑎u P ℱ for every 𝑎 P R. We notice that

t 𝑓 ` 𝑔 ąă 𝑎u “ t𝑥 P 𝐸 : 𝑓 p𝑥q ` 𝑔p𝑥q ą 𝑎u “ t𝑥 P E : 𝑓 p𝑥q ą 𝑎 ´ 𝑔p𝑥qu.

So, if 𝑥 P t 𝑓 ` 𝑔 ą 𝑎u, 𝑓 p𝑥q ą 𝑎 ´ 𝑔p𝑥q, therefore there exists 𝑞 P Q such that

𝑓 p𝑥q ą 𝑞 ą 𝑎 ´ 𝑔p𝑥q, ùñ 𝑥 P
ď

𝑞PQ

t 𝑓 ą 𝑞u X t𝑔 ą 𝑎 ´ 𝑞u.

We proved that
t 𝑓 ` 𝑔 ą 𝑎u Ă

ď

𝑞PQ

t 𝑓 ą 𝑞u X t𝑔 ą 𝑎 ´ 𝑞u.

Vice versa: if 𝑥 belongs to the union, then there exists 𝑞 P Q such that 𝑓 p𝑥q ą 𝑞 ą 𝑎 ´ 𝑔p𝑥q, from which
𝑓 p𝑥q ` 𝑔p𝑥q ą 𝑎. Therefore,

t 𝑓 ` 𝑔 ą 𝑎u “
ď

𝑞PQ

t 𝑓 ą 𝑞u X t𝑔 ą 𝑎 ´ 𝑞u.

The r.h.s. is a countable union fo intersections of measurable sets (because 𝑓 , 𝑔 are both measurable), so
t 𝑓 ` 𝑔 ą 𝑎u P ℱ, this for every 𝑎 P R,from which the conclusion follows.

Another important operation is

Proposition 3.1.8

If 𝑓 is ℱ´measurable and 𝜑 P 𝒞pRq, then 𝜑p 𝑓 q is ℱ´measurable.

For the proof see the exercise 3.4.5. So, for instance, if 𝑓 isℱ´measurable, then also | 𝑓 |, 𝑓 2, 𝑓 3, 𝑒 𝑓 , sin 𝑓 , . . .
are ℱ´measurable. But warning! 𝜑p 𝑓 q might be measurable even if 𝑓 it is not.

Warning 3.1.9

Let 𝐸 be a non measurable set (that is a set 𝐸 Ă 𝑋 but 𝐸 R ℱ
paq). Set

𝑓 :“ 1𝐸 ´ 1𝐸𝑐 .

Then, 𝑓 is a simple function, but since 𝐸, 𝐸𝑐 R ℱ, 𝑓 cannot be measurable (t 𝑓 ě 0u “ 𝐸 R ℱ).
Take now 𝜑p𝑦q “ |𝑦|. Then 𝜑 P 𝒞pRq and 𝜑p 𝑓 q “ | 𝑓 | ” 1 P 𝐿p𝑋q. Thus, 𝑓 R 𝐿p𝑋q but
𝜑p 𝑓 q P 𝐿p𝑋q. □

aThis depends on the 𝜎´algebra ℱ. If for instance ℱ “ 𝒫p𝑋q, then such a set cannot exist. If ℱ “ ℳ𝑑 is the
Lebesgue class, we know that there are sets 𝐸 Ă R𝑑 , 𝐸 R ℱ (for example, Vitali’s set).
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If 𝑋 “ R𝑑 and ℱ “ ℳ𝑑 is the Lebesgue class, 𝑓 : R𝑑 ÝÑ R is a numerical function of real variables.
We have that:

Proposition 3.1.10

Every continuous function 𝑓 P 𝒞pR𝑑q is Lebesgue measurable.

Proof. The proof is based on a remarkable property of continuous functions: for every open set
𝐴 Ă R, t 𝑓 P 𝐴u Ă R𝑑 is open. So,

t 𝑓 ą 𝑎u is open ùñ t 𝑓 ą 𝑎u P ℱ, @𝑎 P R.

3.2. Null sets, almost everywhere

Measure 0 sets, also called null sets, play an important role. Given a certain property 𝑝p𝑥q with
𝑥 P 𝑋 , p𝑋,ℱ, 𝜇q measure space, we say that 𝑝p𝑥q holds for almost every 𝑥 P 𝐸 if

D𝑁 P ℱ, 𝜇p𝑁q “ 0, : 𝑝p𝑥q true @𝑥 P 𝐸z𝑁.

So for example:
‚ a function 𝑓 is such that 𝑓 “ 0 a.e. on 𝐸 , if 𝑓 p𝑥q “ 0, @𝑥 P 𝐸z𝑁 with 𝜇p𝑁q “ 0.
‚ given 𝑓 , 𝑔, we say 𝑓 “ 𝑔 a.e. on 𝐸 if 𝑓 p𝑥q “ 𝑔p𝑥q, @𝑥 P 𝐸z𝑁 , 𝜇p𝑁q “ 0.

Example 3.2.1: p˚q

Let p𝑋,ℱ, 𝜇q “ pR,ℳ1, 𝜆1q and 𝑝p𝑥q “ 𝑥 is irrational. We have that 𝑝p𝑥q is true iff 𝑥 P RzQ,
and since 𝜆1pQq “ 0, we conclude that 𝑝p𝑥q holds a.e. 𝑥 P R.

We now introduce an important

Definition 3.2.2

We say that a measure space p𝑋,ℱ, 𝜇q is complete if, for every null set 𝑁 P ℱ (that is 𝜇p𝑁q “ 0),
we have

@𝐸 Ă 𝑁, ùñ 𝐸 P ℱ.

Proposition 3.2.3

pR𝑑 ,ℳ𝑑 , 𝜆𝑑q is complete.

Proof. Let 𝑁 be a null set, 𝜆𝑑p𝑁q “ 0. If 𝐸 Ă 𝑁 then
𝜆˚
𝑑

p𝐸q ď 𝜆˚
𝑑

p𝑁q ” 𝜆𝑑p𝑁q “ 0,

and since all (outer) measure 0 sets are Lebesgue measurable we have the conclusion.
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Example 3.2.4: p˚q

Build an example of non complete space.

Proof. Let 𝑋 “ t𝑎, 𝑏, 𝑐u, ℱ “ t∅, 𝑋, t𝑎u, t𝑏, 𝑐uu. It is easy to check that ℱ is a 𝜎´algebra. Define
𝜇pt𝑎uq “ 𝜇p𝑋q “ 1, 𝜇pt𝑏, 𝑐uq “ 𝜇p∅q “ 0. It is easy to check that 𝜇 is a measure on p𝑋,ℱq. Now,
t𝑏u, t𝑐u Ă t𝑏, 𝑐u but in this example they are not in ℱ.

Any measure space p𝑋,ℱ, 𝜇q can be made complete basically by ”adding” subsets of null sets. This is
called the completion of p𝑋,ℱ, 𝜇q.

Proposition 3.2.5

Let p𝑋,ℱ, 𝜇q be a measure space. Define
rℱ :“ t𝐸 Ă 𝑋 : D𝐴, 𝐵 P ℱ, 𝐴 Ă 𝐸 Ă 𝐵, 𝜇p𝐵z𝐴q “ 0u, r𝜇p𝐸q :“ 𝜇p𝐴q.

Then,
i) rℱ is a 𝜎´algebra containing ℱ.

ii) r𝜇 is a well defined measure on rℱ.
iii) r𝜇p𝐸q “ 𝜇p𝐸q for every 𝐸 P ℱ.

So, if needed, we can always assume that our working space is complete. In this case, for example, we
can freely modify a measurable function on a measure zero set still obtaining a measurable function.
This makes us to appreciate, once more, how weak is measurability: if you just modify the value of a
continuous function in one single point, you loose continuity!

Proposition 3.2.6

Let p𝑋,ℱ, 𝜇q be a complete measure space. The following statements hold:
i) Let 𝑓 “ 𝑔 a.e. on 𝐸 . Then 𝑓 P 𝐿p𝐸q iff 𝑔 P 𝐿p𝐸q.

ii) if 𝑓 P 𝐿p𝐸z𝑁q with 𝜇p𝑁q “ 0, then 𝑓 P 𝐿p𝐸q.

Proof. i) Let 𝑓 P 𝐿p𝐸q and let’s check that 𝑔 P 𝐿p𝐸q. We can write,
t𝑔 P 𝐼u “ t𝑥 P 𝐸 : 𝑔p𝑥q P 𝐼u “ t𝑥 P 𝐸z𝑁 : 𝑔p𝑥q P 𝐼u Y t𝑥 P 𝑁 : 𝑔p𝑥q P 𝐼u

loooooooooomoooooooooon

r𝑁

Now: r𝑁 Ă 𝑁 and because ℱ is complete, r𝑁 P ℱ and 𝜇p r𝑁q “ 0. Moreover,
t𝑥 P 𝐸z𝑁 : 𝑔p𝑥q P 𝐼u “ t𝑥 P 𝐸z𝑁 : 𝑓 p𝑥q P 𝐼u “ pt𝑥 P 𝐸 : 𝑓 p𝑥q P 𝐼uq z pt𝑥 P 𝑁 : 𝑓 p𝑥q P 𝐼uq

“ t 𝑓 P 𝐼uz p𝑁
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where, again, p𝑁 Ă 𝑁 (same argument used above for r𝑁) has measure 0. Therefore, t 𝑓 P 𝐼uz p𝑁 P ℱ

(difference of measurable sets) so, in conclusion,
t𝑔 P 𝐼u “ t 𝑓 P 𝐼uz p𝑁

loooomoooon

Pℱ

Y r𝑁 P ℱ.

ii) It is similar to i):
t 𝑓 P 𝐼u “ t𝑥 P 𝐸z𝑁 : 𝑓 p𝑥q P 𝐼u

loooooooooooomoooooooooooon

Pℱ

Y t𝑥 P 𝑁 : 𝑓 p𝑥q P 𝐼u
loooooooooomoooooooooon

Ă𝑁

P ℱ. □

Remark 3.2.7

In particular, if 𝑓 ” 𝑔 a.e. on 𝐸 Ă R𝑑 and 𝑓 P 𝒞p𝐸q then 𝑔 P 𝐿p𝐸q. □

3.3. Pointwise limit of measurable functions

Another remarkable feature of measurability is that it is preserved under very weak limit operations.

Definition 3.3.1

Let p𝑋,ℱ, 𝜇q be a measure space, p 𝑓𝑛q Ă 𝐿p𝐸q be a sequence of measurable functions. We say
that p 𝑓𝑛q converges a.e. to 𝑓 on 𝐸 (notation, 𝑓𝑛

𝑎.𝑒.
ÝÑ 𝑓 ) if

D lim
𝑛Ñ`8

𝑓𝑛p𝑥q “ 𝑓 p𝑥q, 𝑎.𝑒. 𝑥 P 𝐸.

Almost everywhere limit of measurable functions is a measurable function:

Theorem 3.3.2

Let p𝑋,ℱ, 𝜇q be a measure space, p 𝑓𝑛q Ă 𝐿p𝐸q. The following statements hold:
i) if 𝑓𝑛 ÝÑ 𝑓 for every 𝑥 P 𝐸 P ℱ, then 𝑓 P 𝐿p𝐸q.

ii) il 𝑓𝑛 ÝÑ 𝑓 a.e. 𝑥 P 𝐸 and p𝑋,ℱ, 𝜇q is complete, then 𝑓 P 𝐿p𝐸q.

Proof. i) We prove that t 𝑓 ą 𝑎u P ℱ for every 𝑎 P R, from this the conclusion follows . The idea
is that 𝑓 ą 𝑎 means that, 𝑓𝑛 must be definitely ą 𝑎, thus we can connect t 𝑓 ą 𝑎u to sets t 𝑓𝑛 ą 𝑎u for
which we have measurability by assumption. Let’s see this precisely. First, the set of 𝑥 for which sequence
p 𝑓𝑛p𝑥qq is definitely larger than a 𝑏 is

ď

𝑘

č

𝑛ě𝑘

t 𝑓𝑛 ą 𝑏u P ℱ, @𝑏 P R.

Then, notice that the following identity holds:

t 𝑓 ą 𝑎u “
ď

𝑏PQ, 𝑏ą𝑎

ď

𝑘

č

𝑛

t 𝑓𝑛 ą 𝑏u P ℱ

Indeed: if 𝑓 p𝑥q ą 𝑎 then, since 𝑓𝑛p𝑥q ÝÑ 𝑓 p𝑥q ą 𝑎, taking 𝑏 P Q such that 𝑎 ă 𝑏 ă 𝑓 p𝑥q, by definition
of limit 𝑓𝑛p𝑥q ą 𝑏 for all 𝑛 ě 𝑘 for a suitable 𝑘 . Thus Ă holds. Viceversa, if 𝑥 belongs to the r.h.s., then
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𝑓𝑛p𝑥q ą 𝑏 for some 𝑏 ą 𝑎 and for every 𝑛 ě 𝑘 for some 𝑘 . Thus 𝑓 p𝑥q “ lim𝑛 𝑓𝑛p𝑥q ě 𝑏 ą 𝑎, and this
proves Ą.
ii) Let 𝑁 such that 𝜇p𝑁q “ 0 and 𝑓𝑛 ÝÑ 𝑓 on 𝑋z𝑁 . Applying the previous part we deduce that
𝑓 P 𝐿p𝑋z𝑁q, and since the space is complete, by the Proposition 3.2.6 it follows that 𝑓 P 𝐿p𝑋q.

Remark 3.3.3

Other important properties such as continuity or differentiability do not ”pass” to the point-wise
limit. For example, 𝑓𝑛p𝑥q “ 𝑥𝑛, 𝑓𝑛 P 𝒞pr0, 1sq and

𝑓𝑛p𝑥q “ 𝑥𝑛 ÝÑ

$

&

%

0, 0 ď 𝑥 ă 1,

1, 𝑥 “ 1
“: 𝑓 p𝑥q, @𝑥 P r0, 1s.

Clearly, p 𝑓𝑛q Ă 𝐿pr0, 1sq and 𝑓 “ 11 P 𝐿pr0, 1sq (this confirms previous thm), but while
p 𝑓𝑛q Ă 𝒞pr0, 1sq we have 𝑓 R 𝒞pr0, 1sq. □

3.4. Exercises

Exercise 3.4.1 (˚). Show that any monotone function 𝑓 : R ÝÑ R is Lebesgue measurable.
Exercise 3.4.2 (˚˚). Show that 𝑓 is ℱ´measurable iff t 𝑓 ą 𝑎u P ℱ for every 𝑎 P Q.
Exercise 3.4.3 (˚˚). Let ℱ be a measured space. The aim of this exercise if to prove that

𝑓 P 𝐿p𝐸q, ðñ t 𝑓 P 𝐵u P ℱ, @𝐵 P ℬpR𝑑q.

i) Check ðù.
ii) Check ùñ Define ℬ Ă ℬpR𝑑q the class of sets 𝐵 P ℬpR𝑑q such that t 𝑓 P 𝐵u P ℱ. Show that

ℬ is a 𝜎´algebra and ℬ “ ℬpR𝑑q.
Exercise 3.4.4 (˚˚˚). Adapt the ideas of the proof of the proposition 3.1.7 to check that if 𝑓 , 𝑔 P 𝐿p𝐸q

then also 𝑓 ¨ 𝑔 P 𝐿p𝐸q. (hint: if 𝑔 ą 0, 𝑓 𝑔 ą 𝑎 is equivalent to 𝑓 ą 𝑎
𝑔

. . . ).

Exercise 3.4.5 (˚˚˚). Prove the proposition 3.1.8. (hint: t𝜑p 𝑓 q ą 𝑎u “ 𝑓´1
`

𝜑´1ps𝑎,`8rq
˘

,
𝜑´1ps𝑎,`8rq is open being 𝜑 continuous; )
Exercise 3.4.6 (˚). For each of the following sequences of functions p 𝑓𝑛q on pR,ℳ1, 𝜆1q, determine if
they are a.e. convergent and, in this case, to what.

i) 𝑓𝑛p𝑥q “ 1r𝑛,𝑛`1sp𝑥q.
ii) 𝑓𝑛p𝑥q “ 1r1{𝑛,𝑛sp𝑥q.

iii) 𝑓𝑛p𝑥q :“ 1
r
1´p´1q𝑛

4 ,
3´p´1q𝑛

4 s
p𝑥q.

Exercise 3.4.7 (˚˚). Let 𝑔 P 𝒞pR𝑑q be such that 𝑔 “ 0 a.e.. Deduce that, necessarily, 𝑔 ” 0 that is
𝑔p𝑥q “ 0 for every 𝑥 P R𝑑 .
Exercise 3.4.8 (˚˚). Let p 𝑓𝑛q Ă 𝐿p𝐸q. Define

𝑓 p𝑥q :“ inf
𝑛
𝑓𝑛p𝑥q, 𝑔p𝑥q :“ sup

𝑛
𝑓𝑛p𝑥q.

Check that
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i) t 𝑓 “ ´8u, t𝑔 “ `8u P ℱ.
ii) if 𝐹 :“ 𝐸zt 𝑓 “ ´8u and 𝐺 :“ 𝐸zt𝑔 “ `8u, then 𝑓 P 𝐿p𝐹q and 𝑔 P 𝐿p𝐺q.

Exercise 3.4.9 (˚˚˚). We recall that a sequence p𝑎𝑛q of real numbers is convergent iff it is a Cauchy
sequence, that is iff the following property holds:

@𝜀 ą 0, D𝑁 “ 𝑁p𝜀q P N, : |𝑎𝑛 ´ 𝑎𝑚| ď 𝜀, @𝑛, 𝑚 ě 𝑁.

With this in mind, let p 𝑓𝑛q Ă 𝐿p𝑋,ℱq be a sequence of measurable functions on 𝑋 . Check that the set
𝑆 :“ t𝑥 P 𝑋 : p 𝑓𝑛p𝑥qq converges in Ru

is ℱ´measurable. (hint: 𝑆 is the set of 𝑥 P 𝑋 for which p 𝑓𝑛p𝑥qq is a Cauhcy sequence. . . Use set
operations to express 𝑆 under this form).



LECTURE 4

Abstract Integral

Measure allows a general definition of integral. The relevance of such definition is both in its versatility
and in its power. Abstract integrals are used in Analysis and Geometry, they provides foundations to
Probability and to Quantum Physics. Their tools as by far stronger than usual Riemann tools. This is why
the integral introduced with this Lecture can be considered the ”true integration Theory”.

4.1. Lebesgue definition

Let p𝑋,ℱ, 𝜇q be a measure space and let 𝑓 P 𝐿p𝐸q be a measurable function on 𝐸 Ă 𝑋 . The goal is
to define the integral

∫
𝐸
𝑓 𝑑𝜇. The main steps of this construction are: (a) the case of positive measurable

functions; (b) extension to real-valued functions; (c) extension to complex-valued functions. This last
extension is important in its own right and is particularly relevant because the Fourier transform (the
characteristic function in probability) is the integral of a complex-valued function.

We begin with the case of positive measurable functions. The traditional Riemann approach to
integration is based on partitioning the domain, whereas the Lebesgue approach is based on partitioning
the co-domain. Fix 𝑛 and divide the co-domain r0,`8r as follows:

r0,`8r“

„

0,
1

2𝑛

„

Y

„

1

2𝑛
,
2

2𝑛

„

Y . . . Y

„

22𝑛 ´ 1

2𝑛
, 2𝑛

„

Y r2𝑛,`8r .

Then, we define simple functions 𝑠𝑛p𝑥q

(4.1.1) 𝑠𝑛p𝑥q :“
22𝑛´1
ÿ

𝑘“0

𝑘

2𝑛
1 𝑘

2𝑛
ď 𝑓ă

𝑘`1
2𝑛

` 2𝑛1 𝑓ě22𝑛 .

k/2n

(k+1)/2n

= { :
k

2n
⩽()<

k + 1

2n
}

/2n

2 /2n

3 /2n

4 /2n

5 /2n

6 /2n

7 /2n

snf

These are measurable simple functions (because 𝑓 P 𝐿p𝐸q) and, by their definition, their graphs are
below that one of 𝑓 . Letting 𝑛 Ñ `8 we have a point-wise approximation of 𝑓 :

Proposition 4.1.1

Let p𝑋,ℱ, 𝜇q be a measured space, 𝑓 P 𝐿p𝐸q, 𝑓 ě 0 a positive measurable function. Let p𝑠𝑛q

the sequence of simple functions defined by (4.1.1). Then,

23
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i) 𝑠0p𝑥q ď 𝑠1p𝑥q ď . . . ď 𝑠𝑛p𝑥q ď 𝑓 p𝑥q, for every 𝑥 P 𝐸 ;
ii) lim𝑛Ñ`8 𝑠𝑛p𝑥q “ 𝑓 p𝑥q, for every 𝑥 P 𝐸 .

Proof. Define now sets

𝐸𝑘,𝑛 :“

"

𝑘

2𝑛
ď 𝑓 ă

𝑘 ` 1

2𝑛

*

, 𝑘 “ 0, . . . , 22𝑛 ´ 1, 𝐸22𝑛 ,𝑛 :“ t 𝑓 ě 2𝑛u.

Since 𝑓 is measurable, sets 𝐸𝑘,𝑛 are measurable. Define now

𝑠𝑛p𝑥q :“
22𝑛´1
ÿ

𝑘“0

𝑘

2𝑛
1𝐸𝑘,𝑛 ` 2𝑛1𝐸22𝑛,𝑛

.

Clearly 𝑠𝑛 is a simple function and, by construction, 𝑠𝑛p𝑥q ď 𝑓 p𝑥q for every 𝑥 P 𝐸 . It holds 𝑠𝑛 ď 𝑠𝑛`1

(exercise). Let’s prove ii) of statement. Fix 𝑥 P 𝐸 and pick 𝑁 big enough in such a way that 𝑓 p𝑥q ă 2𝑁 .
Then, for 𝑛 ě 𝑁 , there exists a unique 𝐸𝑘,𝑛 Q 𝑥. In particular, 𝑠𝑛p𝑥q “ 𝑘

2𝑛 , whence hence

0 ď 𝑓 p𝑥q ´ 𝑠𝑛p𝑥q ď
𝑘 ` 1

2𝑛
´

𝑘

2𝑛
“

1

2𝑛
.

Letting 𝑛 ÝÑ `8 we get the conclusion.

We now set ∫
𝐸

𝑠𝑛 𝑑𝜇 :“
22𝑛´1
ÿ

𝑘“0

𝑘

2𝑛
𝜇

ˆ

𝑘

2𝑛
ď 𝑓 ă

𝑘 ` 1

2𝑛

˙

` 2𝑛𝜇p 𝑓 ě 2𝑛q.

Since 𝜇 could take value “ `8, we need to specify how to handle the algebra with infinities. We will
assume the following natural algebraic rules:

𝑐 ¨ p`8q “

$

&

%

0, 𝑐 “ 0,

`8, 𝑐 ą 0,
p`8q ` p`8q “ `8.

With these agreements, the integral
∫
𝐸
𝑠𝑛 𝑑𝜇 is well defined and it can be considered as an approximation

by defect of the integral
∫
𝐸
𝑓 𝑑𝜇. We will now prove that the sequence of integrals

∫
𝐸
𝑠𝑛 𝑑𝜇 is actually

convergent. The limit value will be, by definition,
∫
𝐸
𝑓 𝑑𝜇.

Proposition 4.1.2

Let p𝑋,ℱ, 𝜇q be a measure space and 𝑓 P 𝐿p𝐸q. Then,

(4.1.2) D lim
𝑛Ñ`8

∫
𝐸

𝑠𝑛 𝑑𝜇 “:

∫
𝐸

𝑓 𝑑𝜇 P r0 ` 8s.

Proof. We prove that the sequence of integrals
∫
𝐸
𝑠𝑛 𝑑𝜇 is increasing with 𝑛. From this, it will follow

that the limit lim𝑛

∫
𝐸
𝑠𝑛 𝑑𝜇 exists, so the definition of

∫
𝐸
𝑓 𝑑𝜇 makes sense and the conclusion follows. To
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prove this, we notice that

𝜇

ˆ

𝑘

2𝑛
ď 𝑓 ă

𝑘 ` 1

2𝑛

˙

“ 𝜇

ˆ

2𝑘

2𝑛`1
ď 𝑓 ă

2p𝑘 ` 1q

2𝑛`1

˙

“ 𝜇

ˆ

2𝑘

2𝑛`1
ď 𝑓 ă

2𝑘 ` 1

2𝑛`1

˙

`𝜇

ˆ

2𝑘 ` 1

2𝑛`1
ď 𝑓 ă

2𝑘 ` 2

2𝑛`1

˙

.

Therefore,∫
𝐸
𝑠𝑛 𝑑𝜇 “

ř22𝑛´1
𝑘“0

𝑘
2𝑛

“

𝜇
`

2𝑘
2𝑛`1 ď 𝑓 ă

2𝑘`1
2𝑛`1

˘

` 𝜇
`

2𝑘`1
2𝑛`1 ď 𝑓 ă

2𝑘`2
2𝑛`1

˘‰

` 2𝑛𝜇p 𝑓 ě 2𝑛q

ď

22𝑛´1
ÿ

𝑘“0

2𝑘

2𝑛`1
𝜇

ˆ

2𝑘

2𝑛`1
ď 𝑓 ă

2𝑘 ` 1

2𝑛`1

˙

`

22𝑛´1
ÿ

𝑘“0

2𝑘 ` 1

2𝑛`1
𝜇

ˆ

2𝑘 ` 1

2𝑛`1
ď 𝑓 ă

2𝑘 ` 2

2𝑛`1

˙

looooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooon

ř22𝑛`1´1
𝑗“0

𝑗

2𝑛`1 𝜇
´

𝑗

2𝑛`1 ď 𝑓ă
𝑗`1

2𝑛`1

¯

`

` 2𝑛𝜇p2𝑛 ď 𝑓 ă 2𝑛`1q
looooooooooomooooooooooon

22𝑛`1

2𝑛`1 𝜇
´

22𝑛`1

2𝑛`1 ď 𝑓ă
22𝑛`1`1

2𝑛`1

¯

`2𝑛𝜇p 𝑓 ě 2𝑛`1q

ď
ř22p𝑛`1q´1
𝑗“0

𝑗

2𝑛`1 𝜇

´

𝑗

2𝑛`1 ď 𝑓 ă
𝑗`1
2𝑛`1

¯

` 2𝑛`1𝜇p 𝑓 ě 2𝑛`1q

“
∫
𝐸
𝑠𝑛`1 𝑑𝜇.

With some technical work, some first properties of this definition can be obtained

Proposition 4.1.3

Let p𝑋,ℱ, 𝜇q be a measure space. The following properties hold:
i) if 𝑓 , 𝑔 P 𝐿p𝐸q, 0 ď 𝑓 ď 𝑔, then

∫
𝐸
𝑓 𝑑𝜇 ď

∫
𝐸
𝑔 𝑑𝜇.

ii) if 𝑓 , 𝑔 P 𝐿p𝐸q, 𝑓 , 𝑔 ě 0 and 𝛼, 𝛽 ě 0 are constant, then∫
𝐸

p𝛼 𝑓 ` 𝛽𝑔q 𝑑𝜇 “ 𝛼

∫
𝐸

𝑓 𝑑𝜇 ` 𝛽

∫
𝐸

𝑔 𝑑𝜇.

Proofs are left in the exercises. We now extend the definition of integral to real valued functions. We
introduce

𝑓` :“ maxt 𝑓 , 0u, (positive part) 𝑓´ :“ maxt´ 𝑓 , 0u, (negative part).

Sincemaxt𝑦, 0u andmaxt´𝑦, 0u are continuous functions of 𝑦, both 𝑓˘ are measurable if 𝑓 is measurable.
Both are also non negative functions.
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Definition 4.1.4

Let p𝑋,ℱ, 𝜇q be a measure space and 𝑓 P 𝐿p𝐸q. We say that 𝑓 is 𝜇´integrable if∫
𝑋

| 𝑓 | 𝑑𝜇 ă `8.

In this case we set ∫
𝑋

𝑓 :“

∫
𝑋

𝑓` 𝑑𝜇 ´

∫
𝑋

𝑓´ 𝑑𝜇.

We write 𝑓 P 𝐿1p𝑋,ℱ, 𝜇q, if the measure space is understood, we just write 𝑓 P 𝐿1p𝐸q.

Remark 4.1.5

The definition is well posed. Indeed: since
∫
𝑋

| 𝑓 | 𝑑𝜇 is finite, being 0 ď 𝑓˘ ď | 𝑓 | we have that
also ∫

𝑋

𝑓˘ 𝑑𝜇 ď

∫
𝑋

| 𝑓 | 𝑑𝜇 ă `8.

Thus the difference
∫
𝑋
𝑓` 𝑑𝜇 ´

∫
𝑋
𝑓´ 𝑑𝜇 makes sense (we do not have the indeterminate form

p`8q ´ p`8q.

The final extension it to the case of complex valued functions.

Definition 4.1.6

Let p𝑋,ℱ, 𝜇q be a measured space. Given 𝑓 : 𝑋 ÝÑ C, we say that 𝑓 is measurable (notation
𝑓 P 𝐿Cp𝑋q) if both Re 𝑓 and Im 𝑓 are measurable (that is Re 𝑓 , Im 𝑓 P 𝐿p𝑋q). We say that 𝑓 is
𝜇´integrable (notation 𝑓 P 𝐿1

C
p𝑋,ℱ, 𝜇q) if∫

𝑋

| 𝑓 | 𝑑𝜇 ă `8.

In this case we set ∫
𝑋

𝑓 𝑑𝜇 :“

∫
𝑋

Re 𝑓 𝑑𝜇 ` 𝑖

∫
𝑋

Im 𝑓 𝑑𝜇.

Remark 4.1.7: A

so for this case, the definition is well posed. Indeed, since |Re 𝑓 |, |Im 𝑓 | ď | 𝑓 |, we have∫
𝑋

|Re 𝑓 | 𝑑𝜇,
∫
𝑋

|Im 𝑓 | 𝑑𝜇 ď
∫
𝑋

| 𝑓 | 𝑑𝜇 ă `8, thus Re 𝑓 , Im 𝑓 P 𝐿1p𝑋q and both integrals∫
𝑋

Re 𝑓 𝑑𝜇,
∫
𝑋

Im 𝑓 𝑑𝜇 P R. Hence, the value of
∫
𝑋
𝑓 𝑑𝜇 is well defined.

4.2. General properties

We summarize, in the next proposition, the main properties of the abstract integral. Proofs are omitted
here.
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Proposition 4.2.1

Let p𝑋,ℱ, 𝜇q be a measure space. The following properties hold:
i) (linearity) if 𝑓 , 𝑔 P 𝐿1p𝐸q and 𝛼, 𝛽 P R pCq then∫

𝐸

p𝛼 𝑓 ` 𝛽𝑔q 𝑑𝜇 “ 𝛼

∫
𝐸

𝑓 𝑑𝜇 ` 𝛽

∫
𝐸

𝑔 𝑑𝜇.

ii) (ordering) if 𝑓 , 𝑔 P 𝐿1p𝐸q are real valued and 𝑓 ď 𝑔, then∫
𝐸

𝑓 𝑑𝜇 ď

∫
𝐸

𝑔 𝑑𝜇.

iii) (triangular inequality) if 𝑓 P 𝐿1p𝐸q, then
ˇ

ˇ

ˇ

ˇ

∫
𝐸

𝑓 𝑑𝜇

ˇ

ˇ

ˇ

ˇ

ď

∫
𝐸

| 𝑓 | 𝑑𝜇.

iv) (restriction) if 𝑓 P 𝐿1p𝐸q and 𝐹 P ℱ, 𝐹 Ă 𝐸 , then 𝑓 P 𝐿1p𝐹q and∫
𝐹

𝑓 𝑑𝜇 “

∫
𝐸

𝑓 1𝐹 𝑑𝜇.

v) (decomposition) if 𝑓 P 𝐿1p𝐸q, 𝐿1p𝐹q with 𝐸 X 𝐹 “ ∅, then 𝑓 P 𝐿1p𝐸 \ 𝐹q and∫
𝐸\𝐹

𝑓 𝑑𝜇 “

∫
𝐸

𝑓 𝑑𝜇 `

∫
𝐹

𝑓 𝑑𝜇.

vi) (null sets) if 𝜇p𝑁q “ 0 then
∫
𝑁
𝑓 𝑑𝜇 “ 0. In particular, if 𝑓 , 𝑔 P 𝐿1p𝐸q and 𝑓 “ 𝑔 a.e.,

then ∫
𝐸

𝑓 𝑑𝜇 “

∫
𝐸

𝑔 𝑑𝜇.

An important inequality is given in the following

Lemma 4.2.2: Chebyshev’s inequality

Let p𝑋,ℱ, 𝜇q be a measure space, and 𝑓 P 𝐿p𝑋q, 𝑓 ě 0 a positive measurable function. Then

(4.2.1) 𝜇p 𝑓 ě 𝛼q ď
1

𝛼

∫
𝑓ě𝛼

𝑓 𝑑𝜇 ď
1

𝛼

∫
𝑋

𝑓 𝑑𝜇, @𝛼 ą 0.

Proof. We have

𝜇p 𝑓 ě 𝛼q “

∫
𝑓ě𝛼

1 𝑑𝜇
𝑓ě𝛼 ðñ

𝑓

𝛼
ě1

ď

∫
𝑓ě𝛼

𝑓

𝛼
𝑑𝜇 “

1

𝛼

∫
𝑓ě𝛼

𝑓 𝑑𝜇 ď
1

𝛼

∫
𝑋

𝑓 𝑑𝜇.

This apparently simple inequality has important consequences. A first example is the following:
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Corollary 4.2.3

Let p𝑋,ℱ, 𝜇q be a measure space, and 𝑓 P 𝐿p𝐸q, 𝑓 ě 0 a positive measurable function. If∫
𝐸

𝑓 𝑑𝜇 “ 0,

then 𝑓 “ 0 a.e. on 𝐸 .

Proof. Since
∫
𝐸
𝑓 𝑑𝜇 “ 0, by Chebyshev’s inequality we have that

𝜇p 𝑓 ě 𝛼q “ 0, @𝛼 ą 0.

Our goal is to prove that
𝜇p 𝑓 ą 0q “ 0,

from which the conclusion will follow. To this aim, notice that, if 𝐸𝑛 :“ t 𝑓 ě 1
𝑛

u, then 𝐸𝑛 Õ 𝐸 :“ t 𝑓 ą

0u. By continuity from below,

𝜇p 𝑓 ą 0q “ lim
𝑛
𝜇

ˆ

𝑓 ě
1

𝑛

˙

“ 0. □

Here is another application of Chebyshev’s inequality.

Proposition 4.2.4

Let p𝑋,ℱ, 𝜇q be a measure space, 𝑓 P 𝐿p𝑋q, 𝑓 ě 0. Then∫
𝑋

𝑓 𝑑𝜇 ă `8, ùñ 𝑓 ă `8, 𝑎.𝑒.

Proof. Just notice that t 𝑓 “ `8u “
Ş

𝑛t 𝑓 ě 𝑛u, and since

𝜇p 𝑓 ě 𝑛q ď
1

𝑛

∫
𝑋

𝑓 𝑑𝜇 “
𝐶

𝑛
,

we get that 𝜇p 𝑓 “ `8q ď 𝐶
𝑛

, for every 𝑛 P N. Letting 𝑛 ÝÑ `8 we have the conclusion.

4.3. Exercises

Exercise 4.3.1 (˚˚). Extend theorem 4.1 to any 𝑓 P 𝐿p𝐸q. Prove that there exists p𝑠𝑛q of simple functions
such that

lim
𝑛Ñ`8

𝑠𝑛p𝑥q “ 𝑓 p𝑥q, @𝑥 P 𝐸.

(you may start writing 𝑓 “ 𝑓` ´ 𝑓´)

Exercise 4.3.2 (˚˚). Let p𝑋,ℱ, 𝜇q be a measure space. Prove that

𝜇p𝐸q “

∫
𝑋

1𝐸 𝑑𝜇, @𝐸 P ℱ.

(hint: distingush cases 𝜇p𝐸q “ `8 from 𝜇p𝐸q ă `8).

Exercise 4.3.3 (˚˚˚). Let 𝑓 , 𝑔 P 𝐿p𝐸q, 0 ď 𝑓 ď 𝑔. Show that
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i) 𝑠 𝑓𝑛p𝑥q ď 𝑠
𝑔
𝑛p𝑥q (here, 𝑠 𝑓𝑛 , 𝑠

𝑔
𝑛 are, respectively, the simple functions (4.1.1) built on 𝑓 and 𝑔).

ii) from the definition (4.1.2),
∫
𝐸
𝑓 𝑑𝜇 ď

∫
𝐸
𝑔 𝑑𝜇.

Exercise 4.3.4 (˚˚). Given a measure space p𝑋.ℱ, 𝜇q, let 𝑓 P 𝐿p𝐸q, with 0 ă 𝜇p𝐸q ă `8. Suppose
moreover that 0 ď 𝑓 p𝑥q ď 𝑀 a.e. 𝑥 P 𝐸 . Show that if

∫
𝐸
𝑓 𝑑𝜇 “ 𝑀𝜇p𝐸q, then 𝑓 “ 𝑀 a.e. on 𝐸 .

Exercise 4.3.5 (˚˚). Let p𝑋,ℱ, 𝜇q and let 𝑓 P 𝐿1 be such that
ˇ

ˇ

ˇ

ˇ

∫
𝐸

𝑓 𝑑𝜇

ˇ

ˇ

ˇ

ˇ

“

∫
𝐸

| 𝑓 | 𝑑𝜇,

for some 𝐸 P ℱ. Prove that 𝑓 has constant sign on 𝐸 𝜇´a.e.

Exercise 4.3.6 (˚). Let p𝑋,ℱ, 𝜇q and 𝑓 P 𝐿p𝑋q, 𝑓 ě 0. Extend Chebyshev’s inequality:

𝜇p 𝑓 ě 𝛼q ď
1

𝛼𝑝

∫
𝑋

𝑓 𝑝 𝑑𝜇, @𝛼 ą 0, @𝑝 ě 1.

Is this still true for 0 ă 𝑝 ă 1?

Exercise 4.3.7 (˚˚). Let p𝑋,ℱ, 𝜇q and 𝑓 P 𝐿p𝑋q, 𝑓 ě 0. Extend Chebyshev’s inequality as follows: for
𝜙 “ 𝜙p𝑥q : r0,`8rÝÑ Rincreasing and convex function with 𝜙p0q “ 0, prove that

𝜇p 𝑓 ě 𝛼q ď
1

𝜙p𝛼q

∫
𝑋

𝜙p 𝑓 q 𝑑𝜇, @𝛼 ą 0.

(hint: remind that 𝜙 is convex iff 𝜙p𝑡𝑥 ` p1 ´ 𝑡q𝑦q ď 𝑡𝜙p𝑥q ` p1 ´ 𝑡q𝜙p𝑦q, @𝑥, 𝑦, @𝑡 P r0, 1s)

Exercise 4.3.8 (˚˚). Let p𝑋,ℱ, 𝜇q and 𝑓 P 𝐿1p𝑋q be such that∫
𝐸

𝑓 𝑑𝜇 ě 0, @𝐸 P ℱ.

Show that 𝑓 ě 0 a.e.

Exercise 4.3.9 (˚˚`). Let 𝑓 P 𝐿1p𝑋,ℱ, 𝜇q and suppose that
ˇ

ˇ

ˇ

ˇ

∫
𝐸

𝑓 𝑑𝜇

ˇ

ˇ

ˇ

ˇ

ď 𝑀𝜇p𝐸q, @𝐸 P ℱ.

Prove that | 𝑓 p𝑥q| ď 𝑀 a.e. (hint: consider 𝐸 “ t 𝑓 ě 𝑀 ` 𝜀u with 𝜀 ą 0, use Chebyshev’s inequality to
show that 𝜇p𝐸q ă `8 and the assumption to prove that 𝜇p𝐸q “ 0; from this, deduce the conclusion. . . )





LECTURE 5

Lebesgue Integral

Lebesgue integral is the integral respect to the Lebesgue measure. It is usually written as∫
𝐸

𝑓 p𝑥q 𝑑𝑥.

This because there is an important relation with the familiar Riemann integral taught in Calculus courses.
This Lecture focuses on this particular integral and on some of its main features.

5.1. Comparison with Riemann and Generalized Integrals

In dimension 𝑑 “ 1, the well known definition of integral are Riemann’s integral and generalized
integral. We now have a new definition of integral, Lebesgue’s integral∫

𝐸

𝑓 𝑑𝜆1.

While Riemann and generalized integrals are well defined integrations on intervals, Lebesgue’s integral
allows a large flexibility about the domain. However, when the integration domain is an interval, a
comparison makes sense. We start with the case of Riemann’s integral.

Theorem 5.1.1

If 𝑓 P ℛpr𝑎, 𝑏sq (Riemann integrable) then 𝑓 P 𝐿1pr𝑎, 𝑏sq and

(Riemann)
∫ 𝑏

𝑎

𝑓 p𝑥q 𝑑𝑥 “

∫
r𝑎,𝑏s

𝑓 𝑑𝜆1 (Lebesgue).

Moreover, 𝑓 P ℛpr𝑎, 𝑏sq iff 𝑓 P 𝐿1pr𝑎, 𝑏sq and the set of discontinuities of 𝑓 has measure 0.

In practice, to compute Lebesgue integrals in one variable we may use, where possible, tools from
ordinary Calculus. Thus, for example, if 𝑓 P 𝒞

1pr𝑎, 𝑏sq then∫
r𝑎,𝑏s

𝑓 1 𝑑𝜆1 ”

∫ 𝑏

𝑎

𝑓 1p𝑥q 𝑑𝑥 “ 𝑓 p𝑏q ´ 𝑓 p𝑎q.

Warning 5.1.2

Lebesgue’s integral is a huge extension of Riemann’s integral. There are lot of functions which
are not integrable in Riemann sense, while they are integrable in Lebesgue sense. An example is
Dirichlet’s function 1r0,1szQ P 𝐿1pr0, 1sqzℛpr0, 1sq.

31
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Because of their identity on Riemann integrable functions, we will denote Lebesgue’s integral on r𝑎, 𝑏s as∫ 𝑏
𝑎
𝑓 p𝑥q 𝑑𝑥. There is no ambiguity with this: when both are defined, they coincide; when only Lebesgue’s

integral makes sense, there is no risk of misunderstanding.
As known, Riemann integrable functions are necessarily bounded and defined on closed and bounded

intervals. For many reasons, it is interesting to have an operation of integral on unbounded intervals and
for unbounded functions, or for a combination of these two. This yields to the definition of generalized
integral. For sake of simplicity, here we will focus on generalized integrals on unbounded intervals, but
what we say here holds similarly for the other cases. We recall that

∫ `8

𝑎

𝑓 p𝑥q 𝑑𝑥 :“ lim
𝑏Ñ`8

∫ 𝑏

𝑎

𝑓 p𝑥q 𝑑𝑥.

Other cases work in the same way. In general, it may happens that a generalized integral exists but the
corresponding Lebesgue’s integral is not.

Example 5.1.3

Function 𝑓 p𝑥q :“ sin 𝑥
𝑥

is integrable in generalized sense on r0,`8r but is not 𝐿1pr0,`8rq.

Proof. To simplify technical details, we consider a slight modification of such 𝑓 defining

𝑓 p𝑥q :“

$

’

’

’

&

’

’

’

%

`1, 0 ď 𝑥 ă 1,
´1{2, 1 ď 𝑥 ă 2,
`1{3, 2 ď 𝑥 ă 3,
...

“

8
ÿ

𝑛“1

p´1q𝑛`1 1

𝑛
1r𝑛,𝑛`1rp𝑥q.

Then ∫ `8

0

𝑓 p𝑥q 𝑑𝑥 “ lim
𝑁Ñ`8

∫ 𝑁

0

𝑓 p𝑥q 𝑑𝑥 “ lim
𝑁Ñ`8

𝑁
ÿ

𝑛“1

p´1q𝑛`1 1

𝑛
“

8
ÿ

𝑛“1

p´1q𝑛`1

𝑛
,

which is, after Leibniz’s test, a convergent series. Thus
∫`8

0
𝑓 p𝑥q 𝑑𝑥 P R. However,∫

r0,`8r

| 𝑓 | “

8
ÿ

𝑛“1

∫
r𝑛,𝑛`1r

ˇ

ˇ

ˇ

ˇ

p´1q𝑛`1 1

𝑛

ˇ

ˇ

ˇ

ˇ

“

8
ÿ

𝑛“1

1

𝑛
“ `8.

This means that 𝑓 R 𝐿1pr0,`8rq.

In the previous example, | 𝑓 | is not integrable in generalized sense, that is 𝑓 is not absolutely integrable. It
turns out that, functions absolutely integrable in generalized sense are also integrable in Lebesgue sense
and the two integrals coincide:
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Theorem 5.1.4

If 𝑓 is absolutely integrable in generalized sense on r𝑎,`8r, that is
∫`8

𝑎
| 𝑓 p𝑥q| 𝑑𝑥 ă `8, then

𝑓 P 𝐿1pr𝑎,`8rq and

(generalized integral)
∫ `8

𝑎

𝑓 p𝑥q 𝑑𝑥 “

∫
r𝑎,`8r

𝑓 𝑑𝜆1 (Lebesgue).

5.2. Reduction Formula

In dimension 𝑑 ą 1, the basic tool of calculus is reduction formula. As the name says, this formula
allows to reduce an higher dimensional integral into a lower dimensional one. To illustrate the principle,
we consider a function 𝑓 : 𝐸 Ă R𝑑 ÝÑ R written as

𝑓 “ 𝑓 p𝑥, 𝑦q, where p𝑥, 𝑦q P R𝑘 ˆ Rℎ ” R𝑑 .

Theorem 5.2.1: Fubini

Assume 𝑓 “ 𝑓 p𝑥, 𝑦q P 𝐿1p𝐸q. Then reduction formula holds true

(5.2.1)
∫
𝐸

𝑓 p𝑥, 𝑦q 𝑑𝑥𝑑𝑦 “

∫
𝑥 : 𝐸𝑥‰∅

ˆ∫
𝐸𝑥

𝑓 p𝑥, 𝑦q 𝑑𝑦

˙

𝑑𝑥 “

∫
𝑦 : 𝐸𝑦‰∅

ˆ∫
𝐸𝑦

𝑓 p𝑥, 𝑦q 𝑑𝑥

˙

𝑑𝑦.

where
𝐸𝑥 :“ t𝑦 P Rℎ : p𝑥, 𝑦q P 𝐸u, 𝐸 𝑦 :“ t𝑥 P R𝑘 : p𝑥, 𝑦q P 𝐸u.

To apply reduction formula in practical cases, we need to know 𝑓 P 𝐿1p𝐸q, that is∫
𝐸

| 𝑓 p𝑥, 𝑦q| 𝑑𝑥𝑑𝑦 ă `8.

Notice that, in this case, by (5.2.1) applied to | 𝑓 |, we have

`8 ą

∫
𝐸

| 𝑓 p𝑥, 𝑦q| 𝑑𝑥𝑑𝑦 “

∫
𝑥 : 𝐸𝑥‰∅

ˆ∫
𝐸𝑥

| 𝑓 p𝑥, 𝑦q| 𝑑𝑦

˙

𝑑𝑥 “

∫
𝑦 : 𝐸𝑦‰∅

ˆ∫
𝐸𝑦

| 𝑓 p𝑥, 𝑦q| 𝑑𝑥

˙

𝑑𝑦.

A vice versa is also true:

Theorem 5.2.2: Tonelli

Assume 𝑓 P 𝐿p𝐸q be such that one of the integrals∫
𝑥 : 𝐸𝑥‰∅

ˆ∫
𝐸𝑥

| 𝑓 p𝑥, 𝑦q| 𝑑𝑦

˙

𝑑𝑥,

∫
𝑦 : 𝐸𝑦‰∅

ˆ∫
𝐸𝑦

| 𝑓 p𝑥, 𝑦q| 𝑑𝑥

˙

𝑑𝑦

is finite. Then 𝑓 P 𝐿1p𝐸q.

Theorems 5.2 and 5.2 are usually applied together. Given 𝑓 P 𝐿p𝐸q we apply first Thm 5.2 to check if
𝑓 P 𝐿1. If this is the case, then we may apply Thm 5.2 to compute the integral. The two statements
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joint are called also Fubini-Tonelli Theorem. But warning! It might happens that both iterated integral of
(5.2.1) are finite and 𝑓 R 𝐿1.

Example 5.2.3

Let
𝑓 p𝑥, 𝑦q “

𝑥 ´ 𝑦

p𝑥 ` 𝑦q3
, p𝑥, 𝑦q P 𝐸 :“ r0, 1s2.

Then
∫
𝑥 : 𝐸𝑥‰∅

´∫
𝐸𝑥
𝑓 𝑑𝑦

¯

𝑑𝑥 ‰
∫
𝑦 : 𝐸𝑦‰∅

´∫
𝐸𝑦

𝑓 𝑑𝑥

¯

𝑑𝑦 (hence, in particular, 𝑓 R 𝐿1pr0, 1s2q).

Proof. Notice first that

𝐸 𝑦 “ t𝑥 P R : p𝑥, 𝑦q P r0, 1s2u “

$

&

%

H, 𝑦 R r0, 1s,

r0, 1s 𝑦 P r0, 1s

and similarly for 𝐸𝑥 . Therefore∫
𝐸𝑦

𝑓 p𝑥, 𝑦q 𝑑𝑥 “

$

’

’

&

’

’

%

0, 𝑦 R r0, 1s,∫ 1

0

𝑥 ´ 𝑦

p𝑥 ` 𝑦q3
𝑑𝑥 “

∫ 1

0

𝑥 ` 𝑦 ´ 2𝑦

p𝑥 ` 𝑦q3
𝑑𝑥 “

∫ 1

0

1

p𝑥 ` 𝑦q2
𝑑𝑥 ´ 2𝑦

∫ 1

0

1

p𝑥 ` 𝑦q3
𝑑𝑥. 𝑦 P r0, 1s.

Except for 𝑦 “ 0 (a measure 0 set) both integrals are finite and their value is
„

p𝑥 ` 𝑦q´1

´1

ȷ𝑥“1

𝑥“0

´ 2𝑦

„

p𝑥 ` 𝑦q´2

´2

ȷ𝑥“1

𝑥“0

“
1

𝑦
´

1

𝑦 ` 1
` 𝑦

ˆ

1

p𝑦 ` 1q2
´

1

𝑦2

˙

“ ´
1

p𝑦 ` 1q2
.

Hence ∫
𝐵𝑏𝑏𝑅

ˆ∫
𝐸𝑦

𝑓 p𝑥, 𝑦q 𝑑𝑥

˙

𝑑𝑦 “

∫ 1

0

ˆ

´
1

p𝑦 ` 1q2

˙

𝑑𝑦 “
“

p𝑦 ` 1q´1
‰𝑦“1

𝑦“0
“

1

2
´ 1 “ ´

1

2
.

Exchanging 𝑥 with 𝑦 we obtain the same result except for the sign:
∫
R

´∫
𝐸𝑥
𝑓 p𝑥, 𝑦q𝑑𝑦

¯

𝑑𝑥 “ 1
2 .

5.3. Change of variable formula

Change of variable is an important tool of calculus of integrals. Let 𝑓 P 𝐿1p𝐸q and suppose we aim
to compute ∫

𝐸

𝑓 p𝑥q 𝑑𝑥.

Suppose moreover that, to compute the integral, it looks to be convenient to introduce a new variable
𝑦 “ Φp𝑥q. With this we mean that Φ : 𝐸 ÝÑ 𝐹 is a good (regular) transformation and a bijection, so
that we can also express 𝑥 as function of 𝑦, 𝑥 “ Φ´1p𝑦q. We wonder how the integral w.r.t. 𝑥 variable
transforms into an integral into the 𝑦 variable.

Proceeding informally, imagine we may decompose 𝐸 into ”small” sub-domains 𝐸𝑛, that is 𝐸 “
Ů

𝑛 𝐸𝑛. Then we may expect that∫
𝐸

𝑓 p𝑥q 𝑑𝑥 “
ÿ

𝑛

∫
𝐸𝑛

𝑓 p𝑥q 𝑑𝑥 «
ÿ

𝑛

𝑓 p𝑥𝑛q𝜆p𝐸𝑛q,
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for suitable points 𝑥𝑛 P 𝐸𝑛 (of course this is a delicate point, but this is not a proof!). Now, since
𝐹 “ Φp𝐸q we may decompose 𝐹 as

𝐹 “ Φ

˜

ğ

𝑛

𝐸𝑛

¸

“
ğ

𝑛

Φp𝐸𝑛q “:
ğ

𝑛

𝐹𝑛.

Since Φ is regular, around 𝑥𝑛 P 𝐸𝑛 we may linearize it, that is

Φp𝑥q « Φp𝑥𝑛q ` Φ1p𝑥𝑛qp𝑥 ´ 𝑥𝑛q,

thus
𝐹𝑛 “ Φp𝐸𝑛q “ Φp𝑥𝑛q ` Φ1p𝑥𝑛qp𝐸𝑛 ´ 𝑥𝑛q,

and because of the invariance formula (2.2.1) we have
𝜆p𝐹𝑛q “ 𝜆 pΦp𝑥𝑛q ` Φ1p𝑥𝑛qp𝐸𝑛 ´ 𝑥𝑛qq “ 𝜆 pΦ1p𝑥𝑛qp𝐸𝑛 ´ 𝑥𝑛qq “ |detΦ1p𝑥𝑛q|𝜆p𝐸𝑛 ´ 𝑥𝑛q

“ |detΦ1p𝑥𝑛q|𝜆p𝐸𝑛q,

or
𝜆p𝐸𝑛q “

1

| detΦ1p𝑥𝑛q|
𝜆p𝐹𝑛q.

Thus, setting 𝑦𝑛 “ Φp𝑥𝑛q P 𝐹𝑛,∫
𝐸
𝑓 p𝑥q 𝑑𝑥 «

ř

𝑛 𝑓 p𝑥𝑛q 1
|detΦ1p𝑥𝑛q|

𝜆p𝐹𝑛q «
ř

𝑛 𝑓 pΦ
´1p𝑦𝑛qq 1

|detΦ1pΦ´1p𝑦𝑛q|
𝜆p𝐹𝑛q

«
∫
𝐹
𝑓 pΦ´1p𝑦qq 1

|detΦ1pΦ´1p𝑦qq|
𝑑𝑦.

Finally, recalling that 1
det 𝐴 “ det 𝐴´1 and that

`

Φ1pΦ´1p𝑦q
˘´1

“ pΦ´1q1p𝑦q we have an idea for the
following

Theorem 5.3.1

Let Φ : 𝐸 ÝÑ 𝐹 “ Φp𝐸q be such that Φ P 𝒞
1 with Φ´1 P 𝒞

1 (we say Φ is a diffeomorphism).
Then 𝑓 p𝑥q P 𝐿1p𝐸q iff 𝑓 pΦ´1p𝑦q|detpΦ´1q1p𝑦q| P 𝐿1p𝐹q and

(5.3.1)
∫
𝐸

𝑓 p𝑥q 𝑑𝑥 “

∫
Φp𝐸q

𝑓 pΦ´1p𝑦qq|detpΦ´1q1p𝑦q| 𝑑𝑦

5.4. Exercises

Exercise 5.4.1 (˚). Determine for which values of the parameter(s) the following integrals exist in 𝐿1
sense:

𝑖q

∫ `8

0

1

𝑥𝛼p1 ` 𝑥𝛽q
𝑑𝑥. 𝑖𝑖q

∫ `8

´8

𝑒𝑖𝛼p𝑥`𝑖𝑦q2 𝑑𝑦. 𝑖𝑖𝑖q

∫ `8

0

𝑒´𝛼𝑥 ´ 𝑒´𝑥

𝑥𝛽
𝑑𝑥.

Exercise 5.4.2 (˚). Detemine if the following integrals exists in 𝐿1 sense:

𝑖q

∫ `8

0

sin 𝑥

𝑥p1 ` 𝑥q
𝑑𝑥. 𝑖𝑖q

∫ `8

0

1 ´ cos 𝑥

𝑥2p1 ` 𝑥q
𝑑𝑥.
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Exercise 5.4.3 (˚˚). Determine for which values of 𝛼 P R the function

𝑓 p𝑥q :“
8
ÿ

𝑛“1

𝑛𝛼1 1
𝑛`1ă𝑥ď 1

𝑛
p𝑥q,

belongs to 𝐿1pr0, 1sq.

Exercise 5.4.4 (˚˚). In this problem we assume that the value of the integral 𝐼 :“
∫
R
𝑒´𝑡2 𝑑𝑡 is not known,

and we compute it. By using in a suitable way the Tonelli thm, prove that the function 𝑓 : R2 ÞÝÑ R given
by 𝑓 p𝑥, 𝑦q “ 𝑦𝑒´p1`𝑥2q𝑦2 is in 𝐿1pR2q and by using Fubini compute its integral on r0,`8r2. Deduce
the value of 𝐼. Justify everything with care.

Exercise 5.4.5 (˚˚). Compute ∫ `8

0

ˆ∫ 2𝜋

0

𝑦

𝑥
𝑒´𝑦{𝑥 sin 𝑥 𝑑𝑥

˙

𝑑𝑦.

Exercise 5.4.6 (˚˚). Justifying all steps, compute∫ `8

0

ˆ∫ `8

𝑥

𝑒´𝑦2 𝑑𝑦

˙

𝑑𝑥.

Exercise 5.4.7 (˚˚`). Let 𝑓 p𝑥q “ 𝑔p}𝑥}q P 𝐿pR𝑚q. Check that 𝑓 P 𝐿1pR𝑚q iff 𝑟𝑚´1𝑔p𝑟q P 𝐿1pr0,`8rq

and ∫
R𝑚

𝑓 p𝑥q 𝑑𝑥 “ 𝑚𝜆𝑚´1pB𝑚´1q

∫ 8

0
𝑟𝑚´1𝑔p𝑟q 𝑑𝑟.

p𝜆𝑚´1pB𝑚´1q “ 𝜆𝑚´1pt𝑢 P R𝑚´1 : }𝑢} ď 1uq. (hint: by symmetry,
∫
R𝑚

𝑓 “ 2
∫
𝑥𝑚ě0

𝑓 , hence notice
that 𝑥 “ 𝑟𝑢 where 𝑟 “ }𝑥} and 𝑢 “ 𝑥

}𝑥}
P t𝑢21 ` ¨ ¨ ¨ ` 𝑢2𝑚 “ 1u “ t𝑢2𝑚 “ 1 ´ }p𝑢1, . . . , 𝑢𝑚´1q}2u, so

𝑥 “ Φp𝑟, 𝑢1, . . . , 𝑢𝑚´1q “ p𝑟𝑢1, . . . , 𝑟𝑢𝑚´1, 𝑟
a

1 ´ }p𝑢1, . . . , 𝑢𝑚´1q}2q, then apply change of variable)

Exercise 5.4.8 (˚˚). Determine for which values of 𝛼 ą 0 it holds 𝑓 p𝑥, 𝑦q “ 1
p1´𝑥𝑦q𝛼

P 𝐿1pr0, 1s2q.

Exercise 5.4.9 (˚˚`). Let 𝐸𝑝,𝑞 :“ tp𝑥, 𝑦q P R2 : |𝑥|𝑝 ` |𝑦|𝑞 ď 1u, where 𝑝, 𝑞 ą 0. Show that∫
𝐸𝑝,𝑞

1

|𝑥|𝑝 ` |𝑦|𝑞
𝑑𝑥𝑑𝑦 ă `8 ðñ

1

𝑝
`

1

𝑞
ą 1.

(hint: adapt polar coordinates)



LECTURE 6

Monotone and Dominated Convergence

One of the most important features of abstract measure and integral is the extreme flexibility with
passage to the limit into integral. The problem is the following: let p 𝑓𝑛q Ă 𝐿1p𝑋q, under which conditions
can we say that

D lim
𝑛

∫
𝑋

𝑓𝑛 𝑑𝜇 “

∫
𝑋

lim
𝑛
𝑓𝑛 𝑑𝜇 ?

Lebesgue’s integral shows properties without any precedent for the ordinary Riemann’s integral.

6.1. Monotone convergence

Consider a sequence p 𝑓𝑛q Ă 𝐿p𝑋q of positive (that is 𝑓𝑛 ě 0) measurable functions. Suppose
moreover that the sequence p 𝑓𝑛q increases with 𝑛, that is

𝑓𝑛 ď 𝑓𝑛`1, @𝑛 P N.

It is clear that ∫
𝑋

𝑓𝑛 𝑑𝜇 ď

∫
𝑋

𝑓𝑛`1 𝑑𝜇, @𝑛 P N.

Therefore, as well known,

D lim
𝑛

∫
𝑋

𝑓𝑛 𝑑𝜇 P r0,`8s.

At same time, since p 𝑓𝑛p𝑥qq is increasing with 𝑛, also lim𝑛 𝑓𝑛p𝑥q “: 𝑓 p𝑥q exists. Clearly 𝑓 ě 0 and
𝑓 P 𝐿p𝑋q (because pointwise limit of measurable functions is measurable, see Theorem 3.3). Thus∫
𝑋
𝑓 𝑑𝜇 P r0,`8s. What is the relation between the integral of 𝑓 “ lim𝑛 𝑓𝑛 and limit of integrals

lim𝑛

∫
𝑋
𝑓𝑛 𝑑𝜇?

Theorem 6.1.1: Beppo Levi

Let p𝑋,ℱ, 𝜇q be a measure space, p 𝑓𝑛q Ă 𝐿p𝐸q be such that 0 ď 𝑓𝑛 ď 𝑓𝑛`1 on 𝐸 , for every 𝑛.
Then

(6.1.1) lim
𝑛

∫
𝐸

𝑓𝑛 𝑑𝜇 “

∫
𝐸

lim
𝑛
𝑓𝑛 𝑑𝜇.

Proof. We call 𝑓 p𝑥q :“ lim𝑛 𝑓𝑛p𝑥q. By i) of Theorem 3.3, 𝑓 P 𝐿p𝐸q. Now, since p 𝑓𝑛p𝑥qq Õ,

𝑓𝑛p𝑥q ď 𝑓 p𝑥q, @𝑥 P 𝑋, ùñ

∫
𝑋

𝑓𝑛 𝑑𝜇 ď

∫
𝑋

𝑓 𝑑𝜇, ùñ lim
𝑛

∫
𝑋

𝑓𝑛 𝑑𝜇 ď

∫
𝑋

𝑓 𝑑𝜇.

37
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The goal is to prove the ě. Notice that if 𝛼 “ lim𝑛

∫
𝑋
𝑓𝑛 𝑑𝜇 “ `8 then the conclusion is true. Suppose

then that 𝛼 ă `8 and let 𝛽 ă
∫
𝑋
𝑓 𝑑𝜇. Our goal is to show that 𝛼 ą 𝛽. From this, being 𝛽 arbitrary, it

follows that 𝛼 ě
∫
𝑋
𝑓 𝑑𝜇, which is the conclusion.

To show this, let p𝑠𝑘q the increasing sequence of simple functions (4.1.1) for 𝑓 , and similarly p𝑠𝑛
𝑘
q is for 𝑓𝑛.

Since
∫
𝑋
𝑠𝑘 𝑑𝜇 ÝÑ

∫
𝑋
𝑓 𝑑𝜇, there exists 𝑁 such that∫

𝐸

𝑠𝑁 𝑑𝜇 “

22𝑁´1
ÿ

𝑗“0

𝑗

2𝑁
𝜇

ˆ

𝑗

2𝑁
ď 𝑓 ă

𝑗 ` 1

2𝑁

˙

` 2𝑁 𝜇p 𝑓 ě 2𝑁 q ą 𝛽.

Consider now ∫
𝐸

𝑠𝑛𝑁 𝑑𝜇 “

22𝑁´1
ÿ

𝑗“0

𝑗

2𝑁
𝜇

ˆ

𝑗

2𝑁
ď 𝑓𝑛 ă

𝑗 ` 1

2𝑁

˙

` 2𝑁 𝜇p 𝑓𝑛 ě 2𝑁 q.

We aim to take the limit 𝑛 ÝÑ `8 in previous identity. First notice that measures 𝜇p 𝑓𝑛 ě 𝑎q are finite
and bounded in 𝑛. This is a consequence of Čebišëv inequality because

𝜇p 𝑓𝑛 ě 𝑎q ď
1

𝑎

∫
𝑋

𝑓𝑛 𝑑𝜇 ď
𝛼

𝑎
, @𝑛 P N.

Therefore, we can write

𝜇

ˆ

𝑗

2𝑁
ď 𝑓𝑛 ă

𝑗 ` 1

2𝑁

˙

“ 𝜇

ˆ

𝑓𝑛 ě
𝑗

2𝑁

˙

´ 𝜇

ˆ

𝑓𝑛 ě
𝑗 ` 1

2𝑁

˙

.

Now, since 𝐹𝑛 :“ t 𝑓𝑛 ě 𝑎u Ă t 𝑓𝑛`1 ě 𝑎u “ 𝐹𝑛`1, by continuity from below we have
𝜇p 𝑓𝑛 ě 𝑎q ÝÑ 𝜇p 𝑓 ě 𝑎q,

and, by previous bound, it follows that 𝜇p 𝑓 ě 𝑎q ď 𝛼
𝑎

ă `8 for every 𝑎 ą 0. Therefore,

𝜇

ˆ

𝑗

2𝑁
ď 𝑓𝑛 ă

𝑗 ` 1

2𝑁

˙

ÝÑ 𝜇

ˆ

𝑗

2𝑁
ď 𝑓 ă

𝑗 ` 1

2𝑁

˙

From this it follows that
lim
𝑛

∫
𝐸

𝑠𝑛𝑁 𝑑𝜇 “

∫
𝐸

𝑠𝑁 𝑑𝜇 ą 𝛽.

Thus, for 𝑀 large enough ∫
𝐸

𝑠𝑀𝑁 𝑑𝜇 ą 𝛽,

and since
𝛼 ě

∫
𝐸

𝑓𝑀 𝑑𝜇 ě

∫
𝐸

𝑠𝑀𝑁 𝑑𝜇 ą 𝛽,

the conclusion follows.

Corollary 6.1.2: monotone convergence theorem

Let p𝑋,ℱ, 𝜇q be a measured space, p 𝑓𝑛q Ă 𝐿p𝐸q be such that 0 ď 𝑓𝑛 ď 𝑓𝑛`1 a.e. for every 𝑛.
Then

(6.1.2) lim
𝑛

∫
𝐸

𝑓𝑛 𝑑𝜇 “

∫
𝐸

lim
𝑛
𝑓𝑛 𝑑𝜇.
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Proof. The apparently minimal extension is 𝑓𝑛 ď 𝑓𝑛`1 almost everywhere. That is:
𝑓𝑛p𝑥q ď 𝑓𝑛`1p𝑥q, @𝑥 P 𝑋z𝑁𝑛, with 𝜇p𝑁𝑛q “ 0.

Notice that the set 𝑁𝑛 can depend on 𝑛, that is it is not necessarily the same for all 𝑓𝑛. Now the trick is: let
𝑁 :“

Ť

𝑛 𝑁𝑛. By sub additivity
𝜇p𝑁q ď

ÿ

𝑛

𝜇p𝑁𝑛q “ 0,

that is 𝑁 is a null set. Moreover, we can now say that
𝑓𝑛p𝑥q ď 𝑓𝑛`1p𝑥q, @𝑥 P 𝑋z𝑁, @𝑛 P N.

Thus, applying Theorem 6.1 on 𝑋z𝑁 we have

lim
𝑛

∫
𝑋z𝑁

𝑓𝑛 𝑑𝜇 “

∫
𝑋z𝑁

lim
𝑛
𝑓𝑛 𝑑𝜇.

Finally, since 𝑁 is a null set and 𝑓 “ lim𝑛 𝑓𝑛 P 𝐿p𝐸z𝑁q, we have that 𝑓 P 𝐿p𝐸q and∫
𝑋z𝑁

𝑓𝑛 𝑑𝜇 “

∫
𝑋

𝑓𝑛 𝑑𝜇,

∫
𝑋z𝑁

𝑓 𝑑𝜇 “

∫
𝑋

𝑓 𝑑𝜇.

From this (6.1.2) follows.

Monotone convergence theorem requires very particular assumptions, in general hardly verified. Func-
tions 𝑓𝑛 must be positive, so the theorem does not apply to real or complex valued sequences. Furthermore,
functions 𝑓𝑛 must be ordered in the sense that 𝑓𝑛 ď 𝑓𝑛`1 a.e.. Let’s see some example of application of
this theorem.

Example 6.1.3: p˚˚q

Compute

lim
𝑛Ñ`8

∫ `8

0
𝑛 log

ˆ

1 `
𝑒´𝑥

𝑛

˙

𝑑𝑥.

Proof. Let 𝑓𝑛p𝑥q :“ 𝑛 log
´

1 ` 𝑒´𝑥

𝑛

¯

“ log
´

1 ` 𝑒´𝑥

𝑛

¯𝑛

. Clearly p 𝑓𝑛q Ă 𝒞pr0,`8rq Ă

𝐿pr0,`8rq and 𝑓𝑛 ě 0. Recalling that
´

1 `
𝑦

𝑛

¯𝑛

Õ 𝑒𝑦 , @𝑦 ě 0,

we have that 𝑓𝑛p𝑥q ď 𝑓𝑛`1p𝑥q for every 𝑥 P r0,`8r. Thus, we can apply monotone convergence theorem
and, by (6.1.2) we have

lim𝑛Ñ`8

∫`8

0
𝑛 log

´

1 ` 𝑒´𝑥

𝑛

¯

𝑑𝑥 “
∫`8

0
lim𝑛Ñ`8 log

´

1 ` 𝑒´𝑥

𝑛

¯𝑛

𝑑𝑥 “
∫`8

0
log 𝑒𝑒

´𝑥

𝑑𝑥 “

“
∫`8

0
𝑒´𝑥 𝑑𝑥 “ r´𝑒´𝑥s

𝑥“`8
𝑥“0 “ 1. □

Monotone convergence applies to series:
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Corollary 6.1.4

Let p𝑋,ℱ, 𝜇q be a measured space, p 𝑓𝑛q Ă 𝐿p𝑋q, 𝑓𝑛 ě 0 a.e.. Then

(6.1.3)
ÿ

𝑛

∫
𝑋

𝑓𝑛 𝑑𝜇 “

∫
𝑋

ÿ

𝑛

𝑓𝑛 𝑑𝜇.

Proof. Set 𝑔𝑛 :“
ř𝑛
𝑘“1 𝑓𝑘 . Clearly p𝑔𝑛q Ă 𝐿p𝑋q and 𝑔𝑛 ě 0. According to (6.1.2) we have

lim
𝑛

∫
𝑋

𝑔𝑛 𝑑𝜇 “

∫
𝑋

lim
𝑛
𝑔𝑛 𝑑𝜇.

Now,

lim
𝑛
𝑔𝑛 “ lim

𝑛

𝑛
ÿ

𝑘“1

𝑓𝑘 “

8
ÿ

𝑘“1

𝑓𝑘 ,

while

lim
𝑛

∫
𝑋

𝑔𝑛 𝑑𝜇 “ lim
𝑛

∫
𝑋

𝑛
ÿ

𝑘“1

𝑓𝑘 𝑑𝜇 “ lim
𝑛

𝑛
ÿ

𝑘“1

∫
𝑋

𝑓𝑘 𝑑𝜇 “

8
ÿ

𝑘“1

∫
𝑋

𝑓𝑘 𝑑𝜇,

from which conclusion follows.

Example 6.1.5: p˚˚q

Compute ∫
r0,1s2

1

1 ´ 𝑥𝑦
𝑑𝑥𝑑𝑦.

Proof. Notice that 𝑓 p𝑥, 𝑦q :“ 1
1´𝑥𝑦

P 𝒞pr0, 1s2ztp1, 1quq Ă 𝐿pr0, 1s2s and also 𝑓 ě 0 a.e. on r0, 1s2.
Recalling of the geometric sum

ř8

𝑛“0 𝑞
𝑛 “ 1

1´𝑞
for |𝑞| ă 1 we have that

1

1 ´ 𝑥𝑦
“

8
ÿ

𝑛“0

p𝑥𝑦q𝑛, @p𝑥, 𝑦q P r0, 1s2ztp1, 1qu, ðñ 𝑎.𝑒. p𝑥, 𝑦q P r0, 1s2.

Therefore, by (6.1.3), we have∫
r0,1s2

1

1 ´ 𝑥𝑦
𝑑𝑥𝑑𝑦 “

∫
r0,1s2

8
ÿ

𝑛“0

𝑥𝑛𝑦𝑛 𝑑𝑥𝑑𝑦 “

8
ÿ

𝑛“0

∫
r0,1s2

𝑥𝑛𝑦𝑛 𝑑𝑥𝑑𝑦.

Now, by reduction formula,∫
r0,1s2

𝑥𝑛𝑦𝑛 𝑑𝑥𝑑𝑦 “

∫ 1

0

𝑥𝑛
∫ 1

0

𝑦𝑛 𝑑𝑦 𝑑𝑥 “

„

𝑥𝑛`1

𝑛 ` 1

ȷ𝑥“1

𝑥“0

„

𝑦𝑛`1

𝑛 ` 1

ȷ𝑦“1

𝑦“0

“
1

p𝑛 ` 1q2
.

Thus ∫
r0,1s2

1

1 ´ 𝑥𝑦
𝑑𝑥𝑑𝑦 “

8
ÿ

𝑛“0

1

p𝑛 ` 1q2
“

8
ÿ

𝑛“1

1

𝑛2
.

ˆ

“
𝜋2

6

˙

.

Integral of positive measurable functions allows to define large classes of measures.
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Corollary 6.1.6

Let p𝑋,ℱ, 𝜇q be a measured space and 𝑓 P 𝐿p𝑋q, 𝑓 ě 0. Then,

𝜇 𝑓 p𝐸q :“

∫
𝐸

𝑓 𝑑𝜇, 𝐸 P ℱ,

is a measure on ℱ. We write 𝑑𝜇 𝑓 “ 𝑓 𝑑𝜇 (for the origin of this notation see Exercise 6.3.6).

Proof. Clearly 𝜇 𝑓 p∅q “ 0. If 𝐸 “
Ů

𝑛 𝐸𝑛 we have

𝜇 𝑓 p𝐸q “

∫
𝐸

𝑓 𝑑𝜇 “

∫
𝑋

𝑓 1𝐸 𝑑𝜇 “

∫
𝑋

ÿ

𝑛

𝑓 1𝐸𝑛 𝑑𝜇 “
ÿ

𝑛

∫
𝑋

𝑓 1𝐸𝑛 𝑑𝜇 “
ÿ

𝑛

𝜇 𝑓 p𝐸𝑛q.

What about monotone convergence for a decreasing sequence of functions? In general, this is false, as
the following example shows.

Example 6.1.7: p˚q

On pR,ℳ1, 𝜆1q consider 𝑓𝑛 :“ 1r𝑛,`8r. Easily p 𝑓𝑛q Ă 𝐿pRq and 𝑓𝑛 ě 𝑓𝑛`1 a.e.. Furthermore,
lim𝑛 𝑓𝑛 “ 0 thus ∫

R
lim
𝑛
𝑓𝑛 𝑑𝑥 “ 0.

However,
∫
R
𝑓𝑛 𝑑𝑥 “ 𝜆1pr𝑛,`8rq “ `8, thus

lim
𝑛

∫
R
𝑓𝑛 𝑑𝑥 “ `8 ‰ 0 “

∫
R
lim
𝑛
𝑓𝑛 𝑑𝑥. □

This is, of course, the same phenomenon of continuity from above. By adding a finiteness assumption,
the conclusion holds:

Corollary 6.1.8: decreasing monotone convergence

Let p𝑋ℱ, 𝜇q be a measure space, p 𝑓𝑛q Ă 𝐿p𝐸q be such that 𝑓𝑛 ě 𝑓𝑛`1 ě 0 a.e. for every 𝑛.
Assume that

∫
𝑋
𝑓1 𝑑𝜇 ă `8. Then (6.1.2) holds.

The proof is left for exercise.

6.2. Dominated convergence

Monotone convergence shows that, under suitable circumstances, pointwise convergence is sufficient
to pass limit into the integral. The two assumptions, namely 𝑓𝑛 ě 0 and 𝑓𝑛 ď 𝑓𝑛`1 a.e., are too restrictive.
Is it possible to weaken these assumption? The next result is perhaps one of the most powerful results of
Lebesgue Theory.
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Theorem 6.2.1: Lebesgue’s dominated convergence

Let p𝑋,ℱ, 𝜇q be a measure space, p 𝑓𝑛q Ă 𝐿1p𝐸q. Assume that
i) p 𝑓𝑛q converges a.e. on 𝐸 , that is D lim𝑛Ñ`8 𝑓𝑛p𝑥q “: 𝑓 p𝑥q, a.e. 𝑥 P 𝐸 ;

ii) there exists 𝑔 P 𝐿1p𝐸q such that
| 𝑓 p𝑥q| ď 𝑔p𝑥q, 𝑎.𝑒. 𝑥 P 𝐸.

(𝑔 is called integrable dominant).
Then, 𝑓 P 𝐿1p𝐸q and

(6.2.1) lim
𝑛

∫
𝐸

𝑓𝑛 𝑑𝜇 “

∫
𝐸

lim
𝑛
𝑓𝑛 𝑑𝜇.

Proof. Arguing as in monotone convergence thm, we may assume that i) and ii) hold everywhere for
𝑥 P 𝐸 . Since 𝑓 is, by definition, the point wise limit of p 𝑓𝑛q, 𝑓 P 𝐿p𝐸q (Theorem 3.3). Furthermore,

| 𝑓 p𝑥q|
𝑖q
“ lim

𝑛
| 𝑓𝑛p𝑥q|

𝑖𝑖q

ď |𝑔p𝑥q|, ùñ

∫
𝐸

| 𝑓 | 𝑑𝜇 ď

∫
𝐸

|𝑔| 𝑑𝜇
𝑖𝑖q
ă `8,

thus 𝑓 P 𝐿1p𝐸q. We prove now (6.2.1) by proving a stronger fact. Indeed, (6.2.1) is equivalent to

lim
𝑛

∫
𝐸

p 𝑓 ´ 𝑓𝑛q 𝑑𝜇 “ 0.

Since
ˇ

ˇ

ˇ

ˇ

∫
𝐸

p 𝑓 ´ 𝑓𝑛q 𝑑𝜇

ˇ

ˇ

ˇ

ˇ

△
ď

∫
𝐸

| 𝑓 ´ 𝑓𝑛| 𝑑𝜇,

the conclusion follows once we prove

lim
𝑛

∫
𝐸

| 𝑓 ´ 𝑓𝑛| 𝑑𝜇 “ 0.

Define
𝛿𝑛 :“ sup

𝑘ě𝑛

| 𝑓𝑘 ´ 𝑓 |.

Clearly 𝛿𝑛 ě | 𝑓𝑛 ´ 𝑓 |. Furthermore, 𝛿𝑛 P 𝐿p𝐸q (exercise) and
𝛿𝑛`1 “ sup

𝑘ě𝑛`1
| 𝑓𝑘 ´ 𝑓 | ď sup

𝑘ě𝑛

| 𝑓𝑘 ´ 𝑓 | “ 𝛿𝑛.

Thus 𝛿𝑛 Œ and since 𝑓𝑛 ÝÑ 𝑓 point-wise on 𝐸 , we have 𝛿𝑛 ÝÑ 0 point-wise on 𝐸 . Finally, since∫
𝐸

|𝛿1| 𝑑𝜇 “

∫
𝐸

sup
𝑘ě1

| 𝑓𝑘 ´ 𝑓 | 𝑑𝜇 ď

∫
𝑋

sup
𝑘ě1

p| 𝑓 | ` | 𝑓𝑘 |q 𝑑𝜇 ď

∫
𝑋

2|𝑔| 𝑑𝜇 ă `8.

Thus, we verify hypotheses of the decreasing monotone convergence Corollary 6.1. Therefore

lim
𝑛

∫
𝐸

| 𝑓 ´ 𝑓𝑛| 𝑑𝜇 ď lim
𝑛

∫
𝐸

𝛿𝑛 𝑑𝜇 “

∫
𝐸

lim
𝑛
𝛿𝑛 𝑑𝜇 “

∫
𝐸

𝑢 𝑑𝜇 “ 0.
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Example 6.2.2: p˚˚q

Compute

lim
𝑛Ñ`8

∫ `8

0
𝑛2

´

1 ´ cos
𝑥

𝑛

¯

𝑒
´ 𝑛
𝑛`1 𝑥 𝑑𝑥.

Proof. Let 𝑓𝑛p𝑥q :“ 𝑛2
`

1 ´ cos 𝑥
𝑛

˘

𝑒
´ 𝑛
𝑛`1

𝑥 . Clearly 𝑓𝑛 P 𝐿1pr0,`8rq for every 𝑛. Moreover

𝑓𝑛p𝑥q „𝑛Ñ`8 𝑛2
𝑥2

2𝑛2
𝑒

´ 𝑛
𝑛`1

𝑥
“
𝑥2

2
𝑒

´ 𝑛
𝑛`1

𝑥
ÝÑ

𝑥2

2
𝑒´𝑥 “: 𝑓 p𝑥q, @𝑥 ě 0.

Now,

| 𝑓𝑛p𝑥q| ď 𝑛2
p𝑥{𝑛q

2

2
𝑒

´ 𝑛
𝑛`1

𝑥
“ 𝑥2𝑒

´ 𝑛
𝑛`1

𝑥
, @𝑥 ě 0,

and since 𝑛
𝑛`1 Õ 1, 𝑛

𝑛`1 ě 1
2 for 𝑛 ě 1. Hence

| 𝑓𝑛p𝑥q| ď 𝑥2𝑒´ 𝑥
2 :“ 𝑔p𝑥q, @𝑛 ě 1, @𝑥 P r0,`8r.

Clearly 𝑔 P 𝐿1pr0,`8rq, so it is an integrable dominant. By dominated convergence then

lim
𝑛Ñ`8

∫ `8

0

𝑓𝑛p𝑥q 𝑑𝑥 “

∫ `8

0

𝑥2

2
𝑒´𝑥 𝑑𝑥 “

„

´
𝑥2

2
𝑒´𝑥

ȷ`8

0

`

∫ `8

0

𝑥𝑒´𝑥 𝑑𝑥 “
“

´𝑥𝑒´𝑥
‰`8

0
`

∫ `8

0

𝑒´𝑥 𝑑𝑥 “ 1. □

Here is a version of dominated convergence for series:

Corollary 6.2.3

Let p𝑋,ℱ, 𝜇q be a measure space and let p 𝑓𝑛q Ă 𝐿1p𝐸q be such that
ÿ

𝑛

∫
𝐸

| 𝑓𝑛| 𝑑𝜇 ă `8.

Then,
ř

𝑛 𝑓𝑛 converges a.e., the sum belongs to 𝐿1p𝐸q and∫
𝐸

ÿ

𝑛

𝑓𝑛 “
ÿ

𝑛

∫
𝐸

𝑓𝑛.

6.3. Exercises

Exercise 6.3.1 (˚˚). Compute

lim
𝑛Ñ`8

∫ `8

𝑛

𝑒´𝑛p𝑥´𝑛q

1 ` 𝑥2
𝑑𝑥.

Exercise 6.3.2 (˚˚). Compute

lim
𝑛Ñ`8

∫ `8

0
𝑛

´

1 `
𝑥

𝑛

¯´𝑛

sin
𝑥

𝑛
𝑑𝑥.

Exercise 6.3.3 (˚˚). Compute

lim
𝑛Ñ`8

∫ `8

0

𝑛

𝑥p1 ` 𝑥2q
sin

𝑥

𝑛
𝑑𝑥.
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Exercise 6.3.4 (˚˚). For which 𝑛 P N we have 𝑓𝑛p𝑥q :“ 1`𝑛𝑥2

p1`𝑥2q𝑛
P 𝐿1pr0,`8rq? Compute

lim
𝑛Ñ`8

∫ `8

0
𝑓𝑛p𝑥q 𝑑𝑥.

Exercise 6.3.5 (˚˚). Let 𝑓 P 𝐿1pr0,`8rq. Prove that

lim
𝜆Ñ`8

∫ `8

0
𝑓 p𝑥q𝑒´𝜆𝑥 𝑑𝑥 “ 0.

Exercise 6.3.6 (˚˚). Let p𝑋,ℱ, 𝜇q be a measured space and 𝑓 P 𝐿p𝑋q and 𝑓 ě 0. Let 𝜇 𝑓 the measure

𝜇 𝑓 p𝐸q :“

∫
𝐸

𝑓 𝑑𝜇.

The goal is to prove that

p‹q

∫
𝑋

𝑔 𝑑𝜇 𝑓 “

∫
𝑋

𝑔 𝑓 𝑑𝜇, @𝑔 P 𝐿1p𝑋, 𝜈q.

‚ check p‹q for 𝑠 simple and positive.
‚ extend p‹q to 𝑔 P 𝐿p𝑋, 𝜇 𝑓 q, 𝑔 ě 0 (use monotone convergence and Prop. 4.1).
‚ extend p‹q to every 𝑔 P 𝐿1p𝑋, 𝜇 𝑓 q.

Exercise 6.3.7 (˚˚˚). Let p𝑋,ℱ, 𝜇q be a finite measure space. Show that

𝑓 P 𝐿1, ðñ
ÿ

𝑛

𝑛𝜇p𝑛 ď | 𝑓 | ă 𝑛 ` 1q ă `8.

What happens if 𝜇 is not finite?

Exercise 6.3.8 (˚˚˚). Let p𝑋,ℱ, 𝜇q a measure space. Suppose that p 𝑓𝑛q Ă 𝐿p𝑋q is such that∫
𝑋

| 𝑓𝑛| 𝑑𝜇 ď
𝐶

𝑛𝛼
,

for some 𝐶 and 𝛼 constant, 𝛼 ą 1. Prove that 𝑓𝑛
𝑎.𝑒.
ÝÑ 0. (hint: use monotone convergence for series. . . )

Exercise 6.3.9 (˚˚˚). Let 𝑓 P 𝐿1p𝑋q, 𝑓 ě 0, p𝑋,ℱ, 𝜇q measure space. Prove the following continuity
property:

@𝜀 ą 0, D𝛿 ą 0, :

∫
𝐸

𝑓 𝑑𝜇 ď 𝜀, @𝐸 P ℱ, : 𝜇p𝐸q ď 𝛿.

(hint: start searching for 𝑀 ą 0 such that
∫
𝑓ě𝑀

𝑓 𝑑𝜇 ď 𝜀
2 . . . )



LECTURE 7

Integrals depending on parameters

In several applications, we need to discuss how an integral depends on some parameter. Formally, let

𝐹p𝜉q :“

∫
𝐸

𝑓 p𝑥, 𝜉q 𝑑𝜇p𝑥q, 𝜉 P 𝐷 Ă R𝑘 .

Here, the integral is respect to 𝑥´variable. We may expect that, under suitable assumptions on the
dependence of 𝑓 on 𝜉, integral 𝐼 will be continuous, differentiable etc. Exploring this is the scope of this
Lecture.

7.1. Continuity

Let p𝑋,ℱ, 𝜇q be a measure space, 𝑓 “ 𝑓 p𝑥, 𝜉q be defined for 𝑥 P 𝐸 Ă 𝑋 and 𝜉 P 𝐷 Ă R𝑚. We
assume that

𝑓 p7, 𝜉q P 𝐿1p𝐸q, @𝜉 P 𝐷

In this way, the function

𝐹p𝜉q :“

∫
𝐸

𝑓 p𝑥, 𝜉q 𝑑𝜇p𝑥q,

is well defined for every 𝜉 P 𝐷. In this section we discuss its continuity.

Theorem 7.1.1

Let p𝑋,ℱ, 𝜇q be a measure space and 𝑓 : 𝐸 ˆ 𝐷 ÝÑ R, 𝐷 Ă R𝑑 . Assume that
i) 𝑓 p7, 𝜉q P 𝐿1p𝐸q, @𝜉 P 𝐷.

ii) 𝑓 p𝑥, 7q P 𝒞p𝐷q a.e. 𝑥 P 𝐸 .
iii) D𝑔 P 𝐿1p𝐸q such that | 𝑓 p𝑥, 𝜉q| ď 𝑔p𝑥q for every 𝜉 P 𝐷, a.e. 𝑥 P 𝐸 .

Then 𝐹p𝜉q :“
∫
𝐸
𝑓 p𝑥, 𝜉q 𝑑𝑥 P 𝒞p𝐷q.

Proof. First, by i), 𝐹 is well defined for 𝜉 P 𝐷. To prove continuity at point 𝜉 P 𝐷, we have to check
that

@p𝜉𝑛q Ă 𝐷, : 𝜉𝑛 ÝÑ 𝜉, ùñ 𝐹p𝜉𝑛q ÝÑ 𝐹p𝜉q.

Notice that
𝐹p𝜉𝑛q “

∫
𝐸

𝑓 p𝑥, 𝜉𝑛q 𝑑𝜇 “:

∫
𝐸

𝑓𝑛p𝑥q 𝑑𝜇, where 𝑓𝑛p𝑥q :“ 𝑓 p𝑥, 𝜉𝑛q.

The idea is to apply dominated convergence to p 𝑓𝑛q. We have:
‚ by i) 𝑓𝑛p𝑥q “ 𝑓 p𝑥, 𝜉𝑛q ÝÑ 𝑓 p𝑥, 𝜉q a.e. 𝑥 P 𝐷;
‚ by ii) | 𝑓𝑛p𝑥q| “ | 𝑓 p𝑥, 𝜉𝑛q| ď 𝑔p𝑥q, a.e. 𝑥 P 𝐷.

45
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Thus, according to Lebesgue’s dominated convergence, we have

lim
𝑛
𝐹p𝜉𝑛q “ lim

𝑛

∫
𝐸

𝑓𝑛 𝑑𝜇 “

∫
𝐸

lim
𝑛
𝑓𝑛 𝑑𝜇 “

∫
𝐸

𝑓 p𝑥, 𝜉q 𝑑𝜇 “ 𝐹p𝜉q.

7.2. Differentiability

Here we provide a powerful sufficient condition under which the integral function

𝐹p𝜉q :“

∫
𝐸

𝑓 p𝑥, 𝜉q 𝑑𝜇p𝑥q

be differentiable.

Theorem 7.2.1: Differentiability under the integral sign

Let p𝑋,ℱ, 𝜇q be a measure space, 𝑓 : 𝐸 ˆ 𝐷 ÝÑ R, 𝐷 Ă R𝑑 . Assume that
i) 𝑓 p7, 𝜉q P 𝐿1p𝐸q, @𝜉 P 𝐷.

ii) DB𝜉 𝑓 p𝑥, 𝜉q for all 𝜉 P 𝐷 and a.e. 𝑥 P 𝐸 ;
iii) D𝑔 P 𝐿1p𝐸q such that |B𝜉 𝑓 p𝑥, 𝜉q| ď 𝑔p𝑥q for every 𝜉 P 𝐷, a.e. 𝑥 P 𝐸 .

Then
DB𝜉𝐹p𝜉q “

∫
𝐸

B𝜉 𝑓 p𝑥, 𝜉q 𝑑𝜇, @𝜉 P 𝐷.

Proof. For simplicity on notations we consider 𝐷 Ă R. i) ensures that 𝐹 is well defined for 𝜉 P 𝐷.
Let’s compute

B𝜉𝐹p𝜉q “ lim
ℎÑ0

𝐹p𝜉 ` ℎq ´ 𝐹p𝜉q

ℎ
.

Since limit limℎÑ0 can be computed sequentially, we take an arbitrary pℎ𝑛q Ă Rzt0u, ℎ𝑛 ÝÑ 0 and notice
that

𝐹p𝜉 ` ℎ𝑛q ´ 𝐹p𝜉q

ℎ𝑛
“

∫
𝐸

𝑓 p𝑥, 𝜉 ` ℎ𝑛q ´ 𝑓 p𝑥, 𝜉q

ℎ𝑛
𝑑𝜇 “:

∫
𝐸

𝑓𝑛p𝑥q 𝑑𝜇.

Now, by ii) it follows that

𝑓𝑛p𝑥q “
𝑓 p𝑥, 𝜉 ` ℎ𝑛q ´ 𝑓 p𝑥, 𝜉q

ℎ𝑛
ÝÑ B𝜉 𝑓 p𝑥, 𝜉q, a.e. 𝑥 P 𝐸.

The difficult part is to find an integrable dominant for 𝑓𝑛. To this aim first notice that by Lagrange thm
there exists 𝜂𝑛 such that

| 𝑓 p𝑥, 𝜉 ` ℎ𝑛q ´ 𝑓 p𝑥, 𝜉q| “ |B𝜉 𝑓 p𝑥, 𝜂𝑛qℎ𝑛|
𝑖𝑖q

ď 𝑔p𝑥q|ℎ𝑛|, a.e. 𝑥 P 𝐸,

thus
| 𝑓𝑛p𝑥q| ď 𝑔p𝑥q, a.e. 𝑥 P 𝐸.

Therefore, by dominated convergence
𝐹p𝜉 ` ℎ𝑛q ´ 𝐹p𝜉q

ℎ𝑛
“

∫
𝑋

𝑓𝑛p𝑥q 𝑑𝜇 ÝÑ

∫
𝑋

B𝜉 𝑓 p𝑥, 𝜉q 𝑑𝜇.

Let’s see a beautiful application of this result that will be important for the future:
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Example 7.2.2:

Let
𝐹p𝜉q :“

∫
R
𝑒

´ 𝑥2

2𝜎2 𝑒´𝑖 𝜉 𝑥 𝑑𝑥, 𝜉 P R.

Show that B𝜉𝐹p𝜉q is well defined for any 𝜉 P R. Deduce a differential equation for 𝐹, solve it and
show that
(7.2.1) 𝐹p𝜉q “

?
2𝜋𝜎2𝑒´ 1

2 𝜎
2 𝜉2 , @𝜉 P R.

Proof. Let 𝑓 p𝑥, 𝜉q :“ 𝑒
´ 𝑥2

2𝜎2 𝑒´𝑖 𝜉 𝑥 . The integral is well defined because∫
R

ˇ

ˇ

ˇ

ˇ

𝑒
´ 𝑥2

2𝜎2 𝑒´𝑖 𝜉 𝑥

ˇ

ˇ

ˇ

ˇ

𝑑𝑥 “

∫
R
𝑒

´ 𝑥2

2𝜎2 𝑑𝑥 “
?
2𝜋𝜎2 ă `8.

In other words, 𝑓 p¨, 𝜉q P 𝐿1pRq for every 𝜉 P R, that is i) of differentiation thm 7.2 is fulfilled. Notice also
that

ii) B𝜉 𝑓 p𝑥, 𝜉q “ p´𝑖𝑥q𝑒´𝑖 𝜉 𝑥𝑒
´ 𝑥2

2𝜎2 , @𝜉 P R, @𝑥 P R;

iii) |B𝜉 𝑓 p𝑥, 𝜉q| “

ˇ

ˇ

ˇ

ˇ

p´𝑖𝑥q𝑒´𝑖 𝜉 𝑥𝑒
´ 𝑥2

2𝜎2

ˇ

ˇ

ˇ

ˇ

“ |𝑥|𝑒
´ 𝑥2

2𝜎2 “: 𝑔p𝑥q P 𝐿1pRq, @𝜉 P R.

Hence, according to differentiation theorem,

B𝜉𝐹p𝜉q “ ´𝑖

∫
R
𝑒´𝑖 𝜉 𝑥

ˆ

𝑥𝑒
´ 𝑥2

2𝜎2

˙

𝑑𝑥 “ 𝑖𝜎2

∫
R
𝑒´𝑖 𝜉 𝑥B𝑥

ˆ

𝑒
´ 𝑥2

2𝜎2

˙

𝑑𝑥

“ 𝑖𝜎2

˜

„

𝑒´𝑖 𝜉 𝑥𝑒
´ 𝑥2

2𝜎2

ȷ𝑥“`8

𝑥“´8

´

∫
R

B𝑥
`

𝑒´𝑖 𝜉 𝑥
˘

𝑒
´ 𝑥2

2𝜎2 𝑑𝑥

¸

“ 𝑖𝜎2

∫
R
𝑖𝜉𝑒´𝑖 𝜉 𝑥𝑒

´ 𝑥2

2𝜎2 𝑑𝑥 “ ´𝜎2𝜉

∫
R
𝑒´𝑖 𝜉 𝑥𝑒

´ 𝑥2

2𝜎2 𝑑𝑥 “ ´𝜎2𝜉𝐹p𝜉q.

Therefore
B𝜉𝐹p𝜉q “ ´𝜎2𝜉𝐹p𝜉q, ùñ 𝐹p𝜉q “ 𝑒´ 1

2
𝜎2 𝜉2

𝐹p0q.

Finally, since 𝐹p0q “
∫
R
𝑒

´ 𝑥2

2𝜎2 𝑑𝑥 “
?
2𝜋𝜎2 we conclude.

7.3. Exercises

Exercise 7.3.1 (˚˚). Let

𝐹p𝑥q :“

∫ `8

0
𝑒´𝑦 sinp𝑥𝑦q

𝑦
𝑑𝑦.

Show that 𝐹 is well defined for any 𝑥 P R, compute 𝐹 1 and determine 𝐹.

Exercise 7.3.2 (˚˚). Let

𝐹p𝑥q :“

∫ `8

0

𝑒´𝑥𝑡 ´ 𝑒´𝑡

𝑡
𝑑𝑡.

Show that 𝐹p𝑥q is well defined for any 𝑥 ą 0, is differentiable and compute 𝐹 1, hence deduce 𝐹.
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Exercise 7.3.3 (˚˚). Define

𝐹p𝜉q :“

∫ 1

0

𝑥 𝜉 ´ 1

log 𝑥
𝑑𝑥.

Show that 𝐹 is well defined for any 𝜉 ě 0. Show that DB𝜉𝐹. Use this to find out 𝐹.

Exercise 7.3.4 (˚˚). Let p𝑋,ℱ, 𝜇q be a finite measure space (that is a 𝜇p𝑋q ă `8) and let 𝐸 P ℱ.
Show that

min
𝑦PR

∫
𝑋

p1𝐸p𝑥q ´ 𝑦q2 𝑑𝜇

exists and find it.

Exercise 7.3.5 (˚˚). Compute, for 𝑎 ą 0 and 𝑏 ą 0:∫ `8

0

ˆ

𝑒
´ 𝑎2

𝑥2 ´ 𝑒
´ 𝑏2

𝑥2

˙

𝑑𝑥.

Exercise 7.3.6 (˚˚). Consider

𝐹p𝑥q :“

∫ 𝜋

0

logp1 ` 𝑥 cos 𝑦q

cos 𝑦
𝑑𝑦.

i) Determine the domain of definition for 𝐹.
ii) Compute 𝐹 1p𝑥q (where defined). Deduce 𝐹p𝑥q.

Exercise 7.3.7 (˚˚`). Evaluate the integral∫ 1

0

logp1 ` 𝑥q

1 ` 𝑥2
𝑑𝑥

by using the parametric integral 𝐹p𝜉q :“
∫ 1
0

logp1`𝜉 𝑥q

1`𝑥2
𝑑𝑥.

Exercise 7.3.8 (˚˚`). Consider the function

𝐹p𝑥q :“

∫ `8

0
𝑒´𝑡´ 𝑥

𝑡
𝑑𝑡
?
𝑡
.

i) Determine the set of 𝑥 P R for which 𝐹 is well defined.
ii) Discuss differentiability of 𝐹 on its domain, and deduce a differential equation for 𝐹.

iii) Determine 𝐹 explicitly.

Exercise 7.3.9 (˚˚`). Let

𝐹𝑛p𝛼q :“

∫ 1

0
𝑥𝛼plog 𝑥q𝑛 𝑑𝑥.

Determine values of 𝛼 for which 𝐹p𝛼q is well defined and differentiable, compute 𝐹 1
𝑛 and deduce a

differential equation for 𝐹𝑛. Use this to explicitly determine 𝐹𝑛.



LECTURE 8

Normed Spaces

In many problems, the natural framework is a vector space equipped with a way to measure distance
between vectors. This is needed to define limits and discuss convergence of sequence of vectors. The
most natural way to measure distance is through a tool extending the concept of modulus for real numbers.
This is called norm and it is the focus of this Lecture.

8.1. Definition of norm and examples

We recall that 𝑉 is a vector space on R or C (field of scalars) if a sum 𝑓 ` 𝑔 P 𝑉 is defined for
every 𝑓 , 𝑔 P 𝑉 and a product by scalars 𝛼 𝑓 P 𝑉 is defined, for every 𝛼 P R (or C) and 𝑓 P 𝑉 . Sum and
product by scalars verify a number of natural properties as:

i) (sum commutative) 𝑓 ` 𝑔 “ 𝑔 ` 𝑓 , @ 𝑓 , 𝑔 P 𝑉 ;
ii) (sum is associative) 𝑓 ` p𝑔 ` ℎq “ p 𝑓 ` 𝑔q ` ℎ, @ 𝑓 , 𝑔, ℎ P 𝑉 ;

iii) (sum has zero) D0𝑉 P 𝑉 such that 𝑓 ` 0𝑉 “ 𝑓 , @ 𝑓 P 𝑉 ;
iv) (sum has opposite) @ 𝑓 P 𝑉 there exists 𝑔 P 𝑉 such that 𝑓 ` 𝑔 “ 0𝑉 (notation: ´ 𝑓 :“ 𝑔);
v) (product is associative) p𝛼𝛽q 𝑓 “ 𝛼p𝛽 𝑓 q, @𝛼, 𝛽 P R (or C), @ 𝑓 P 𝑉 ;

vi) (unit) 1 𝑓 “ 𝑓 , @ 𝑓 P 𝑉 ;
vii) (distributivity) p𝛼 ` 𝛽q 𝑓 “ 𝛼 𝑓 ` 𝛽 𝑓 , 𝛼p 𝑓 ` 𝑔q “ 𝛼 𝑓 ` 𝛽𝑔, @𝛼, 𝛽 P R (or C), @ 𝑓 , 𝑔 P 𝑉 .

Definition 8.1.1

Let 𝑉 be a vector space (on R or C). A function } ¨ } : 𝑉 ÝÑ r0,`8r is called norm on 𝑉 if the
following properties hold:

i) (vanishing) } 𝑓 } “ 0 iff 𝑓 “ 0;
ii) (homogeneity) }𝛼 𝑓 } “ |𝛼|} 𝑓 }, @𝛼 P R (or C), @ 𝑓 P 𝑉 ;

iii) (triangular inequality) } 𝑓 ` 𝑔} ď } 𝑓 } ` }𝑔}, @ 𝑓 , 𝑔 P 𝑉 .
We say that p𝑉, } ¨ }q is a normed space.

The remaining of this Section is devoted to show several important examples.

8.1.1. R𝑑 . Clearly, 𝑉 “ R𝑑 is a vector space on R with usual sum and product by scalars:

p𝑥1, . . . , 𝑥𝑑q ` p𝑦1, . . . , 𝑦𝑑q :“ p𝑥1 ` 𝑦1, . . . , 𝑥𝑑 ` 𝑦𝑑q, 𝛼p𝑥1, . . . , 𝑥𝑑q “ p𝛼𝑥1, . . . , 𝛼𝑥𝑑q.

49
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The most natural definition of norm is suggested by Euclidean geometry and, in particular, by Pythagorean
theorem. It is the so called euclidean norm,

}p𝑥1, . . . , 𝑥𝑑q}2 :“

g

f

f

e

𝑑
ÿ

𝑘“1

𝑥2
𝑘
.

The check that this is a norm is non trivial. Vanishing and homogeneity are straightforward. The difficult
part is the triangular inequality. Let 𝑥 “ p𝑥1, . . . , 𝑥𝑑q, 𝑦 “ p𝑦1, . . . , 𝑦𝑑q. Then

}𝑥 ` 𝑦}22 “
ÿ

𝑘

p𝑥𝑘 ` 𝑦𝑘q
2 “

ÿ

𝑘

𝑥2𝑘 `
ÿ

𝑘

𝑦2𝑘 ` 2
ÿ

𝑘

𝑥𝑘𝑦𝑘 “ }𝑥}22 ` }𝑦}22 ` 2
ÿ

𝑘

𝑥𝑘𝑦𝑘 .

Now, to have }𝑥 ` 𝑦}2 ď }𝑥}2 ` }𝑦}2 we need the celebrate

Lemma 8.1.2: Cauchy-Schwarz inequality

(8.1.1)
ÿ

𝑘

𝑥𝑘𝑦𝑘 ď }𝑥}2}𝑦}2.

Identity holds true provided 𝑥9𝑦.

Proof. Conclusion is evident if }𝑥}2 “ 0 or }𝑦}2 “ 0 (it reduces to 0 ď 0). Assume }𝑥}2, }𝑦}2 ‰ 0.
Thus (8.1.1) is equivalent to

ÿ

𝑘

𝑥𝑘

}𝑥}2

𝑦𝑘

}𝑦}2
ď 1.

Now, since we have 𝑎𝑏 ď
𝑎2`𝑏2

2 (this comes from p𝑎 ´ 𝑏q2 ě 0), we have also

ÿ

𝑘

𝑥𝑘

}𝑥}2

𝑦𝑘

}𝑦}2
ď

1

2

ÿ

𝑘

˜

𝑥2
𝑘

}𝑥}22

`
𝑦2
𝑘

}𝑦}22

¸

“ 1.

This proves (8.1.1). To finish the proof, we notice that “ holds provided “ hold in the elementary inequality
𝑎𝑏 ď

𝑎2`𝑏2

2 , that is 𝑎 “ 𝑏, thus 𝑥𝑘
}𝑥}2

“
𝑦𝑘

}𝑦}2
for all 𝑘 , but this means 𝑥9𝑦. □

On R𝑑 other natural norms are defined, as, for instance,

}p𝑥1, . . . , 𝑥𝑑q}8 :“ max
𝑘

|𝑥𝑘 |, }p𝑥1, . . . , 𝑥𝑑q}1 :“
𝑑
ÿ

𝑘“1

|𝑥𝑘 |.

Proofs are left in the exercises.

8.1.2. C𝑑 . As R𝑑 ,C𝑑 is the vector space of 𝑑´ples of complex numbers p𝑧1, . . . , 𝑧𝑑q. Sum and
product by scalars are defined in the same way as for R𝑑 . We notice that in this case the field of scalars
can be both R as well as C. On C𝑑 we may define similar norms as for R𝑑:

}p𝑧1, . . . , 𝑧𝑑q}1 :“
ÿ

𝑘

|𝑧𝑘 |, }p𝑧1, . . . , 𝑧𝑑q}2 :“

d

ÿ

𝑘

|𝑧𝑘 |
2, }p𝑧1, . . . , 𝑧𝑑q}8 :“ max

𝑘
|𝑧𝑘 |.

The checks are left as exercise.
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8.1.3. Uniform Norm. Let 𝑋 be a generic set and set

𝐵p𝑋q :“

"

𝑓 : 𝑋 ÝÑ R : } 𝑓 }8 :“ sup
𝑥P𝑋

| 𝑓 p𝑥q| ă `8

*

,

the set of all real valued bounded functions with usual sum of functions and product of a function by a
scalar, that is

p 𝑓 ` 𝑔qp𝑥q :“ 𝑓 p𝑥q ` 𝑔p𝑥q, 𝑥 P 𝑋, p𝛼 𝑓 qp𝑥q :“ 𝛼 𝑓 p𝑥q, 𝑥 P 𝑋, 𝛼 P R.

Here, we may consider also the case of C valued functions, with scalars R as well as C. For sake of
simplicity we will limit to the case of real valued functions.

Proposition 8.1.3

p𝐵p𝑋q, } ¨ }8q is a normed space.

Proof. We start by checking that 𝐵p𝑋q is a vector space. Indeed if 𝑓 , 𝑔 are bounded, then clearly
𝑓 ` 𝑔 is bounded as well, and similarly for 𝛼 𝑓 . Let’s prove that } ¨ }8 is a norm. We have:

‚ vanishing: } 𝑓 }8 “ 0 iff sup𝑥P𝑋 | 𝑓 p𝑥q| “ 0, that is | 𝑓 p𝑥q| ď 0 for all 𝑥 P 𝑋 , but then 𝑓 ” 0,
which is the zero of 𝐵p𝑋q;

‚ homogeneity: }𝛼 𝑓 }8 “ sup𝑥P𝑋 |𝛼 𝑓 p𝑥q| “ sup𝑥P𝑋 |𝛼|| 𝑓 p𝑥q| “ |𝛼| sup𝑥P𝑋 | 𝑓 p𝑥q| “ |𝛼|} 𝑓 }8

(by the way, this proves also that 𝛼 𝑓 P 𝐵p𝑋q once 𝑓 P 𝐵p𝑋q);
‚ triangular inequality: first notice that

| 𝑓 p𝑥q ` 𝑔p𝑥q| ď | 𝑓 p𝑥q| ` |𝑔p𝑥q| ď } 𝑓 }8 ` }𝑔}8, @𝑥 P 𝑋, ùñ } 𝑓 ` 𝑔}8 ď } 𝑓 }8 ` }𝑔}8.

This proves also that if 𝑓 , 𝑔 P 𝐵p𝑋q also 𝑓 ` 𝑔 P 𝐵p𝑋q.

Let 𝐷 Ă R𝑑 . An important subset of 𝐵p𝐷q is that of continuous and bounded functions on 𝐷:

𝒞𝑏p𝐷q :“ t 𝑓 P 𝐵p𝐷q : 𝑓 P 𝒞p𝐷qu.

Since sum and product by scalars of continuous functions are continuous, 𝒞𝑏p𝐷q is itself a vector space.
Equipping 𝒞𝑏p𝐷q with } ¨ }8 norm makes p𝒞𝑏p𝐷q, } ¨ }8q itself a normed space. In particular, if 𝐷 Ă R𝑑

is compact (that is, closed and bounded), then, according to Weierstrass theorem, any 𝑓 P 𝒞p𝐷q is
bounded. Thus

𝒞𝑏p𝐷q ” 𝒞p𝐷q, p𝐷 compactq.

Moreover, still by Weierstrass theorem, since | 𝑓 | P 𝒞p𝐷q, | 𝑓 | itself has maximum on 𝐷. This means
that,

} 𝑓 }8 “ sup
𝑥P𝐷

| 𝑓 p𝑥q| “ max
𝑥P𝐷

| 𝑓 p𝑥q|.

In other words, when 𝐷 is compact, we may use max𝐷 | 𝑓 | as definition of } ¨ }8 norm. As for the
euclidean norm, other norms are possible on 𝒞p𝐷q. Here we illustrate an example of these.
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Example 8.1.4: p˚˚q

Let 𝑉 :“ 𝒞pr𝑎, 𝑏sq and set

} 𝑓 }1 :“

∫ 𝑏

𝑎

| 𝑓 p𝑥q| 𝑑𝑥.

Then, } ¨ }1 is a well defined norm on 𝑉 .

Proof. We check first that } ¨ }1 is well defined: if 𝑓 P 𝑉 “ 𝒞pr𝑎, 𝑏sq, then | 𝑓 | P 𝒞pr𝑎, 𝑏sq, thus | 𝑓 |

is integrable (even in Riemann sense). To check that it verifies the characteristic properties we start with
vanishing. Suppose

} 𝑓 }1 “

∫ 𝑏

𝑎

| 𝑓 p𝑥q| 𝑑𝑥 “ 0.

Now, since | 𝑓 | is continuous we claim that the previous is possible iff | 𝑓 p𝑥q| ” 0. Indeed, if | 𝑓 p𝑥0q| ą 0

for some 𝑥0 P r𝑎, 𝑏s then, by continuity, | 𝑓 p𝑥q| ě
| 𝑓 p𝑥0q|

2 for 𝑥 P 𝐼𝑥0 Ă r𝑎, 𝑏s, neighbourhood of 𝑥0. Thus

0 “ } 𝑓 }1 “

∫ 𝑏

𝑎

| 𝑓 p𝑥q| 𝑑𝑥 ě

∫
𝐼𝑥0

| 𝑓 p𝑥q| 𝑑𝑥 ě
| 𝑓 p𝑥0q|

2
𝜆1p𝐼𝑥0q ą 0.

Thus, we get a contradiction and vanishing holds. Homogeneity and triangular inequality are straightfor-
ward. Indeed,

}𝛼 𝑓 }1 “

∫ 𝑏

𝑎

|𝛼 𝑓 p𝑥q| 𝑑𝑥 “

∫ 𝑏

𝑎

|𝛼|| 𝑓 p𝑥q| 𝑑𝑥 “ |𝛼|} 𝑓 }1,

and

} 𝑓 ` 𝑔}1 “

∫ 𝑏

𝑎

| 𝑓 p𝑥q ` 𝑔p𝑥q| 𝑑𝑥 ď

∫ 𝑏

𝑎

| 𝑓 p𝑥q| ` |𝑔p𝑥q| 𝑑𝑥 “ } 𝑓 }1 ` }𝑔}1.

8.2. Norm comparison

As we have seen, in some cases, several norms can be defined on the same vector space 𝑉 . It is
important to have a way to compare two norms.

Definition 8.2.1

Let } ¨ } and } ¨ }˚ be norms on 𝑉 . We say that } ¨ } is stronger than } ¨ }˚ if
D𝐶 ą 0, : } 𝑓 }˚ ď 𝐶} 𝑓 }, @ 𝑓 P 𝑉.

If each of the two is stronger than the other, we say that the two norm are equivalent.

Example 8.2.2: p˚˚q

Norms } ¨ }1, } ¨ }2 and } ¨ }8 on R𝑑 are equivalent.

Proof. We will prove that
}𝑥}2 ď 𝐶}𝑥}1 ď 𝐶1}𝑥}8 ď 𝐶2}𝑥}2, @𝑥 P R𝑑 ,
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from which the conclusion follows. Noticed that |𝑥𝑘 | ď }𝑥}1 for every 𝑘 ,

}𝑥}2 “

˜

ÿ

𝑘

|𝑥𝑘 |2

¸1{2

ď

˜

ÿ

𝑘

|𝑥𝑘 |}𝑥}1

¸1{2

“ }𝑥}1,

thus 𝐶 “ 1. Now, since |𝑥𝑘 | ď }𝑥}8 for every 𝑘

}𝑥}1 “
ÿ

𝑘

|𝑥𝑘 | ď 𝑑}𝑥}8,

thus 𝐶1 “ 𝑑. Finally, since also |𝑥𝑘 | ď }𝑥}2 for every 𝑘 , we have
}𝑥}8 “ max

𝑘
|𝑥𝑘 | ď }𝑥}2,

thus 𝐶2 “ 𝑑.

This result is not incidental:

Theorem 8.2.3

If 𝑉 is finite dimensional, then any two norms are equivalent.

Proof. We do the proof on 𝑉 “ R𝑑 (but the same proof can be easily adapted to a generic vector
space). Let } ¨ } be a generic norm. We prove that } ¨ } is equivalent to the Euclidean norm } ¨ }2.
To this aim notice that, denoting by p𝑒𝑘q the standard basis of R𝑑 ,

}𝑥} “

›

›

›

›

›

ÿ

𝑘

𝑥𝑘𝑒𝑘

›

›

›

›

›

ď
ÿ

𝑘

|𝑥𝑘 |}𝑒𝑘} ď

ˆ

max
𝑘

}𝑒𝑘}

˙

ÿ

𝑘

|𝑥𝑘 | “: 𝐶}𝑥}1 ď 𝐶𝑑}𝑥}2.

This proves } ¨ }2 is stronger than } ¨ }. To prove the vice versa, we need to prove

D𝐶1 : }𝑥}2 ď 𝐶1}𝑥}, @𝑥 P R𝑑 .

Notice that, if this is true, then

(8.2.1) }𝑢} ě
1

𝐶1
“: 𝐶2 ą 0, @𝑢 P R𝑑 , }𝑢}2 “ 1.

Vice versa, if this last is true, setting 𝑢 “ 𝑥
}𝑥}2

, clearly }𝑢}2 “ 1, then

1

𝐶1
ď

›

›

›

›

𝑥

}𝑥}2

›

›

›

›

“
1

}𝑥}2
}𝑥}, ðñ }𝑥}2 ď 𝐶1}𝑥}.

Thus, (8.2.1) is equivalent to the conclusion. Notice that (8.2.1) means that the function 𝑇p𝑢q :“ }𝑢} has a
positive lower bound on the surface of the sphere S :“ t𝑢 P R𝑑 : }𝑢}2 “ 1u. To prove this we first prove
that 𝑇 in continuous as function R𝑑 ÝÑ R respect to the } ¨ }2 norm. Indeed,

|𝑇p𝑢q ´ 𝑇p𝑣q| “ |}𝑢} ´ }𝑣}| ď }𝑢 ´ 𝑣} ď 𝐶𝑑}𝑢 ´ 𝑣}2.

Since S is compact, by Weierstrass thm 𝑇 has a minimum. Let 𝑢˚ P S be a minimum point: Then
𝑇p𝑢q “ }𝑢} ě 𝑇p𝑢˚q “ }𝑢˚} ą 0 (otherwise }𝑢˚} “ 0 would imply 𝑢˚ “ 0, but 𝑢˚ P S cannot be “ 0).
This completes the proof.

The previous fact is no longer true when the space is infinite dimensional, as the following example
shows.
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Example 8.2.4: p˚˚q

On 𝑉 “ 𝒞pr0, 1sq, let us consider uniform norm } 𝑓 }8 :“ supr0,1s | 𝑓 p𝑥q| ” maxr0,1s | 𝑓 p𝑥q| and
the norm

} 𝑓 }1 :“

∫ 1

0
| 𝑓 p𝑥q| 𝑑𝑥.

Then } ¨ }8 is stronger than } ¨ }1 but they are not equivalent.

Proof. We first prove that } ¨ }8 is stronger than } ¨ }1. This is easy,

} 𝑓 }1 “

∫ 1

0

| 𝑓 p𝑥q| 𝑑𝑥 ď

∫ 1

0

} 𝑓 }8 𝑑𝑥 “ } 𝑓 }8, @ 𝑓 P 𝑉.

To prove that } ¨ }1 is not stronger than } ¨ }8 we need to prove that it does not exist 𝐶 such that
} 𝑓 }8 ď 𝐶} 𝑓 }1, @ 𝑓 P 𝑉. p‹q

To have p‹q true, it means that if the area ”under” 𝑓 (the integral
∫ 1
0

| 𝑓 |) is small, then, necessarily, max | 𝑓 |

must be small, so | 𝑓 | must be uniformly small. This seems to be false: we can have arbitrarily large
functions with small area instead. To formalize this example, define

(8.2.2) 𝑓𝑛p𝑥q :“

$

&

%

𝑛 ´ 𝑛3𝑥, 0 ď 𝑥 ď 1
𝑛2
,

0 1
𝑛2

ď 𝑥 ď 1.

Notice that

} 𝑓𝑛}1 “

∫ 1

0

| 𝑓𝑛p𝑥q| 𝑑𝑥 “
1

2
𝑛 ¨

1

𝑛2
“

1

2𝑛
, } 𝑓𝑛}8 “ sup

𝑥Pr0,1s

| 𝑓𝑛p𝑥q ´ 𝑓 p𝑥q| “ 𝑛,

thus, if p‹q were true, we should have 𝑛 ď 𝐶 1
2𝑛 , that is 2𝑛2 ď 𝐶 for every 𝑛 P N. But this is impossible,

thus p‹q is false.

Definition 8.2.5

We say that p𝑉, } ¨ }𝑉q is embedded into p𝑊, } ¨ }𝑊q if
𝑉 Ă 𝑊, and } 𝑓 }𝑊 ď 𝐶} 𝑓 }𝑉 , @ 𝑓 P 𝑉.

We write p𝑉, } ¨ }𝑉q ãÑ p𝑊, } ¨ }𝑊q.

Example 8.2.6: p˚˚q

Let 𝑉 “ 𝒞
1pr0, 1sq equipped with } 𝑓 }𝑉 :“ | 𝑓 p0q| ` } 𝑓 1}8 and 𝑊 :“ 𝒞pr0, 1sq equipped with

} 𝑓 }𝑊 :“ } 𝑓 }8. Check that p𝑉, } ¨ }𝑉q and p𝑊, } ¨ }𝑊q are normed spaces and that p𝑉, } ¨ }𝑉q ãÑ

p𝑊, } ¨ }𝑊q.

Proof. We already know that p𝑊, } ¨ }𝑊q is a normed space. About 𝑉 : easily, it is a vector space with
usual sum and product by scalars. Let’s check that } ¨ }𝑉 is a norm. Clearly, since 𝑓 P 𝑉 means 𝑓 P 𝒞

1,
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} 𝑓 }𝑉 is well defined. Let’s check the characteristic properties. We have

} 𝑓 }𝑉 “ 0, ðñ | 𝑓 p0q| ` } 𝑓 1}8 “ 0, ðñ

$

&

%

| 𝑓 p0q| “ 0,

} 𝑓 1}8 “ 0.

The first says that 𝑓 p0q “ 0. The second, because of vanishing for } ¨ }8 norm, tells 𝑓 1 ” 0. But then,
𝑓 ” 𝐶 and since 𝑓 p0q “ 0 we conclude 𝑓 ” 0, that is vanishing holds. Homogeneity and triangular
inequality are straightforward, we leave as exercise.
Let us come to the embedding. Clearly 𝑉 “ 𝒞

1pr0, 1sq Ă 𝑊 “ 𝒞pr0, 1sq. To show that this inclusion is
an embedding between the two spaces we need to check that there exists 𝐶 ą 0 such that

} 𝑓 }𝑊 ď 𝐶} 𝑓 }𝑉 , @ 𝑓 P 𝑉, ðñ } 𝑓 }8 ď 𝐶 p| 𝑓 p0q| ` } 𝑓 1}8q , @ 𝑓 P 𝐶1pr0, 1sq.

We need a way to express 𝑓 p𝑥q in terms of 𝑓 1p𝑥q. This is provided by the fundamental formula of Integral
Calculus, according which we have

𝑓 p𝑥q ´ 𝑓 p0q “

∫ 𝑥

0

𝑓 1p𝑦q 𝑑𝑦, ðñ 𝑓 p𝑥q “ 𝑓 p0q `

∫ 𝑥

0

𝑓 1p𝑦q 𝑑𝑦.

Then

| 𝑓 p𝑥q| ď | 𝑓 p0q| `

ˇ

ˇ

ˇ

∫ 𝑥
0
𝑓 1p𝑦q 𝑑𝑦

ˇ

ˇ

ˇ

△
ď | 𝑓 p0q| `

∫ 𝑥
0

| 𝑓 1p𝑦q| 𝑑𝑦 ď | 𝑓 p0q| ` } 𝑓 1}8

∫ 𝑥
0
1 𝑑𝑦

ď | 𝑓 p0q| ` 𝑥} 𝑓 1}8, @𝑥 P r0, 1s.

Therefore
} 𝑓 }𝑊 “ max

r0,1s
| 𝑓 p𝑥q| ď max

r0,1s
p| 𝑓 p0q| ` 𝑥} 𝑓 1}8q “ | 𝑓 p0q| ` } 𝑓 1}8 “ } 𝑓 }𝑉 ,

this being true for every 𝑓 P 𝑉 . The embedding is now proved.

8.3. Exercises

Exercise 8.3.1 (˚). On R2 define

}p𝑥, 𝑦q}˚ :“ p

b

|𝑥| `

b

|𝑦|q2.

Is } ¨ }˚ a norm?

Exercise 8.3.2 (˚). Check that } ¨ }1 and } ¨ }8 are norms for R𝑑 .

Exercise 8.3.3 (˚˚). On 𝑉 :“ 𝒞
1pr0, 1sq we consider } ¨ }8 norm and } 𝑓 }𝑉 :“ } 𝑓 }8 ` } 𝑓 1}8. Check

that } ¨ }𝑉 is stronger than } ¨ }8 norm, but they are not equivalent.

Exercise 8.3.4 (˚˚). On 𝑉 “ 𝒞
1pr0, 1sq consider the sup-norm } ¨ }8, the total variation norm

} 𝑓 }𝑣 :“ } 𝑓 }8 ` } 𝑓 1}1 ” } 𝑓 }8 `

∫ 1

0
| 𝑓 1p𝑥q|𝑑𝑥,

and the 𝒞
1 norm } 𝑓 }˚ :“ } 𝑓 }8 ` } 𝑓 1}8.

i) Show that there exist 𝑐, 𝐶 ą 0 such that } 𝑓 }8 ď 𝑐} 𝑓 }𝑣 ď 𝐶} 𝑓 }˚.

ii) By using 𝑓𝑘p𝑥q :“ 𝑐𝑘 sinp𝑘𝜋𝑥q or 𝑔𝑘p𝑥q “ 𝑐𝑘𝑥
𝑘 , show that do not exist constants 𝑚, 𝑀 ą 0

such that } 𝑓 }𝑣 ď 𝑚} 𝑓 }8 and } 𝑓 }˚ ď 𝑀} 𝑓 }𝑣 .
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Exercise 8.3.5 (˚˚). Let 𝑉 :“ t 𝑓 P 𝒞
1pr𝑎, 𝑏sq : 𝑓 p𝑎q “ 0u equipped with } 𝑓 }𝑉 :“

∫ 𝑏
𝑎

| 𝑓 1p𝑥q| 𝑑𝑥. i)
Check that } ¨ }𝑉 is a norm on 𝑉 . ii) Prove that p𝑉, } ¨ }𝑉q ãÑ p𝒞pr𝑎, 𝑏sq, } ¨ }8q.

Exercise 8.3.6 (˚˚). Let 𝑉 :“ t 𝑓 P 𝒞
2pr𝑎, 𝑏sq : 𝑓 p𝑎q “ 𝑓 p𝑏q “ 0u equpped with } 𝑓 }𝑉 :“∫ 𝑏

𝑎
| 𝑓 2p𝑥q| 𝑑𝑥. i) Check that } ¨ }𝑉 is a norm on 𝑉 . ii) Show that p𝑉, } ¨ }𝑉q ãÑ p𝒞1pr𝑎, 𝑏sq, } ¨ }𝒞1q where

} 𝑓 }𝒞1 :“ } 𝑓 }8 ` } 𝑓 1}8.

Exercise 8.3.7 (˚˚). Let ℓ1 :“ tp𝑥𝑛q𝑛PN Ă R :
ř

𝑛 |𝑥𝑛| ă `8u with natural sum p𝑥𝑛q`p𝑦𝑛q :“ p𝑥𝑛`𝑦𝑛q

and 𝛼p𝑥𝑛q :“ p𝛼𝑥𝑛q. Check that ℓ1 is a vector space. We set

}p𝑥𝑛q}ℓ1 :“
ÿ

𝑛

|𝑥𝑛|.

Check that } ¨ }ℓ1 is a well defined norm on ℓ1.

Exercise 8.3.8 (˚˚`). Let ℓ2 :“
␣

p𝑥𝑛q𝑛PN :
ř

𝑛 𝑥
2
𝑛 ă `8

(

. Show that ℓ2 is a vector space with the
same algebraic operations defined in the previous exercise for ℓ1. Define then

}p𝑥𝑛q}ℓ2 :“

d

ÿ

𝑘

𝑥2
𝑘
.

Prove that } ¨ }ℓ2 is a well defined norm on ℓ2 (hint: adapt ideas from the Euclidean norm of R𝑑).

Exercise 8.3.9 (˚˚). Let 𝑉 :“ 𝒞pr0, 1sq equipped with

} 𝑓 }𝑉 :“

∫ 1

0

| 𝑓 p𝑥q|
?
𝑥

𝑑𝑥.

i) Check that } ¨ }𝑉 is well defined on 𝑉 and it is a norm.
ii) Check that usual } ¨ }8 norm is stronger than } ¨ }𝑉 norm.

iii) Define

𝑓𝑛p𝑥q :“

$

&

%

3
?
𝑛, 0 ď 𝑥 ď 1

𝑛
,

1
3
?
𝑥
, 1

𝑛
ď 𝑥 ď 1.

Is p 𝑓𝑛q Ă 𝑉? Compute } 𝑓𝑛}𝑉 . What can you draw about the relation between } ¨ }8 and } ¨ }𝑉?



LECTURE 9

𝐿𝑝 spaces

Spaces of integrable functions are of paramount relevance in applications. In this Lecture we introduce
these spaces with their natural norms. We introduce also the space of essentially bounded functions,
namely the version of bounded functions for measurable functions.

9.1. 𝐿1 space

𝐿1 is the space of Lebesgue integrable functions:

Definition 9.1.1

Let p𝑋,ℱ, 𝜇q be a measure space. We set

𝐿1p𝑋q :“

"

𝑓 P 𝐿p𝑋q : } 𝑓 }1 :“

∫
𝑋

| 𝑓 | 𝑑𝜇 ă `8

*

It is easy to check that 𝐿1p𝑋q is a vector space with usual operations of sum and product by a scalar.
Indeed, if 𝑓 , 𝑔 P 𝐿1p𝑋q then 𝑓 ` 𝑔 P 𝐿1p𝑋q because∫

𝑋

| 𝑓 ` 𝑔| 𝑑𝜇 ď

∫
𝑋

p| 𝑓 | ` |𝑔|q 𝑑𝜇 “

∫
𝑋

| 𝑓 | 𝑑𝜇 `

∫
𝑋

|𝑔| 𝑑𝜇 ă `8,

and similarly 𝛼 𝑓 P 𝐿1p𝑋q for every 𝛼 P R (or C). The quantity } ¨ }1 seems to be a natural way to define
the norm of a vector of 𝐿1p𝑋q. And indeed we have already shown that } ¨ }1 is a true norm on a vector
space like 𝒞pr𝑎, 𝑏sq (see Example 8.2). When we consider the space 𝐿1p𝑋q, however, } ¨ }1 verifies all
the characteristic properties of a norm except for vanishing, which takes a mild form:

Proposition 9.1.2

} ¨ }1 verifies homogeneity, triangular inequality and vanishing in the following weak form:
} 𝑓 }1 “ 0, ðñ 𝑓 “ 0, 𝑎.𝑒.

Proof. Homogeneity and triangular inequality are easy and left to the reader. Let us focus on vanishing.
It is evident that if 𝑓 “ 0 a.e. then } 𝑓 }1 “

∫
𝑋

| 𝑓 | 𝑑𝜇 “ 0. Vice versa: if } 𝑓 }1 “
∫
𝑋

| 𝑓 | 𝑑𝜇 “ 0 then
| 𝑓 | “ 0 a.e. follows from Čebišëv Lemma 4.2 applied to | 𝑓 |.

57
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Warning 9.1.3

Strictly speaking, } ¨ }1 is not a norm. To make it a true norm we should modify the structure of
𝐿1. The idea is the following: we say that 𝑓 and 𝑔 are equivalent is 𝑓 “ 𝑔 a.e.. Given 𝑓 P 𝐿p𝑋q,
we define t 𝑓 u as the set of all functions equivalent to 𝑓 . Then, we consider the so-called quotient
space, that is the set 𝑉 made of all possible equivalence classes t 𝑓 u. These will be vectors of a
new space, where

t 𝑓 u ` t𝑔u :“ t 𝑓 ` 𝑔u, 𝑐t 𝑓 u :“ t𝑐 𝑓 u.

One can verify that these operations are well posed and give to 𝑉 the structure of vector space.
The zero of the space is, of course, the class 0𝑉 “ t0u. Finally, one set

}t 𝑓 u}1 :“

∫
𝑋

| 𝑓 | 𝑑𝜇.

Since 𝑓 𝑎.𝑒.“ 𝑔 implies | 𝑓 |
𝑎.𝑒.
“ |𝑔|, thus in particular

∫
𝑋

| 𝑓 | 𝑑𝜇 “
∫
𝑋

|𝑔| 𝑑𝜇, previous definition is
independent of any particular element chosen from the class t 𝑓 u. Furthermore

}t 𝑓 u}1 “ 0, ðñ

∫
𝑋

| 𝑓 | 𝑑𝜇 “ 0, ðñ | 𝑓 |
𝑎.𝑒.
“ 0, ðñ 𝑓

𝑎.𝑒.
“ 0, ðñ t 𝑓 u “ t0u “ 0𝑉 .

So, this quotient space is a true normed space.

However, even if } ¨ }1 is not a true norm, we consider such in all respects. The unique care is to remind
that vanishing works in a slightly weaker form.

9.2. 𝐿 𝑝 space (1 ă 𝑝 ă `8)

𝐿 𝑝 space is just an extension of 𝐿1 space:

Definition 9.2.1

Let p𝑋,ℱ, 𝜇q be a measure space, 1 ă 𝑝 ă `8. We set

𝐿 𝑝p𝑋q :“

"

𝑓 P 𝐿p𝑋q :

∫
𝑋

| 𝑓 |𝑝 𝑑𝜇 ă `8

*

.

We define

} 𝑓 }𝑝 :“

ˆ∫
𝑋

| 𝑓 |𝑝 𝑑𝜇

˙1{𝑝

.

For the sake of simplicity, we will work out in detail the fundamental case 𝑝 “ 2, assuming real scalars.
For the general case we will limit to main statements, leaving the technical proofs in the exercises. The
first step is the

Proposition 9.2.2

Let p𝑋,ℱ, 𝜇q be a measure space. Then, 𝐿2p𝑋q is a vector space, and } ¨ }2 is a norm on 𝐿2p𝑋q

with vanishing } 𝑓 }2 “ 0 iff 𝑓 “ 0 a.e.
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Proof. Let ’s start proving that 𝐿2p𝑋q is a vector space. Let 𝑓 , 𝑔 P 𝐿2p𝑋q. To prove that 𝑓 `𝑔 P 𝐿2p𝑋q

we have to prove that
∫
𝑋

p 𝑓 ` 𝑔q2 𝑑𝜇 ă `8. Now, since 2𝑎𝑏 ď 𝑎2 ` 𝑏2,

p 𝑓 ` 𝑔q2 “ 𝑓 2 ` 𝑔2 ` 2 𝑓 𝑔 ď 𝑓 2 ` 𝑔2 ` 𝑓 2 ` 𝑔2 “ 2p 𝑓 2 ` 𝑔2q,

thus, integrating,∫
𝑋

p 𝑓 ` 𝑔q2 𝑑𝜇 ď 2

∫
𝑋

𝑓 2 ` 𝑔2 𝑑𝜇 “ 2

ˆ∫
𝑋

𝑓 2 𝑑𝜇 `

∫
𝑋

𝑔2 𝑑𝜇

˙

ă `8.

By this 𝑓 ` 𝑔 P 𝐿2p𝑋q. The proof that 𝛼 𝑓 P 𝐿2p𝑋q is straightforward.
Let’s now move on the properties of } ¨ }2 norm. We start by the vanishing:

} 𝑓 }2 “ 0, ðñ

∫
𝑋

| 𝑓 |2 𝑑𝜇 “ 0, ðñ | 𝑓 |2 “ 0, 𝑎.𝑒., ðñ 𝑓 “ 0, 𝑎.𝑒.

Homogeneity is straightforward. Finally, the triangular inequality. This is similar to the proof of the same
property for the euclidean norm on R𝑑 . We start computing

} 𝑓 ` 𝑔}22 “

∫
𝑋

p 𝑓 ` 𝑔q2 𝑑𝜇 “

∫
𝑋

𝑓 2 𝑑𝜇 `

∫
𝑋

𝑔2 𝑑𝜇 ` 2

∫
𝑋

𝑓 𝑔 𝑑𝜇 “ } 𝑓 }22 ` }𝑔}22 ` 2

∫
𝑋

𝑓 𝑔 𝑑𝜇.

To have } 𝑓 ` 𝑔}2 ď } 𝑓 }2 ` }𝑔}2 we need the

Lemma 9.2.3: Cauchy–Schwarz inequality

(9.2.1)
ˇ

ˇ

ˇ

ˇ

∫
𝑋

𝑓 𝑔 𝑑𝜇

ˇ

ˇ

ˇ

ˇ

ď } 𝑓 }2}𝑔}2, @ 𝑓 , 𝑔 P 𝐿2p𝑋q.

Moreover, equality holds iff 𝑓9𝑔 a.e.

Proof. It is similar to the proof of CS (8.1.1) for euclidean norm. We first notice that if
} 𝑓 }2 “ 0 or }𝑔}2 “ 0 the inequality is a trivial 0 ď 0. Thus we assume } 𝑓 }2, }𝑔}2 ‰ 0. Dividing
by l.h.s., the proof is reduced to

ˇ

ˇ

ˇ

ˇ

∫
𝑋

𝑓

} 𝑓 }2

𝑔

}𝑔}2
𝑑𝜇

ˇ

ˇ

ˇ

ˇ

ď 1.

Again, by 𝑎𝑏 ď
𝑎2`𝑏2

2 ,
ˇ

ˇ

ˇ

ˇ

∫
𝑋

𝑓

} 𝑓 }2

𝑔

}𝑔}2
𝑑𝜇

ˇ

ˇ

ˇ

ˇ

ď

∫
𝑋

| 𝑓 |

} 𝑓 }2

|𝑔|

}𝑔}2
𝑑𝜇 ď

1

2

ˆ∫
𝑋

𝑓 2

} 𝑓 }22
𝑑𝜇 `

∫
𝑋

𝑔2

}𝑔}22

𝑑𝜇

˙

“ 1,

and this proves (9.2.1). About equality, all ď signs must be “. In particular, the last one implies
| 𝑓 |

} 𝑓 }2
“

|𝑔|

}𝑔}2
a.e., and from this the conclusion follows.

Returning to the proof of triangular inequality, we have
} 𝑓 ` 𝑔}22 ď } 𝑓 }22 ` }𝑔}22 ` 2} 𝑓 }2}𝑔}2 “ p} 𝑓 }2 ` }𝑔}2q

2
,

from which the conclusion follows by taking roots.

For the general case 1 ă 𝑝 ă `8 the argument is similar. The key step is the extension of the
Cauchy–Schwarz inequality to the important
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Lemma 9.2.4: Hölder inequality

Let p𝑋,ℱ, 𝜇q be a measure space. Then
ˇ

ˇ

ˇ

ˇ

∫
𝑋

𝑓 𝑔 𝑑𝜇

ˇ

ˇ

ˇ

ˇ

ď } 𝑓 }𝑝}𝑔}𝑞,

where 1
𝑝

` 1
𝑞

“ 1.

See exercises for the proof. With some non trivial work (left to exercises) it is possible to prove the

Proposition 9.2.5

Let p𝑋,ℱ, 𝜇q be a measure space. Then, for every 1 ă 𝑝 ă `8, 𝐿 𝑝p𝑋q is a vector space and
} ¨ }𝑝 is a norm on 𝐿 𝑝p𝑋q with vanishing in weak form.

9.3. 𝐿8 space

The concept of bounded function fights with that one measure. For example, measure consider the
same any two functions which are a.e. equal. However, if we define, on 𝑋 “ R,

𝑓 ” 0, 𝑔 “

8
ÿ

𝑛“1

𝑛1t𝑛u,

we see that 𝑓 “ 𝑔 a.e. but while 𝑓 is constant, 𝑔 is unbounded. In other words, we cannot use

} 𝑓 }8 “ sup
𝑋

| 𝑓 p𝑥q|

to define a norm on 𝐿p𝑋q. However, from the point of view of measure, it is clear that we should consider
𝑔 essentially bounded.

Definition 9.3.1

Let p𝑋,ℱ, 𝜇q be a measure space, 𝑓 P 𝐿p𝑋q. We say that 𝑓 vis essentially bounded on 𝑋 if
D𝑀 ą 0, : | 𝑓 | ď 𝑀, 𝑎.𝑒.

The class of essentially bounded functions on 𝑋 is denoted by 𝐿8p𝑋q.

It is not difficult to prove that

Proposition 9.3.2

Let p𝑋,ℱ, 𝜇q be a measure space. Then, 𝐿8p𝑋q is a vector space equipped with usual sum and
multiplication by scalars.

The proof is left as exercise. We now introduce a suitable norm on 𝐿8p𝑋q. If 𝑓 P 𝐿8p𝑋q, there exists
𝑀 ą 0 such that | 𝑓 | ď 𝑀 a.e. We call this 𝑀 an essential upper bound. It is clear that, every 𝐾 ą 𝑀



9.4. EXERCISES 61

is an essential upper bound as well. So, the essential best upper bound is the smallest of the essential
upper bounds,

} 𝑓 }8 ” ess sup | 𝑓 | :“ inft𝐾 ě 0 : | 𝑓 | ď 𝐾 𝑎.𝑒.u.

Notice that, by definition of } 𝑓 }8, we have

@𝜀 ą 0, | 𝑓 | ď } 𝑓 }8 ` 𝜀, a.e.

Setting 𝜀 “ 1
𝑛

we have

t| 𝑓 | ą } 𝑓 }8u “
ď

𝑛

"

| 𝑓 | ą } 𝑓 }8 `
1

𝑛

*

, ùñ 𝜇 p| 𝑓 | ą } 𝑓 }8q ď
ÿ

𝑛

𝜇

ˆ

| 𝑓 | ą } 𝑓 }8 `
1

𝑛

˙

“ 0,

that is

(9.3.1) | 𝑓 p𝑥q| ď } 𝑓 }8, a.e. 𝑥 P 𝑋.

Definition 9.3.3

Let p𝑋,ℱ, 𝜇q be a measure space, 𝑓 P 𝐿p𝑋q. We set
𝐿8p𝑋q :“ t 𝑓 P 𝐿p𝑋q : } 𝑓 }8 ă `8u .

Proposition 9.3.4

Let p𝑋,ℱ, 𝜇q be a measure space. Then, 𝐿8p𝑋q is a normed space equipped with } ¨ }8, with
vanishing in weak form.

Proof. Let’s verify the characteristic properties of a norm.
‚ vanishing: if } 𝑓 }8 “ 0 then, by (9.3.1), | 𝑓 p𝑥q| ď 0 a.e., that is 𝑓 “ 0 a.e..
‚ homogeneity: by (9.3.1), |𝛼 𝑓 p𝑥q| “ |𝛼|| 𝑓 p𝑥q| ď |𝛼|} 𝑓 }8 a.e.. Therefore }𝛼 𝑓 }8 ď |𝛼|} 𝑓 }8.

Now, since (by the same inequality), } 𝑓 }8 “ } 1
𝛼

p𝛼 𝑓 q}8 ď 1
|𝛼|

}𝛼 𝑓 }8 we get the conclusion;
‚ triangular inequality: by (9.3.1),

| 𝑓 | ď } 𝑓 }8, |𝑔| ď }𝑔}8, 𝑎.𝑒. ùñ | 𝑓 ` 𝑔| ď | 𝑓 | ` |𝑔| ď } 𝑓 }8 ` }𝑔}8, 𝑎.𝑒.

This says that } 𝑓 ` 𝑔}8 ď } 𝑓 }8 ` }𝑔}8. □

9.4. Exercises

Exercise 9.4.1 (˚˚). Let 𝛼 ą 0. Determine for which 𝑝 ě 1 the function

𝑓 p𝑥q :“
1

1 ` }𝑥}𝛼
, 𝑥 P R𝑑 ,

belongs to 𝐿 𝑝pR𝑑q w.r.t. Lebesgue’s measure. (hint: look at Exercise 5.4.7)

Exercise 9.4.2 (˚˚). The goal is to show that 𝐿 𝑝p𝑋q is a vector space. To this aim, show the following
numerical inequality:

D𝐶 ą 0, : p𝑢 ` 𝑣q𝑝 ď 𝐶p𝑢𝑝 ` 𝑣𝑝q, @𝑢, 𝑣 ě 0.

Use this inequality to conclude.
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Exercise 9.4.3 (˚˚˚). The goal is to prove Hölder inequality.
i) By using the concavity of function log 𝑡, prove the Young inequality

𝑎𝑏 ď
1

𝑝
𝑎𝑝 `

1

𝑞
𝑏𝑞, @𝑎, 𝑏 ě 0,

with 1 ă 𝑝, 𝑞 ă `8 and 1
𝑝

` 1
𝑞

“ 1.
ii) Himitating the proof of CS inequality and using i), prove the Hölder inequality.

Exercise 9.4.4 (˚˚˚). The goal is to prove that } ¨ }𝑝 is a norm p1 ă 𝑝 ă `8q. Vanishing follows from
Chebyshev’s inequality and homogeneity is straight forward. For the triangular inequality write

} 𝑓 ` 𝑔}
𝑝
𝑝 “

∫
𝑋

| 𝑓 ` 𝑔|𝑝 𝑑𝜇 “

∫
𝑋

| 𝑓 ` 𝑔|| 𝑓 ` 𝑔|𝑝´1 𝑑𝜇 ď

∫
𝑋

| 𝑓 || 𝑓 ` 𝑔|𝑝´1 𝑑𝜇`

∫
𝑋

|𝑔|| 𝑓 ` 𝑔|𝑝´1 𝑑𝜇,

then apply Hölder inequality.

Exercise 9.4.5 (˚˚). Let p𝑋,ℱ, 𝜇q be a measure space. Check that:
i) if 𝜇p𝑋q ă `8, then } ¨ }2 norm is stronger than } ¨ }1 norm. (use CS inequality).

ii) if 𝜇p𝑋q “ `8, in general previous conclusion is false (consider 𝑋 “ r0,`8r and 𝜇 “Lebesgue
measure. . . ).

iii) even if 𝜇p𝑋q ă `8 in general } ¨ }1 and } ¨ }2 norms are not equivalent (take 𝑋 “ r0, 1s with
𝜇 “Lebesgue measure. . . ).

iv) in certain cases } ¨ }1 and } ¨ }2 norm can be equivalent (take 𝑋 finite set. . . ).

Exercise 9.4.6 (˚˚). Let 𝑓 P 𝐿2pRq.
i) Is it true that 𝑓 P 𝐿1pRq? Prove in general, if true, disprove with a counter example, if false.

ii) Show that if 𝑥 𝑓 p𝑥q P 𝐿2pRq then, necessarily, 𝑓 P 𝐿1pRq, proving also the bound

} 𝑓 }1 ď
?
2 p} 𝑓 }2 ` }𝑥 𝑓 }2q .

Exercise 9.4.7 (˚˚). Let p𝑋,ℱ, 𝜇q a measure space, 𝑓 P 𝐿 𝑝p𝑋q. Prove that
i) 𝜇p| 𝑓 | ě 𝛼q ď 1

𝛼𝑝
} 𝑓 }

𝑝
𝑝 for every 𝛼 ą 0.

ii) lim𝛼Ñ`8 𝛼𝑝𝜇p| 𝑓 | ě 𝛼q “ 0.

Exercise 9.4.8 (˚˚˚). Let 𝑓 P 𝐿2pr0,`8rq.

i) Prove that
´∫ 𝑥

0
𝑓 p𝑦q 𝑑𝑦

¯2
ď 2

?
𝑥
∫ 𝑥
0

?
𝑦 𝑓 p𝑦q2 𝑑𝑦, @𝑥 ě 0 (hint: Cauchy-Schwarz’s inequality).

ii) Define 𝑔p𝑥q :“ 1
𝑥

∫ 𝑥
0
𝑓 p𝑦q 𝑑𝑦. Check that 𝑔 P 𝐿2pr0,`8rq and }𝑔}2 ď 2} 𝑓 }2.

Exercise 9.4.9 (˚˚˚). Extend Hölder’s inequality: let 𝑓 P 𝐿 𝑝, 𝑔 P 𝐿𝑞 and ℎ P 𝐿𝑟 with 1 ă 𝑝, 𝑞, 𝑟 ă `8

such that 1
𝑝

` 1
𝑞

` 1
𝑟

“ 1. Prove that

} 𝑓 𝑔ℎ}1 ď } 𝑓 }𝑝}𝑔}𝑞}ℎ}𝑟 .



LECTURE 10

Convergence

As for modulus in the real line, norm allows to define limits of sequences of vectors in a normed
space. When the normed space is a space of functions, convergence is almost never an easy matter. This
Lecture introduces to this topic through many examples.

10.1. Limit of a sequence

We start with the

Definition 10.1.1

Let p𝑉, } ¨ }q be a normed space. Given p 𝑓𝑛q Ă 𝑉 we say that

𝑓𝑛
}¨}

ÝÑ 𝑓 , ðñ } 𝑓𝑛 ´ 𝑓 } ÝÑ 0.

The first remark is that if a limit exists, it is unique:

Proposition 10.1.2

If p 𝑓𝑛q Ă 𝑉 has a limit, the limit is unique.

Proof. If 𝑓𝑛
}¨}

ÝÑ 𝑓 and 𝑓𝑛
}¨}

ÝÑ 𝑔, then
} 𝑓 ´ 𝑔} ď } 𝑓 ´ 𝑓𝑛} ` } 𝑓𝑛 ´ 𝑔} ÝÑ 0, ùñ } 𝑓 ´ 𝑔} “ 0, ðñ 𝑓 “ 𝑔. □

Remark 10.1.3

As the proof shows, uniqueness of a limit depends on vanishing of the norm. So, if we consider
an 𝐿 𝑝 norm, the same proof leads to the following conclusion:

𝑓𝑛
}¨}𝑝
ÝÑ 𝑓 , 𝑓𝑛

}¨}𝑝
ÝÑ 𝑔, ùñ 𝑓

𝑎.𝑒.
“ 𝑔.

Thus, in principle (unless the unique measure zero set is ∅) the limit is not unique. This might be
disturbing. However, since any two limits differ by a measure zero set, from the point of view of
measure they are the same object, thus, we shouldn’t be worried too much!
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Example 10.1.4: p˚q

Let 𝑉 “ 𝐿1pr0, 1sq, 𝑓𝑛p𝑥q :“ 𝑥𝑛. Discuss convergence of p 𝑓𝑛q in } ¨ }1 norm.

Proof. We first have to guess a potential limit. We may notice that, for 𝑥 P r0, 1s fixed,

lim
𝑛
𝑓𝑛p𝑥q “ lim

𝑛
𝑥𝑛 “

$

&

%

0, 0 ď 𝑥 ă 1,

1, 𝑥 “ 1
“: 𝑓 p𝑥q,

thus we may guess that 𝑓𝑛
𝐿1

ÝÑ 𝑓 . Now, since 𝑓 “ 0 a.e. this means 𝑓𝑛
𝐿1

ÝÑ 0. Let’s check this: we have

} 𝑓𝑛 ´ 0}1 “ } 𝑓𝑛}1 “

∫ 1

0

|𝑥𝑛| 𝑑𝑥 “

∫ 1

0

𝑥𝑛 𝑑𝑥 “

„

𝑥𝑛`1

𝑛 ` 1

ȷ𝑥“1

𝑥“0

“
1

𝑛 ` 1
ÝÑ 0,

that is our guess was correct.

Convergence is not an intrinsic property of a sequence, but it always depends on a specific norm. It may
well happen that the same sequence under different norms might have different behaviours. However, if
convergence happens in a stronger norm, then it happens also for a weaker norm.

Proposition 10.1.5

If } ¨ } is stronger than } ¨ }˚, then any sequence converging under } ¨ } converges also under } ¨ }˚

to the same limit.

Proof. By assumption } 𝑓 }˚ ď 𝐶} 𝑓 } for every 𝑓 P 𝑉 and for a suitable 𝐶 ą 0. If 𝑓𝑛
}¨}

ÝÑ 𝑓 then
0 ď } 𝑓𝑛 ´ 𝑓 }˚ ď 𝐶} 𝑓𝑛 ´ 𝑓 } ÝÑ 0,

thus } 𝑓𝑛 ´ 𝑓 }˚ ÝÑ 0, that is 𝑓𝑛
}¨}˚
ÝÑ 𝑓 .

Example 10.1.6: p˚˚q

On 𝑉 “ 𝒞pr0, 1sq equipped with uniform norm } ¨ }8 let us consider again the sequence 𝑓𝑛p𝑥q :“
𝑥𝑛. This sequence is not convergent in uniform norm.

Proof. We already proved that 𝑓𝑛
}¨}1
ÝÑ 0. Since

} 𝑓 }1 “

∫ 1

0

| 𝑓 p𝑥q| 𝑑𝑥 ď

∫ 1

0

} 𝑓 }8 𝑑𝑥 “ } 𝑓 }8,

the uniform norm on 𝑉 is stronger than the 𝐿1 norm. In particular, if 𝑓𝑛
}¨}8
ÝÑ 𝑔 P 𝑉 then also 𝑓𝑛

}¨}1
ÝÑ 𝑔.

Since we already checked that 𝑓𝑛
}¨}1
ÝÑ 0, the unique possibility is 𝑓𝑛

}¨}8
ÝÑ 0. However,

} 𝑓𝑛 ´ 0}8 “ } 𝑓𝑛}8 “ max
r0,1s

|𝑥𝑛| “ 1 ­ÝÑ 0.

So, the sequence p 𝑓𝑛q cannot converge in uniform norm.
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An useful fact to know is the

Proposition 10.1.7

Let p𝑉, } ¨ }q be a normed space. Then, every convergent sequence p 𝑓𝑛q is necessarily bounded,
that is

D𝑀 : } 𝑓𝑛} ď 𝑀, @𝑛 P N.

Proof. Assume 𝑓𝑛
}¨}

ÝÑ 𝑓 : then
D𝑁 : } 𝑓𝑛 ´ 𝑓 } ď 1, @𝑛 ě 𝑁.

Thus in particular } 𝑓𝑛} ď } 𝑓𝑛 ´ 𝑓 } ` } 𝑓 } ď } 𝑓 } ` 1 for all 𝑛 ě 𝑁 . Thus, if we define
𝑀 :“ maxt} 𝑓0}, } 𝑓1}, . . . , } 𝑓𝑁´1}, } 𝑓 } ` 1u,

we conclude } 𝑓𝑛} ď 𝑀 for every 𝑛 P N.

10.2. Convergence in space of functions

Most relevant normed spaces are spaces of functions. The simplest way to converge for a sequence
of functions p 𝑓𝑛q is the point-wise convergence, that is

lim
𝑛Ñ`8

𝑓𝑛p𝑥q “ 𝑓 p𝑥q, @𝑥 P 𝑋.

A natural problem arises: what relation exists between point-wise convergence and principal norms
convergence? This is what with want to investigate here in some remarkable cases.

10.2.1. Uniform norm. We start with the uniform norm } ¨ }8 which, according to the case, might
be slightly different but more or less it works at the same manner.

Proposition 10.2.1

Let p 𝑓𝑛q Ă 𝐵p𝑋q be such that 𝑓𝑛
}¨}8
ÝÑ 𝑓 . Then 𝑓𝑛 ÝÑ 𝑓 point wise.

Proof. Since } 𝑓𝑛 ´ 𝑓 }8 ÝÑ 0 means
@𝜀 ą 0, D𝑁 P N : } 𝑓𝑛 ´ 𝑓 }8 ď 𝜀, @𝑛 ě 𝑁,

that is, according to the definition of uniform norm,
@𝜀 ą 0, D𝑁 P N : sup

𝑥P𝑋

| 𝑓𝑛p𝑥q ´ 𝑓 p𝑥q| ď 𝜀, @𝑛 ě 𝑁,

or, again,
@𝜀 ą 0, D𝑁 P N : | 𝑓𝑛p𝑥q ´ 𝑓 p𝑥q| ď 𝜀, @𝑥 P 𝑋, @𝑛 ě 𝑁,

This says 𝑓𝑛p𝑥q ÝÑ 𝑓 p𝑥q for every 𝑥 P 𝑋 , and this is precisely point-wise convergence.

The converse is false,
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Example 10.2.2: p˚q

Let

𝑓𝑛p𝑥q :“

$

&

%

𝑛2𝑥, 0 ď 𝑥 ď 1
𝑛
,

´𝑛2𝑥 ` 2𝑛, 1
𝑛

ď 𝑥 ď 2
𝑛
,

0, 2
𝑛

ď 𝑥 ď 1.

Discuss point-wise convergence and uniform convergence.

1
2

1

4

5

6

7

8

Proof. First: 𝑓𝑛p0q ” 0 ÝÑ 0 while for 𝑥 ą 0, since 2
𝑛

ÝÑ 0, for 𝑛 ě 𝑁p𝑥q we have 𝑥 ą 2
𝑛

thus

𝑓𝑛p𝑥q “ 0 for such 𝑛. This means 𝑓𝑛p𝑥q ÝÑ 0. Conclusion: 𝑓𝑛 ÝÑ 0 point-wise. Thus, if 𝑓𝑛
}¨}8
ÝÑ 𝑓 then,

necessarily, 𝑓 ” 0. However, } 𝑓𝑛 ´ 𝑓 }8 “ } 𝑓𝑛}8 “ 𝑛 ÝÑ `8, so p 𝑓𝑛q cannot be convergent in uniform
norm.

A similar conclusion holds for the 𝐿8 norm.

Proposition 10.2.3

Let p𝑋,ℱ, 𝜇q be a measure space, p 𝑓𝑛q Ă 𝐿8p𝑋q be such that 𝑓𝑛
}¨}8
ÝÑ 𝑓 . Then, 𝑓𝑛

𝑎.𝑒.
ÝÑ 𝑓 , that is

𝑓𝑛p𝑥q ÝÑ 𝑓 p𝑥q, 𝑎.𝑒. 𝑥 P 𝑋.

Proof. It is very similar to the proof of previous proposition. Suppose that 𝑓𝑛
}¨}8
ÝÑ 𝑓 . Then,

@𝜀 ą 0, D𝑁 P N : } 𝑓𝑛 ´ 𝑓 }8 ď 𝜀, @𝑛 ě 𝑁.

Recalling that
|𝑔p𝑥q| ď }𝑔}8, 𝑎.𝑒. 𝑥 P 𝑋,

we have
@𝜀 ą 0, D𝑁 P N : | 𝑓𝑛p𝑥q ´ 𝑓 p𝑥q| ď } 𝑓𝑛 ´ 𝑓 }8 ď 𝜀, 𝑎.𝑒. 𝑥 P 𝑋, @𝑛 ě 𝑁.

Here there there is a subtle passage. Previous statement says that, for each 𝑛 ě 𝑁 , there exists a null set 𝐸𝑛
(that is 𝜇p𝐸𝑛q “ 0) such that

@𝜀 ą 0, D𝑁 P N : | 𝑓𝑛p𝑥q ´ 𝑓 p𝑥q| ď } 𝑓𝑛 ´ 𝑓 }8 ď 𝜀, @𝑥 P 𝑋z𝐸𝑛, @𝑛 ě 𝑁.

Let 𝐸 :“
Ť

𝑛 𝐸𝑛. By sub additivity 𝜇p𝐸q ď
ř

𝑛 𝜇p𝐸𝑛q “ 0, thus 𝐸 is a null set and of course
@𝜀 ą 0, D𝑁 P N : | 𝑓𝑛p𝑥q ´ 𝑓 p𝑥q| ď } 𝑓𝑛 ´ 𝑓 }8 ď 𝜀, @𝑥 P 𝑋z𝐸, @𝑛 ě 𝑁.

From this it follows that 𝑓𝑛p𝑥q ÝÑ 𝑓 p𝑥q for every 𝑥 P 𝑋z𝐸 , that is 𝑓𝑛
𝑎.𝑒.
ÝÑ 𝑓 .

10.2.2. 𝐿 𝑝 norm p1 ď 𝑝 ă `8q. Convergence in } ¨ }𝑝 norm is also called convergence in
𝑝´mean. Basically, saying } 𝑓𝑛 ´ 𝑓 }𝑝 becomes small it means that the area between 𝑓𝑛 and 𝑓 (weighted
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to power 𝑝) is small. In principle, the area could be small also with huge gap between functions. That’s
why we cannot expect that 𝐿 𝑝 convergence implies a.e. point-wise convergence. The next example shows
dramatically this phenomenon.

Example 10.2.4: p˚˚q

Let p 𝑓𝑛q Ă 𝐿1pr0, 1sq defined as follows:
𝑓1 :“ 1r0,1s,

𝑓2 :“ 1r0,1{2s, 𝑓3 :“ 1r1{2,1s,

𝑓4 :“ 1r0,1{4s, 𝑓5 :“ 1r1{4,2{4s, 𝑓6 :“ 1r2{4,3{4s, 𝑓7 :“ 1r3{4,1s,
... 𝑓2𝑚 :“ 1r0,1{2𝑚s, 𝑓2𝑚`1 :“ 1r1{2𝑚,2{2𝑚s, . . . , 𝑓2𝑚`𝑘 :“ 1r𝑘{2𝑚,p𝑘`1q{2𝑚s,
...

1

1

1

1

1

1

1

1

1

1

Then 𝑓𝑛
𝐿1

ÝÑ 0, but p 𝑓𝑛p𝑥qq does not converge for every 𝑥 P r0, 1s.

Proof. The first check is easy: } 𝑓2𝑚`𝑘}1 “ 1
2𝑚 ÝÑ 0 for 𝑚 ÝÑ `8. About the second: take

𝑥 P r0, 1s. Notice that, for every 𝑚 fixed, there’s just one 𝑘˚ such that r 𝑘
˚

2𝑚 ,
𝑘˚`1
2𝑚 rQ 𝑥. Thus 𝑓2𝑚`𝑘p𝑥q “ 0

for 𝑘 ‰ 𝑘˚ and “ 1 for 𝑘 “ 𝑘˚. This means that the sequence 𝑓𝑛p𝑥q is infinitely many times “ 0 and
infinitely many times “ 1. In particular, p 𝑓𝑛p𝑥qq cannot be convergent, whatever is 𝑥 P r0, 1s.

Nonetheless, we have the important

Theorem 10.2.5

Let p𝑋,ℱ, 𝜇q be a measure space, p 𝑓𝑛q Ă 𝐿 𝑝p𝑋q (1 ď 𝑝 ă `8) such that 𝑓𝑛
𝐿𝑝

ÝÑ 𝑓 . Then, there
exists a sub-sequence p 𝑓𝑛𝑘q Ă p 𝑓𝑛q such that 𝑓𝑛𝑘

𝑎.𝑒.
ÝÑ 𝑓 .

Proof. For simplicity, we consider 𝑝 “ 1. Replacing 𝑓𝑛 with 𝑓𝑛 ´ 𝑓 we may always assume 𝑓 “ 0.
Thus we assume 𝑓𝑛

𝐿1

ÝÑ 0, that is ∫
𝑋

| 𝑓𝑛| 𝑑𝜇 ÝÑ 0.

For every 𝑘 there’s 𝑛𝑘 such that ∫
𝑋

| 𝑓𝑛𝑘 | 𝑑𝜇 ď
1

2𝑘
.
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We claim 𝑓𝑛𝑘
𝑎.𝑒.
ÝÑ 0. Indeed, by monotone convergence (for series)∫

𝑋

ÿ

𝑘

| 𝑓𝑛𝑘 | 𝑑𝜇 “
ÿ

𝑘

∫
𝑋

| 𝑓𝑛𝑘 | 𝑑𝜇 ď
ÿ

𝑘

1

2𝑘
“ 1 ă `8,

thus
ř

𝑘 | 𝑓𝑛𝑘 p𝑥q| ă `8 a.e. 𝑥 P 𝑋 . Now, recalling that if
ř

𝑘 𝑎𝑘 converges then, necessarily, 𝑎𝑘 ÝÑ 0,
we deduce 𝑓𝑛𝑘 p𝑥q ÝÑ 0 a.e. 𝑥 P 𝑋 , which is the conclusion.

Remark 10.2.6

In the example 10.2.4, a sub-sequence of p 𝑓𝑛q that converges a.e. is, for example, p 𝑓2𝑚q. Indeed:
𝑓2𝑚p𝑥q “ 1r0,1{2𝑚sp𝑥q ÝÑ 1t0up𝑥q, @𝑥 P r0, 1s.

10.3. Exercises

Exercise 10.3.1 (˚). For each of the following sequences discuss: i) pointwise convergence on r0,`8r;
ii) a.e. convergence on r0,`8r; iii) 𝐿1pr0,`8rq convergence; iv) 𝐿2pr0,`8rq convergence; v)
𝐿8pr0,`8rq convergence.

1. 𝑓𝑛 :“
1

𝑛
1r0,𝑛s. 2. 𝑓𝑛 :“ 𝑛1r0,1{𝑛s. 3. 𝑓𝑛 :“

𝑛
ÿ

𝑘“0

1

𝑘
1r𝑘,𝑘` 1

2𝑛
s.

Exercise 10.3.2 (˚`). Let 𝑉 :“ 𝒞pr0, 1sq equipped with usual } ¨ }8 norm. Let

𝑓𝑛p𝑥q :“ 𝑥𝑛 ´ 𝑥𝑛`1, 𝑔𝑛p𝑥q :“ 𝑥𝑛 ´ 𝑥2𝑛.

Clearly p 𝑓𝑛q, p𝑔𝑛q Ă 𝑉 .
i) Discuss their convergence in 𝑉 .

ii) What happens if we consider the } ¨ }1 norm on 𝑉?

Exercise 10.3.3 (˚). Let 𝑓𝑛p𝑥q “ 1r´1,0sp𝑥q ` 1s0,1{𝑛sp𝑥q
?
1 ´ 𝑛𝑥. Discuss convergence of p 𝑓𝑛q in

𝐿2pr´1, 1sq.

Exercise 10.3.4 (˚). Let

𝑓𝑛p𝑥q :“
1

b

𝑥 ` 1
𝑛

, 𝑥 P r0, 1s, 𝑛 P N.

i) Plot quickly the graph of 𝑓𝑛. Is p 𝑓𝑛q Ă 𝐿1pr0, 1sq? Is p 𝑓𝑛q Ă 𝐿2pr0, 1sq?
ii) Is p 𝑓𝑛q convergent in 𝐿1pr0, 1sq and, in the case, to what? Is p 𝑓𝑛q convergent in 𝐿2pr0, 1sq and,

in the case, to what?

Exercise 10.3.5 (˚). Let 𝑓𝑛p𝑥q :“ 1
1`𝑥𝑛

, 𝑥 P r0,`8r, 𝑛 P N, 𝑛 ě 2. Plot quickly the graph of 𝑓𝑛. Is
𝑓𝑛 P 𝐿1pr0,`8rq? Is p 𝑓𝑛q convergent (and, in the case, to what) in 𝐿1pr0,`8rq? Justify your answer.

Exercise 10.3.6 (˚). On 𝑉 “ 𝒞
1pr0, 1sq let’s consider

𝑖q } 𝑓 }˚ :“ } 𝑓 }8 ` } 𝑓 1}8. 𝑖𝑖q } 𝑓 }˚˚ “ | 𝑓 p0q| ` } 𝑓 1}8. 𝑖𝑖𝑖q } 𝑓 }˚˚˚ :“ | 𝑓 p1q| `

∫ 1

0
| 𝑓 1p𝑥q| 𝑑𝑥.
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Which among these are norms? For those who are norms, consider then the sequence 𝑓𝑛p𝑥q :“ 1
𝑛
sinp𝑛2𝑥q.

Discuss convergence of p 𝑓𝑛q in each of the norms. Discuss also relations among the norms.

Exercise 10.3.7 (˚`). Let 𝑓𝑛p𝑥q :“ 𝑛
1`𝑛9𝑥3

, 𝑥 P r0, 1s. Discuss convergence of p 𝑓𝑛q in 𝐿 𝑝pr0, 1sq for
𝑝 “ 1, 2,`8.

Exercise 10.3.8 (˚˚). On 𝑉 :“ t 𝑓 P 𝒞
1pr0, 1sq : 𝑓 p0q “ 0u we define

} 𝑓 } :“ max
𝑡Pr0,1s

𝑡1{2| 𝑓 1p𝑡q|.

i) Check that } ¨ } is a norm on 𝑉 .
ii) Show that } 𝑓 } is stronger than } 𝑓 }8 on 𝑉 .

iii) Define p 𝑓𝑛q Ă 𝑉 as

𝑓𝑛p𝑡q :“

$

&

%

𝑡1{4, 𝑡 P r 1
𝑛
, 1s,

𝑛3{4

4 𝑡, 𝑡 P r0, 1
𝑛

r.

Compute } 𝑓𝑛} and } 𝑓𝑛}8. What can be deduced about equivalence of } ¨ } and } ¨ }8?

Exercise 10.3.9 (˚˚). Let p𝐸𝑛q be a sequence of Lebesgue measurable sets ofR𝑑 . Suppose that 1𝐸𝑛
}¨}1
ÝÑ 𝑓

for some 𝑓 P 𝐿1pRq. Prove that there exists a measurable set 𝐸 such that 𝑓 “ 1𝐸 a.e..





LECTURE 11

Convolution

In general, Lebesgue integrable functions are very irregular and, among them, regular functions
(such as continuous, differentiable, . . . ) are certainly not the prototype of an integrable function. In fact,
we may think that regular function are pretty ”rare” among integrable functions. Despite this intuition,
in this Lecture we show that any integrable function can be approximated, in 𝐿 𝑝 norm, by a suitable
sequence of extremely regular (that is 𝒞8) functions. This is possible because of a powerful operation
called convolution product (or just convolution). The results of these chapter are very technical and most
of the proofs will be omitted. Nonetheless, in many contexts of Analysis it is very important to know
that we can always approximate any 𝐿 𝑝 function through a sequence of regular functions. Moreover, the
convolution has several applications in Probability and Information Engineering.

11.1. Definition

A natural idea to approximate a generic (integrable) function 𝑓 is to build a function whose value at
point 𝑥 is an average of values of 𝑓 around 𝑥. For instance, fixed 𝜀 ą 0 we might consider the function

𝑓𝜀p𝑥q :“
1

2𝜀

∫ 𝑥`𝜀

𝑥´𝜀

𝑓 p𝑦q 𝑑𝑦 “
1

2𝜀

∫
R
𝑓 p𝑦q1r𝑥´𝜀,𝑥`𝜀sp𝑦q 𝑑𝑦 “

∫
R
𝑓 p𝑦q

1

2𝜀
1r´𝜀,𝜀sp𝑥 ´ 𝑦q 𝑑𝑦.

Calling 𝛿𝜀p𝑥q :“ 1
2𝜀1r´𝜀,𝜀sp𝑥q we have

𝑓𝜀p𝑥q “

∫
R
𝑓 p𝑦q𝛿𝜀p𝑥 ´ 𝑦q 𝑑𝑦.

The r.h.s. is called convolution (product) of 𝑓 with 𝛿𝜀 .

Definition 11.1.1

Let 𝑓 , 𝑔 P 𝐿pR𝑚q. We call convolution of 𝑓 and 𝑔 the function

p 𝑓 ˚ 𝑔qp𝑥q :“

∫
R
𝑓 p𝑦q𝑔p𝑥 ´ 𝑦q 𝑑𝑦.

(provided it makes sense)

We expect that some integrability on 𝑓 and 𝑔 is needed to have 𝑓 ˚ 𝑔 well defined. We have the
71
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Theorem 11.1.2: (Young)

Let 𝑓 P 𝐿1pR𝑚q and 𝑔 P 𝐿 𝑝pR𝑚q (1 ď 𝑝 ď `8). Then, the convolution 𝑓 ˚ 𝑔 is well defined,
𝑓 ˚ 𝑔 P 𝐿 𝑝pRq and the Young inequality holds
(11.1.1) } 𝑓 ˚ 𝑔}𝑝 ď } 𝑓 }1}𝑔}𝑝 .

Proof. We accept 𝑓 ˚ 𝑔 P 𝐿pR𝑚q. For sake of simplicity we do the proof of Young inequality in the
case 𝑝 “ 1. We have:

} 𝑓 ˚ 𝑔}1 “

∫
R𝑚

| 𝑓 ˚ 𝑔p𝑥q| 𝑑𝑥 “

∫
R𝑚

ˇ

ˇ

ˇ

ˇ

∫
R𝑚

𝑓 p𝑦q𝑔p𝑥 ´ 𝑦q 𝑑𝑦

ˇ

ˇ

ˇ

ˇ

𝑑𝑥 ď

∫
R

∫
R𝑚

| 𝑓 p𝑦q||𝑔p𝑥 ´ 𝑦q| 𝑑𝑦 𝑑𝑥

𝑅𝐹
“

∫
R𝑚

∫
R𝑚

| 𝑓 p𝑦q||𝑔p𝑥 ´ 𝑦q| 𝑑𝑥 𝑑𝑦 “

∫
R𝑚

ˆ∫
R𝑚

|𝑔p𝑥 ´ 𝑦q| 𝑑𝑥

˙

| 𝑓 p𝑦q| 𝑑𝑦

𝑧“𝑥´𝑦
“

∫
R𝑚

ˆ∫
R𝑚

|𝑔p𝑧q| 𝑑𝑧

˙

| 𝑓 p𝑦q| 𝑑𝑦 “ } 𝑓 }1}𝑔}1.

Example 11.1.3: p˚q

Compute the convolution 𝑒´𝑎|¨| ˚ 𝑒´𝑏|¨| with 𝑎 ‰ 𝑏 and 𝑎, 𝑏 ą 0.

Proof. Clearly 𝑒´𝑎|𝑥|, 𝑒´𝑏|𝑥| P 𝐿1pRq for 𝑎, 𝑏 ą 0, so the convolution is well defined. We have

𝑒´𝑎|¨| ˚ 𝑒´𝑏|¨|p𝑥q “

∫
R
𝑒´𝑎|𝑦|𝑒´𝑏|𝑥´𝑦| 𝑑𝑦.

For 𝑥 ě 0, we split the integral into three parts:

𝐼1 “

∫ 0

´8

𝑒´𝑎p𝑥´𝑦q𝑒´𝑏p´𝑦q 𝑑𝑦 “ 𝑒´𝑎𝑥

∫ 0

´8

𝑒p𝑎`𝑏q𝑦 𝑑𝑦 “
𝑒´𝑎𝑥

𝑎 ` 𝑏
,

𝐼2 “

∫ 𝑥

0

𝑒´𝑎p𝑥´𝑦q𝑒´𝑏𝑦 𝑑𝑦 “ 𝑒´𝑎𝑥

∫ 𝑥

0

𝑒p𝑎´𝑏q𝑦 𝑑𝑦
𝑎‰𝑏
“ 𝑒´𝑎𝑥 𝑒

p𝑎´𝑏q𝑥 ´ 1

𝑎 ´ 𝑏
“
𝑒´𝑏𝑥 ´ 𝑒´𝑎𝑥

𝑎 ´ 𝑏
.,

𝐼3 “

∫ `8

𝑥

𝑒´𝑎p𝑦´𝑥q𝑒´𝑏𝑦 𝑑𝑦 “ 𝑒𝑎𝑥
∫ `8

𝑥

𝑒´p𝑎`𝑏q𝑦 𝑑𝑦 “
𝑒´𝑏𝑥

𝑎 ` 𝑏
.

Summing 𝐼1 ` 𝐼2 ` 𝐼3 gives

p 𝑓 ˚ 𝑔qp𝑥q “
2

𝑎2 ´ 𝑏2

´

𝑎 𝑒´𝑏𝑥 ´ 𝑏 𝑒´𝑎𝑥
¯

.

For 𝑥 ă 0, the calculation is the same with ´𝑥 replacing 𝑥. Therefore,

p 𝑓 ˚ 𝑔qp𝑥q “
2

𝑎2 ´ 𝑏2

´

𝑎 𝑒´𝑏|𝑥| ´ 𝑏 𝑒´𝑎|𝑥|
¯

.

Convolution 𝑓 ˚𝑔 is an operation that produces a function given two functions 𝑓 and 𝑔. Previous Theorem
shows that if 𝑓 , 𝑔 P 𝐿1 then 𝑓 ˚ 𝑔 P 𝐿1. This operation fulfils properties similar to algebraic product of
numbers:
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Proposition 11.1.4

Convolution product fulfils:
i) (commutativity) 𝑓 ˚ 𝑔 “ 𝑔 ˚ 𝑓 , for 𝑓 , 𝑔 P 𝐿1;

ii) (associativity) 𝑓 ˚ p𝑔 ˚ ℎq “ p 𝑓 ˚ 𝑔q ˚ ℎ, for 𝑓 , 𝑔, ℎ P 𝐿1;
iii) (distributivity) 𝑓 ˚ p𝑔 ` ℎq “ 𝑓 ˚ 𝑔 ` 𝑓 ˚ ℎ, for 𝑓 , 𝑔, ℎ P 𝐿1

Proof is left as exercise. We may wonder if a unit exists, namely a function 𝛿 P 𝐿1 such that 𝑓 ˚ 𝛿 “ 𝑓

for every 𝑓 P 𝐿1. This 𝛿 does not exists. We show this in dimension 𝑚 “ 1. Taking 𝑓 “ 1r´𝜀,𝜀s, is a
unit 𝛿 would exists, we would have

𝑓 ˚ 𝛿 “ 𝑓 , ðñ

∫ 𝜀

´𝜀

𝛿p𝑥 ´ 𝑦q 𝑑𝑦 “ 1r´𝜀,𝜀sp𝑥q,

thus, in particular, for 𝑥 “ 0,

1 “

∫ 𝜀

´𝜀

𝛿p´𝑦q 𝑑𝑦 ÝÑ 0, 𝜀 ÝÑ 0.

In other words, a unit should be the famous Dirac’s delta function. Nonetheless, ”approximate units”
exists, and this is the content of next Section.

11.2. Approximate units

Even if there is not a unit for the convolution, there are ”approximate units”.

Definition 11.2.1

Let 𝛿 P 𝐿1pR𝑚q such that

𝛿 ě 0 a.e.,
∫
R𝑚
𝛿p𝑥q 𝑑𝑥 “ 1.

The family of functions p𝛿𝜀q𝜀ą0 defined as

𝛿𝜀p𝑥q :“
1

𝜀𝑚
𝛿

´

𝑥

𝜀

¯

, 𝑥 P R𝑚

is called approximate unit.

Remark 11.2.2: B

definition, 𝛿𝜀 ě 0 a.e. and∫
R𝑚
𝛿𝜀p𝑥q 𝑑𝑥 “

1

𝜀𝑚

∫
R𝑚
𝛿

´

𝑥

𝜀

¯

𝑑𝑥
𝑦“𝑥{𝜀

“
1

𝜀𝑚

∫
R𝑚
𝛿p𝑦q𝜀𝑚 𝑑𝑦 “ 1.

Here some examples of approximate units.

Example 11.2.3: step approximate unit

Let 𝛿p𝑥q “ 1
21r´1,1s. Then 𝛿𝜀p𝑥q “ 1

2𝜀1r´𝜀,𝜀sp𝑥q.
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The next example plays a very important role in many applications. Differently from the previous unit,
the next one is also a very regular function (a 𝒞

8 function with very fast decay at infinity).

Example 11.2.4: Gaussian approximate unit

Let
𝛿p𝑥q “

1
?
2𝜋
𝑒´ 𝑥2

2 , ùñ 𝛿𝜀p𝑥q “
1

?
2𝜋𝜀2

𝑒
´ 𝑥2

2𝜀2 .

-1 1 -1 1

We can also have units vanishing outside a compact interval.

Example 11.2.5

Let

𝛿p𝑥q :“

$

&

%

𝑒
´ 1

1´𝑥2 , |𝑥| ă 1,

0, |𝑥| ě 1.

This is 𝒞8pRq function. Indeed, the unique problem is at 𝑥 “ ˘1. Easily we verify that 𝛿 is continuous at
𝑥 “ ˘1. Computing the derivative we have

𝛿1p𝑥q “

$

’

&

’

%

𝑒
´ 1

1´𝑥2 ´2𝑥
p1´𝑥2q2

, |𝑥| ă 1,

0, |𝑥| ą 1.

Therefore,

lim
𝑥Ñ1´

𝛿1p𝑥q “ ´2 lim
𝑥Ñ1´

𝑒
´ 1

1´𝑥2

p1 ´ 𝑥2q2

𝑡“ 1

1´𝑥2

“ ´2 lim
𝑡Ñ´8

𝑡2𝑒´𝑡 “ 0,

and, similarly, 𝛿1p´1`q “ 0. Since 𝛿1p1`q “ 𝛿1p´1´q “ 0, we conclude that D𝛿1p˘1q “ 0, and, in
particular 𝛿 P 𝒞

1pRq. Iterating this argument we have the conclusion.
Clearly, 𝛿 ě 0 but 𝐼 :“

∫
R
𝛿p𝑥q 𝑑𝑥 is not necessarily “ 1. However, rescaling 𝛿 by 1

𝐼
, that is taking 1

𝐼
𝛿 we

can define an approximate unit
𝛿𝜀p𝑥q :“

1

𝜀𝐼
𝛿

´

𝑥

𝜀

¯

.

Notice that 𝛿𝜀p𝑥q “ 0, if |𝑥| ě 𝜀.

Approximate units deserve this name because 𝑓 ˚ 𝛿𝜀 « 𝑓 when 𝜀 « 0. Precisely, we have the
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Proposition 11.2.6

Let 𝑓 P 𝐿 𝑝pR𝑚q and p𝛿𝜀q Ă 𝐿1pR𝑚q be an approximate unit. Then

(11.2.1) 𝑓 ˚ 𝛿𝜀
𝐿𝑝

ÝÑ 𝑓 .

Proof. (sketch, case 𝑝 “ 1, 𝑚 “ 1) To show that 𝑓 ˚ 𝛿𝜀
𝐿1

ÝÑ 𝑓 , we start noticing that

𝑓 ˚ 𝛿𝜀p𝑥q “

∫
R
𝑓 p𝑥 ´ 𝑦q𝛿𝜀p𝑦q 𝑑𝑦 “

∫
R
𝑓 p𝑥 ´ 𝑦q

1

𝜀
𝛿

´

𝑦

𝜀

¯

𝑑𝑦
𝑢:“

𝑦

𝜀
“

∫
R
𝑓 p𝑥 ´ 𝜀𝑢q𝛿p𝑢q𝑑𝑢.

Recalling that
∫
R
𝛿p𝑢q 𝑑𝑢 “ 1, we have

𝑓 ˚ 𝛿𝜀p𝑥q ´ 𝑓 p𝑥q “

∫
R

p 𝑓 p𝑥 ´ 𝜀𝑢q ´ 𝑓 p𝑥qq 𝛿p𝑢q 𝑑𝑢

so

} 𝑓 ˚ 𝛿𝜀 ´ 𝑓 }1 ď

∫
R

ˆ∫
R

| 𝑓 p𝑥 ´ 𝜀𝑢q ´ 𝑓 p𝑥q| 𝛿p𝑢q 𝑑𝑢

˙

𝑑𝑥 “

∫
R

ˆ∫
R

| 𝑓 p𝑥 ´ 𝜀𝑢q ´ 𝑓 p𝑥q| 𝑑𝑥

˙

𝛿p𝑢q 𝑑𝑢

Introducing the translation operator 𝑇𝜂 𝑓 :“ 𝑓 p7 ` 𝜂q, we may write∫
R

| 𝑓 p𝑥 ´ 𝜀𝑢q ´ 𝑓 p𝑥q| 𝑑𝑥 “ }𝑇´𝜀𝑢 𝑓 ´ 𝑓 }1.

At this point we need the

Lemma 11.2.7

Let 𝑓 P 𝐿 𝑝pR𝑚q. Then
lim
ℎÑ0

}𝑇ℎ 𝑓 ´ 𝑓 }𝑝 “ 0.

The proof of the Lemma is technical and is omitted here. We can now conclude the proof: since

} 𝑓 ˚ 𝛿𝜀 ´ 𝑓 }1 ď

∫
R

}𝑇´𝜀𝑢 𝑓 ´ 𝑓 }1𝛿p𝑢q 𝑑𝑢,

to compute the limit for 𝜀 Ó 0, we apply dominated convergence. We have
‚ (pointwise a.e. limit) by the Lemma }𝑇´𝜀𝑢 𝑓 ´ 𝑓 }1𝛿p𝑢q ÝÑ 0, for every 𝑢 P R.
‚ (integrable dominant) since }𝑇´𝜀𝑢 𝑓 ´ 𝑓 }1 ď }𝑇´𝜀𝑢 𝑓 }1 ` } 𝑓 }1 “ 2} 𝑓 }1,we have

}𝑇´𝜀𝑢 𝑓 ´ 𝑓 }1𝛿p𝑢q ď 2} 𝑓 }1𝛿p𝑢q “: 𝑔p𝑢q P 𝐿1pRq.

Thus, assumption of dominated convergence thm are fulfilled and the conclusion now follows. □

11.3. Mollification Theorem

Doing the convolution with an approximate unit introduces an approximation of any 𝑓 P 𝐿 𝑝 function.
Since

𝑓 ˚ 𝛿𝜀p𝑥q “

∫
R𝑚

𝑓 p𝑦q𝛿𝜀p𝑥 ´ 𝑦q 𝑑𝑦,

we see that 𝑓 ˚ 𝛿𝜀p𝑥q depends by 𝑥 through 𝛿𝜀p𝑥 ´ 𝑦q under the integral sign. This suggests the idea
that if 𝛿𝜀 (hence 𝛿) is regular enough (that is, differentiable a certain number of times), also 𝑓 ˚ 𝛿𝜀 could
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be differentiable, this because of the differentiability under integral sign theorem. This opens the way to
approximate any 𝑓 P 𝐿 𝑝 through regular functions. This operation is also named mollification of 𝑓 .

There are many classes of regular functions and corresponding approximation results. Here, we
will choose a particular class that plays an important role in the theory of Fourier Transform. Roughly
speaking, this is the class of 𝒞8 functions decaying fast at 8. To keep light notations, we will limit to
the case of functions of one real variable, but the definitions and results extends in a straightforward way
to functions of vector variable.

Definition 11.3.1: Schwartz class

𝒮pRq :“

"

𝑓 P 𝒞
8pRq : sup

𝑥PR
p1 ` |𝑥|q𝑁 |B𝑘𝑥 𝑓 p𝑥q| ă `8, @𝑁, 𝑘 P N

*

.

In words: a Schwartz function is a 𝒞
8pRq function decaying at infinity with its derivatives faster than

any polynomial. For example:

‚ 𝑒´𝑥2 , 𝑒´𝑥4 , 𝑥2𝑒´𝑥2 P 𝒮pRq;
‚ 𝑒´|7| R 𝒮pRq (problem: regularity at 0);
‚ 1

1`𝑥2
R 𝒮pRq (problem: not decaying fast enough at ˘8).

It is not difficult to prove that Schwartz class is contained in any 𝐿 𝑝 space:

Proposition 11.3.2

𝒮pRq Ă 𝐿 𝑝pRq, @1 ď 𝑝 ď `8.

Proof. (𝑝 “ 1) If 𝑓 P 𝒮 then, in particular, 𝑓 P 𝒞, thus 𝑓 is integrable in every closed and bounded
interval. For integrability on R in 𝐿1 sense, we have to check the behaviour at ˘8. Since

p1 ` |𝑥|q2| 𝑓 p𝑥q| ď 𝐶, ùñ | 𝑓 p𝑥q| ď
𝐶

p1 ` |𝑥|q2
P 𝐿1.

Theorem 11.3.3: mollification

Schwartz class is dense in 𝐿 𝑝pRq for every 1 ď 𝑝 ď `8. Precisely:

@ 𝑓 P 𝐿 𝑝pRq, Dp 𝑓𝑛q Ă 𝒮pRq : 𝑓𝑛
𝐿𝑝

ÝÑ 𝑓 .

Proof. (𝑝 “ 1) Let 𝑓 P 𝐿1pRq. The idea is to take 𝑓 ˚ 𝛿𝜀 , where p𝛿𝜀q is the Gaussian unit. To
check that 𝑓 ˚ 𝛿𝜀 P 𝒮pRq we need 𝑓 be zero outside an interval. This is not true in general, so we need to
approximate 𝑓 by functions zero outside an interval. We start from this task.
Define 𝑓𝑅 :“ 𝑓 1r´𝑅,𝑅s. Clearly 𝑓𝑅 P 𝐿1pRq. A straightforward application of dominated convergence
(exercise) shows that

} 𝑓 ´ 𝑓𝑅}1 “

∫
R

| 𝑓 p𝑥q ´ 𝑓𝑅p𝑥q| 𝑑𝑥 “

∫
R
𝑓 p𝑥q1r´𝑅,𝑅s𝑐 p𝑥q 𝑑𝑥, 𝑅 ÝÑ `8.
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Define now,

𝑓𝑅,𝜀p𝑥q :“ 𝑓𝑅 ˚ 𝛿𝜀p𝑥q “

∫
R
𝑓𝑅p𝑦q𝑒

´
p𝑥´𝑦q2

2𝜀2
𝑑𝑦

?
2𝜋𝜀2

“

∫ 𝑅

´𝑅

𝑓 p𝑦q𝑒
´

p𝑥´𝑦q2

2𝜀2
𝑑𝑦

?
2𝜋𝜀2

Let’s check that 𝑓𝑅,𝜀 P 𝒮pRq for every 𝜀 ą 0 (fixed). Notice that, deriving under integral sign (if allowed),
we would have

B𝑘𝑥 𝑓𝑅,𝜀p𝑥q “
1

?
2𝜋𝜀2

∫ 𝑅

´𝑅

𝑓 p𝑦qB𝑘𝑥𝑒
´

p𝑥´𝑦q2

2𝜀2 𝑑𝑦

We will verify in a moment that this passage is really allowed. Before, we notice that since B𝑘𝑡 𝑒
´ 𝑡2

2𝜀2 “

𝑝𝑘𝜀p𝑡q𝑒
´ 𝑡2

2𝜀2 , where 𝑝𝑙𝜀 is a certain 𝑘´th degree polynomial (it is irrelevant here the particular form of this).
Thus

B𝑘𝑥 𝑓𝑅,𝜀p𝑥q “
1

?
2𝜋𝜀2

∫ 𝑅

´𝑅

𝑓 p𝑦q𝑝𝑘𝜀p𝑥 ´ 𝑦q𝑒
´

p𝑥´𝑦q2

2𝜀2 𝑑𝑦.

Notice that since |𝑝𝑘𝜀p𝑡q𝑒´𝑡2{2𝜀2 | ď 𝐶𝑘𝜀 for every 𝑡 P R, we have a bound
ˇ

ˇ

ˇ

ˇ

𝑓 p𝑦q𝑝𝑘𝜀p𝑥 ´ 𝑦q𝑒
´

p𝑥´𝑦q2

2𝜀2

ˇ

ˇ

ˇ

ˇ

ď 𝐶𝑘𝜀| 𝑓 p𝑦q| “: 𝑔p𝑦q P 𝐿1pr´𝑅, 𝑅sq,

thus differentiation under integral sign is justified. We now prove the decay at 8: we have to prove that
(11.3.1) lim

𝑥Ñ˘8
|𝑥|𝑁B𝑘𝑥 𝑓𝑅,𝜀p𝑥q “ 0.

If |𝑥| ą 𝑅, |𝑥 ´ 𝑦| ě |𝑥| ´ |𝑦| ě |𝑥| ´ 𝑅, thus

𝑒
´

p𝑥´𝑦q2

2𝜀2 ď 𝑒
´

p|𝑥|´𝑅q2

2𝜀2

while, being 𝑝𝑘𝜀p𝑡q ď 𝑎𝑘𝜀|𝑡|𝑘 ` 𝑏𝑘𝜀 (for suitable constants 𝑎𝑘𝜀 , 𝑏𝑘𝜀), we have that

|𝑝𝑘𝜀p𝑥 ´ 𝑦q| ď 𝑎𝑘𝜀|𝑥 ´ 𝑦|𝑘 ` 𝑏𝑘𝜀 ď 𝑎𝑘𝜀p|𝑥| ` 𝑅q𝑘 ` 𝑏𝑘𝜀 .

Therefore

|B𝑘𝑥 𝑓𝑅,𝜀p𝑥q| ď
1

?
2𝜋𝜀2

∫ 𝑅

´𝑅

𝑓 p𝑦q 𝑑𝑦
`

𝑎𝑘𝜀p|𝑥| ` 𝑅q𝑘 ` 𝑏𝑘𝜀
˘

𝑒
´

p|𝑥|´𝑅q2

2𝜀2 ď 𝑐𝑘𝜀} 𝑓 }1|𝑥|𝑘𝑒
´ 𝑥2

2𝜀2 ,

for a suitable constant 𝑐𝑘𝜀 . From this bound limit (11.3.1) easily follows.
Conclusion: we can now put together the two arguments. Fix 𝑛 P N, 𝑛 ě 1. Choose 𝑅𝑛 such that
} 𝑓 ´ 𝑓𝑅𝑛}1 ď 1

𝑛
. By key property (11.2.1) of approximate units, choose now 𝜀𝑛 such that } 𝑓𝑅𝑛 , 𝜀𝑛 ´ 𝑓𝑅𝑛}1 ď

1
𝑛

. Therefore

} 𝑓 ´ 𝑓𝑅𝑛 , 𝜀𝑛}1 ď
2

𝑛
,

hence 𝑓𝑅𝑛 , 𝜀𝑛
𝐿1

ÝÑ 𝑓 . According to what shows above, p 𝑓𝑅𝑛 , 𝜀𝑛q Ă 𝒮pRq, and the proof is complete.

11.4. Exercises

Exercise 11.4.1 (˚). Compute the convolutions 1r´1,1s ˚ 1r´1,1s and 1r0,1s ˚ 1r0,1s.

Exercise 11.4.2 (˚). Check that the convolution integral of 𝑥1r0,`8r and 𝑥21r0,`8r is well defined. What
goes wrong with Young’s theorem?
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Exercise 11.4.3 (˚). Let 𝑓 , 𝑔 P 𝐿1pRq be even functions, that is 𝑓 p´𝑥q “ 𝑓 p𝑥q and 𝑔p´𝑥q “ 𝑔p𝑥q a.e.
Check that 𝑓 ˚ 𝑔 is even.

Exercise 11.4.4 (˚). Prove the Proposition 11.1.4.

Exercise 11.4.5 (˚˚). Let 𝑓 , 𝑔 P 𝐿2pRq. Check that 𝑓 ˚ 𝑔 is well defined and it belongs to 𝐿8pRq and
} 𝑓 ˚ 𝑔}8 ď } 𝑓 }2}𝑔}2. Extend this to the case 𝑓 P 𝐿 𝑝 and 𝑔 P 𝐿𝑞 with 1 ă 𝑝, 𝑞 ă `8 such that
1
𝑝

` 1
𝑞

“ 1.

Exercise 11.4.6 (˚˚˚). Goal: prove Young inequality.
i) prove the case 𝑓 P 𝐿1 and 𝑔 P 𝐿8.

ii) Prove the case 𝑓 P 𝐿1 and 𝑔 P 𝐿2 by using the following trick:

| 𝑓 p𝑦q𝑔p𝑥 ´ 𝑦q| “ | 𝑓 p𝑦q|1{2| 𝑓 p𝑦q|1{2|𝑔p𝑥 ´ 𝑦q|,

then use Cauchy-Schwarz inequality.
iii) Extend trick shown at point ii) to prove the case 𝑓 P 𝐿1 and 𝑔 P 𝐿 𝑝 (1 ă 𝑝 ă `8).

Exercise 11.4.7 (˚˚˚). Let 𝛿p𝑥q “ 1
21r´1,1sp𝑥q and 𝑓 P 𝐿1pRq. Prove that 𝑓 ˚ 𝛿𝜀 P 𝒞pRq for every

𝜀 ą 0.

Exercise 11.4.8 (˚˚). Let 𝑓 , 𝑔 P 𝐿1pRq, 𝑓 ” 𝑔 ” 0 off r´𝑅, 𝑅s. Is 𝑓 ˚ 𝑔 ” 0 off a suitable interval?

Exercise 11.4.9 (˚˚`). Let 𝑓 P 𝐿1pRq and 𝑔 P 𝒞
1pRq with 𝑔1 P 𝐿1pRq. Check that 𝑓 ˚ 𝑔 is differentiable

and
p 𝑓 ˚ 𝑔q1 “ 𝑓 ˚ 𝑔1.

Deduce the bound }p 𝑓 ˚ 𝑔q1}1 ď } 𝑓 }1}𝑔1}1.



LECTURE 12

Completeness

Discussing convergence in a normed space might be complicate, particularly when the space in
infinite dimensional. Often, the sequence is not explicitly given but is defined as the solution of a certain
equation. A question arises: is it possible to establish convergence of a sequence without explicitly
determining its limit? This is the focus of this Lecture.

12.1. Cauchy property

The Cauchy property is an intrinsic property fulfilled by any convergent sequence:

Proposition 12.1.1

Let p𝑉, } ¨ }q be a normed space. If p 𝑓𝑛q Ă 𝑉 is a convergent sequence to some 𝑓 P 𝑉 , then fulfills
the Cauchy property:

@𝜀 ą 0, D𝑁 : } 𝑓𝑛 ´ 𝑓𝑚} ď 𝜀, @𝑛 ě 𝑁.

Proof. If } 𝑓𝑛 ´ 𝑓 } ÝÑ 0, according to the definition of limit,
@𝜀 ą 0, D𝑁 P N, : } 𝑓𝑛 ´ 𝑓 } ď 𝜀, @𝑛 ě 𝑁.

Then,
} 𝑓𝑛 ´ 𝑓𝑚} ď } 𝑓𝑛 ´ 𝑓 } ` } 𝑓 ´ 𝑓𝑚} ď 2𝜀, @𝑛, 𝑚 ě 𝑁.

Unfortunately, this condition is not always sufficient to ensure convergence.

Example 12.1.2: p˚˚q

Let 𝑉 :“ 𝒞pr´1, 1sq equipped with } ¨ }1 norm. Define

𝑓𝑛p𝑥q “

$

&

%

´1, ´1 ď 𝑥 ď ´ 1
𝑛
,

𝑛𝑥, ´ 1
𝑛

ď 𝑥 ď 1
𝑛
,

1, 1
𝑛

ď 𝑥 ď 1.

-1 1-1/n 1/n

-1

1

79
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Then p 𝑓𝑛qis a Cauchy sequence not convergent in 𝑉 respect to } ¨ }1.

Proof. Cauchy property: just notice that, if 𝑚 ą 𝑛, } 𝑓𝑛 ´ 𝑓𝑚}1 ď 1
2
2
𝑛
1
2 “ 1

2𝑛 ď 𝜀 provided
𝑚, 𝑛 ě 𝑁 “

“

1
𝜀

‰

` 1. Let’s prove now that p 𝑓𝑛q cannot be convergent in 𝑉 . First notice that if we look at

p 𝑓𝑛q Ă 𝐿1pr´1, 1sq. then easily 𝑓𝑛
}¨}1
ÝÑ ´1r´1,0s`1r0,1s (indeed: } 𝑓𝑛´p´1r´1,0s`1r0,1sq}1 ď 1

2𝑛 ÝÑ 0).
However, ´1r´1,0s ` 1r0,1s R 𝒞pr´1, 1sq thus we cannot conclude that p 𝑓𝑛q converges in 𝑉 . Actually, we

may use this fact to just prove the opposite. Indeed: assume that 𝑓𝑛
}¨}1
ÝÑ 𝑔 for some 𝑔 P 𝒞pr´1, 1sq. Since

𝒞pr0, 1sq ãÑ 𝐿1pr0, 1sq, we have at once

𝑓𝑛
𝐿1

ÝÑ 𝑔, ^ 𝑓𝑛
𝐿1

ÝÑ ´1r´1,0s ` 1r0,1s, ùñ 𝑔 “ ´1r´1,0s ` 1r0,1s, a.e..
We claim that 𝑔 “ ´1r´1,0s ` 1r0,1s on r´1, 1szt0u. Indeed: take 𝑥0 ă 0. If 𝑔p𝑥0q ‰ ´1 then, by
continuity of 𝑔, 𝑔p𝑥q ‰ ´1 in a neighborhood 𝐼𝑥0 of 𝑥0. But then there would be a positive measure set
𝐼𝑥0 on which 𝑔 ‰ ´1r´1,0s ` 1r0,1s contradicting 𝑔 “ ´1r´1,0s ` 1r0,1s a.e.. Similarly, 𝑔p𝑥q ” 1 on s0, 1s,
so 𝑔 “ ´1r´1,0s ` 1r0,1s on r´1, 1szt0u. But then 𝑔 cannot e continuous at 𝑥 “ 0, and this contradict
𝑔 P 𝒞pr´1, 1sq.

This example is quite ”pathological”. Indeed, } ¨ }1 is not the natural norm for the set of continuous
functions 𝒞pr0, 1sq just because convergence in ”mean” is too weak to ensure continuity to the limit.

12.2. Banach spaces

Fortunately, in most important normed spaces Cauchy sequences are convergent. This deserve a
special

Definition 12.2.1

A normed space p𝑉, } ¨ }q is called Banach space (or complete space) if every Cauchy sequence
p 𝑓𝑛q Ă 𝑉 is convergent.

We will now illustrate this Definition on the most important cases we considered in this course. We start
with finite dimensional spaces. The following fact is know from Mathematical Analysis:

Theorem 12.2.2

pR, | ¨ |q, pC, | ¨ |q, pR𝑑 , } ¨ }q (any norm), pC𝑑 , } ¨ }q (any norm) are Banach spaces.

We do not prove this theorem, but we will use in the next results with focus on infinite dimensional spaces.
We start with the simplest case,

Proposition 12.2.3

p𝐵p𝑋q, } ¨ }8q is a Banach space.
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Proof. Let p 𝑓𝑛q Ă 𝐵p𝑋q be a Cauchy sequence:
@𝜀 ą 0, D𝑁 : } 𝑓𝑛 ´ 𝑓𝑚}8 “ sup

𝑥P𝑋

| 𝑓𝑛p𝑥q ´ 𝑓𝑚p𝑥q| ď 𝜀, @𝑛, 𝑚 ě 𝑁,

or, equivalently,
(12.2.1) @𝜀 ą 0, D𝑁 : | 𝑓𝑛p𝑥q ´ 𝑓𝑚p𝑥q| ď 𝜀, @𝑛, 𝑚 ě 𝑁, @𝑥 P 𝑋.

Thus, in particular, p 𝑓𝑛p𝑥qq Ă R is a Cauchy sequence in R, and being this last complete,
D 𝑓 p𝑥q :“ lim

𝑛
𝑓𝑛p𝑥q, @𝑥 P 𝑋.

This defines a function. We prove that 𝑓 P 𝐵p𝑋q and 𝑓𝑛
}¨}8
ÝÑ 𝑓 . About the first notice just that

| 𝑓 p𝑥q| ď | 𝑓 p𝑥q ´ 𝑓𝑁 p𝑥q| ` | 𝑓𝑁 p𝑥q| ď 𝜀 ` } 𝑓𝑁 }8, @𝑥 P 𝑋, ùñ } 𝑓 }8 ď 𝜀 ` } 𝑓𝑁 }8,

that is 𝑓 P 𝐵p𝑋q. Finally, letting 𝑚 ÝÑ `8 in (12.2.1)we have
| 𝑓𝑛p𝑥q ´ 𝑓 p𝑥q| ď 𝜀, @𝑛 ě 𝑁, @𝑥 P 𝑋, ùñ } 𝑓𝑛 ´ 𝑓 }8 “ sup

𝑥P𝑋

| 𝑓𝑛p𝑥q ´ 𝑓 p𝑥q| ď 𝜀, @𝑛 ě 𝑁

that means } 𝑓𝑛 ´ 𝑓 }8 ÝÑ 0.

A particular case of space of bounded functions is 𝒞p𝐾q where 𝐾 is compact in R𝑑 .

Proposition 12.2.4

p𝒞p𝐾q, } ¨ }8q with 𝐾 Ă R𝑑 compact, is a Banach space.

Proof. We know that 𝒞p𝐾q Ă 𝐵p𝐾q. Therefore, if p 𝑓𝑛q Ă 𝒞p𝐾q Ă 𝐵p𝐾q is a Cauchy sequence,
according to previous Theorem, 𝑓𝑛

}¨}8
ÝÑ 𝑓 P 𝐵p𝐾q. It remains to prove that 𝑓 P 𝒞p𝐾q, that is 𝑓 is

continuous on 𝐾 ,
lim
𝑥Ñ𝑥0

𝑓 p𝑥q “ 𝑓 p𝑥0q, @𝑥0 P 𝐾.

Let fix 𝑥0 P 𝐾 . We have
| 𝑓 p𝑥q ´ 𝑓 p𝑥0q| ď | 𝑓 p𝑥q ´ 𝑓𝑛p𝑥q| ` | 𝑓𝑛p𝑥q ´ 𝑓𝑛p𝑥0q| ` | 𝑓𝑛p𝑥0q ´ 𝑓 p𝑥0q|

ď 2} 𝑓𝑛 ´ 𝑓 }8 ` | 𝑓𝑛p𝑥q ´ 𝑓𝑛p𝑥0q|.

Now, since } 𝑓𝑛 ´ 𝑓 }8 ÝÑ 0, for 𝜀 ą 0 we find 𝑁 such that } 𝑓𝑁 ´ 𝑓 }8 ď 𝜀. Thus
| 𝑓 p𝑥q ´ 𝑓 p𝑥0q| ď 2𝜀 ` | 𝑓𝑁 p𝑥q ´ 𝑓𝑁 p𝑥0q|,

and since 𝑓𝑁 P 𝒞p𝐾q,
lim
𝑥Ñ𝑥0

| 𝑓 p𝑥q ´ 𝑓 p𝑥0q| ď 𝜀 ` lim
𝑥Ñ𝑥0

| 𝑓𝑁 p𝑥q ´ 𝑓𝑁 p𝑥0q| “ 𝜀,

and since 𝜀 is arbitrary, we conclude that lim𝑥Ñ𝑥0 | 𝑓 p𝑥q ´ 𝑓 p𝑥0q| “ 0.

This last result enlighten a general fact.
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Proposition 12.2.5

Let p𝑉, } ¨ }q be a Banach space and𝑊 Ă 𝑉 a subspace of 𝑉 . Suppose that𝑊 is closed, that is:

(12.2.2) @p 𝑓𝑛q Ă 𝑊, : 𝑓𝑛
}¨}

ÝÑ 𝑓 , ùñ 𝑓 P 𝑊.

Then p𝑊, } ¨ }q is a Banach space.

Proof. Let p 𝑓𝑛q Ă 𝑊 Ă 𝑉 be a Cauchy sequence. Since p𝑉, } ¨ }q is a Banach space, 𝑓𝑛
}¨}

ÝÑ 𝑓 and,
by (12.2.2), 𝑓 P 𝑊 . Thus p 𝑓𝑛q converges in p𝑊, } ¨ }q.

Also 𝐿 𝑝 spaces are important examples Banach spaces.

Theorem 12.2.6

Let p𝑋,ℱ, 𝜇q be a measure space. Then, p𝐿 𝑝p𝑋q, }¨}𝑝q is a Banach space (for every 1 ď 𝑝 ď `8).

Proof. (sketch, 𝑝 “ 1) Let p 𝑓𝑛q Ă 𝐿1p𝑋q be a Cauchy sequence, that is
@𝜀 ą 0, D𝑁 : } 𝑓𝑛 ´ 𝑓𝑚}1 ď 𝜀, @𝑛, 𝑚 ě 𝑁.

We know that even if p 𝑓𝑛q were convergent in 𝐿1, it would not necessarily converge pointwise. Nonetheless,
we need to identify a candidate limit 𝑓 . To do this, we will now extract a subsequence from p 𝑓𝑛q that
converges pointwise. We proceed in the following way:

‚ for 𝜀 “ 1, let 𝑛0 :“ 𝑁p1q;
‚ for 𝜀 “ 1

2 , let 𝑛1 ą maxp𝑛0, 𝑁p1{2qq ě 𝑛0 “ 𝑁p1q. In this way } 𝑓𝑛1 ´ 𝑓𝑛0}1 ď 1.
‚ for 𝜀 “ 1

22
, let 𝑛2 ą maxp𝑛1, 𝑁p1{22qq ě 𝑛1 “ 𝑁p1{2q. In this way } 𝑓𝑛2 ´ 𝑓𝑛1}1 ď 1

2 .
‚ in general, for 𝜀 “ 1

2𝑘
, let 𝑛𝑘 ą maxp𝑛𝑘´1, 𝑁p1{2𝑘qq ě 𝑛𝑘´1 “ 𝑁p1{2𝑘´1q. In this way

} 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
}1 ď

1

2𝑘´1
.

We claim that p 𝑓𝑛𝑘 q converges a.e.. Indeed, by monotone convergence for series∫
𝑋

ÿ

𝑘

| 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
| 𝑑𝜇 “

ÿ

𝑘

∫
𝑋

| 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
| 𝑑𝜇 “

ÿ

𝑘

} 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
}1 ď

ÿ

𝑘

1

2𝑘´1
“ 2.

In particular, 𝜇
`
ř

𝑘 | 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
| “ `8

˘

“ 0 (Chebyshev inequality), so
ř

𝑘 | 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
| ă `8 a.e.

This says that the series
ř

𝑘p 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
q is absolutely convergent, hence convergent, and since its partial

sums are

𝑠 𝑗 :“

𝑗
ÿ

𝑘“1

p 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
q “ 𝑓𝑛 𝑗 ´ 𝑓𝑛0 ,

it means that p 𝑓𝑛 𝑗 q must be convergent. We finally have a point-wise limit
𝑓 :“ lim

𝑗
𝑓𝑛 𝑗 .

Being this the pointwise limit of measurable functions, it is itself measurable.
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. We now claim that 𝑓𝑛
𝐿1

ÝÑ 𝑓 . We begin showing that 𝑓𝑛 𝑗
𝐿1

ÝÑ 𝑓 . Recalling that

𝑓 “ lim
𝑗
𝑓𝑛 𝑗 “ 𝑓𝑛0 ` lim

𝑗

𝑗
ÿ

𝑘“1

p 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
q “ 𝑓𝑛0 `

8
ÿ

𝑘“1

p 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
q,

we have

𝑓 ´ 𝑓𝑛 𝑗 “

8
ÿ

𝑘“ 𝑗`1

p 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
q,

so

} 𝑓 ´ 𝑓𝑛 𝑗 }1 “

›

›

›

›

›

8
ÿ

𝑘“ 𝑗`1

p 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
q

›

›

›

›

›

1

ď

8
ÿ

𝑘“ 𝑗`1

} 𝑓𝑛𝑘 ´ 𝑓𝑛𝑘´1
}1 ď

8
ÿ

𝑘“ 𝑗`1

1

2𝑘´1
ď

1

2 𝑗
ÝÑ 0,

from which 𝑓𝑛 𝑗
𝐿1

ÝÑ 𝑓 . Finally, since
} 𝑓 ´ 𝑓𝑛}1 ď } 𝑓 ´ 𝑓𝑛 𝑗 }1 ` } 𝑓𝑛 𝑗 ´ 𝑓𝑛}1,

by choosing 𝑛, 𝑛 𝑗 large enough in such a way } 𝑓´ 𝑓𝑛 𝑗 }1 ď 𝜀 (by the previous conclusion) and } 𝑓𝑛 𝑗´ 𝑓𝑛}1 ď 𝜀

(by the Cauchy property), we get the conclusion.

12.3. Banach fixed point Theorem

A way used in many models to define a sequence is through a recurrence equation like

(12.3.1)

$

&

%

𝑓𝑛`1 “ 𝑇r 𝑓𝑛s,

𝑓0 P 𝑉.

Here we assume that p𝑉, } ¨ }q be an underlying vector space, 𝑓0 P 𝑉 is known (first element of the
sequence) and 𝑇 : 𝑉 ÝÑ 𝑉 is just a map (function) from 𝑉 to itself. Since 𝑇 is a function on a normed
space, a natural definition of continuity makes sense: 𝑇 is continuous if

𝑓𝑛
}¨}

ÝÑ 𝑓 , ùñ 𝑇r 𝑓𝑛s
}¨}

ÝÑ 𝑇r 𝑓 s.

Now, if 𝑓𝑛
}¨}

ÝÑ 𝑓 and 𝑇 is assumed continuous, then

𝑓 ÐÝ 𝑓𝑛`1 “ 𝑇r 𝑓𝑛s ÝÑ 𝑇r 𝑓 s, ùñ 𝑓 “ 𝑇r 𝑓 s.

The possible limit is what is called a fixed point of the map 𝑇 . Of course, this argument does not show in
any way that a limit exists. The Banach’s fixed point theorem provides an important sufficient condition
to ensure existence of the limit for a recurrence sequence.

Theorem 12.3.1: (Banach)

Let p𝑉, } ¨ }q be a Banach space. Assume 𝑇 : 𝑉 ÝÑ 𝑉 be a contraction, that is
(12.3.2) D𝐿 ă 1, : }𝑇r 𝑓 s ´ 𝑇r𝑔s} ď 𝐿} 𝑓 ´ 𝑔}, @ 𝑓 , 𝑔 P 𝑉.
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Then, for every 𝑓0 P 𝑉 , the sequence p 𝑓𝑛q recursively defined by (12.3.1) converges to the unique
fixed point 𝑓 P 𝑉 of 𝑇 . The following bound holds:

(12.3.3) } 𝑓𝑛 ´ 𝑓 } ď
𝐿𝑛

1 ´ 𝐿
} 𝑓1 ´ 𝑓0}.

Proof. Existence. We prove that p 𝑓𝑛q is a Cauchy sequence. Notice first that
} 𝑓𝑛`1 ´ 𝑓𝑛} “ }𝑇r 𝑓𝑛s ´ 𝑇r 𝑓𝑛´1s} ď 𝐿} 𝑓𝑛 ´ 𝑓𝑛´1} ď 𝐿2} 𝑓𝑛´1 ´ 𝑓𝑛´2} ď . . . ď 𝐿𝑛} 𝑓1 ´ 𝑓0}.

Thus, if 𝑚 ą 𝑛,

} 𝑓𝑚 ´ 𝑓𝑛} ď

𝑚´1
ÿ

𝑘“𝑛

} 𝑓𝑘`1 ´ 𝑓𝑘} ď

𝑚´1
ÿ

𝑘“𝑛

𝐿𝑘} 𝑓1 ´ 𝑓0} ď 𝐿𝑛
8
ÿ

𝑘“0

𝐿𝑘} 𝑓1 ´ 𝑓0} “
𝐿𝑛

1 ´ 𝐿
} 𝑓1 ´ 𝑓0}.

Since 𝐿 ă 1, 𝐿𝑛 ÝÑ 0 and by this it follows that p 𝑓𝑛q is a Cauchy sequence. Being 𝑉 a Banach space,
𝑓𝑛

}¨}
ÝÑ 𝑓 for some 𝑓 P 𝑉 . To conclude existence, just notice that since 𝑇 is a contraction, it is also

continuous, then
𝑓 ÐÝ 𝑓𝑛`1 “ 𝑇r 𝑓𝑛s ÝÑ 𝑇r 𝑓 s, ùñ 𝑓 “ 𝑇r 𝑓 s.

This proves, at once, that p 𝑓𝑛q converges and that 𝑇 has (at least) a fixed point.
Uniqueness: we show that 𝑇 can has at most a fixed point. If 𝑔 “ 𝑇r𝑔s then 𝑓 ´ 𝑔 “ 𝑇r 𝑓 s ´ 𝑇r𝑔s, thus
} 𝑓 ´ 𝑔} “ }𝑇r 𝑓 s ´ 𝑇r𝑔s} ď 𝐿} 𝑓 ´ 𝑔} or p1 ´ 𝐿q} 𝑓 ´ 𝑔} ď 0. But since 𝐿 ă 1 this is possible only if
} 𝑓 ´ 𝑔} “ 0 that is 𝑓 “ 𝑔.

Banach’s fixed point theorem can also be interpreted as an existence and uniqueness result for the solution
of a fixed point equation

𝑓 “ 𝑇r 𝑓 s.

Under the assumptions of the theorem, the solution is unique. Furthermore, it can be determined as
limit of a sequence p 𝑓𝑛q, recursively defined ( 𝑓𝑛`1 “ 𝑇r 𝑓𝑛s) and with arbitrary initial point 𝑓0. In this
direction, a useful extension of the theorem is provided by the following

Corollary 12.3.2

Let p𝑉, } ¨ }q be a Banach space. Assume 𝑇 : 𝑉 ÝÑ 𝑉 be such that some iterated 𝑇𝑁 “ 𝑇 ˝ ¨ ¨ ¨ ˝𝑇

of 𝑇 is a contraction on 𝑉 . Then 𝑇 has a unique fixed point 𝑓 P 𝑉 .

Proof. By Banach thm, 𝑇𝑁 has a unique fixed point 𝑓 , that is 𝑇𝑁 r 𝑓 s “ 𝑓 . We claim that 𝑓 is also
the unique fixed point of 𝑇 . First, it is a fixed point for 𝑇 : indeed,

𝑇r 𝑓 s “ 𝑇r𝑇𝑁 r 𝑓 ss “ 𝑇𝑁`1r 𝑓 s “ 𝑇𝑁 r𝑇r 𝑓 ss,

that is 𝑇r 𝑓 s is also a fixed point for 𝑇𝑁 , but since this has a unique fixed point 𝑓 it must be 𝑇r 𝑓 s “ 𝑓 .
Second, 𝑓 is unique. If 𝑇r𝑔s “ 𝑔 then 𝑇2r𝑔s “ 𝑇r𝑔s “ 𝑔 and, in general, 𝑇𝑁 r𝑔s “ 𝑔, thus 𝑔 is a fixed
point for 𝑇𝑁 , so 𝑔 “ 𝑓 by uniqueness.
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An important application of fixed point equations is to theCauchy problem for differential equations. We
consider the problem

(12.3.4)

$

&

%

𝑦1p𝑡q “ 𝑓 p𝑡, 𝑦p𝑡qq,

𝑦p𝑡0q “ 𝑦0.

We assume, for the moment, minimal requirements as 𝑓 : 𝐷 Ă Rˆ R ÝÑ R and 𝑓 P 𝒞p𝐷q. A striking
remark is that, by integrating side by side the equation on r𝑡0, 𝑡s we get

𝑦p𝑡q ´ 𝑦p𝑡0q “

∫ 𝑡
𝑡0

𝑦1p𝑠q 𝑑𝑠 “

∫ 𝑡
𝑡0

𝑓 p𝑠, 𝑦p𝑠qq 𝑑𝑠,

that is, because of the initial condition, 𝑦 solves

(12.3.5) 𝑦p𝑡q “ 𝑦0 `

∫ 𝑡
𝑡0

𝑓 p𝑠, 𝑦p𝑠qq 𝑑𝑠.

Thus, if 𝑦 is a solution of Cauchy problem (12.3.4), then 𝑦 is a solution of the integral equation (12.3.5).
Vice versa, assume that 𝑦 P 𝒞 solves the integral equation (12.3.5) then 𝑦 solves also the Cauchy
problem (12.3.4). Indeed, clearly by (12.3.5) we have 𝑦p𝑡0q “ 𝑦0, thus the passage condition is verified.
What is not immediately evident is that 𝑦 is differentiable and solves the differential equation. By integral
equation (12.3.5) we notice that 𝑦 is a constant plus the integral function of a continuous function (namely,
𝑓 p𝑠, 𝑦p𝑠qq). According to the fundamental theorem of integral calculus, this last is differentiable and the
derivative is just 𝑓 p𝑡, 𝑦p𝑡qq. Thus

D𝑦1p𝑡q “ 0 ` 𝑓 p𝑡, 𝑦p𝑡qq “ 𝑓 p𝑡, 𝑦p𝑡qq,

and this means that 𝑦 solves the differential equation.
The conclusion is that solving the Cauchy problem (12.3.4) or the integral equation (12.3.5) is

equivalent. Introducing the operator

𝑇 : 𝒞 ÝÑ 𝒞, 𝑇r𝑦sp𝑡q :“ 𝑦0 `

∫ 𝑡
𝑡0

𝑓 p𝑠, 𝑦p𝑠qq 𝑑𝑠,

we are led to show that
D𝑦 P 𝒞 : 𝑦 “ 𝑇r𝑦s.

In this way we see that the sought solution 𝑦 is a fixed point of the operator 𝑇 .

Theorem 12.3.3: (global Cauchy–Lipschitz existence and uniqueness)

Assume 𝑓 : 𝐷 “ r𝑎, 𝑏s ˆ R𝑑 ÝÑ R𝑑 be such that
i) 𝑓 P 𝒞pr𝑎, 𝑏s ˆ Rq;

ii) 𝑓 is Lipschitz continuous in 𝑦 uniformly in 𝑡, that is,
| 𝑓 p𝑡, 𝑦1q ´ 𝑓 p𝑡, 𝑦2q| ď 𝐶|𝑦1 ´ 𝑦2|, @𝑡 P r𝑎, 𝑏s, 𝑦1, 𝑦2 P R.

Then, for every passage condition p𝑡0, 𝑦0q P r𝑎, 𝑏s ˆ R, there exists a unique 𝑦 P 𝒞
1pr𝑎, 𝑏sq

solution of the Cauchy problem (12.3.4).
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Proof. Let 𝑉 :“ 𝒞pr𝑎, 𝑏sq equipped with usual } ¨ }8 norm that makes 𝑉 a Banach space. We apply
Corollary 12.3 to

𝑇r𝑦s :“ 𝑦0 `

∫ 𝑡
𝑡0

𝑓 p𝑠, 𝑦p𝑠qq 𝑑𝑠,

showing that some iterated of 𝑇 is a contraction. Let’s start by 𝑇 itself noticing that

𝑇r𝑦sp𝑡q ´ 𝑇rr𝑦sp𝑡q “

∫ 𝑡
𝑡0

p 𝑓 p𝑠, 𝑦p𝑠qq ´ 𝑓 p𝑠, r𝑦p𝑠qqq 𝑑𝑠,

hence

(12.3.6) |𝑇r𝑦sp𝑡q ´ 𝑇rr𝑦sp𝑡q| ď

ˇ

ˇ

ˇ

ˇ

∫ 𝑡
𝑡0

| 𝑓 p𝑠, 𝑦p𝑠qq ´ 𝑓 p𝑠, r𝑦p𝑠qq| 𝑑𝑠

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

∫ 𝑡
𝑡0

𝐶|𝑦p𝑠q ´ r𝑦p𝑠q| 𝑑𝑠

ˇ

ˇ

ˇ

ˇ

.

From this we have
|𝑇r𝑦sp𝑡q ´ 𝑇rr𝑦sp𝑡q| ď 𝐶}𝑦 ´ r𝑦}8p𝑡 ´ 𝑡0q ď 𝐶p𝑏 ´ 𝑎q}𝑦 ´ r𝑦}8,

and taking max𝑡 we have finally
}𝑇r𝑦s ´ 𝑇rr𝑦s}8 ď 𝐶p𝑏 ´ 𝑎q}𝑦 ´ r𝑦}8, @𝑦, r𝑦 P 𝑉.

Thus, if 𝐶p𝑏 ´ 𝑎q ă 1, 𝑇 is a contraction on 𝑉 . The conclusion would follows now by Banach theorem.
This would prove existence and uniqueness in the case when r𝑎, 𝑏s is short enough, that is 𝑏 ´ 𝑎 ă 1

𝐶
. If

this is not true we continue with the argument and we pass to 𝑇2:

|𝑇2r𝑦sp𝑡q ´ 𝑇2rr𝑦sp𝑡q| “ |𝑇 r𝑇r𝑦ss p𝑡q ´ 𝑇 r𝑇rr𝑦ss p𝑡q|
p12.3.6q

ď
∫ 𝑡
𝑡0
𝐶|𝑇r 𝑓 sp𝑠q ´ 𝑇r𝑔sp𝑠q| 𝑑𝑠

p12.3.6q

ď 𝐶2
∫ 𝑡
𝑡0

∫ 𝑠
𝑡0

|𝑦p𝑟q ´ r𝑦p𝑟q| 𝑑𝑟 𝑑𝑠.

Iteraring this arugment, we get
ˇ

ˇ𝑇𝑁 r𝑦sp𝑡q ´ 𝑇𝑁 rr𝑦sp𝑡q
ˇ

ˇ ď 𝐶𝑁
∫ 𝑡
𝑡0

∫ 𝑠1
𝑡0

∫ 𝑠2
𝑡0

¨ ¨ ¨
∫ 𝑠𝑁´1

𝑡0
|𝑦p𝑠𝑁 q ´ r𝑦p𝑠𝑁 q| 𝑑𝑠𝑁 𝑑𝑠𝑁´1 ¨ ¨ ¨ 𝑑𝑠1

ď 𝐶𝑁 }𝑦 ´ r𝑦}8
p𝑡´𝑡0q𝑁

𝑁 ! .

from which
}𝑇𝑁 r𝑦s ´ 𝑇𝑁 rr𝑦s}8 ď

p𝐶p𝑏 ´ 𝑎qq𝑁

𝑁!
}𝑦 ´ r𝑦}8.

Now, since p𝐶p𝑏´𝑎qq𝑁

𝑁 ! ÝÑ 0when 𝑁 Ñ `8, choosing 𝑁 large enough, we can make 𝐿 :“
p𝐶p𝑏´𝑎qq𝑁

𝑁 ! ă 1,
so 𝑇𝑁 is a contraction and Corollary 12.3 applies.

12.4. Exercises

Exercise 12.4.1 (˚˚). Let 𝛼 ą 0 be fixed and define

𝑉𝛼 :“

"

𝑓 P 𝒞pr0,`8rq : } 𝑓 } :“ sup
𝑥ě0

𝑒𝛼𝑥| 𝑓 p𝑥q| ă `8

*

.

i) Check that 𝑉𝛼 is a vector space and } ¨ } is a well defined norm on 𝑉𝛼.
ii) Is 𝑉𝛼 a Banach space?
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Exercise 12.4.2 (˚˚). Let

𝑉 :“

#

𝑓 P 𝒞pr0, 1sq : } 𝑓 } :“ sup
𝑡Ps0,1s

| 𝑓 p𝑡q|

𝑡
ă `8

+

.

i) Check that } ¨ } is a well defined norm on 𝑉 .
ii) Let 𝑓𝑛 be defined as

𝑓𝑛p𝑡q :“

$

&

%

𝑛𝑡, 0 ď 𝑡 ď 1
𝑛2
,

?
𝑡, 1

𝑛2
ď 𝑡 ď 1.

Is p 𝑓𝑛q Ă 𝑉? If yes, is 𝑓𝑛
}¨}

ÝÑ 𝑓 for some 𝑓 P 𝑉?
ii) On 𝑉 is also defined the } ¨ }8 norm. Show that } ¨ } is stronger than } ¨ }8. Are the two also

equivalent? (prove or disprove)
iv) Is 𝑉 a Banach space under } ¨ }.

Exercise 12.4.3 (˚˚`). Let p𝑋,ℱ, 𝜇q be a measure space. Prove that 𝐿8p𝑋q is a Banach space. (hint:
argue as in the proof of completeness of 𝐵p𝑋q).

Exercise 12.4.4 (˚˚). Let 𝑉 :“ 𝒞
8pr0, 1sq equipped with } ¨ }8 norm. Consider the map 𝑇 : 𝑉 ÝÑ 𝑉 ,

defined by 𝑇r 𝑓 s :“ 𝑓 1. Is this map continuous on p𝑉, } ¨ }8q? Provide a proof, if true, a counterexample,
if false.

Exercise 12.4.5 (˚˚`). Let 𝑉 :“ 𝒞
1pr𝑎, 𝑏sq equipped with norm } 𝑓 } :“ } 𝑓 }8 ` } 𝑓 1}8. Prove that

p𝑉, } ¨ }q is a Banach space. (hint: take p 𝑓𝑛q Ă 𝑉 Cauchy sequence, check that both p 𝑓𝑛q and p 𝑓 1
𝑛q are

uniformly convergent, then use the fundamental theorem of integral calculus 𝑓𝑛p𝑥q “ 𝑓𝑛p𝑎q`
∫ 𝑥
𝑎
𝑓 1
𝑛p𝑦q 𝑑𝑦

and pass to the limit . . . )

Exercise 12.4.6 (˚˚`). Let p𝑉, } ¨ }q be a normed space. Show that 𝑉 is a Banach space if and only if
the following property holds:

@p𝑢𝑛q Ă 𝑆 :“ t 𝑓 P 𝑉 : } 𝑓 } “ 1u, p𝑢𝑛q Cauchy sequence ùñ 𝑢𝑛
}¨}

ÝÑ 𝑢 P 𝑆.

Exercise 12.4.7 (˚˚). Let p𝑉, } ¨ }q be a Banach space. Let p 𝑓𝑛q Ă 𝑉 . We say that the series
ř

𝑛 𝑓𝑛 is
convergent if

D lim
𝑛Ñ`8

𝑛
ÿ

𝑘“1

𝑓𝑘 .

Show that if
ř

𝑘 } 𝑓𝑘} converges (in R), then also
ř

𝑘 𝑓𝑘 converges (in 𝑉).

Exercise 12.4.8 (˚). Determine the Banach’s theorem recursive sequence p 𝑓𝑛q obtained to solve the
Cauchy problem 𝑦1p𝑡q “ 𝑡𝑦p𝑡q with initial condition 𝑦p0q “ 1. (hint: take 𝑓0 “ 0). What is the
conclusion?

Exercise 12.4.9 (˚˚`). The following integral equation for 𝑓 : r´𝑎, 𝑎s ÝÑ R arises in a model for the
motion of gas particles on a line:

𝑓 p𝑥q “ 1 `
1

𝜋

∫ 𝑎

´𝑎

1

1 ` p𝑥 ´ 𝑦q2
𝑓 p𝑦q 𝑑𝑦, for ´ 𝑎 ď 𝑥 ď 𝑎.

For any fixed 𝑎 ą 0, show that this equation has a unique, bounded and continuous solution.
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Hilbert Spaces

Hilbert spaces are particular Banach spaces in which the norm is induced by an inner product. The
inner product add an euclidean flavour to the structure of normed space through the idea that we can
define ”angles” between vector.

13.1. Scalar and Hermitian products

There are little (but significant) algebraic differencies on inner products when the field of scalars is
R or C. We start with the real case, a bit simpler:

Definition 13.1.1: (scalar product)

Let 𝑉 be a vector space on R. A function x¨, ¨y : 𝑉 ˆ𝑉 ÝÑ R is called (real) scalar product if
i) (positivity) x 𝑓 , 𝑓 y ě 0 for every 𝑓 P 𝑉 ;

ii) (vanishing) x 𝑓 , 𝑓 y “ 0 iff 𝑓 “ 0;
iii) (linearity) x𝛼 𝑓 ` 𝛽𝑔, ℎy “ 𝛼x 𝑓 , ℎy ` 𝛽x𝑔, ℎy, @ 𝑓 , 𝑔, ℎ P 𝑉 and @𝛼, 𝛽 P C;
iv) (symmetry) x 𝑓 , 𝑔y “ x𝑔, 𝑓 y, @ 𝑓 , 𝑔 P 𝑉 .

We notice that, combining linearity with symmetry, x¨, ¨y is linear also in the second argument:

xℎ, 𝛼 𝑓 ` 𝛽𝑔y
𝑖𝑣q
“ x𝛼 𝑓 ` 𝛽𝑔, ℎy

𝑖𝑖𝑖q
“ 𝛼x 𝑓 , ℎy ` 𝛽x𝑔, ℎy

𝑖𝑣q
“ 𝛼xℎ, 𝑓 y ` 𝛽xℎ, 𝑔y.

In other words, x¨, ¨y is a bilinear function of its arguments.

Example 13.1.2

On R𝑑 ,

p𝑥1, . . . , 𝑥𝑑q ¨ p𝑦1, . . . , 𝑦𝑑q “

𝑑
ÿ

𝑘“1

𝑥𝑘𝑦𝑘

is a scalar product.

Example 13.1.3

On 𝐿2p𝑋q,

x 𝑓 , 𝑔y2 :“

∫
𝑋

𝑓 𝑔 𝑑𝜇

89
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is a scalar product, with vanishing in the weaker form x 𝑓 , 𝑓 y2 “ 0 iff 𝑓 “ 0 a.e..

Proof. First notice that x 𝑓 , 𝑔y2 is well defined for 𝑓 , 𝑔 P 𝐿2p𝑋q. Indeed, according to CS inequality,∫
𝑋

| 𝑓 𝑔| 𝑑𝜇 “

∫
𝑋

| 𝑓 ||𝑔| 𝑑𝜇 ď } 𝑓 }2}𝑔}2 ă `8.

Positivity is evident. Vanishing:

x 𝑓 , 𝑓 y2 “ 0, ðñ

∫
𝑋

𝑓 2 𝑑𝜇 “ 0, ðñ 𝑓 2 “ 0, 𝑎.𝑒., ðñ 𝑓 “ 0, 𝑎.𝑒.

Linearity and simmetry are straightforward.

When 𝑉 is vector space on C, the previous definition leads to contradictions: indeed, according to
positivity, x𝑖 𝑓 , 𝑖 𝑓 y ě 0; however, by linearity x𝑖 𝑓 , 𝑖 𝑓 y “ 𝑖2x 𝑓 , 𝑓 y “ ´x 𝑓 , 𝑓 y ď 0, thus x 𝑓 , 𝑓 y “ 0 for
every 𝑓 P 𝑉 . This explains why we have to adjust the definition:

Definition 13.1.4: (hermitian product)

Let𝑉 be a vector space over the scalar field C. A function x¨, ¨y : 𝑉ˆ𝑉 ÝÑ C is called hermitian
product if positivity, vanishing, linearity holds true, and moreover x¨, ¨y is anti–symmetric:

x 𝑓 , 𝑔y “ x𝑔, 𝑓 y, @ 𝑓 , 𝑔 P 𝑉.

Easily x¨, ¨y is additive in second variable because

x 𝑓 , 𝑔1 ` 𝑔2y “ x𝑔1 ` 𝑔2, 𝑓 y
𝑙𝑖𝑛.
“ x𝑔1, 𝑓 y ` x𝑔2, 𝑓 y “ x 𝑓 , 𝑔1y ` x 𝑓 , 𝑔2y.

However,
x 𝑓 , 𝜆𝑔y “ x𝜆𝑔, 𝑓 y “ 𝜆x𝑔, 𝑓 y “ 𝜆x 𝑓 , 𝑔y.

Example 13.1.5

On C𝑑

p𝑧1, . . . , 𝑧𝑑q ¨ p𝑤1, . . . , 𝑤𝑑q :“
𝑑
ÿ

𝑘“1

𝑧𝑘𝑤𝑘 ,

is an hermitian product.

Example 13.1.6

Let p𝑋,ℱ, 𝜇q be a measure space. On 𝐿2Rp𝑋q (𝐿2
C

p𝑋q),

x 𝑓 , 𝑔y2 :“

∫
𝑋

𝑓 𝑔 𝑑𝜇

ˆ

x 𝑓 , 𝑔y2 :“

∫
𝑋

𝑓 𝑔 𝑑𝜇

˙

is a scalar product (hermitian product), with vanishing in the weaker form x 𝑓 , 𝑓 y2 “ 0 iff 𝑓 “ 0
a.e..
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A remarkable particular case of 𝐿2 space is the following:

Example 13.1.7: p˚q

On

ℓ2 :“

#

p𝑥𝑛q Ă R :
ÿ

𝑛

𝑥2𝑛 ă `8

+

,

we define
xp𝑥𝑛q, p𝑦𝑛qyℓ2 :“

ÿ

𝑛

𝑥𝑛𝑦𝑛.

Then, x¨, ¨yℓ2 is a scalar product. Actually, ℓ2 “ 𝐿2pN,𝒫pNq, 𝜈q where 𝜈 is the counting measure.
Here notice that vanishing holds in the strong form:

x 𝑓 , 𝑓 yℓ2 “ 0, ðñ
ÿ

𝑛

𝑓 2𝑛 “ 0, ðñ 𝑓𝑛 ” 0, 𝑖 𝑓 𝑓 𝑓 “ 0.

Little ℓ2 space is an interesting example. On one side, it provides a straightforward extension of the
euclidean space R𝑚. On the other side, it is a good space to build examples and counter examples. And
finally, it turns out that ℓ2 is basically the prototype of a generic Hilbert space (we will be more precise
on this in the next chapters).

13.2. Norm induced by scalar/hermitian product

In the Euclidean space R𝑚, the canonical scalar product

𝑥 ¨ 𝑦 “

𝑚
ÿ

𝑘“1

𝑥𝑘𝑦𝑘 ,

is tightly related to the Euclidean norm. Indeed,

𝑥 ¨ 𝑥 “

𝑚
ÿ

𝑘“1

𝑥2𝑘 “ }𝑥}2., ðñ }𝑥} “
?
𝑥 ¨ 𝑥.

The same happens in other cases, as for example, for the 𝐿2p𝑋q norm. This is actually true in general:
every scalar/hermitian product induces a natural norm on the vector space where it is defined setting

} 𝑓 } :“
b

x 𝑓 , 𝑓 y.

To show that this is a true norm is the goal of the main result of this section. The proof follows an
argument similar to the proof that the Euclidean norm is a norm on R𝑚. The key ingredient is the abstract
version of the Cauchy-Schwarz inequality.

Lemma 13.2.1: (abstract Cauchy–Schwarz inequality)

(13.2.1) |x 𝑓 , 𝑔y| ď } 𝑓 }}𝑔}, @ 𝑓 , 𝑔 P 𝑉.



92 13. HILBERT SPACES

Proof. (Lemma) Let 𝑔 ‰ 0 (otherwise is trivial) and define 𝜑p𝛼q :“ } 𝑓 ` 𝛼𝑔}2 ě 0. Notice that
𝜑p𝛼q “ x 𝑓 ` 𝛼𝑔, 𝑓 ` 𝛼𝑔y “ 𝛼2}𝑔}2 ` 2𝛼x 𝑓 , 𝑔y ` } 𝑓 }2, attains its minimum at 𝛼˚ “ ´

x 𝑓 ,𝑔y

}𝑔}2
. Since

𝜑p𝛼˚q ě 0 we obtain
x 𝑓 , 𝑔y2

}𝑔}2
´ 2

x 𝑓 , 𝑔y2

}𝑔}2
` } 𝑓 }2 ě 0,

and by rearranging this we obtain
x 𝑓 , 𝑔y ď } 𝑓 }}𝑔}.

Exchanging 𝑓 with ´ 𝑓 and using linearity and homogeneity, we get
´x 𝑓 , 𝑔y ď } 𝑓 }}𝑔}.

Combining these two inequalities we have,
´} 𝑓 }}𝑔} ď x 𝑓 , 𝑔y ď } 𝑓 }}𝑔},

which is the conclusion.

Proposition 13.2.2

Let x¨, ¨y be a scalar/hermitian product on 𝑉 . Then

} 𝑓 } :“
b

x 𝑓 , 𝑓 y, 𝑓 P 𝑉,

is a norm on 𝑉 .

Proof. (case of scalar product) Clearly, by positivity, } 𝑓 } is well defined and positive for every 𝑓 P 𝑉 .
Norm vanishing and homogeneity follows directly from vanishing and homogeneity of the scalar product.
For triangular inequality we have

} 𝑓 ` 𝑔}2 “ x 𝑓 ` 𝑔, 𝑓 ` 𝑔y “ x 𝑓 , 𝑓 y ` x 𝑓 , 𝑔y ` x𝑔, 𝑓 y ` x𝑔, 𝑔y “ } 𝑓 }2 ` }𝑔}2 ` 2x 𝑓 , 𝑔y

𝐶𝑆
ď } 𝑓 }2 ` }𝑔}2 ` 2} 𝑓 }}𝑔} “ p} 𝑓 } ` }𝑔}q

2
,

from which the conclusion follows.

According to the Cauchy-Schwarz inequality we have that, for 𝑓 , 𝑔 ‰ 0,
|x 𝑓 , 𝑔y|

} 𝑓 }}𝑔}
ď 1, ðñ

x 𝑓 , 𝑔y

} 𝑓 }}𝑔}
P r´1, 1s.

It turns out that, if 𝑉 “ R2 and x¨, ¨y is the canonical scalar product of R2, the previous quantity is the
cosine of the angle 𝜃 P r´ 𝜋

2 ,
𝜋
2 s made by the two vectors 𝑓 and 𝑔. This explains why we set

cos 𝜃 :“
x 𝑓 , 𝑔y

} 𝑓 }}𝑔}
,

and we call this angle made by 𝑓 and 𝑔 (provided 𝑓 , 𝑔 ‰ 0). In this way the identity

} 𝑓 ` 𝑔}2 “ } 𝑓 }2 ` }𝑔}2 ` 2x 𝑓 , 𝑔y “ } 𝑓 }2 ` }𝑔}2 ` 2} 𝑓 }}𝑔} cos 𝜃,

is the general version of the cosine theorem of Trigonometry.
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Definition 13.2.3

We say that 𝑓 and 𝑔 are orthogonal (notation 𝑓 K 𝑔) if x 𝑓 , 𝑔y “ 0.

Example 13.2.4

On 𝑉 “ 𝐿2pr0, 2𝜋sq with usual scalar product sin K cos. Indeed:

xsin, cosy2 “

∫ 2𝜋

0
sin 𝑥 cos 𝑥 𝑑𝑥 “

„

psin 𝑥q2

2

ȷ𝑥“2𝜋

𝑥“0

“ 0.

For orthogonal vectors we have the general version of the Pythagorean theorem:

𝑓 K 𝑔, ùñ } 𝑓 ` 𝑔}2 “ } 𝑓 }2 ` }𝑔}2.

Another remarkable identity is the

Proposition 13.2.5: (parallelogram identity)

Let 𝑉 be a vector space equipped with scalar/hermitian product x¨, ¨y. Then,
(13.2.2) } 𝑓 ` 𝑔}2 ` } 𝑓 ´ 𝑔}2 “ 2

`

} 𝑓 }2 ` }𝑔}2
˘

, @ 𝑓 , 𝑔 P 𝑉.

Proof. We do the proof in the case of scalar product, leaving the case of hermitian product as exercise.
We have

} 𝑓 ` 𝑔}2 “ } 𝑓 }2 ` }𝑔}2 ` 2x 𝑓 , 𝑔y,

} 𝑓 ´ 𝑔}2 “ } 𝑓 }2 ` }𝑔}2 ´ 2x 𝑓 , 𝑔y,

and summing up these identities the conclusion follows.

Norm induces convergence for sequences of vectors. An important fact is the

Proposition 13.2.6

Let 𝑉 be equipped with a scalar/hermitian product. Then, the scalar/hermitian product is contin-
uous in each component respect to the natural norm, that is:

𝑓𝑛
}¨}

ÝÑ 𝑓 , ùñ x 𝑓𝑛, 𝑔y ÝÑ x 𝑓 , 𝑔y, @𝑔 P 𝑉.

Proof. Just notice that

|x 𝑓𝑛, 𝑔y ´ x 𝑓 , 𝑔y| “ |x 𝑓𝑛 ´ 𝑓 , 𝑔y|
𝐶𝑆
ď } 𝑓𝑛 ´ 𝑓 }}𝑔} ÝÑ 0.

Definition 13.2.7

A space 𝑉 equipped with a scalar/hermitian product x¨, ¨y is called Hilbert space if p𝑉, } ¨ }q is a
Banach space.
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13.3. Exercises

Exercise 13.3.1 (˚˚`). Let 𝑉 :“
␣

𝑓 P 𝒞
1pr0, 1s;Rq : 𝑓 p0q “ 0

(

. On 𝑉 we define

x 𝑓 , 𝑔y :“

∫ 1

0
𝑓 1p𝑥q𝑔1p𝑥q 𝑑𝑥.

i) Check that x¨, ¨y is a scalar product on 𝑉 .
ii) Determine if 𝑉 is a Hilbert space.

Exercise 13.3.2 (˚). Let 𝑉 :“ Rr𝑋s be the set of all the polynomials with real coefficients. For 𝑝, 𝑞 P 𝑉

we define

x𝑝, 𝑞y𝐵 :“

∫
R
𝑝p𝑥q𝑞p𝑥q𝑒´𝑥2 𝑑𝑥.

i) Check that x¨, ¨y𝑉 is a well defined scalar product on 𝑉 .
ii) Compute x𝑥𝑚, 𝑥𝑛y𝑉 . For which 𝑚, 𝑛 P N is 𝑥𝑚 K 𝑥𝑛?

iii) Solve
min
𝑎,𝑏PR

}𝑥2 ´ p𝑎𝑥 ` 𝑏q}2𝑉 .

(hint: compute the norm and apply ordinary calculus tools)

Exercise 13.3.3 (˚). Let 𝑉 :“ 𝐿2
C

pr0, 1s𝑑q equipped with the standard 𝐿2 hermitian product

x 𝑓 , 𝑔y :“

∫
r0,1s𝑑

𝑓 p𝑥q𝑔p𝑥q 𝑑𝑥.

Check that functions 𝑓𝑛p𝑥q :“ 𝑒𝑖2𝜋𝑛¨𝑥 , 𝑛 “ p𝑛1, . . . , 𝑛𝑑q P Z𝑑 are orthogonal.

Exercise 13.3.4 (˚˚). Let p𝑉, x¨, ¨yq be a scalar/hermitian product space. Show that

} 𝑓 } “ sup
𝑔P𝑉 : }𝑔}“1

x 𝑓 , 𝑔y, @ 𝑓 P 𝑉.

Exercise 13.3.5 (˚˚). Let 𝑉 :“ R𝑚ˆ𝑚 be the set of 𝑚ˆ𝑚 matrices with real entries and usual algebraic
sum and product by scalars. Given 𝐴, 𝐵 P 𝑉 , let

x𝐴, 𝐵y :“ Trp𝐴˚𝐵q,

where Trp𝑀q is the trace of matrix 𝑀 (sum of the elements of the diagonal), 𝐴˚ is the transposed matrix
of 𝐴. Check that x¨, ¨y is a well defined scalar product.

Exercise 13.3.6 (˚˚`). Prove the Cauchy-Schwarz inequality for an hermitian product. (hint: adapt the
proof of the real case, but consider 𝜑p𝛼q :“ } 𝑓 ` 𝛼𝑒𝑖 𝜃𝑔}2 for a suitable 𝜃. . . )

Exercise 13.3.7 (˚˚`). Let p𝑉, x¨, ¨yq be an Hilbert space. Let p 𝑓𝑛q Ă 𝑉 be such that } 𝑓𝑛} “ 1 and

lim
𝑛,𝑚Ñ`8

} 𝑓𝑛 ` 𝑓𝑚} “ 2.

Prove that p 𝑓𝑛q connverges in 𝑉 .
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Exercise 13.3.8 (˚˚`). Let p𝑉, } ¨ }q be a normed space on real scalar, with norm verifying the parallel-
ogram identity. We define

x 𝑓 , 𝑔y :“
1

2

`

} 𝑓 ` 𝑔}2 ´ p} 𝑓 }2 ` }𝑔}2q
˘

.

Check that the product x¨, ¨y verifies
i) positivity, symmetry, and additivity in the first factor.

ii) homogeneity x𝜆 𝑓 , 𝑔y “ 𝜆x 𝑓 , 𝑔y for 𝜆 “ ´1, 𝜆 P N, 𝜆 P Z, 𝜆 P Q and, finally, extend to 𝜆 P R.

Exercise 13.3.9 (˚˚˚). Let p𝑉, x¨, ¨, yq be an Hilbert space and p 𝑓𝑛q Ă 𝑉 an orthogonal sequence of
vectors, that is x 𝑓𝑛, 𝑓𝑚y “ 0 for all 𝑛 ‰ 𝑚. Prove that the following statements are equivalent:

i)
ř

𝑛 𝑓𝑛 converges in 𝑉 .
ii)

ř

𝑛 } 𝑓𝑛}2 converges in R.
iii)

ř

𝑛x 𝑓𝑛, 𝑔y converges for every 𝑔 P 𝑉 .





LECTURE 14

Orthogonal Projection

Let p𝑉, } ¨ }q be a normed space,𝑈 Ă 𝑉 a linear subspace of 𝑉 . Let 𝑓 P 𝑉 . A very important applied
problem is the following: determine the best approximation of 𝑓 by a vector of𝑈. Usually 𝑓 is a function
that we wish to approximate, in the best possible way, with a function of class𝑈 Ă 𝑉 . Formally, we aim
to determine

min
𝑢P𝑈

} 𝑓 ´ 𝑢}.

Of course, as for every optimization problem, the first issue concerns existence of a solution. Next,
characterization of the solution would be welcome. In general, this is problem is very complex. In
Hilbert spaces, however, it has a powerful and elegant solution. This is the focus of this Lecture.

14.1. Main Theorem

Theorem 14.1.1

Let p𝐻, x¨, ¨yq be an Hilbert space and 𝑈 Ă 𝐻 be a closed subspace. Then, for every 𝑓 P 𝐻 there
exists a unique Π𝑈 𝑓 P 𝑈 such that
(14.1.1) } 𝑓 ´ Π𝑈 𝑓 } “ min

𝑢P𝑈
} 𝑓 ´ 𝑢}.

Π𝑈 𝑓 is called orthogonal projection of 𝑓 on𝑈 and it is characterized by the following orthogo-
nality condition:
(14.1.2) x 𝑓 ´ Π𝑈 𝑓 , 𝑢y “ 0, @𝑢 P 𝑈.

Proof. The proof is trivial if 𝑢 P 𝑈: in this case Π𝑈 𝑓 “ 𝑓 . So, let 𝑓 R 𝑈. The proof is organized as
follows:

(1) we prove existence of min, hence of Π𝑈 𝑓 .
(2) we prove that Π𝑈 𝑓 is unique.
(3) we prove the characterization (14.1.2).

(1) Let
𝛼 :“ inf

𝑢P𝑈
} 𝑓 ´ 𝑢}.

According to the characterization of best lower bound,

(14.1.3) @𝑛 ě 1, D𝑢𝑛 P 𝑈 : 𝛼 ď } 𝑓 ´ 𝑢𝑛} ď 𝛼 `
1

𝑛
.

The goal is to prove that p𝑢𝑛q converges and the limit is the minimum point for } 𝑓 ´ 𝑢}. To prove p𝑢𝑛q

converges, we prove that p𝑢𝑛q is a Cauchy sequence (then convergence follows by 𝐻 Hilbert space).
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.We need an estimate of }𝑢𝑛 ´ 𝑢𝑚}. The key ingredient is the parallelogram identity. Indeed,
}𝑢𝑛 ´ 𝑢𝑚}2 “ }p𝑢𝑛 ´ 𝑓 q ´ p𝑢𝑚 ´ 𝑓 q}2 “ 2

`

}𝑢𝑛 ´ 𝑓 }2 ` }𝑢𝑚 ´ 𝑓 }2
˘

´ }p𝑢𝑛 ´ 𝑓 q ` p𝑢𝑚 ´ 𝑓 q}2

ď 2

˜

ˆ

𝛼 `
1

𝑛

˙2

`

ˆ

𝛼 `
1

𝑚

˙2
¸

´ }p𝑢𝑛 ` 𝑢𝑚 ´ 2 𝑓 q}2

“ 4𝛼2 ` 4𝛼

ˆ

1

𝑛
`

1

𝑚

˙

` 2

ˆ

1

𝑛2
`

1

𝑚2

˙

´ 4

›

›

›

›

𝑢𝑛 ` 𝑢𝑚

2
´ 𝑓

›

›

›

›

2

.

Since𝑈 is a linear space and 𝑢𝑛, 𝑢𝑚 P 𝑈, we have 𝑢𝑛`𝑢𝑚
2 P 𝑈. Therefore

›

›

𝑢𝑛`𝑢𝑚
2 ´ 𝑓

›

› ě 𝛼. From this,

}𝑢𝑛 ´ 𝑢𝑚}2 ď 2𝛼

ˆ

1

𝑛
`

1

𝑚

˙

` 2

ˆ

1

𝑛2
`

1

𝑚2

˙

ď 𝜀2, @𝑛, 𝑚 ě 𝑁.

This means that p𝑢𝑛q is a Cauchy sequence, thus it is convergent because 𝐻 is complete by assumption.
Now, let 𝑢𝑛 ÝÑ 𝑢˚. Since

𝛼 ď } 𝑓 ´ 𝑢𝑛} ď 𝛼 `
1

𝑛
, ùñ 𝛼 ď } 𝑓 ´ 𝑢˚} ď 𝛼,

that is } 𝑓 ´ 𝑢˚} “ 𝛼 “ inf𝑢P𝑈 } 𝑓 ´ 𝑢}. This means the inf is achieved at 𝑢 “ 𝑢˚, thus it is a minimum.
(2) We show that 𝑢˚ is unique. Suppose 𝑢˚˚ P 𝑈 is such that } 𝑓 ´ 𝑢˚˚} “ 𝛼. Again by parallelogram
identity,

}𝑢˚´𝑢˚˚}2 “ 2
`

}𝑢˚ ´ 𝑓 }2 ` }𝑢˚˚ ´ 𝑓 }2
˘

`}𝑢˚`𝑢˚˚´2 𝑓 }2 “ 4𝛼2´4

›

›

›

›

𝑢˚ ` 𝑢˚˚

2
´ 𝑓

›

›

›

›

2

ď 4𝛼2´4𝛼2 “ 0,

that is 𝑢˚ “ 𝑢˚˚. This authorizes to call this unique element Π𝑈 𝑓 .
(3) For every 𝑢 P 𝑈,

} 𝑓 ´ Π𝑈 𝑓 }
2 ď } 𝑓 ´ pΠ𝑈 𝑓 ` 𝑢q}2 “ }p 𝑓 ´ Π𝑈 𝑓 q ` 𝑢}2 “ } 𝑓 ´ Π𝑈 𝑓 }

2 ` }𝑢}2 ` 2x 𝑓 ´ Π𝑈 𝑓 , 𝑢y,

from which
}𝑢}2 ` 2x 𝑓 ´ Π𝑈 𝑓 , 𝑢y ě 0, @𝑢 P 𝑈.

Replacing 𝑢 by 𝑡𝑢 (here 𝑡 P R), we have
𝑡2}𝑢}2 ` 2𝑡x 𝑓 ´ Π𝑈 𝑓 , 𝑢y ě 0, @𝑢 P 𝑈, @𝑡 P R.

Taking 𝑡 ą 0 and simplifying, letting 𝑡 ÝÑ 0` we have
x 𝑓 ´ Π𝑈 𝑓 , 𝑢y ě 0, @𝑢 P 𝑈.

Finally, replacing 𝑢 with ´𝑢,
x 𝑓 ´ Π𝑈 𝑓 , 𝑢y ď 0,

and by this the conclusion follows.

The projection theorem enlighten the relevance of closed subspaces of an Hilbert space. We remind that
a set 𝑆 Ă 𝑉 , p𝑉, } ¨ }q normed space, is closed if and only if it contains limits of convergent sequences of
vectors of 𝑆, that is

@p 𝑓𝑛q Ă 𝑆, : 𝑓𝑛
}¨}

ÝÑ 𝑓 , ùñ 𝑓 P 𝑆.

In concrete cases this property can be checked directly. A useful fact to know is the
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Proposition 14.1.2

If p𝑉, } ¨ }q is a normed space and 𝑆 is a finite dimensional subspace of 𝑉 , then 𝑆 is closed.

Proof. Let 𝑣1, . . . , 𝑣𝑁 a basis for 𝑆. We can assume that vectors 𝑣1, . . . , 𝑣𝑁 are linearly independent.
For every 𝑓 P 𝑆, there exist a unique array p 𝑓 1, . . . , 𝑓 𝑁 q P R𝑁 such that 𝑓 “

ř𝑛
𝑘“1 𝑓

𝑘𝑣𝑘 . The map
𝑇 : p 𝑓 1, . . . , 𝑓 𝑁 q ÞÝÑ 𝑓 is linear, bijective (thus invertible) and

}𝑇p 𝑓 1, . . . , 𝑓 𝑁 q} “

›

›

›

›

›

𝑁
ÿ

𝑘“1

𝑓 𝑘𝑣𝑘

›

›

›

›

›

ď

𝑁
ÿ

𝑘“1

| 𝑓 𝑘 |}𝑣𝑘} ď 𝐾}p 𝑓 1, . . . , 𝑓 𝑁 q}1,

having defined 𝐾 :“ max𝑘 }𝑣𝑘}. Now, set
}p 𝑓 1, . . . , 𝑓 𝑁 q}˚ :“ }𝑇p 𝑓 1, . . . , 𝑓 𝑁 q}.

It is easy to check that } ¨ }˚ is well defined, positive, homogeneous and it fulfils the triangular inequality.
Moreover, }p 𝑓 1, . . . , 𝑓 𝑁 q}˚ “ 0 iff

ř𝑁
𝑘“1 𝑓

𝑘𝑣𝑘 “ 0, and this happens iff 𝑓 𝑘 “ 0 for every 𝑘 . So, } ¨ }˚

fulfils also vanishing. In other words, } ¨ }˚ is a norm on R𝑁 , and since all the norms on R𝑁 are equivalent,
D𝑀 ą 0, }p 𝑓 1, . . . , 𝑓 𝑁 q}1 ď 𝑀}p 𝑓 1, . . . , 𝑓 𝑁 q}˚.

Let now p 𝑓𝑛q Ă 𝑆 with 𝑓𝑛
}¨}

ÝÑ 𝑓 . The goal is to prove that 𝑓 P 𝑆. We start noticing that p 𝑓𝑛q is a Cauchy
sequence w.r.t. } ¨ }. Since each 𝑓𝑛 P 𝑆, we can write

𝑓𝑛 “
ÿ

𝑘“1

𝑓 𝑘𝑛 𝑣𝑘 “ 𝑇 p 𝑓 1𝑛 , . . . 𝑓
𝑁
𝑛 q

looooomooooon

“:𝑔𝑛PR𝑁

.

for suitable 𝑓 𝑘𝑛 . Therefore,
}𝑔𝑛 ´ 𝑔𝑚}1 ď 𝑀}𝑔𝑛 ´ 𝑔𝑚}˚ “ 𝑀}𝑇p𝑔𝑛 ´ 𝑔𝑚q} “ 𝑀}𝑇𝑔𝑛 ´ 𝑇𝑔𝑚} “ 𝑀} 𝑓𝑛 ´ 𝑓𝑚},

from which p𝑔𝑛q is a Cauchy sequence in R𝑁 w.r.t. } ¨ }1 norm, and since this is a Banach space, 𝑔𝑛
}¨}1
ÝÑ 𝑔,

for some 𝑔 “ p𝑔1, . . . , 𝑔𝑁 q P R𝑁 . From this it follows that

} 𝑓𝑛 ´ 𝑇𝑔} “ }𝑇𝑔𝑛 ´ 𝑇𝑔} ď 𝐾}𝑔𝑛 ´ 𝑔}1 ÝÑ 0, ùñ 𝑓𝑛
}¨}

ÝÑ 𝑇𝑔 “

𝑁
ÿ

𝑘“1

𝑔𝑘𝑣𝑘 ,

and since the limit is unique, we conclude that 𝑓 “ 𝑇𝑔 “
ř𝑁
𝑘“1 𝑔

𝑘𝑣𝑘 P 𝑆.

Example 14.1.3

Determine the best approximation of 𝑥2 through a first degree polynomial under 𝐿2pr0, 1sq norm.

Proof. Let 𝑉 “ 𝐿2pr0, 1sq. We have to minimize the 𝐿2pr0, 1sq distance between 𝑥2 and 𝑎𝑥 ` 𝑏,that
is to determine

min
𝑎,𝑏PR

ˆ∫ 1

0

|𝑥2 ´ p𝑎𝑥 ` 𝑏q|2 𝑑𝑥

˙1{2

.

Let 𝑈 :“ t𝑎𝑥 ` 𝑏 : 𝑎, 𝑏 P Ru “ Spanp1, 𝑥q. 𝑈 is finite dimensional, hence it is closed. Therefore, the
best 𝐿2pr0, 1sq approximation of 𝑥2 through an element of 𝑈 is Π𝑈𝑥2. Now, Π𝑈𝑥2 “ 𝐴𝑥 ` 𝐵 for suitable
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𝐴 and 𝐵, to be determined in such a way that orthogonality condition

x𝑥2 ´ Π𝑈𝑥
2, 𝑤y “

∫ 1

0

p𝑥2 ´ Π𝑈𝑥
2q𝑤p𝑥q 𝑑𝑥 “ 0, @𝑢 P 𝑈.

Since 𝑈 is generated by 1 and 𝑥 through linear combinations, the orthogonality condition can be reduced
to just two conditions

$

’

&

’

%

∫ 1
0

p𝑥2 ´ p𝐴𝑥 ` 𝐵qq1 𝑑𝑥 “ 0,∫ 1
0

p𝑥2 ´ p𝐴𝑥 ` 𝐵qq𝑥 𝑑𝑥 “ 0,

ðñ

$

&

%

1
3 ´ 𝐴

2 ´ 𝐵 “ 0,

1
4 ´ 𝐴

3 ´ 𝐵
2 “ 0.

By solving the linear system we find 𝐴 “ 1 and 𝐵 “ ´ 1
6 , that is Π𝑈𝑥2 “ 𝑥 ´ 1

6 .

Warning 14.1.4

The assumption 𝑈 closed is essential for the projection theorem. Indeed, on ℓ2 take 𝑈 :“
tp𝑥𝑛q : D𝑁, 𝑥𝑛 ” 0, ě 𝑁u. It is easy to check that 𝑈 is a linear subspace of ℓ2 and that it
is not closed: the sequence p 𝑓𝑛q, where 𝑓𝑛 “

`

1, 12 , . . . ,
1
𝑛
, 0, . . .

˘

P 𝑈, we have 𝑓𝑛
ℓ2

ÝÑ 𝑓 “
´

1, 12 , . . . ,
1
𝑛
, 1
𝑛`1 , . . .

¯

because

} 𝑓𝑛 ´ 𝑓 }2
ℓ2

“

›

›

›

›

ˆ

0, . . . , 0,
1

𝑛 ` 1
,

1

𝑛 ` 2
, . . .

˙
›

›

›

›

2

ℓ2
“

8
ÿ

𝑘“𝑛`1

1

𝑘2
ÝÑ 0, 𝑛 Ñ `8.

This also says that
inf
𝑢P𝑈

} 𝑓 ´ 𝑢}ℓ2 ď } 𝑓 ´ 𝑓𝑛}ℓ2 ÝÑ 0, ùñ inf
𝑢P𝑈

} 𝑓 ´ 𝑢}ℓ2 “ 0.

However, the minimum is not achieved otherwise there would be 𝑢 P 𝑈 such that } 𝑓 ´ 𝑢}ℓ2 “ 0,
that is 𝑓 “ 𝑢 P 𝑈, but 𝑓 R 𝑈.

14.2. Orthogonal complement

Definition 14.2.1

Let 𝑉 be an inner product space,𝑈 Ă 𝑉 a subspace. We call orthogonal complement of𝑈,
𝑈K :“ t𝑣 P 𝑉 : x𝑣, 𝑢y “ 0u .

It is easy to check that𝑈K is always a closed linear subspace of 𝑉 , no matter whether𝑈 is closed or not.
Indeed, if p𝑣𝑛q Ă 𝑈K and 𝑣𝑛 ÝÑ 𝑣, then

0 “ x𝑣𝑛, 𝑢y ÝÑ x𝑣, 𝑢y, @𝑢 P 𝑈, ùñ 𝑣 P 𝑈K.

Therefore, if 𝑉 is a Hilbert space, the orthogonal projection Π𝑈K is always well defined. It is sometimes
useful to know that
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Proposition 14.2.2

Let 𝐻 be an Hilbert space,𝑈 a closed subspace. Then
Π𝑈K 𝑓 “ 𝑓 ´ Π𝑈 𝑓 .

Proof. Let’s check that i) 𝑓 ´Π𝑈 𝑓 P 𝑈K and ii) 𝑓 ´Π𝑈 𝑓 verifies the othogonality condition (14.1.2)
for𝑈K. Indeed, by (14.1.2), we have

x 𝑓 ´ Π𝑈 𝑓 , 𝑢y “ 0, @𝑢 P 𝑈, ùñ 𝑓 ´ Π𝑈 𝑓 P 𝑈K.

Moreover, since Π𝑈 𝑓 P 𝑈, we have
x 𝑓 ´ p 𝑓 ´ Π𝑈 𝑓 q, 𝑣y “ xΠ𝑈 𝑓 , 𝑣y “ 0, @𝑣 P 𝑈K.

Therefore, i) and ii) areverified and the conclusion follows.

Warning 14.2.3

From the previous proposition, apparently,
Π𝑈 𝑓 “ 𝑓 ´ Π𝑈K 𝑓 ,

is the orthogonal projection on 𝑈. We stress once more the fact that this is true only if 𝑈 is
closed. Indeed, take 𝐻 “ ℓ2 and the subspace𝑈 “ tp 𝑓𝑛q : D𝑁, 𝑓𝑛 ” 0, 𝑛 ě 𝑁u. Notice that

𝑣 P 𝑈K, ðñ x𝑣, 𝑢y “ 0, @𝑢 P 𝑈.

We claim that 𝑣 “ 0 “ p0, . . .q. Indeed, if 𝑣 “ p𝑣𝑛q with 𝑣𝑁 ‰ 0 for some 𝑁 , then taking
𝑢 “ p𝛿𝑁𝑛 . . .q P 𝑈 we would have

0 “ x𝑣, 𝑢y “
ÿ

𝑛

𝑣𝑛𝛿𝑁𝑛 “ 𝑣𝑁 ,

which contradicts 𝑣𝑁 ‰ 0. Therefore, 𝑈K “ t0u and, as a consequence, Π𝑈K 𝑓 ” 0. Therefore,
if Π𝑈 𝑓 “ 𝑓 ´ Π𝑈K 𝑓 “ 𝑓 , but this is possible iff 𝑓 P 𝑈 Ĺ ℓ2. Therefore, Π𝑈 𝑓 is not defined
unless 𝑓 P 𝑈.

14.3. Exercises

Exercise 14.3.1 (˚). Let 𝑓 p𝑥q :“ cos 𝑥 P 𝐿2pr0, 2𝜋sq. Determine the best possible second degree
polynomial closest to 𝑓 in the 𝐿2pr0, 2𝜋sq norm.

Exercise 14.3.2 (˚˚). Solve

min
𝑎,𝑏,𝑐PR

∫ 1

´1
|𝑥3 ` 𝑎𝑥2 ` 𝑏𝑥 ` 𝑐|2 𝑑𝑥.

Exercise 14.3.3 (˚˚). Solve

min
𝑎,𝑏PR

∫ `8

0
|𝑒´𝑥 ´ p𝑎𝑒´2𝑥 ` 𝑏𝑒´3𝑥q|2 𝑑𝑥
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Exercise 14.3.4 (˚˚). Solve

max
𝑓 P𝐿2pr0,1sq :

∫1
0
𝑓 2 𝑑𝑥“1

∫ 1

0
𝑓 p𝑥q𝑒𝑥 𝑑𝑥.

Exercise 14.3.5 (˚˚`). Let 𝑉 :“ 𝐿2pRq equipped with usual real scalar product. Consider
𝑈 :“ t 𝑓 P 𝑉 : 𝑓 p´𝑥q “ 𝑓 p𝑥q, a.e. 𝑥 P Ru .

i) Show that 𝑈 is closed (hint: recall that 𝑓𝑛
𝐿2

ÝÑ 𝑓 does not imply that p 𝑓𝑛q converges pointwise
but. . . ).

ii) Check that Π𝑈 𝑓 p𝑥q “ 1
2p 𝑓 p𝑥q ` 𝑓 p´𝑥qq.

Exercise 14.3.6 (˚˚). Let 𝐻 :“ 𝐿2pr0, 1sq equipped with usual scalar product and set

𝑈 :“

"

𝑓 P 𝐻 :

∫ 1

0
𝑓 p𝑥q 𝑑𝑥 “ 0

*

.

i) Is𝑈 a closed subspace of 𝐻?
ii) Determine𝑈K.

Exercise 14.3.7 (˚˚). Let p𝑉, x¨, ¨yq be a real Hilbert space, 𝜙, 𝜓 P 𝑉 two linearly independent unit
vectors (that is }𝜙} “ }𝜓} “ 1). Let also 𝑊1 :“ t𝛼𝜙 : 𝛼 P Ru, 𝑊2 :“ t𝛽𝜓 : 𝛽 P Ru and
𝑊1 `𝑊2 “ t𝑤1 ` 𝑤2 : 𝑤1 P 𝑊1, 𝑤2 P 𝑊2u. Clearly, 𝑊1 and 𝑊2 are closed. We accept 𝑊1 `𝑊2 is
closed as well.

i) Determine the orthogonal projections Π𝑊1 and Π𝑊2 .
ii) Determine Π𝑊1`𝑊2 .

iii) Under which condition on 𝜙, 𝜓 is it true that Π𝑊1`𝑊2 “ Π𝑊1 ` Π𝑊2?

Exercise 14.3.8 (˚˚`). Let p𝑉, x¨, ¨yq be an Hilbert space, 𝑈 Ă 𝑉 a linear subspace. Discuss under
which conditions is p𝑈KqK “ 𝑈, proving what true, and disproving by an example what false.

Exercise 14.3.9 (˚˚`). Let p𝑉, x¨, ¨yq be an Hilbert space, 𝑈 Ă 𝑉 be a closed subspace of 𝑉 . Let Π𝑈 𝑓
be the orthogonal projection of 𝑓 on𝑈.

i) Prove that Π𝑈p 𝑓 ` 𝑔q “ Π𝑈 𝑓 ` Π𝑈𝑔 and Π𝑈p𝛼 𝑓 q “ 𝛼Π𝑈 𝑓 for every 𝑓 , 𝑔 P 𝑉 and 𝛼 P R.
ii) Π𝑈pΠ𝑈 𝑓 q “ Π𝑈 𝑓 , for every 𝑓 P 𝑉 .

iii) xΠ𝑈 𝑓 , 𝑔y “ x 𝑓 ,Π𝑈𝑔y, for every 𝑓 , 𝑔 P 𝑉 .
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Orthonormal bases

In Linear Algebra, a basis is a family of linearly independent vectors such that any other vector can
be expressed as (finite) linear combination of vectors of the basis. For an infinite dimensional space, this
definition implies an extremely large (uncountable) set of vectors. It is preferable to deal with an infinite
but countable basis, accepting that every vector might be expressed as infinite linear combination of the
basis’ vectors. Since the spaces we work with are normed spaces (at least), it is not a problem to deal
with infinite sums as limit of finite sums.

15.1. General definition and properties

We start by the

Definition 15.1.1

Let p𝑉, } ¨ }q be a normed space. Given a sequence of vectors p 𝑓𝑛q Ă 𝑉 , we set
8
ÿ

𝑛“0

𝑓𝑛 :“ lim
𝑁Ñ`8

𝑁
ÿ

𝑛“0

𝑓𝑛,

provided the limit exists in 𝑉 .

A sufficient condition to ensure convergence of a series of vectors in a Banach space is the normal
convergence test:

Proposition 15.1.2: (Weierstrass)

Let p𝑉, } ¨ }q be a Banach space. Then,
ÿ

𝑛

} 𝑓𝑛} ă `8, ùñ
ÿ

𝑛

𝑓𝑛converges.

Proof. We check that the sequence of partial sums 𝑠𝑛 :“
ř𝑛
𝑘“0 𝑓𝑘 is a Cauchy sequence. Notice that,

if 𝑛 ą 𝑚,

(15.1.1) }𝑠𝑛 ´ 𝑠𝑚} “

›

›

›

›

›

𝑛
ÿ

𝑘“𝑚`1

𝑓𝑘

›

›

›

›

›

ď

𝑛
ÿ

𝑘“𝑚`1

} 𝑓𝑘} “ 𝜎𝑛 ´ 𝜎𝑚,

˜

where 𝜎𝑛 :“
𝑛
ÿ

𝑘“0

} 𝑓𝑘}

¸

.

103
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Since, by assumption,
ř

𝑛 } 𝑓𝑛} is convergent, the corresponding sequence of partial sums p𝜎𝑛q is a Cauchy
sequence, so

@𝜀 ą 0, D𝑁, : |𝜎𝑛 ´ 𝜎𝑚| ď 𝜀, @𝑛, 𝑚 ě 𝑁.

In particular, for 𝑛 ą 𝑚 ě 𝑁 , being 𝜎𝑛 ě 𝜎𝑚 we have

}𝑠𝑛 ´ 𝑠𝑚}
p15.1.1q

ď 𝜎𝑛 ´ 𝜎𝑚 “ |𝜎𝑛 ´ 𝜎𝑚| ď 𝜀, @𝑛 ą 𝑚 ě 𝑁,

and this is the Cauchy property for p𝑠𝑛q. Since the space p𝑉, } ¨ }q is complete, the sequence p𝑠𝑛q is
convergent and we have the conclusion.

In a Hilbert space, the Weierstrass test can be sharpened:

Proposition 15.1.3

Let p𝐻, x¨, ¨yq be a Hilbert space. Then, if p 𝑓𝑛q is a sequence of orthogonal vectors,

(15.1.2)
ÿ

𝑛

𝑓𝑛 converges ðñ
ÿ

𝑛

} 𝑓𝑛}2 ă `8.

Proof. Let 𝑠𝑛 :“
ř𝑛
𝑘“0 𝑓𝑘 be the 𝑛´th partial sum of the series

ř

𝑛 𝑓𝑛. By the Pythagorean theorm
we have that, for 𝑛 ą 𝑚,

}𝑠𝑛 ´ 𝑠𝑚}2 “

›

›

›

›

›

𝑛
ÿ

𝑘“𝑚`1

𝑓𝑘

›

›

›

›

›

2

“

𝑛
ÿ

𝑘“𝑚`1

} 𝑓𝑘}2 “ 𝜎2
𝑛 ´ 𝜎2

𝑚,

˜

where 𝜎2
𝑛 :“

𝑛
ÿ

𝑘“0

} 𝑓𝑘}2

¸

.

It is therefore clear that p𝑠𝑛q is a Cauchy sequence in 𝐻 iff p𝜎2
𝑛 q is a Cauchy sequence in R. From this the

conclusion follows.

We are now ready for the

Definition 15.1.4

Let p𝑉, x¨, ¨yq be a vector space equipped with an inner product. A set of vectors p𝑒𝑛q is called
‚ orthonormal system if x𝑒𝑖 , 𝑒 𝑗y “ 𝛿𝑖 𝑗 ;
‚ orthonormal basis if it is an orthonormal system and

@ 𝑓 P 𝑉, Dp𝑐𝑛q Ă R pCq : 𝑓 “

8
ÿ

𝑛“0

𝑐𝑛𝑒𝑛.

Example 15.1.5: p˚q

On𝐻 “ ℓ2 (see Example 13.1.7 for the definition), let 𝑒𝑛 :“ p𝛿𝑛𝑚q𝑚. Then p𝑒𝑛q is an orthonormal
basis for ℓ2.
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Notice that, if 𝑓 “
ř

𝑛 𝑐𝑛𝑒𝑛 then

x 𝑓 , 𝑒 𝑗y “ x
ÿ

𝑛

𝑐𝑛𝑒𝑛, 𝑒 𝑗y “ xlim
𝑛

𝑛
ÿ

𝑘“0

𝑐𝑘𝑒𝑘 , 𝑒 𝑗y “ lim
𝑛

x

𝑛
ÿ

𝑘“0

𝑐𝑘𝑒𝑘 , 𝑒 𝑗y “ lim
𝑛

𝑛
ÿ

𝑘“0

𝑐𝑘x𝑒𝑘 , 𝑒 𝑗y “
ÿ

𝑛

𝑐𝑛𝛿𝑛 𝑗 “ 𝑐 𝑗 .

Thus,

(15.1.3) 𝑓 “
ÿ

𝑛

x 𝑓 , 𝑒𝑛y𝑒𝑛.

The series at r.h.s of (15.1.3) is called abstract Fourier series, px 𝑓 , 𝑒𝑛yq are called Fourier coefficients.
Notice also that, in this case,

} 𝑓 }2 “ x 𝑓 , 𝑓 y “
ÿ

𝑛,𝑚

x 𝑓 , 𝑒𝑛yx 𝑓 , 𝑒𝑚yx𝑒𝑛, 𝑒𝑚y “
ÿ

𝑛

|x 𝑓 , 𝑒𝑛y|2,

which is called Parseval identity.
Given a finite or countable orthonormal set p𝑒𝑛q Ă 𝐻, we call

Spanp𝑒𝑛q :“

#

ÿ

𝑛

𝑐𝑛𝑒𝑛 P 𝐻 : p𝑐𝑛q Ă R pCq

+

.

Notice that ,according to the convercenge test (15.1.2), we have
ÿ

𝑛

𝑐𝑛𝑒𝑛 P 𝐻, ðñ
ÿ

𝑛

}𝑐𝑛𝑒𝑛}2 “
ÿ

𝑛

|𝑐𝑛|2 ă `8.

Therefore,

Spanp𝑒𝑛q “

#

ÿ

𝑛

𝑐𝑛𝑒𝑛 :
ÿ

𝑛

|𝑐𝑛|2 ă `8

+

.

This shows an interesting fact:

Proposition 15.1.6

Let 𝐻 be an Hilbert space and p𝑒𝑛q an orthonormal system. Then Spanp𝑒𝑛q is isometrically
equivalent to ℓ2. In particular, Spanp𝑒𝑛q is closed in 𝐻. If p𝑒𝑛q is an orthonormal basis, then 𝐻
itself is isometrically equivalent to ℓ2.

Proof. Consider the map 𝑇 : Spanp𝑒𝑛q ÝÑ ℓ2 defined by

𝑇

˜

ÿ

𝑛

𝑐𝑛𝑒𝑛

¸

“ p𝑐𝑛q.

Then
›

›

›

›

›

𝑇

˜

ÿ

𝑛

𝑐𝑛𝑒𝑛

¸›

›

›

›

›

2

ℓ2

“ }p𝑐𝑛q}2
ℓ2

“
ÿ

𝑛

|𝑐𝑛|2 “

›

›

›

›

›

ÿ

𝑛

𝑐𝑛𝑒𝑛

›

›

›

›

›

2

𝐻

,

that is }𝑇 𝑓 }ℓ2 “ } 𝑓 }𝐻 for every 𝑓 P Spanp𝑒𝑛q. This means that 𝑇 preserves norm, that is is an isometry,
between Spanp𝑒𝑛q and ℓ2. Since ℓ2 “ 𝐿2pN, 𝜈q (𝜈 is the counting measure) it is Hilbert space, Spanp𝑒𝑛q is
also an Hilbert space, in particular it is closed.
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Remark 15.1.7

We may say that ℓ2 is in fact the prototype of an Hilbert space with an orthonormal basis.

Orthonormal bases are useful to have a representation of orthogonal projection

Proposition 15.1.8

Let p𝐻, x¨, ¨yq be an Hilbert space and 𝑈 a closed subspace of 𝐻. If p𝑒𝑛q is an orthonormal basis
for𝑈 then
(15.1.4) Π𝑈 𝑓 “

ÿ

𝑛

x 𝑓 , 𝑒𝑛y𝑒𝑛.

Proof. Clearly Π𝑈 𝑓 defined by (15.1.4) belongs to 𝑈. We prove that Π𝑈 𝑓 fulfils orthogonality
condition (14.1.2). Let 𝑢 P 𝑈. Since p𝑒𝑛q is an orthonormal basis for𝑈, 𝑢 “

ř

𝑛x𝑤, 𝑒𝑛y𝑒𝑛. Then,

x 𝑓 ´ Π𝑈 𝑓 , 𝑢y “ x 𝑓 , 𝑢y ´ xΠ𝑈 𝑓 , 𝑢y “
ÿ

𝑛

x𝑢, 𝑒𝑛yx 𝑓 , 𝑒𝑛y ´
ÿ

𝑛

x 𝑓 , 𝑒𝑛yx𝑒𝑛, 𝑢y “ 0.

Corollary 15.1.9: Bessel inequality

Let p𝑒𝑛q an orthonormal system of vectors for p𝐻, x¨, ¨yq Hilbert space. Then

(15.1.5)
ÿ

𝑛

|x 𝑓 , 𝑒𝑛y|2 ď } 𝑓 }2, @ 𝑓 P 𝑉.

Proof. Let𝑈 :“ Spanp𝑒𝑛q. 𝑈 is a closed subspace of 𝑉 , and

Π𝑈 𝑓 “
ÿ

𝑛

x 𝑓 , 𝑒𝑛y𝑒𝑛.

According Pythagorean theorem

𝑓 “ Π𝑈 𝑓 ` p 𝑓 ´ Π𝑈 𝑓 q, ùñ } 𝑓 }2 “ }Π𝑈 𝑓 }
2 ` } 𝑓 ´ Π𝑈 𝑓 }

2 ě }Π𝑈 𝑓 }
2 “

ÿ

𝑛

|x 𝑓 , 𝑒𝑛y|2.

15.2. Test for orthonormal bases

Under which conditions an orthonormal system p𝑒𝑛q is also a basis? Of course, if we can prove that
every 𝑓 is sum of its Fourier series under p𝑒𝑛q, we are done. Next proposition provides an intrinsic test:

Proposition 15.2.1

Let p𝐻, x¨, ¨yq be an Hilbert space. Necessary and sufficient condition for p𝑒𝑛q orthonormal system
to be a basis is
(15.2.1) x 𝑓 , 𝑒𝑛y “ 0, @𝑛 P N, ùñ 𝑓 “ 0.
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Proof. Necessity: assume p𝑒𝑛q is a basis. If x 𝑓 , 𝑒𝑛y “ 0 for all 𝑛 then, by (15.1.3), 𝑓 “
ř

𝑛x 𝑓 , 𝑒𝑛y𝑒𝑛 “

0.
Sufficiency: assume (15.2.1) holds. Let 𝑈 :“ Spanp𝑒𝑛q. It is not difficult to check that 𝑈 is a closed
subspace (we accept this). Let Π𝑈 𝑓 be the orthogonal projection over 𝑈. We have Π𝑈 𝑓 “

ř

𝑛x 𝑓 , 𝑒𝑛y𝑒𝑛.
Since

𝑓 “ Π𝑈 𝑓 ` p 𝑓 ´ Π𝑈 𝑓 q “
ÿ

𝑛

x 𝑓 , 𝑒𝑛y𝑒𝑛 ` p 𝑓 ´ Π𝑈 𝑓 q,

the conclusion follows once we prove 𝑓 ´ Π𝑈 𝑓 “ 0. Now, since by orthogonality condition (14.1.2) we
have x 𝑓 ´ Π𝑈 𝑓 , 𝑒𝑛y “ 0 for every 𝑛, by (15.2.1) this implies 𝑓 ´ Π𝑈 𝑓 “ 0.

Here is an example how density test (15.2.1) works:

Proposition 15.2.2: Haar basis

On 𝐿2pr0, 1sq equipped with usual scalar product and define the Haar functions

𝑒0p𝑥q ” 1, 𝑒𝑘{2𝑛p𝑥q “

$

&

%

2
𝑛´1
2 , 𝑘´1

2𝑛 ď 𝑥 ă 𝑘
2𝑛 ,

´2
𝑛´1
2 , 𝑘

2𝑛 ď 𝑥 ă 𝑘`1
2𝑛 ,

0, otherwise.
𝑘 “ 1, . . . , 2𝑛 ´ 1, 𝑘 odd, 𝑛 ě 1,

k-1

2n

k

2n

k+1

2n

t

2
n-1

2

-2
n-1

2

Then p𝑒0, 𝑒 𝑘
2𝑛

q𝑘,𝑛 is a basis for 𝐿2pr0, 1sq. In particular,

𝑓 “ x 𝑓 , 𝑒0y `

8
ÿ

𝑛“0

2𝑛´1
ÿ

𝑘“1, 𝑘 𝑜𝑑𝑑

x 𝑓 , 𝑒𝑘{2𝑛y𝑒𝑘{2𝑛 , @ 𝑓 P 𝐿2pr0, 1sq.

(this formula is among the simplest wavelet reconstruction formula of a function 𝑓 ).

Proof. Orthonormality can be easily checked as exercise. Assume that 𝑓 K 𝑒0, 𝑒𝑘{2𝑛 for all 𝑘, 𝑛.
Notice first that

0 “ x 𝑓 , 𝑒𝑘{2𝑛y2 “ 2
𝑛´1
2

∫ 𝑘
2𝑛

𝑘´1
2𝑛

𝑓 p𝑥q 𝑑𝑥 ´ 2
𝑛´1
2

∫ 𝑘`1
2𝑛

𝑘
2𝑛

𝑓 p𝑥q 𝑑𝑥, ùñ

∫ 𝑘
2𝑛

𝑘´1
2𝑛

𝑓 p𝑥q 𝑑𝑥 “

∫ 𝑘`1
2𝑛

𝑘
2𝑛

𝑓 p𝑥q 𝑑𝑥.

Therefore

0 “ x 𝑓 , 𝑒0y2 “

∫ 1

0

𝑓 p𝑥q 𝑑𝑥 “ 2

∫ 1
2

0

𝑓 p𝑥q 𝑑𝑥 “ 4

∫ 1
4

0

𝑓 p𝑥q 𝑑𝑥 “ . . . “ 2𝑛
∫ 1

2𝑛

0

𝑓 p𝑥q 𝑑𝑥,

and again, by previous identity,
∫ 𝑘`1

2𝑛

𝑘
2𝑛

𝑓 p𝑥q 𝑑𝑥 “ 0 for every p𝑛, 𝑘q. By this it is easy to deduce that∫ 𝑏

𝑎

𝑓 p𝑥q 𝑑𝑥 “ 0, @𝑎, 𝑏 P

"

𝑘

2𝑛
: 𝑛 P N, 𝑘 P t0, 1, . . . , 2𝑛u

*

“: D,
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the set of dyadic numbers. Now, it is known (we accept it) that D is dense in r0, 1s. Therefore, the previous
identity extends to every 𝑎, 𝑏 P r0, 1s. It is now a standard job to conclude that

∫
𝐸
𝑓 “ 0 for every 𝐸 Ă r0, 1s

Lebesgue measurable, and by this the conclusion follows.

15.3. Gram–Schmidt orthogonalization algorithm

Does an orthonormal basis always exist? A first remark is the following: if 𝐻 has an orthonormal
basis then, the set

𝑆 :“

#

ÿ

𝑛

𝑞𝑛𝑒𝑛 : p𝑞𝑛q Ă Q

+

,

is countable (same cardinality of N) and every 𝑓 “ lim𝑛 𝑓𝑛 with p 𝑓𝑛q P 𝑆 (we skip the details). In other
words, there is a countable set 𝑆 Ă 𝐻 dense in 𝐻.

Definition 15.3.1

We say that a normed space p𝑉, } ¨ }q is separable if there exists a countable set 𝑆 dense in 𝑉 .

Thus, to admit an orthonormal basis, the space must be separable. This condition is also sufficient:

Theorem 15.3.2: (Gram–Schmidt)

Let p𝐻, x¨, ¨yq be a separable Hilbert space. Then, 𝐻 admits an orthonormal basis. This can be
constructed in the following way: if p𝑢𝑛q is any set of linearly independent vectors dense in 𝐻,
defining

(15.3.1) 𝑒0 :“
𝑢0

}𝑢0}
, 𝑒𝑛 “

𝑢𝑛 ´
ř𝑛´1
𝑗“0x𝑢𝑛, 𝑒 𝑗y𝑒 𝑗

›

›

›
𝑢𝑛 ´

ř𝑛´1
𝑗“0x𝑢𝑛, 𝑒 𝑗y𝑒 𝑗

›

›

›

, p𝑛 ě 1q,

we have that p𝑒𝑛q is an orthonormal basis for 𝐻.

Proof. First step. Since 𝐻 is separable, there exists a countable set p𝑢𝑛q dense in 𝐻. We define 𝑆 as
the set of finite linear combinations of 𝑢𝑛. It is clear that 𝑆 Ą p𝑢𝑛q, thus 𝑆 is dense in 𝐻 and also we can
eliminate 𝑢𝑛 who are linearly dependent from others obtaining the same 𝑆. In other words, we have that
there exists p𝑢𝑛q of linearly independent vectors such that

𝑆 “ tfinite linear combinations of p𝑢𝑛qu

is dense in 𝐻.
We now check that the definitions (15.3.1) are well posed and they are an orthonormal basis for 𝐻. We
argue by induction. For 𝑛 “ 0, 𝑒0 is well defined because 𝑢0 ‰ 0 (by linear independence of vectors of 𝑆).
Furthermore, Spanp𝑒0q “ Spanp𝑢0q. Assume now the check of good position and orthonormality has been
done on 𝑒0, . . . , 𝑒𝑛 and Spanp𝑒0, . . . , 𝑒𝑛q “ Spanp𝑢0, . . . , 𝑢𝑛q. Since 𝑈𝑛 “ Spanp𝑢0, . . . , 𝑢𝑛q is closed,
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orthogonal projection Π𝑈𝑛 is well defined and

Π𝑈𝑛 𝑓 “

𝑛
ÿ

𝑘“0

x 𝑓 , 𝑒𝑘y𝑒𝑘 .

Now, we claim that 𝑢𝑛`1 ´ Π𝑈𝑛𝑢𝑛`1 ‰ 0. If not, 𝑢𝑛`1 “ Π𝑈𝑛𝑢𝑛`1 “
ř𝑛
𝑘“0x𝑢𝑛`1, 𝑒𝑘y𝑒𝑘 P

Spanp𝑒0, . . . , 𝑒𝑛q “ Spanp𝑢0, . . . , 𝑢𝑛q. But this is is in contradiction with linear independence.
Thus }𝑢𝑛`1 ´ Π𝑈𝑛𝑢𝑛`1} ą 0 and vector 𝑒𝑛`1 is well defined. Clearly }𝑒𝑛`1} “ 1, and since
𝑒𝑛`19𝑢𝑛`1 ´Π𝑈𝑛𝑢𝑛`1 K 𝑈𝑛, we have that 𝑒𝑛`1 K Spanp𝑒0, . . . , 𝑒𝑛q, thus 𝑒0, . . . , 𝑒𝑛`1 are orthonormal.
Finally, Spanp𝑒0, . . . , 𝑒𝑛`1q “ Spanp𝑢0, . . . , 𝑢𝑛`1q. This proves that p𝑒𝑛q is an orthonormal system. To
check that it is also a basis for 𝐻 we apply the test for orthonormal bases provided by Proposition 15.2. Let
𝑓 P 𝐻 be such that x 𝑓 , 𝑒𝑛y “ 0 for every 𝑛. Since 𝑆 is dense in 𝐻, p𝑠𝑛q Ă 𝑆 such that 𝑠𝑛 ÝÑ 𝑓 . Since
𝑆 Ă Spanp𝑢𝑛q “ Spanp𝑒𝑛q, we have that x 𝑓 , 𝑠𝑛y “ 0 for every 𝑛. But then, letting 𝑛 ÝÑ `8, we have
x 𝑓 , 𝑓 y “ 0, that is } 𝑓 }2 “ 0, from which 𝑓 “ 0.

15.3.1. Hermite polynomials. 𝐿2pRq is a very common framework in many applied problems. In
this Section, we will compute an orthonormal basis for it. To attack the problem, we start by changing
slightly the setting by considering

𝐻 :“

#

𝑓 : R ÝÑ R :

∫
R

| 𝑓 p𝑥q|2
𝑒´ 𝑥2

2

?
2𝜋

𝑑𝑥 ă `8

+

“ 𝐿2pR,𝒩q,

that is the 𝐿2 space respect to the probability measure 𝑑𝒩 :“ 𝑒
´ 𝑥2

2
?
2𝜋

𝑑𝑥 called also standard gaussian.
𝐻 is an Hilbert space with scalar product and norm

x 𝑓 , 𝑔y :“

∫
R
𝑓 p𝑥q𝑔p𝑥q

𝑒´ 𝑥2

2

?
2𝜋

𝑑𝑥, } 𝑓 }2 “

∫
R

| 𝑓 p𝑥q|2
𝑒´ 𝑥2

2

?
2𝜋

𝑑𝑥.

We notice that,
1, 𝑥, 𝑥2, . . . , 𝑥𝑛, . . . P 𝐿2pR,𝒩q.

In general, the 𝑥𝑛 are not orthogonal because x𝑥𝑛, 𝑥𝑚y “
∫
R
𝑥𝑛`𝑚 𝑒

´ 𝑥2
2

?
2𝜋

𝑑𝑥 “ 0 iff 𝑛`𝑚 is odd. However,
we can apply the Gram-Schmidt algorithm to ”orthogonalize” powers. Set

𝑒𝑛 “
1

𝛼𝑛

˜

𝑥𝑛 ´

𝑛´1
ÿ

𝑗“0

x𝑥𝑛, 𝑒 𝑗y𝑒 𝑗

¸

“:
𝐻𝑛

}𝐻𝑛}
.

So, for instance

𝑒0 “ 1
𝛼0
1, 𝛼20 “

∫
R
𝑒

´
𝑦2

2
?
2𝜋

𝑑𝑦 “ 1,

𝑒1 “ 1
𝛼1

p𝑥 ´ x𝑥, 𝑒0y𝑒0q “ 1
𝛼1

˜

𝑥 ´
∫
R
𝑦 𝑒

´
𝑦2

2
?
2𝜋

𝑑𝑦

¸

“ 1
𝛼1
𝑥, 𝛼21 “

∫
R
𝑥2 𝑒

´ 𝑥2
2

?
2𝜋

𝑑𝑥 “ 1.
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Therefore 𝑒0p𝑥q ” 1, 𝑒1p𝑥q “ 𝑥. Again

𝑒2 “
1

𝛼2

`

𝑥2 ´ x𝑥2, 𝑒0y𝑒0 ´ x𝑥2, 𝑒1y𝑒1
˘

“
1

𝛼2

`

𝑥2 ´ x𝑥2, 1y𝑒0 ´ x𝑥2, 𝑥y𝑒1
˘

“
1

𝛼2
p𝑥2 ´ 1q.

The value of 𝛼2 is

𝛼22 “

∫
R

p𝑥2 ´ 1q2
𝑒´ 𝑥2

2

?
2𝜋

𝑑𝑥 “

∫
R
𝑥4
𝑒´ 𝑥2

2

?
2𝜋

𝑑𝑥 ´ 2

∫
R
𝑥2
𝑒´ 𝑥2

2

?
2𝜋

𝑑𝑥 `

∫
R

𝑒´ 𝑥2

2

?
2𝜋

𝑑𝑥 “ 3 ´ 2 ` 1 “ 2.

In conclusion 𝑒2p𝑥q “ 1?
2
p𝑥2 ´ 1q. It is clear that we can compute 𝑒3, 𝑒4, . . . in this way, but it looks

to be difficult to have a ”quick” recipe to compute 𝑒𝑛 for every 𝑛. To do this, notice first that the 𝐻𝑛 are
polynomials called Hermite polynomials. Precisely, 𝐻𝑛p𝑥q “ 𝑥𝑛 ` 𝑝𝑛´1p𝑥q, where 𝑝𝑛´1 is an 𝑛 ´ 1-th
degree polynomial. In particular, 𝐻𝑛 has degree “ 𝑛 and

Spanp𝐻0, ..., 𝐻𝑛q “ Spanp1, 𝑥, . . . , 𝑥𝑛q.

Furthermore, by construction 𝐻𝑛 K 𝐻𝑚, 𝑛 ‰ 𝑚. In particular,

𝐻𝑛 K Spanp𝐻0, ..., 𝐻𝑛´1q “ Spanp1, . . . , 𝑥𝑛´1q.

Let’s see how to determine more efficiently the 𝐻𝑛. The first step is the

Proposition 15.3.3

(15.3.2) 𝐻1
𝑛 “ 𝑛𝐻𝑛´1.

Proof. Notice that

𝐻1
𝑛 “ 𝑛𝑥𝑛´1 ` 𝑝1

𝑛´1 “ 𝑛𝐻𝑛´1 ` 𝑞𝑛´2 “ 𝑛𝐻𝑛´1 `

𝑛´2
ÿ

𝑗“0

𝑐 𝑗𝐻 𝑗 .

Now, multiplying both sides by 𝐻𝑘 in the scalar product, we obtain
x𝐻1

𝑛, 𝐻𝑘y “ 𝑛x𝐻𝑛´1, 𝐻𝑘y ` 𝑐𝑘}𝐻𝑘}2 “ 𝑐𝑘}𝐻𝑘}2, @𝑘 ď 𝑛 ´ 2.

On the other side

x𝐻1
𝑛, 𝐻𝑘y “

∫
R
𝐻1
𝑛𝐻𝑘

𝑒´ 𝑥2

2

?
2𝜋

𝑑𝑥
𝑝𝑎𝑟𝑡𝑠

“ ´

∫
R
𝐻𝑛p𝐻1

𝑘 ´ 𝑥𝐻𝑘q
𝑒´ 𝑥2

2

?
2𝜋

𝑑𝑥 “ x𝐻𝑛, 𝐻
1
𝑘 ´ 𝑥𝐻𝑘y “ 0,

because 𝐻1
𝑘

´ 𝑥𝐻𝑘 P Spanp1, 𝑥, . . . , 𝑥𝑛´1q if 𝑘 ď 𝑛 ´ 2. The moral is 𝑐𝑘 “ 0 for every 𝑘 “ 0, . . . , 𝑛 ´ 2,
from which the conclusion follows.

The (15.3.2) is not a good rule to compute 𝐻𝑛 because even if we know 𝐻𝑛´1 we should proceed with
an integration, which is not a problem being 𝐻𝑛´1 a polynomial but it involves a free constant to be
determined by other conditions. Notice that, in proving the previous Proposition we proved the integration
by parts formula

(15.3.3) x𝑝1, 𝑞y “ x𝑝, p𝑥𝑞 ´ 𝑞1qy, @𝑝, 𝑞 polynomials.
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Indeed,

x𝑝1, 𝑞y “
∫
R
𝑝1p𝑥q𝑞p𝑥q𝑒´ 𝑥2

2
𝑑𝑥?
2𝜋

“ ´
∫
R
𝑝p𝑥q

´

𝑞p𝑥q𝑒´ 𝑥2

2

¯1
𝑑𝑥?
2𝜋

“ ´
∫
R
𝑝p𝑥q p𝑞1p𝑥q ´ 𝑥𝑞p𝑥qq 𝑒´ 𝑥2

2
𝑑𝑥?
2𝜋

“ x𝑝, 𝑥𝑞 ´ 𝑞1y.

By this we obtain easily the

Proposition 15.3.4

(15.3.4) 𝐻𝑛`1 “ 𝑥𝐻𝑛 ´ 𝐻1
𝑛.

Proof. Consider the polynomial 𝑥𝐻𝑛 ´ 𝐻1
𝑛: we already proved that 𝑥𝐻𝑛 ´ 𝐻1

𝑛 K 𝐻𝑘 for 𝑘 ď 𝑛.
Hence, 𝑥𝐻𝑛 ´ 𝐻1

𝑛 K 𝑒𝑘 for 𝑘 ď 𝑛 and because this is an orthonormal base,
𝑥𝐻𝑛 ´ 𝐻1

𝑛 “ 𝑐𝑛`1𝑒𝑛`1 ” r𝑐𝑛`1𝐻𝑛`1.

Noticed that 𝑥𝐻𝑛 ´𝐻1
𝑛 “ 𝑥p𝑥𝑛 ` 𝑝𝑛´1q ´ p𝑥𝑛 ` 𝑝𝑛´1q1 “ 𝑥𝑛`1 ` p𝑥𝑝𝑛´1 ´𝑛𝑥𝑛´1 ´ 𝑝1

𝑛´1q ” 𝑥𝑛`1 ` 𝑝𝑛,
we deduce that r𝑐𝑛`1 “ 1.

By recurrence relation (15.3.4) we have, for instance,

𝐻3 “ 𝑥𝐻2 ´ 𝐻1
2 “ 𝑥p𝑥2 ´ 1q ´ 2𝑥 “ 𝑥3 ´ 3𝑥,

𝐻4 “ 𝑥𝐻3 ´ 𝐻1
3 “ 𝑥p𝑥3 ´ 3𝑥q ´ p3𝑥2 ´ 3q “ 𝑥4 ´ 6𝑥2 ` 3,

𝐻5 “ 𝑥𝐻4 ´ 𝐻1
4 “ 𝑥p𝑥4 ´ 6𝑥2 ` 3q ´ p4𝑥3 ´ 12𝑥q “ 𝑥5 ´ 10𝑥3 ` 15𝑥,

...

definitely much easier than rule (15.3.2). Let’s now compute the norm of 𝐻𝑛 to determine the scaling
factor of 𝑒𝑛. We have

}𝐻𝑛}2 “ x𝐻𝑛, 𝐻𝑛y “ x𝑥𝐻𝑛´1 ´ 𝐻1
𝑛´1, 𝐻𝑛y “ x𝐻𝑛´1, 𝑥𝐻𝑛y ´ x𝐻1

𝑛´1, 𝐻𝑛y

p15.3.3q
“ x𝐻𝑛´1, 𝑥𝐻𝑛y ´ x𝐻𝑛´1, 𝑥𝐻𝑛 ´ 𝐻1

𝑛y

p15.3.2q
“ 𝑛x𝐻𝑛´1, 𝐻𝑛´1y “ 𝑛}𝐻𝑛´1}2.

Therefore,
}𝐻𝑛}2 “ 𝑛}𝐻𝑛´1}2 “ 𝑛p𝑛 ´ 1q}𝐻𝑛´2}2 “ . . . “ 𝑛!}𝐻0}2 “ 𝑛!

In conclusion
ˆ

1
?
𝑛!
𝐻𝑛p𝑥q

˙

𝑛PN

is an orthonormal system for 𝐿2pR;𝒩p0, 1qq.

As a consequence,
ˆ

1
?
2𝜋𝑛!

𝐻𝑛p𝑥q𝑒´ 𝑥2

4

˙

𝑛

is an orthonormal system for 𝐿2pRq.

To verify that this is also an orthonormal basis, we will need Fourier transform.
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15.4. Exercises

Exercise 15.4.1 (˚˚). Discuss, in function of the real parameter 𝛼 ą 0, the convergence for the series
8
ÿ

𝑛“0

1

𝑛𝛼
cosp𝑛𝑥q

is 𝐿1pr0, 2𝜋sq and 𝐿2pr0, 2𝜋sq.

Exercise 15.4.2 (˚˚). Let 𝐻 :“ 𝐿2pr0,`8rq equipped with usual real scalar product. Define

𝑒𝑛p𝑥q :“
?
𝑛1r𝑛,𝑛` 1

𝑛
sp𝑥q.

i) Discuss point-wise convergence and 𝐻 convergence of p𝑒𝑛q.
ii) Is p𝑒𝑛q an orthonormal system? Is it a basis for 𝐻?

Exercise 15.4.3 (˚). Let 𝐻 be a Hilbert space, p𝑒𝑛q an orthonormal system such that the Parseval identity
holds,

} 𝑓 }2 “

8
ÿ

𝑛“0

|x 𝑓 , 𝑒𝑛y|2, @ 𝑓 P 𝐻.

Can we say that p𝑒𝑛q is an orthonormal basis for 𝐻?

Exercise 15.4.4 (˚). Let 𝐻 “ 𝐿2pr0, 1sq equipped with usual scalar product. Accepting that 𝑒0p𝑥q ” 1,
𝑒𝑛p𝑥q “

?
2 cosp𝑛𝜋𝑥q is an orthonormal basis for 𝐻, apply the Parseval identity to

𝑓 p𝑥q :“ 𝑥1r0,1{2sp𝑥q ` p1 ´ 𝑥q1s1{2,1sp𝑥q,

to prove that
𝜋2

8
“

8
ÿ

𝑘“0

1

p2𝑘 ` 1q2
.

Exercise 15.4.5 (˚). On 𝐻 “ 𝐿2pr0, 1sq equipped with the usual scalar product, apply the Gram-Schmidt
algorithm to 𝑣𝑛p𝑥q :“ 𝑥𝑛 𝑛 P N, to compute 𝑒0, . . . , 𝑒4.

Exercise 15.4.6 (˚˚). On 𝐻 :“ t 𝑓 P 𝐿pr´1, 1sq :
∫ 1

´1

| 𝑓 p𝑥q|2
?
1´𝑥2

𝑑𝑥 ă `8u we define the scalar product

x 𝑓 , 𝑔y :“

∫ 1

´1

𝑓 p𝑥q𝑔p𝑥q
?
1 ´ 𝑥2

𝑑𝑥.

We accept this is well defined, a scalar product on 𝐻 (with weak vanishing) and p𝐻, x¨, ¨yq is a Hilbert
space.

i) Define 𝑇𝑛p𝑥q :“ cos p𝑛 arccos 𝑥q. Find p𝑐𝑛q Ă R such that p𝑐𝑛𝑇𝑛q be an orthonotmal system.
ii) Compute 𝑇0 and 𝑇1, and prove that 𝑇𝑛`1 “ 2𝑥𝑇𝑛 ´ 𝑇𝑛´1. Conclude that 𝑇𝑛 are polynomials.

iii) Let 𝐺p𝑡, 𝑥q “
ř8
𝑛“0 𝑇𝑛p𝑥q𝑡𝑛. Check that the series is convergent for |𝑡| ă 1 and use the

recurrence relation to prove that

𝐺p𝑡, 𝑥q “
1 ´ 𝑡𝑥

1 ´ 2𝑡𝑥 ` 𝑡2
, @p𝑡, 𝑥q P r´1, 1s ˆ r´1, 1s.
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Exercise 15.4.7 (˚˚˚). Let 𝐻 be a Hilbert space, p𝑒𝑛q an orthonormal basis. Let p r𝑒𝑛q be another
orthonormal system. Check that if

p‹q

8
ÿ

𝑛“0

}𝑒𝑛 ´ r𝑒𝑛}2 ă `8

then also pr𝑒𝑛q is an orthonormal basis for 𝐻.

Exercise 15.4.8 (Legendre polynomials (˚˚`)). Let 𝐻 :“ 𝐿2pr´1, 1sq and 𝑣𝑛 :“ 𝑥𝑛, 𝑛 “ 0, 1, 2, . . ..
i) Applying the Gram–Schmidt algorithm to p𝑣𝑛q𝑛, compute 𝑒0, 𝑒1, 𝑒2, 𝑒3.

ii) Let 𝑝0p𝑥q “ 1, 𝑝𝑛p𝑥q “ 1
2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
p𝑥2 ´ 1q𝑛. Show that x𝑝𝑛, 𝑝𝑚y “ 0 if 𝑛 ‰ 𝑚.

iii) Compute }𝑝𝑛}2.

Exercise 15.4.9 (˚˚`). Let 𝐻 be a separable infinite-dimensional Hilbert space. Show that there is
no “Lebesgue measure” on 𝐻; that is, there is no measure 𝜇 on the Borel 𝜎-algebra of 𝐻 such that
(i) 𝜇 is finite on bounded sets, and (ii) 𝜇 is translation-invariant. (hint. Let p𝑒𝑛q be an orthonormal
basis and choose 𝑟 ą 0 small enough so that the balls 𝐵p𝑒𝑛, 𝑟q are pairwise disjoint. Consider the set
𝐸 :“

Ť8
𝑛“1 𝐵p𝑒𝑛, 𝑟s.Use translation invariance and finiteness on bounded sets to derive a contradiction.)





LECTURE 16

Classical Fourier Series

Classical Fourier Series arise from a very natural problem: is it always possible to represent any
𝑇´periodic function as a (possibly infinite) linear combination of elementary 𝑇´periodic functions?
This Lecture discusses about this problem. As we will see, a natural way to look at this problem is the
language of orthonormal bases we introduced in previous Lecture.

16.1. 𝐿2 convergence

Let 𝑓 be an arbitrary 𝑇´periodic function 𝑓 : R ÝÑ R (that is, 𝑓 p𝑥 ` 𝑇q “ 𝑓 p𝑥q for every 𝑥 P R).
Classical examples of such a function are the fundamental harmonics

sin

ˆ

2𝜋

𝑇
𝑛𝑥

˙

, cos

ˆ

2𝜋

𝑇
𝑛𝑥

˙

, 𝑛 P N.

For an arbitrary 𝑓 we ask whether it is possible to determine coefficients 𝑎𝑛, 𝑏𝑛 such that

𝑓 p𝑥q “

8
ÿ

𝑛“0

ˆ

𝑎𝑛 cos

ˆ

2𝜋

𝑇
𝑛𝑥

˙

` 𝑏𝑛 sin

ˆ

2𝜋

𝑇
𝑛𝑥

˙˙

“ 𝑎0 `

8
ÿ

𝑛“1

ˆ

𝑎𝑛 cos

ˆ

2𝜋

𝑇
𝑛𝑥

˙

` 𝑏𝑛 sin

ˆ

2𝜋

𝑇
𝑛𝑥

˙˙

.

The series on the right-hand side are called trigonometric series. This problem has a natural formulation
in Hilbert space theory. Let us see how. The first step is to rearrange the form of a trigonometric series.
Recalling the Euler identities

(16.1.1) cos 𝜃 “
𝑒𝑖 𝜃 ` 𝑒´𝑖 𝜃

2
, sin 𝜃 “

𝑒𝑖 𝜃 ´ 𝑒´𝑖 𝜃

2𝑖
,

after straightforward calculations, we can write

𝑎0 `
ř8
𝑛“1

`

𝑎𝑛 cos
`

2𝜋
𝑇
𝑛𝑥
˘

` 𝑏𝑛 sin
`

2𝜋
𝑇
𝑛𝑥
˘˘

“ 𝑎0 `
ř8
𝑛“1

´

𝑎𝑛´𝑖𝑏𝑛
2 𝑒𝑖

2𝜋
𝑇
𝑛𝑥 `

𝑎𝑛`𝑖𝑏𝑛
2 𝑒´𝑖 2𝜋

𝑇
𝑛𝑥
¯

“
ř

𝑛PZ 𝑐𝑛𝑒
𝑖 2𝜋
𝑇
𝑛𝑥 .

Notice that we can pass from real form to complex form and vice-versa according to rules

𝑐𝑛 “

$

&

%

𝑎0, 𝑛 “ 0,
𝑎𝑛´𝑖𝑏𝑛

2 , 𝑛 ě 1,
𝑎´𝑛`𝑖𝑏´𝑛

2 , 𝑛 ď ´1,

𝑎𝑛 “

"

𝑐0, 𝑛 “ 0,
𝑎𝑛 “ 2Rep𝑐𝑛q, 𝑛 ě 1,

𝑏𝑛 “

"

0, 𝑛 “ 0,
𝑏𝑛 “ ´2Imp𝑐𝑛q, 𝑛 ě 1.

We call trigonometric series a series of the form
ÿ

𝑛PZ

𝑐𝑛𝑒
𝑖 2𝜋
𝑇
𝑛𝑥 , p𝑐𝑛q𝑛PZ Ă C.

115
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Functions 𝑒𝑛p𝑥q :“ 𝑒𝑖
2𝜋
𝑇
𝑛𝑥 are also called characters.

Proposition 16.1.1

Let 𝐻 :“ 𝐿2
C

pr0, 𝑇sq be equipped with hermitian product

x 𝑓 , 𝑔y :“
1

𝑇

∫ 𝑇
0
𝑓 p𝑥q𝑔p𝑥q 𝑑𝑥.

Then p𝑒𝑛q𝑛PZ is an orthonormal system in 𝐿2pr0, 𝑇sq.

Proof. It is just a simple calculation:

x𝑒𝑛, 𝑒𝑚y “
1

𝑇

∫ 𝑇
0

𝑒𝑖
2𝜋
𝑇
𝑛𝑥𝑒𝑖

2𝜋
𝑇
𝑚𝑥 𝑑𝑥 “

1

𝑇

∫ 𝑇
0

𝑒𝑖
2𝜋
𝑇

p𝑛´𝑚q𝑥 𝑑𝑥 “

$

’

’

’

&

’

’

’

%

1
𝑇

∫𝑇
0
1 𝑑𝑥 “ 1, 𝑚 “ 𝑛,

1
𝑇

„

𝑒
𝑖 2𝜋
𝑇

p𝑛´𝑚q𝑥

𝑖 2𝜋
𝑇

p𝑛´𝑚q

ȷ𝑥“𝑇

𝑥“0

“ 0, 𝑚 ‰ 𝑚.

So, the identity
𝑓 “

ÿ

𝑛PZ

𝑐𝑛𝑒𝑛

becomes true in 𝐿2
C

pr0, 𝑇sq once we prove that p𝑒𝑛q𝑛PZ is an orthonormal basis. This is true, however the
proof is long and non trivial, and in fact consists showing directly that any 𝑓 is sum of its abstract Fourier
series. We will omit this proof here:

Theorem 16.1.2

The set of characters 𝑒𝑛p𝑥q :“ 𝑒𝑖
2𝜋
𝑇
𝑛𝑥 , 𝑛 P Z, is an orthonormal basis for 𝐿2

C
pr0, 𝑇sq. Thus, in

particular,

(16.1.2) 𝑓
𝐿2

“
ÿ

𝑛PZ

p𝑓 p𝑛q𝑒𝑛,

where

(16.1.3) p𝑓 p𝑛q “ x 𝑓 , 𝑒𝑛y “
1

𝑇

∫ 𝑇
0
𝑓 p𝑥q𝑒´𝑖 2𝜋

𝑇
𝑛𝑥 𝑑𝑥, 𝑛 P Z.

Identity (16.1.2) holds in 𝐿2 sense. This doesn’t necessarily mean that

𝑓 p𝑥q “
ÿ

𝑛PZ

p𝑓 p𝑛q𝑒𝑖
2𝜋
𝑇
𝑛𝑥 , @𝑥 P r0, 𝑇s.

This because, as well known, 𝐿2 convergence does not imply point-wise convergence. More precisely:
the infinite sum

ř

𝑛PZ
p𝑓 p𝑛q𝑒𝑛 is a.e. equal to 𝑓 . But when we take finite sums 𝑠𝑁 :“

ř

|𝑛|ď𝑁
p𝑓 p𝑛q𝑒𝑛,

we cannot say that 𝑠𝑁 p𝑥q ÝÑ 𝑓 p𝑥q a.e. 𝑥. Infact, there are examples for which it may happen that
𝑠𝑁 is never point-wise convergent. These are quite ”exotic” examples, however with some regularity
requirement on 𝑓 , the point wise convergence holds. Let’s see a couple of examples.
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Example 16.1.3: (square wave ˚)

Determine the FS of

𝑓 p𝑥q :“

$

&

%

0, 𝑥 P r0, 𝜋r,

1, 𝑥 P r𝜋, 2𝜋r,

Proof. We have

p𝑓 p𝑛q “
1

2𝜋

∫ 2𝜋

𝜋

𝑒´𝑖𝑛𝑥 𝑑𝑥 “

$

’

’

’

’

&

’

’

’

’

%

1

2𝜋

∫ 2𝜋

𝜋

𝑑𝑥 “
1

2
, 𝑛 “ 0,

1

2𝜋

„

𝑒´𝑖𝑛𝑥

´𝑖𝑛

ȷ𝑥“2𝜋

𝑥“𝜋

“
1

2𝜋

1 ´ 𝑒´𝑖𝑛𝜋

´𝑖𝑛
“ 𝑖

1 ´ p´1q𝑛

2𝑛𝜋
, 𝑛 ‰ 0.

Therefore the Fourier series for 𝑓 is

1

2
`

ÿ

𝑛PZzt0u

𝑖
1 ´ p´1q𝑛

2𝑛𝜋
𝑒𝑖𝑛𝑥 “

1

2
`

ÿ

𝑘PZ

𝑖

p2𝑘 ` 1q𝜋
𝑒𝑖p2𝑘`1q𝑥 “

1

2
´

8
ÿ

𝑘“1

2

p2𝑘 ` 1q𝜋
sinpp2𝑘 ` 1q𝑥q.

It is interesting to plot some graphs of partial sums of the series and to compare it with the graph of 𝑓 .
Here’s the case of the partial sum of previous series of the first 5,20 and 100 terms respectively.

Π 2 Π

1

2

1

Π 2 Π

1

2

1

Π 2 Π

1

2

1

The picture seems to indicate at least a pointwise convergence for 𝑥 P r0, 2𝜋s except in the discontinuity
points of 𝑓 (that is on 𝑥 “ 0, 𝜋, 2𝜋). For example, if 𝑥 “ 𝜋, the point-wise evaluation of the sum leads to

1

2
´

8
ÿ

𝑘“1

2

p2𝑘 ` 1q𝜋
sinpp2𝑘 ` 1q𝜋q “

1

2
´

8
ÿ

𝑘“1

2

p2𝑘 ` 1q𝜋
¨ 0 “

1

2
‰ 𝑓 p𝜋q “ 1.

Remark 16.1.4: p˚q

The previous Example shows a remarkable application of the Parseval identity. According to this
identity,

} 𝑓 }22 “
ÿ

𝑛PZ

| p𝑓 p𝑛q|2 “
1

4
`

ÿ

𝑛 𝑜𝑑𝑑

ˇ

ˇ

ˇ

ˇ

𝑖
1

𝑛𝜋

ˇ

ˇ

ˇ

ˇ

2

“
1

4
`

2

𝜋2

8
ÿ

𝑘“0

1

p2𝑘 ` 1q2
,

and since } 𝑓 }22 “ 1
2𝜋

∫ 2𝜋
0

| 𝑓 p𝑥q|2 𝑑𝑥 “ 1
2𝜋

∫ 2𝜋
𝜋

1 𝑑𝑥 “ 1
2 , we get

𝜋2

8
“

8
ÿ

𝑘“0

1

p2𝑘 ` 1q2
.
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Now, since
8
ÿ

𝑛“1

1

𝑛2
“

8
ÿ

𝑘“1

1

p2𝑘q2
`

8
ÿ

𝑘“0

1

p2𝑘 ` 1q2
“

1

4

8
ÿ

𝑘“1

1

𝑘2
`

8
ÿ

𝑘“0

1

p2𝑘 ` 1q2
,

we obtain the remarkable harmonic sum
8
ÿ

𝑛“1

1

𝑛2
“

4

3

8
ÿ

𝑘“0

1

p2𝑘 ` 1q2
“
𝜋2

6
. □

Example 16.1.5: (triangular wave ˚)

Determine the FS of

𝑓 p𝑥q :“

$

&

%

𝑥, 𝑥 P r0, 𝜋r,

2𝜋 ´ 𝑥, 𝑥 P r𝜋, 2𝜋r.

Proof. By definition,
p𝑓 p0q “

1

2𝜋

∫ 2𝜋

0

𝑓 p𝑥q 𝑑𝑥 “
1

2𝜋

2𝜋2

2
“
𝜋

2
,

while, as 𝑛 ‰ 0, integrating by parts,

p𝑓 p𝑛q “
1

2𝜋

∫ 2𝜋

0

𝑓 p𝑥q𝑒´𝑖𝑛𝑥 𝑑𝑥 “
1

2𝜋

ˆ∫ 𝜋

0

𝑥𝑒´𝑖𝑛𝑥 𝑑𝑥 `

∫ 2𝜋

𝜋

p2𝜋 ´ 𝑥q𝑒´𝑖𝑛𝑥 𝑑𝑥

˙

“
1

2𝜋

˜

„

𝑥
𝑒´𝑖𝑛𝑥

´𝑖𝑛

ȷ𝑥“𝜋

𝑥“0

´

∫ 𝜋

0

𝑒´𝑖𝑛𝑥

´𝑖𝑛
𝑑𝑥 `

„

p2𝜋 ´ 𝑥q
𝑒´𝑖𝑛𝑥

´𝑖𝑛

ȷ𝑥“2𝜋

𝑥“𝜋

`

∫ 2𝜋

𝜋

𝑒´𝑖𝑛𝑥

´𝑖𝑛
𝑑𝑥

¸

“
1

2𝜋

˜

𝑖
p´1q𝑛𝜋

𝑛
`

1

𝑖𝑛

„

𝑒´𝑖𝑛𝑥

´𝑖𝑛

ȷ𝑥“𝜋

𝑥“0

´ 𝑖
p´1q𝑛𝜋

𝑛
´

1

𝑖𝑛

„

𝑒´𝑖𝑛𝑥

´𝑖𝑛

ȷ𝑥“2𝜋

𝑥“𝜋

¸

“
1

2𝜋

ˆ

1

𝑛2
pp´1q𝑛 ´ 1q ´

1

𝑛2
p1 ´ p´1q𝑛q

˙

“
p´1q𝑛 ´ 1

𝜋𝑛2
.

Therefore the Fourier series is
𝜋

2
`

ÿ

𝑛‰0

p´1q𝑛 ´ 1

𝜋𝑛2
𝑒𝑖𝑛𝑥 “

𝜋

2
´

2

𝜋

ÿ

𝑘PZ

1

p2𝑘 ` 1q2
𝑒𝑖p2𝑘`1q𝑥 .

For the real form we have 𝑎0 “ 𝜋
2 , 𝑎𝑛 “ 2 Re p p𝑓 p𝑛qq “ 2

p´1q𝑛´1

𝜋𝑛2
whereas 𝑏𝑛 “ ´2 Im p p𝑓 p𝑛qq “ 0 for

any 𝑛 ě 1. Therefore the real form is

𝜋

2
´

4

𝜋

8
ÿ

𝑘“0

1

p2𝑘 ` 1q2
cospp2𝑘 ` 1q𝑥q.

Also in this case let’s see some plots of partial sums. The next picture shows sums of 1,4,15 terms
respectively.
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Π 2 Π

Π

Π 2 Π

Π

Π 2 Π

Π

Here we clearly see that the approximation appears to converge to 𝑓 pointwise, and even uniformly.
Moreover, it seems much “better” than in the previous example. This indicates that regularity plays an
important role in the rate of convergence. Finally, if—as it appears—the sum of the series is 𝑓 p𝑥q for every
𝑥, then by taking 𝑥 “ 0 we obtain the remarkable identity

0 “
𝜋

2
´

4

𝜋

8
ÿ

𝑘“0

1

p2𝑘 ` 1q2
, ðñ

𝜋2

8
“

8
ÿ

𝑘“0

1

p2𝑘 ` 1q2
.

16.2. Uniform convergence

The examples shown in the previous section suggest that pointwise convergence holds, provided that
𝑓 is regular enough. This is a consequence of the following important fact: the higher is the regularity
of 𝑓 , the faster Fourier coefficients decay to 0 as 𝑛 ÝÑ ˘8. As we will see, this implies stronger
convergence of the FS. As a general remark, we notice that

| p𝑓 p𝑛q| ď
1

𝑇

∫ 𝑇
0

| 𝑓 p𝑥q| 𝑑𝑥
𝐶𝑆
ď

1

𝑇

ˆ∫ 𝑇
0

1 𝑑𝑥

˙1{2ˆ∫ 𝑇
0

| 𝑓 p𝑥q|2 𝑑𝑥

˙1{2

“

ˆ

1

𝑇

∫ 𝑇
0

| 𝑓 |2
˙1{2

“ } 𝑓 }2.

This bound shows that | p𝑓 p𝑛q| is always bounded in 𝑛. With some extra regularity than simple 𝐿2

measurability, we can get much more:

Proposition 16.2.1

Let 𝑓 P 𝒞
𝑘pr0, 𝑇sq, 𝑓 p 𝑗qp0q “ 𝑓 p 𝑗qp𝑇q, 𝑗 “ 0, 1, 2, . . . , 𝑘 ´ 1. then

(16.2.1) y𝑓 p𝑘qp𝑛q “

ˆ

𝑖
2𝜋

𝑇
𝑛

˙𝑘

p𝑓 p𝑛q, @𝑛 P Z.

In particular

(16.2.2) | p𝑓 p𝑛q| ď
𝐶} 𝑓 p𝑘q}8

|𝑛|𝑘
.

Proof. We limit to the case 𝑓 P 𝒞
1 with 𝑓 p0q “ 𝑓 p𝑇q (the general case follows similarly). Integrating

by parts we have

p𝑓 1p𝑛q “
1

𝑇

∫ 𝑇
0

𝑓 1p𝑥q𝑒´𝑖 2𝜋
𝑇
𝑛𝑥 𝑑𝑥 “

1

𝑇

ˆ

”

𝑓 p𝑥q𝑒´𝑖 2𝜋
𝑇
𝑛𝑥
ı𝑥“𝑇

𝑥“0
´

∫ 𝑇
0

𝑓 p𝑥q

ˆ

´𝑖
2𝜋

𝑇
𝑛

˙

𝑒´𝑖 2𝜋
𝑇
𝑛𝑥 𝑑𝑥

˙

“
1

𝑇

ˆ

𝑓 p𝑇q𝑒´𝑖2𝜋𝑛 ´ 𝑓 p0q ` 𝑖
2𝜋

𝑇
𝑛

∫ 𝑇
0

𝑓 p𝑥q𝑒´𝑖 2𝜋𝑛
𝑇
𝑥 𝑑𝑥

˙

“ 𝑖
2𝜋

𝑇
𝑛 p𝑓 p𝑛q.
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This proves the (16.2.1) for 𝑘 “ 1. Moreover, for 𝑛 ‰ 0,

| p𝑓 p𝑛q| “
𝐶

|𝑛|
| p𝑓 1p𝑛q|

and since

| p𝑓 1p𝑛q| ď
1

𝑇

∫ 𝑇
0

ˇ

ˇ

ˇ
𝑓 1p𝑥q𝑒´𝑖 2𝜋

𝑇
𝑛𝑥
ˇ

ˇ

ˇ
𝑑𝑥 ď

1

𝑇

∫ 𝑇
0

} 𝑓 1}8 𝑑𝑥 “ } 𝑓 1}8,

we finally have

| p𝑓 p𝑛q| ď
𝐶} 𝑓 1}8

|𝑛|
, @𝑛 ‰ 0.

The fast decay of Fourier coefficients has implications on the way the FS converges.

Corollary 16.2.2

Let 𝑓 P 𝒞
2pr0, 𝑇sq, 𝑓 p 𝑗qp𝑇q “ 𝑓 p 𝑗qp0q, 𝑗 “ 0, 1. Then, the FS of 𝑓 converges uniformly to 𝑓 .

Proof. First step: FS converges uniformly. Let 𝑠𝑁 :“
ř

|𝑛|ď𝑁
p𝑓 p𝑛q𝑒𝑛 be the 𝑁´th partial sum.

Clearly p𝑠𝑁 q Ă 𝒞pr0, 𝑇sq. We claim that p𝑠𝑁 q is convergent in } ¨ }8 norm. To this aim, we apply the
Weierstrass test: since }𝑒𝑛}8 “ max𝑥Pr0,𝑇s |𝑒𝑖

2𝜋
𝑇
𝑛𝑥 | “ 1, we have

ÿ

𝑛

} p𝑓 p𝑛q𝑒𝑛}8 “
ÿ

𝑛

| p𝑓 p𝑛q|}𝑒𝑛}8 “
ÿ

𝑛

| p𝑓 p𝑛q|.

By the assumptions on 𝑓 and the bound (16.2.2), we have

| p𝑓 p𝑛q| ď
𝐶} 𝑓 2}8

|𝑛|2
, 𝑛 ‰ 0,

so
ÿ

𝑛

} p𝑓 p𝑛q𝑒𝑛}8 ď | p𝑓 p0q| `
ÿ

𝑛

𝐾

|𝑛|2
ă `8.

Therefore, the Weierstrass test applies and we have the conclusion.
Second step: FS converges to 𝑓 . By the first step we know there exists 𝑔 P 𝒞pr0, 𝑇sq such that

𝑠𝑁
}¨}8
ÝÑ 𝑔.

Moreover, we already know that 𝑠𝑁
}¨}2
ÝÑ 𝑓 . We claim 𝑓 ” 𝑔 on r0, 𝑇s. Indeed, by the former we know

that there exists a subsequence p𝑠𝑁𝑘 q such that 𝑠𝑁𝑘 ÝÑ 𝑓 a.e.. Since 𝑠𝑁𝑘
}¨}8
ÝÑ 𝑔, in particular 𝑠𝑁𝑘 ÝÑ 𝑔

pointwise on r0, 𝑇s. Thus 𝑓 “ 𝑔 a.e.. But both 𝑓 and 𝑔 are continuous functions ( 𝑓 by hypothesis, 𝑔 being
the uniform limit of continuous functions), thus 𝑓 ” 𝑔 on r0, 𝑇s, and the proof is complete.

Remark 16.2.3

The two arguments in the previous proof are essentially independent of one another. In particular,
the second argument shows that once we know that the FS of 𝑓 P 𝒞 converges uniformly (in the
} ¨ }8 norm), then it necessarily converges to 𝑓 itself.
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The previous result is quite demanding on 𝑓 . There are weaker versions of it with mild assumptions on
𝑓 . For our purposes in this course, the previous corollary is sufficient.

16.3. Exercises

Exercise 16.3.1 (˚). Let 𝑓 p𝑥q :“ 𝑥p1 ´ 𝑥q, 𝑥 P r0, 1s. Compute the 𝐿2pr0, 1sq FS of 𝑓 and discuss its
convergence in 𝐿8pr0, 1sq. Is the FS also point-wise convergent? If yes, what is the point-wise limit?

Exercise 16.3.2 (˚). Let 𝑓 p𝑥q “ 𝑥, 𝑥 P r´𝜋, 𝜋s. Compute the FS of 𝑓 . Use this series to prove (once
more!) the formula 𝜋2

6 “
ř8
𝑛“1

1
𝑛2

.

Exercise 16.3.3 (˚). Let 𝑓 p𝑥q “ 𝑥2, 𝑥 P r´𝜋, 𝜋s. Compute the FS of 𝑓 . Is the FS uniformly convergent?
Use this FS to compute the value of the sum

ř8
𝑛“1

1
𝑛4

.

Exercise 16.3.4 (˚˚). Use the FS of 𝑓 p𝑥q “ | sin 𝑥| on r´𝜋, 𝜋s to determine a ”cosine series” for sin 𝑥
for 𝑥 P r0, 𝜋s, that is a representation of the form

sin 𝑥 “

8
ÿ

𝑛“0

𝑏𝑛 cosp𝑛𝑥q, 𝑥 P r0, 𝜋s.

Discuss carefully for which values of 𝑥 such identity holds.

Exercise 16.3.5 (˚˚). Let 𝑓 p𝑥q “ cosh 𝑥, 𝑥 P r´𝜋, 𝜋s. Compute the FS of 𝑓 and discuss whether it
converges to 𝑓 or not on r´𝜋, 𝜋s. Use this FS to compute the value of the sum

ř8
𝑛“0

1
𝑛2`1

.

Exercise 16.3.6 (˚˚`). Let 𝑏 P r0, 1s be fixed and set 𝑓𝑏p𝑥q :“ mint𝑥, 𝑏u, 𝑥 P r0, 1s.
i) Compute the 𝐿2pr0, 1sq FS of 𝑓𝑏. Is 𝑓𝑏 the sum of its FS? Is the FS uniformly convergent to 𝑓𝑏?

ii) Deduce, by i), the formula

mint𝑥, 𝑦u “
4

𝜋2

8
ÿ

𝑛“0

1

p2𝑛 ` 1q2

ˆ

sin

ˆ

𝑛 `
1

2

˙

𝜋𝑥

˙ˆ

sin

ˆ

𝑛 `
1

2

˙

𝜋𝑦

˙

.

Exercise 16.3.7 (˚˚). Let 𝑓 P 𝐿2Rpr0, 2𝑇sq be such that 𝑓 p𝑥 `𝑇q “ ´ 𝑓 p𝑥q a.e. What can you deduce on
the Fourier coefficients for the real form of the FS?

Exercise 16.3.8 (˚˚`). Let 𝑓 , 𝑔 P 𝐿2pr0, 𝑇sq. We define convolution product of 𝑓 and 𝑔 the function

p 𝑓 ˚ 𝑔qp𝑥q :“
1

𝑇

∫ 𝑇
0
𝑓 p𝑥 ´ 𝑦q𝑔p𝑦q 𝑑𝑦.

i) Prove that the convolution is well defined and it belongs to 𝐿2pr0, 𝑇sq, proving a Young inequality
for } 𝑓 ˚ 𝑔}2.

ii) Check that z𝑓 ˚ 𝑔p𝑛q “ p𝑓 p𝑛qp𝑔p𝑛q, for every 𝑛 P Z.

Exercise 16.3.9 (˚˚). Let 𝑓 P 𝐿2pr0, 𝑇sq be such that
ÿ

𝑛

|𝑛 p𝑓 p𝑛q| ă `8.

Prove that the FS of 𝑓 is uniformly convergent.





LECTURE 17

𝐿1 Fourier Transform

In previous Lecture we have seen that, if 𝑓 P 𝐿2pr0, 𝑇sq, then

(17.0.1) 𝑓 p𝑥q
𝐿2

“
ÿ

𝑛PZ

p𝑓 p𝑛q𝑒𝑖
2𝜋𝑛
𝑇
𝑥 .

This formula has remarkable applications in signal processing, especially with sound signals that exhibit
a periodic behavior. Since the r.h.s. is just a 𝑇´periodic function, the period r0, 𝑇s can be any interval
of length 𝑇 , as for example r´𝑇

2 ,
𝑇
2 s. In particular then,

p𝑓 p𝑛q “
1

𝑇

∫ 𝑇{2

´𝑇{2
𝑓 p𝑦q𝑒´𝑖 2𝜋𝑛

𝑇
𝑥 𝑑𝑦,

and

𝑓 p𝑥q “
ÿ

𝑛PZ

p𝑓 p𝑛q𝑒𝑖
2𝜋𝑛
𝑇
𝑥 “

ÿ

𝑛PZ

˜

1

𝑇

∫ 𝑇{2

´𝑇{2
𝑓 p𝑦q𝑒´𝑖 2𝜋𝑛

𝑇
𝑦 𝑑𝑦

¸

𝑒𝑖
2𝜋𝑛
𝑇
𝑥

Now, suppose 𝑇 “ 2𝜋𝑁 with 𝑁 ÝÑ `8. Introducing points 𝜉𝑛 :“ 𝑛
𝑁

, 𝑛 P Z as a subdivision of R in
such a way that 𝑑𝜉𝑛 “ 𝜉𝑛`1 ´ 𝜉𝑛 “ 1

𝑁
we would have

𝑓 p𝑥q “
ÿ

𝑛PZ

ˆ

1

2𝜋

∫ 𝜋𝑁

´𝜋𝑁

𝑓 p𝑦q𝑒´𝑖 𝜉𝑛𝑦 𝑑𝑦

˙

𝑒𝑖 𝜉𝑛𝑥 𝑑𝜉𝑛 ÝÑ
1

2𝜋

∫ `8

´8

ˆ∫ `8

´8

𝑓 p𝑦q𝑒´𝑖 𝜉 𝑦 𝑑𝑦

˙

𝑒𝑖 𝜉 𝑥 𝑑𝜉.

The integral

(17.0.2) p𝑓 p𝜉q “

∫
R
𝑓 p𝑦q𝑒´𝑖 𝜉 𝑦 𝑑𝑦

is called Fourier Transform of 𝑓 and the previous formula suggests that

(17.0.3) 𝑓 p𝑥q “
1

2𝜋
x

x𝑓 p´𝑥q.

The (17.0.3) is the analogous of (17.0.1) and it suggests that 𝑓 P 𝐿2ps ´ 8,`8rq can be ”reconstructed”
from its Fourier Transform. Of course, our argument was very informal. The scope of this and next
chapters is to introduce the FT in a rigorous way, and see when formula (17.0.3), also named inversion
formula, holds true.

123
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17.1. Definition and first examples

A first problem with (17.0.2) is that the natural condition on 𝑓 ensuring its well position is 𝑓 P 𝐿1pRq

and not 𝑓 P 𝐿2pRq. Indeed,∫
R

| 𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥| 𝑑𝑥 “

∫
R

| 𝑓 p𝑥q| 𝑑𝑥 ă `8, ðñ 𝑓 P 𝐿1pRq.

We introduce now the

Definition 17.1.1

Let 𝑓 P 𝐿1pRq. The function

(17.1.1) p𝑓 p𝜉q :“

∫
R
𝑓 p𝑦q𝑒´𝑖 𝜉 𝑦 𝑑𝑦, 𝜉 P R

is called Fourier Transform (FT) of 𝑓

Warning 17.1.2

In the literature, there are slightly different definitions of FT. The mathematicians FT is defined as

p𝑓 p𝜉q :“

∫
R
𝑓 p𝑦q𝑒´𝑖2𝜋 𝜉 𝑦 𝑑𝑦.

Basically, respect to our definition, it changes 𝜉 with 2𝜋𝜉. The advantage with this definition
is that inversion formula (17.0.3) becomes slightly easier, 𝑓 p𝑥q “

x

x𝑓 p´𝑥q. Furthermore, with
mathematicians definition, the 𝐿2 Fourier-Plancherel Transform becomes a true isometry (see
Lecture on 𝐿2 FT). On the other hand, the presence of fact 2𝜋 complicates formulas and make
them a bit more difficult to memorize.
In Probability, as we will see, FT appears as characteristic function, which is an integral of type

𝜙p𝜉q :“

∫
R
𝑓 p𝑦q𝑒𝑖 𝜉 𝑦 𝑑𝑦.

In this case, it is evident that we changed ´𝜉 into 𝜉.

Let’s see some important examples. We already computed

Example 17.1.3: Gaussian distribution p˚˚q

(17.1.2)
{

𝑒
´

72

2𝜎2 p𝜉q “
?
2𝜋𝜎2𝑒´ 1

2 𝜎
2 𝜉2 , p𝜎 ą 0q.

Proof. See (7.2.1).
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Example 17.1.4: rectangle p˚q

et rect𝑎 :“ 1r´𝑎,𝑎s. Then

(17.1.3) zrect𝑎p𝜉q “ 2𝑎
sinp𝑎𝜉q

𝑎𝜉
“: 2𝑎 sincp𝑎𝜉q, @𝜉 P R.

(where sinc 𝑡 :“ sin 𝑡
𝑡

, with the agreement that sinc 0 “ 1 ).

-a a -a a

2 a

Proof. Clearly rect𝑎 “ 1r´𝑎,𝑎s P 𝐿1pRq. We have

zrect𝑎p𝜉q “

∫ 𝑎

´𝑎

𝑒´𝑖 𝜉 𝑦 𝑑𝑦 “

$

’

&

’

%

𝜉 “ 0, “
∫ 𝑎

´𝑎
𝑑𝑦 “ 2𝑎,

𝜉 ‰ 0, “

”

𝑒´𝑖 𝜉 𝑦

´𝑖 𝜉

ı𝑦“𝑎

𝑦“´𝑎
“ ´ 1

𝑖 𝜉

`

𝑒´𝑖𝑎𝜉 ´ 𝑒𝑖𝑎𝜉
˘

“ 2𝑎
sinp𝑎𝜉q

𝑎𝜉

Example 17.1.5: exponential

(17.1.4) {𝑒´𝑎|7|p𝜉q “
2𝑎

𝑎2 ` 𝜉2
, 𝜉 P R, p𝑎 ą 0q.

2 a

Proof. Clearly 𝑒´𝑎|7| P 𝐿1pRq if 𝑎 ą 0. By definition

{𝑒´𝑎|7|p𝜉q “

∫ `8

´8

𝑒´𝑎|𝑦|𝑒´𝑖 𝜉 𝑦 𝑑𝑦 “

∫ 0

´8

𝑒𝑎𝑦𝑒´𝑖 𝜉 𝑦 𝑑𝑦 `

∫ `8

0

𝑒´𝑎𝑦𝑒´𝑖 𝜉 𝑦 𝑑𝑦

“

∫ 0

´8

𝑒p𝑎´𝑖 𝜉q𝑦 𝑑𝑦 `

∫ `8

0

𝑒´p𝑎`𝑖 𝜉q𝑦 𝑑𝑦 “

„

𝑒p𝑎´𝑖 𝜉q𝑦

𝑎 ´ 𝑖𝜉

ȷ𝑦“0

𝑦“´8

`

„

´
𝑒´p𝑎`𝑖 𝜉q𝑦

𝑎 ` 𝑖𝜉

ȷ𝑦“`8

𝑦“0

“
1

𝑎 ´ 𝑖𝜉
`

1

𝑎 ` 𝑖𝜉
“

2𝑎

𝑎2 ` 𝜉2
.

The Definition of FT extends naturally to multidimensional functions:
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Definition 17.1.6

Let 𝑓 P 𝐿1pR𝑑q. The function

(17.1.5) p𝑓 p𝜉q :“

∫
R
𝑓 p𝑦q𝑒´𝑖 𝜉 ¨𝑦 𝑑𝑦, 𝜉 P R𝑑

is called Fourier Transform (FT) of 𝑓

Example 17.1.7: multivariate gaussian p˚˚q

Let 𝐶 be a strictly positive definite symmetric matrix (that is: 𝐶𝑥 ¨ 𝑥 ą 0 for very 𝑥 P R𝑑zt0u,
𝐶𝑡 “ 𝐶). Then

(17.1.6) {

𝑒´ 1
2𝐶

´17¨7p𝜉q “

b

p2𝜋q𝑑 det𝐶𝑒´ 1
2𝐶𝜉 ¨𝜉 .

Proof. We notice first that 𝐶´1 is diagonalizable. Indeed: 𝐶 is positive definite, and by this it follows
that 𝐶 is invertible. Since 𝐶 is symmetric, 𝐶´1 it is. Thus 𝐶´1 is symmetric, hence it is diagonalizable,
that is 𝐶´1 “ 𝑇´1Λ´1𝑇 for some 𝑇 orthogonal matrix, that is 𝑇´1 “ 𝑇 𝑡 (transposed matrix), and
Λ´1 :“ diagp 1

𝜎2
1

, . . . , 1
𝜎2
𝑑

q a diagonal matrix. Therefore

𝐶´1𝑦 ¨ 𝑦 “ 𝑇 𝑡Λ´1𝑇𝑦 ¨ 𝑦 “ Λ´1𝑇𝑦 ¨ 𝑇𝑦.

Now, notice that
{

𝑒´ 1
2
𝐶´17¨7p𝜉q “

∫
R𝑑
𝑒´ 1

2
Λ´1𝑇𝑦¨𝑇𝑦𝑒´𝑖 𝜉 ¨𝑇 𝑡𝑇𝑦 𝑑𝑦

𝑥“𝑇𝑦
“

∫
R𝑑
𝑒´ 1

2
Λ´1𝑥¨𝑥𝑒´𝑖𝑇 𝜉 ¨𝑥 | det𝑇 𝑡 | 𝑑𝑥,

and because 𝑇 𝑡 “ 𝑇´1 easily |det𝑇 𝑡 | “ 1. Therefore

{

𝑒´ 1
2
𝐶´17¨7p𝜉q

𝐹´𝑇
“

𝑑
ź

𝑗“1

∫
R
𝑒

´ 1

2𝜎2
𝑗

𝑥2

𝑒´𝑖p𝑇 𝜉q 𝑗 𝑥 𝑗 𝑑𝑥 𝑗 “
ź

𝑗

{

𝑒
´

72

2𝜎2
𝑗 pp𝑇𝜉q 𝑗q

p17.1.2q
“

ź

𝑗

b

2𝜋𝜎2
𝑗
𝑒

´ 1
2
𝜎2
𝑗

p𝑇 𝜉q2
𝑗 .

To finish notice that
ź

𝑗

𝜎2
𝑗 “ detΛ “ detp𝑇𝐶´1𝑇´1q´1q “ det𝐶,

and
ÿ

𝑗

𝜎2
𝑗 p𝑇𝜉q2𝑗 “ pΛ´1𝑇𝜉q ¨ 𝑇𝜉 “ 𝑇 𝑡Λ𝑇𝜉 ¨ 𝜉 “ 𝐶𝜉 ¨ 𝜉,

and by these identities the conclusion follows easily.

Let’s finish this Section with few useful ”algebraic” properties of the Fourier transform:

Proposition 17.1.8

Let 𝑓 P 𝐿1. Then
i) {𝑓 p¨ ´ 𝑥0q “ 𝑒´𝑖 𝜉 ¨𝑥0 p𝑓 .

ii) {𝑒´𝑖7¨𝑣 𝑓 p𝜉q “ p𝑓 p𝜉 ` 𝑣q.
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iii) {𝑓 p𝜆7qp𝜉q “ 1
|𝜆|𝑑

p𝑓

´

𝜉

𝜆

¯

.

Proof. We limit to prove the first one, the remaining being similar (exercise). We have
{𝑓 p¨ ´ 𝑥0qp𝜉q “

∫
R𝑑
𝑓 p𝑥 ´ 𝑥0q𝑒´𝑖 𝜉 ¨𝑥 𝑑𝑥 “ 𝑒´𝑖 𝜉 ¨𝑥0

∫
R𝑑
𝑓 p𝑥 ´ 𝑥0q𝑒´𝑖 𝜉 ¨p𝑥´𝑥0q 𝑑𝑥

“ 𝑒´𝑖 𝜉 ¨𝑥0 p𝑓 p𝜉q.

For future developments we will deal with 1-dimensional FT, the majority of the results extend to the
general case with straightforward adjustments.

17.2. Exercises

Exercise 17.2.1 (˚). Compute the Fourier transforms of the following functions:

1. 𝑥 rect𝑎p𝑥q. 2. p𝑎 ´ |𝑥|qrect𝑎p𝑥q. 3. pcos 𝑥qrect𝜋{2p𝑥q. 4. 𝑒´|𝑥|sgnp𝑥q. 5. 𝑒´𝑥1r0,`8rp𝑥q.

Exercise 17.2.2 (˚). Compute {1r´𝑎,𝑎s𝑑 .

Exercise 17.2.3 (˚˚`). Compute the FT of 𝑓 :“ 1𝑥2`𝑦2`𝑧2ď𝑟2 .

Exercise 17.2.4 (˚˚). Show that if 𝑓 is real valued and even (that is 𝑓 p´𝑥q “ 𝑓 p𝑥q a.e.), then p𝑓 is real
valued.

Exercise 17.2.5 (˚˚). Let 𝑅 be an orthogonal matrix, 𝑅𝑅𝑡 “ 𝑅𝑡𝑅 “ I. Express the FT of 𝑓 p𝑅𝑥q in terms
of p𝑓 .

Exercise 17.2.6 (˚˚). Prove the properties of the Proposition 17.1.8.

Exercise 17.2.7 (˚). Let 𝑓 p𝑥1, . . . , 𝑥𝑛q :“
ś𝑛

𝑗“1 𝑓 𝑗p𝑥 𝑗q P 𝐿1pR𝑛q. Prove that p𝑓 p𝜉1, . . . , 𝜉𝑛q “
ś𝑛

𝑗“1
p𝑓 𝑗p𝜉 𝑗q.

Exercise 17.2.8 (˚˚`). Let 𝑓 P 𝐿1pRq be such that 𝑓 p𝑥q ą 0 a.e.. Prove that | p𝑓 p𝜉q| ă 𝑓 p0q, @𝜉 ‰ 0.

Exercise 17.2.9 (˚˚`). Let 𝑓 P 𝐿1pRq be such that 𝑓 p𝑥q ” 0 for |𝑥| ě 𝑅. Prove that p𝑓 is a power series.





LECTURE 18

Properties of 𝐿1 FT

In this lecture we present some of the most important properties of the FT. Among others, a special
role is played by differentiation: the FT converts a differential polynomial into multiplication by an
algebraic polynomial. Concretely, this means converting certain differential equations into algebraic
equations. Of course, this has many consequences in applications, some of which will be presented in
subsequent lectures.

18.1. Riemann–Lebesgue Lemma

What can be said about the FT p𝑓 of 𝑓 P 𝐿1? For example: is p𝑓 P 𝐿1pRq? This question is particularly
important in order the inversion formula

𝑓 p𝑥q “
1

2𝜋
x

x𝑓 p´𝑥q,

makes sense. Unfortunately, the answer is negative.

Example 18.1.1

Let 𝑓 “ rect1 P 𝐿1pRq. Then, p𝑓 p𝜉q “
sin 𝜉
𝜉

R 𝐿1pRq. □

In fact, p𝑓 is qualitatively very different from its original 𝑓 :

Lemma 18.1.2: Riemann–Lebesgue

Let 𝑓 P 𝐿1pRq. Then
i) p𝑓 P 𝒞pRq X 𝐿8pRq (continuous and bounded) and

(18.1.1) } p𝑓 }8 ď } 𝑓 }1, @𝜉 P R.

ii) Furthermore,
(18.1.2) lim

𝜉Ñ˘8

p𝑓 p𝜉q “ 0.

Proof. The continuity follows by continuity of integrals depending on parameters. Indeed, setting
𝑓 p𝑥, 𝜉q :“ 𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥 we have 𝑓 p7, 𝜉q P 𝐿1pRq for every 𝜉 P R; 𝑓 p𝑥, 7q P 𝒞pRq, a.e. 𝑥 P R; the following
bound holds

| 𝑓 p𝑦q𝑒´𝑖 𝜉 ¨𝑦| ď | 𝑓 p𝑦q| P 𝐿1pRq.

129
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Thus, hypotheses of Thm 7.1 are fulfilled, p𝑓 P 𝒞pRq. The bouns (18.1.1) follows from

| p𝑓 p𝜉q| ď

∫
R

ˇ

ˇ 𝑓 p𝑦q𝑒´𝑖 𝜉 𝑦
ˇ

ˇ 𝑑𝑦 “

∫
R

| 𝑓 p𝑦q| 𝑑𝑦 “ } 𝑓 }1.

The proof of (18.1.2) is more complex. We omit here this proof, we will obtain it under more restrictive
assumptions in next results.

18.2. Fourier Transform of Derivative

The Riemann–Lebesgue (RL) lemma does not ensure that p𝑓 P 𝐿1 (and indeed, this is false). Knowing
that p𝑓 P 𝒞pRq ensures there are no integrability issues on any finite interval r𝑎, 𝑏s. Thus, the issue
concerns the behavior of p𝑓 at ˘8. According to the RL lemma, p𝑓 p𝜉q ÝÑ 0 as 𝜉 ÝÑ ˘8, but this is
insufficient to conclude. However, as with FS, by imposing some regularity on 𝑓 we obtain more precise
behavior at ˘8 and, ultimately, integrability. Before we attack the main result, we need to introduce the
concept of weak derivative:

Definition 18.2.1: weak derivative

Let 𝑓 P 𝐿1pRq. We say that DB𝑥 𝑓 P 𝐿1pRq if there exists a function 𝑔 P 𝐿1pRq such that

(18.2.1) 𝑓 p𝑏q ´ 𝑓 p𝑎q “

∫ 𝑏

𝑎

𝑔p𝑥q𝑑𝑥, 𝑎.𝑒. 𝑎, 𝑏 P R.

We set B𝑥 𝑓 :“ 𝑔.

It can be proved that the definition is well posed modulo a.e. equivalence.

Example 18.2.2

If 𝑓 P 𝐿1pRq X 𝒞
1pRq, then B𝑥 𝑓 exists pointwise in the ordinary sense and, according to the

fundamental theorem of Integral Calculus, the identity (18.2.1) holds with 𝑔 “ B𝑥 𝑓 . So, if
B𝑥 𝑓 P 𝐿1pRq, the ordinary derivative is also the weak derivative.

Example 18.2.3

If 𝑓 p𝑥q “ 𝑒´|𝑥|, then 𝑓 P 𝐿1pRq has weak derivative B𝑥 𝑓 p𝑥q “ ´sgnp𝑥q𝑒´|𝑥| (defined for 𝑥 ‰ 0).

Proof. Indeed,
‚ if 0 ă 𝑎 ă 𝑏∫ 𝑏

𝑎

´sgnp𝑥q𝑒´|𝑥| 𝑑𝑥 “

∫ 𝑏

𝑎

´𝑒´𝑥 𝑑𝑥 “ r𝑒´𝑥s𝑥“𝑏
𝑥“𝑎 “ 𝑒´𝑏 ´ 𝑒´𝑎 “ 𝑓 p𝑏q ´ 𝑓 p𝑎q.

‚ if 𝑎 ă 𝑏 ă 0 the argument is similar.
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‚ if 𝑎 ă 0 ă 𝑏, we have∫ 𝑏
𝑎

´sgnp𝑥q𝑒´|𝑥| 𝑑𝑥 “
∫ 0
𝑎
𝑒𝑥 𝑑𝑥 `

∫ 𝑏
0

´𝑒´𝑥 𝑑𝑥 “ r𝑒𝑥s𝑥“0
𝑥“𝑎 ` r𝑒´𝑥s𝑥“𝑏

𝑥“0

“ p1 ´ 𝑒𝑎q ` p𝑒´𝑏 ´ 1q “ 𝑒´𝑏 ´ 𝑒𝑎 “ 𝑓 p𝑏q ´ 𝑓 p𝑎q.

Proposition 18.2.4

Let 𝑓 , B𝑥 𝑓 P 𝐿1pRq. Then

(18.2.2) yB𝑥 𝑓 p𝜉q “ 𝑖𝜉 p𝑓 p𝜉q.

In particular:

(18.2.3) | p𝑓 p𝜉q| ď
}B𝑥 𝑓 }1

|𝜉|
.

More in general, if B𝑘𝑥 𝑓 P 𝐿1pRq, 𝑘 “ 0, 1, . . . , 𝑛, then

(18.2.4) yB𝑛𝑥 𝑓 p𝜉q “ p𝑖𝜉q𝑛 p𝑓 p𝜉q.

In particular:

(18.2.5) | p𝑓 p𝜉q| ď
}B𝑛𝑥 𝑓 }1

|𝜉|𝑛
.

Proof. Integrating by parts,

yB𝑥 𝑓 p𝜉q “

∫
R

B𝑥 𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥 𝑑𝑥 “
“

𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥
‰𝑥“`8

𝑥“´8
´

∫
R
𝑓 p𝑥qB𝑥

`

𝑒´𝑖 𝜉 𝑥
˘

𝑑𝑥.

The key remark is 𝑓 p𝑥q ÝÑ 0 at 𝑥 ÝÑ ˘8 paq. Indeed,

𝑓 p𝑥q ´ 𝑓 p0q “

∫ 𝑥

0

B𝑦 𝑓 p𝑦q 𝑑𝑦 ÝÑ

∫ ˘8

0

B𝑦 𝑓 p𝑦q 𝑑𝑦 P R, because B𝑥 𝑓 P 𝐿1pRq.

Therefore the lim𝑥Ñ˘8 𝑓 p𝑥q exists finite. Being 𝑓 is integrable, such a limit cannot be anything else than
0. Now, being 𝑒´𝑖 𝜉 𝑦 bounded function, we obtain that

“

𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥
‰𝑥“`8

𝑥“´8
“ 0. Hence

yB𝑥 𝑓 p𝜉q “ ´

∫
R
𝑓 p𝑥qB𝑥

`

𝑒´𝑖 𝜉 𝑥
˘

𝑑𝑥 “ 𝑖𝜉

∫
R
𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥 𝑑𝑥 “ 𝑖𝜉 p𝑓 p𝜉q.

This proves (18.2.2). For the bound (18.2.3) we have

| p𝑓 p𝜉q| “
|yB𝑥 𝑓 p𝜉q|

|𝜉|

p18.1.1q

ď
}B𝑥 𝑓 }1

|𝜉|
.

The general case of the formula (18.2.4) can be obtained iterating the formula (18.2.2).
aWarning! This is not true in general for an 𝑓 P 𝐿1pRq: for example 𝑓 p𝑥q “ 𝑥1Zp𝑥q P 𝐿1pRq (clearly 𝑓 “ 0 a.e.) but
𝑓 is not even bounded as |𝑥| ÝÑ `8.
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Example 18.2.5

Let

𝑓𝑎p𝑥q :“

$

&

%

0, 𝑥 ď ´2𝑎, 𝑥 ě 2𝑎,
𝑥 ` 2𝑎, ´2𝑎 ď 𝑥 ď 0,
´𝑥 ` 2𝑎, 0 ď 𝑥 ď 2𝑎.

Compute B𝑥 𝑓𝑎 and deduce p𝑓𝑎.

- 



Proof. Clearly 𝑓𝑎 P 𝐿1pRq. Moreover,

B𝑥 𝑓𝑎p𝑥q :“

$

&

%

0, 𝑥 ă ´2𝑎, 𝑥 ą 2𝑎,
1, ´2𝑎 ă 𝑥 ă 0,
´1, 0 ă 𝑥 ă 2𝑎.

“ 1r´2𝑎,0sp𝑥q ´ 1r0,2𝑎sp𝑥q P 𝐿1pRq.

By (18.2.2)
𝑖𝜉 p𝑓𝑎p𝜉q “ zB𝑥 𝑓𝑎p𝜉q “ {𝜒r´𝑎,0sp𝜉q ´ z𝜒r0,𝑎sp𝜉q,

and since

1r´2𝑎,0sp7q “ 1r´𝑎,𝑎s p7 ` 𝑎q , ùñ {1r´2𝑎,0sp𝜉q “ {rect𝑎 p7 ` 𝑎qp𝜉q “ 𝑒𝑖𝑎𝜉
sinp𝑎𝜉q

𝜉
.

Similarly
{1r0,2𝑎sp𝜉q “ {rect𝑎 p7 ´ 𝑎qp𝜉q “ 𝑒´𝑖𝑎𝜉 sinp𝑎𝜉q

𝜉
.

Thus
zB𝑥 𝑓𝑎p𝜉q “

`

𝑒𝑖𝑎𝜉 ´ 𝑒´𝑖𝑎𝜉
˘ sinp𝑎𝜉q

𝜉
“ 2𝑖

psinp𝑎𝜉qq
2

𝜉
,

hence, finally

p𝑓𝑎p𝜉q “

ˆ

sinp𝑎𝜉q

𝜉

˙2

.

For 𝑛 ě 2, bound (18.2.5) ensures integrability. This yields a simple test for p𝑓 P 𝐿1:

Corollary 18.2.6

If 𝑓 , B𝑥 𝑓 , B2
𝑥 𝑓 P 𝐿1pRq, then p𝑓 P 𝐿1pRq.
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Proof. By (18.2.5)

| p𝑓 p𝜉q| ď
}B2
𝑥 𝑓 }1

𝜉2
“:

𝐾

𝜉2
.

Now, by RL lemma p𝑓 P 𝒞pRq, thus p𝑓 is integrable on any closed and bounded interval. To establish
integrability on R we look at behaviour of p𝑓 at ˘8. Thanks to the previous bound, | p𝑓 | decays faster than
𝐾
𝜉2 , which is integrable at ˘8. The conclusion now follows.

18.3. Derivative of Fourier Transform

The (18.2.2) shows a remarkable feature of the FT: the FT converts “derivations” into “multiplications by
𝑖𝜉”. Reversing the order of the two operations—namely, FT and differentiation—the same phenomenon
occurs: the FT converts “multiplications by ´𝑖𝜉” into “derivations”. Here is the precise statement:

Proposition 18.3.1

Let 𝑓 P 𝐿1pRq such that 𝑥 𝑓 p𝑥q P 𝐿1pRq. Then

(18.3.1) DB𝜉 p𝑓 p𝜉q “ {rp´𝑖7q 𝑓 p7qsp𝜉q, @𝜉 P R.

Proof. It is an application of the differentiation under the integral sign. By definition

p𝑓 p𝜉q “

∫
R
𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥 𝑑𝑥.

Differentiating,

B𝜉 p p𝑓 qp𝜉q “

∫
R

´𝑖𝑥 𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥 𝑑𝑥 “ {r´𝑖7 𝑓 p7qsp𝜉q.

To justify this, we need to dominate ´𝑖𝑥 𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥 uniformly in 𝜉 with an 𝐿1 function in 𝑥. But this follows
immediately by our assumptions being

ˇ

ˇ´𝑖𝑥 𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥
ˇ

ˇ ď |𝑥 𝑓 p𝑥q| P 𝐿1, @𝜉 P R.

Combining formulas (18.2.4) and (18.3.1) we obtain the relation

(18.3.2) {

p´𝑖7q 𝑗B𝑘𝑥 𝑓 ” B
𝑗

𝜉

”

p𝑖𝜉q𝑘 p𝑓

ı

.

A remarkable consequence of this relation is the following

Proposition 18.3.2

FT applies 𝒮pRq into itself, that is: if 𝑓 P 𝒮pRq then p𝑓 P 𝒮pRq.

Proof. Let 𝑓 P 𝒮pRq. To show that p𝑓 P 𝒮pRq have to check two facts:
i) p𝑓 P 𝒞

8;
ii) p𝑓 p𝑘q is rapidly decaying at 8.
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Let’s see how both are direct consequences of the multiplication-derivation duality. Indeed, since 𝑓 P 𝒮

we have 𝑥𝑘 𝑓 P 𝐿1. By Proposition 18.3 it follows that DB𝑘
𝜉
p𝑓 “ {´𝑖7𝑘 𝑓 P 𝒞pRq (Riemann–Lebesgue).

Conclusion: p𝑓 P 𝒞
𝑘 for every 𝑘 , that is p𝑓 P 𝒞

8.
Moreover, by formula (18.3.2)

|p𝑖𝜉qℎB𝑘 p𝑓 p𝜉q| “ | {rBℎp´𝑖7q𝑘 𝑓 p7qsp𝜉q|
p18.1.1q

ď }Bℎp´𝑖7q𝑘 𝑓 }1 “: 𝐶ℎ,𝑘 ă `8.

Therefore
sup
𝜉PR

p1 ` |𝜉|qℎ|B𝑘 p𝑓 p𝜉q| ă `8, @ℎ, 𝑘,

and this precisely means that p𝑓 P 𝒮pRq.

18.4. Convolution

Another remarkable property of FT is that it converts convolution products into algebraic products:

Theorem 18.4.1

Let 𝑓 , 𝑔 P 𝐿1pRq. Then

(18.4.1) z𝑓 ˚ 𝑔 “ p𝑓 p𝑔.

Proof. By Young inequality, 𝑓 ˚ 𝑔 P 𝐿1 so FT makes sense. Computing its FT we get:

z𝑓 ˚ 𝑔p𝜉q “

∫
R

p 𝑓 ˚ 𝑔qp𝑦q𝑒´𝑖 𝜉 𝑦 𝑑𝑦 “

∫
R

ˆ∫
R
𝑓 p𝑦 ´ 𝑥q𝑔p𝑥q 𝑑𝑥

˙

𝑒´𝑖 𝜉 𝑦 𝑑𝑦

“

∫
R

ˆ∫
R
𝑓 p𝑦 ´ 𝑥q𝑔p𝑥q𝑒´𝑖 𝜉 𝑦 𝑑𝑥

˙

𝑑𝑦

𝐹𝑢𝑏𝑖𝑛𝑖
“

∫
R
𝑔p𝑥q𝑒´𝑖 𝜉 𝑥

ˆ∫
R
𝑓 p𝑦 ´ 𝑥q𝑒´𝑖 𝜉p𝑦´𝑥q 𝑑𝑦

˙

𝑑𝑥

“ p𝑓 p𝜉qp𝑔p𝜉q. □

Remark 18.4.2

Here’s another argument that shows that convolution product has not units, that is E𝛿 P 𝐿1 such
that 𝑓 ˚ 𝛿 “ 𝑓 for every 𝑓 P 𝐿1. If a unit 𝛿 exists, then

z𝑓 ˚ 𝛿 “ p𝑓 , ðñ p𝑓 p𝛿 “ p𝑓 , @ 𝑓 P 𝐿1.

So, for instance, taking 𝑓 the Gaussian, p𝑓 is still a Gaussian, thus in particular, p𝑓 ‰ 0 always, we would
obtain

p𝛿p𝜉q ” 1.

But, according to RL lemma, p𝛿p𝜉q ÝÑ 0 for 𝜉 ÝÑ ˘8 and this is impossible.
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18.5. Exercises

Exercise 18.5.1 (˚). By using the multiplication-differentiation duality, compute {721r´1,1s.

Exercise 18.5.2 (˚). Compute the FT of 𝑥𝑒´𝑥2 ˚ 𝑒´𝑥2 .

Exercise 18.5.3 (˚˚). Let 𝑎 ą 0 and define 𝑓𝑎p𝑥q :“ 𝑒´𝑎𝑥1r0,`8rp𝑥q. Compute the FT of 𝑓𝑎 ˚ 𝑓𝑏 (with
𝑎, 𝑏 ą 0).

Exercise 18.5.4 (˚˚). Let 𝑎, 𝑏 ą 0, 𝑎 ‰ 𝑏 and define

𝑓𝑎,𝑏p𝑥q :“
𝑒´𝑎|𝑥| ´ 𝑒´𝑏|𝑥|

𝑥
.

Is 𝑓𝑎,𝑏 P 𝐿1pRq? If yes, compute y𝑓𝑎,𝑏.

Exercise 18.5.5 (˚˚). The scope of this exercise is to compute the FT of the standard gaussian 𝑓 p𝑥q “ 𝑒´ 𝑥2

2

in a ”smart” way. Start noticing that 𝑓 1p𝑥q “ ´𝑥 𝑓 p𝑥q, hence apply the FT both sides. . .

Exercise 18.5.6 (˚˚). Let 𝑓 P 𝐿1pRq be such that 𝑓 1, 𝑥 𝑓 P 𝐿1pRq. Show that p𝑓 P 𝐿1pRq.

Exercise 18.5.7 (˚˚). Let 𝑓 P 𝒮pR𝑛q. Compute xΔ 𝑓 where Δ 𝑓 “
ř𝑛
𝑗“1 B2

𝑗
𝑓 ((here B2

𝑗
” B2

𝑥 𝑗
).

Exercise 18.5.8 (˚˚`). Let 𝑓 , 𝑥 𝑓 P 𝐿1pRq be such that
∫
R
𝑓 p𝑥q 𝑑𝑥 “ 0. Let

𝑔p𝑥q :“

∫ 𝑥

´8

𝑓 p𝑦q 𝑑𝑦.

i) Check that 𝑔 is well defined and belongs to 𝐿1pRq.
ii) Determine the relation between the FT of 𝑔 and that one of 𝑓 .

Exercise 18.5.9 (˚˚˚). Let 𝑓 P 𝐿1 and define

𝑓𝜀p𝑥q :“
{

´

𝑒´𝜀272
x

¯

𝑓 p´𝑥q.

i) Check that 𝑓𝜀 is well defined.
ii) Show that 𝑓𝜀

𝐿1

ÝÑ 𝑓 .





LECTURE 19

Inversion Formula

This Lecture is devoted to prove inversion formula

𝑓 p𝑥q “
1

2𝜋
p

p𝑓 p´𝑥q.

19.1. Main result

Theorem 19.1.1

Let 𝑓 P 𝐿1pRq be such that p𝑓 P 𝐿1pRq. Then, inversion formula holds in the sense that

(19.1.1) 𝑓 p𝑥q “
1

2𝜋
p

p𝑓 p´𝑥q, 𝑎.𝑒. 𝑥 P R.

Proof. A naı̈ve attempt to prove inversion formula would start noticing that
p

p𝑓 p´𝑥q “

∫
R

ˆ∫
R
𝑓 p𝑦q𝑒´𝑖 𝜉 𝑦 𝑑𝑦

˙

𝑒𝑖 𝜉 𝑥 𝑑𝜉 “

∫
RˆR

𝑓 p𝑦q𝑒𝑖 𝜉p𝑥´𝑦q 𝑑𝑦𝑑𝜉.

Here, there is a first trouble. Fubini’s thm applies provided 𝑓 p𝑦q𝑒𝑖 𝜉p𝑥´𝑦q is 𝐿1pR2q in p𝑦, 𝜉q. However,
unless 𝑓 “ 0 a.e., we have∫

R2

ˇ

ˇ

ˇ
𝑓 p𝑦q𝑒𝑖 𝜉p𝑥´𝑦q

ˇ

ˇ

ˇ
𝑑𝑦𝑑𝜉 “

∫
R2

| 𝑓 p𝑦q| 𝑑𝑦𝑑𝜉 “ `8,

So, to make this false departure a true one, we introduce a weight 𝑒´ 1
2
𝜀2 𝜉2 that will be eliminated letting

𝜀 Ó 0. That is, let’s consider the integral

𝐼𝜀p𝑥q :“

∫
R2
𝑓 p𝑦q𝑒´ 1

2
𝜀2 𝜉2

𝑒𝑖 𝜉p𝑥´𝑦q 𝑑𝑦𝑑𝜉

Notice that now 𝑓 p𝑦q𝑒´ 1
2
𝜀2 𝜉2

𝑒𝑖 𝜉p𝑥´𝑦q is 𝐿1pR2q in p𝑦, 𝜉q being∫
R2

ˇ

ˇ

ˇ
𝑓 p𝑦q𝑒´ 1

2
𝜀2 𝜉2

𝑒𝑖 𝜉p𝑥´𝑦q
ˇ

ˇ

ˇ
𝑑𝑦𝑑𝜉 “

∫
R2

| 𝑓 p𝑦q|𝑒´ 1
2
𝜀2 𝜉2

𝑑𝑦𝑑𝜉
𝑅𝐹
“ } 𝑓 }1

c

2𝜋

𝜀2
.

This allows to use RF on 𝐼𝜀 . We will do in two ways. On one side,

𝐼𝜀p𝑥q “

∫
R

ˆ∫
R
𝑓 p𝑦q𝑒´𝑖 𝜉 𝑦 𝑑𝑦

˙

𝑒´ 1
2
𝜀2 𝜉2

𝑒´𝑖 𝜉 𝑥 𝑑𝜉 “

∫
R

p𝑓 p𝜉q𝑒´ 1
2
𝜀2 𝜉2

𝑒𝑖 𝜉 𝑥 𝑑𝜉.

To compute the limit when 𝜀 Ó 0, we apply dominated convergence. Notice that
‚ p𝑓 p𝜉q𝑒´ 1

2
𝜀2 𝜉2

𝑒𝑖 𝜉 𝑥 ÝÑ p𝑓 p𝜉q𝑒𝑖 𝜉 𝑥 , a.e. 𝜉 P R;
‚ | p𝑓 p𝜉q𝑒´ 1

2
𝜀2 𝜉2

𝑒𝑖 𝜉 𝑥 | “ | p𝑓 p𝜉q|𝑒´ 1
2
𝜀2 𝜉2

ď | p𝑓 p𝜉q| P 𝐿1pRq, @𝜀 ą 0.

137
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Therefore,

(19.1.2) 𝐼𝜀p𝑥q ÝÑ

∫
R

p𝑓 p𝜉q𝑒𝑖 𝜉 𝑥 𝑑𝜉 “
x

x𝑓 p´𝑥q, @𝑥 P R.

On the other hand, we may also write

𝐼𝜀p𝑥q “

∫
R

ˆ∫
R
𝑒´ 1

2
𝜀2 𝜉2

𝑒𝑖 𝜉p𝑥´𝑦q 𝑑𝜉

˙

𝑓 p𝑦q 𝑑𝑦.

The innermost integral is the FT of gaussian 𝑒´
𝜉2

2p1{𝜀2q evaluated at 𝑥 ´ 𝑦, thus∫
R
𝑒´ 1

2
𝜀2 𝜉2

𝑒𝑖 𝜉p𝑥´𝑦q 𝑑𝜉 “

c

2𝜋

𝜀2
𝑒

´
p𝑥´𝑦q2

2𝜀2 “ 𝛿𝜀p𝑥 ´ 𝑦q,

where p𝛿𝜀q is the Gaussian approximate unit. Thus

𝐼𝜀p𝑥q “

∫
R
𝑓 p𝑦q𝛿𝜀p𝑥 ´ 𝑦q 𝑑𝑦 “ 𝑓 ˚ 𝛿𝜀p𝑥q.

Now, by (11.2.1), 𝑓 ˚ 𝛿𝜀
𝐿1

ÝÑ 𝑓 for 𝜀 Ó 0. We know that this is not necessarily a point wise limit, however,
extracting a suitable subsequence, we may say that

𝐼𝜀p𝑥q “ 𝑓 ˚ 𝛿𝜀p𝑥q ÝÑ 𝑓 p𝑥q, 𝑎.𝑒. 𝑥 P R.

Combining this with (19.1.2) we get the conclusion.

Example 19.1.2: Cauchy distribution p˚q

(19.1.3)
{1

𝑎2 ` 72
p𝜉q “

1

2𝑎
𝑒´𝑎|𝜉 |, p𝑎 ą 0q.

Proof. This is a calculation that, to be done by the definition, requires non trivial techniques of calculus
for integrals. He we illustrate how inversion formula provides a remarkable shortcut. Recall that, according
to (17.1.4)

{𝑒´𝑎|7|p𝜉q “
2𝑎

𝑎2 ` 𝜉2
, 𝜉 P R, p𝑎 ą 0q.

From this, it is evident that {1
2𝑎 𝑒

´𝑎|7|p𝜉q “ 1
𝑎2`𝜉2 P 𝐿1pRq and since also 1

2𝑎 𝑒
´𝑎|7| P 𝐿1pRq, according to

inversion formula we obtain
{1

𝑎2 ` 72
p𝜉q “

{

{1

2𝑎
𝑒´𝑎|7|p𝜉q “

1

2𝑎
𝑒´𝑎|´𝜉 | “

1

2𝑎
𝑒´𝑎|𝜉 |.

Example 19.1.3: p˚˚q

Let 𝑓 p𝑥q :“ 1
p1`𝑥2q2

.

i) Use multiplication-derivation duality to compute z7 𝑓 p7q (hint: 𝑥 𝑓 p𝑥q “ B𝑥 . . .).
ii) Use i) to determine p𝑓 .
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iii) Use p𝑓 to compute∫ `8

0

1

p1 ` 𝑥2q2
𝑑𝑥,

∫ `8

0

sin 𝑥

p1 ` 𝑥2q2
𝑑𝑥.

Proof. i) We have
𝑥 𝑓 p𝑥q “

𝑥

p1 ` 𝑥2q2
“ ´

1

2
B𝑥

1

1 ` 𝑥2
,

so
z7 𝑓 p7qp𝜉q “ ´

1

2

{

B𝑥
1

1 ` 72
p𝜉q “ ´

1

2
p𝑖𝜉q

{1

1 ` 72
p𝜉q “

𝑖

4
𝜉𝑒´|𝜉 |.

ii) Now, recalling that
B𝜉 p𝑓 p𝜉q “ {𝑖7 𝑓 p7qp𝜉q “ 𝑖

𝑖

4
𝜉𝑒´|𝜉 | “ ´

1

4
𝜉𝑒´|𝜉 |.

In particular p𝑓 is a primitive of ´ 1
4𝜉𝑒

´|𝜉 |. Let’s determine this. Because of the modulus, we distinguish
𝜉 ě 0 by 𝜉 ď 0. In the first case,

p𝑓 p𝜉q “ ´
1

4

∫
𝜉𝑒´𝜉 𝑑𝜉 ` 𝑐 “

1

4

ˆ

𝜉𝑒´𝜉 ´

∫
𝑒´𝜉 𝑑𝜉

˙

` 𝑐 “
1

4

`

𝜉𝑒´𝜉 ` 𝑒´𝜉
˘

` 𝑐

In the second case

p𝑓 p𝜉q “ ´
1

4

∫
𝜉𝑒 𝜉 𝑑𝜉 ` 𝑐 “ ´

1

4

ˆ

𝜉𝑒 𝜉 ´

∫
𝑒 𝜉 𝑑𝜉

˙

` 𝑐 “ ´
1

4

`

𝜉𝑒 𝜉 ´ 𝑒 𝜉
˘

` 𝑐1

To determine 𝑐, 𝑐1 we notice that, since 𝑓 P 𝐿1pRq, according to RL Lemma, p𝑓 p𝜉q ÝÑ 0 as |𝜉| ÝÑ `8.
In particular we get easily that 𝑐 “ 𝑐1 “ 0. The conclusion is

p𝑓 p𝜉q “

$

&

%

𝜉 ě 0, “ 1
4

`

𝜉𝑒´𝜉 ` 𝑒´𝜉
˘

,

𝜉 ď 0, “ ´ 1
4

`

𝜉𝑒 𝜉 ´ 𝑒 𝜉
˘

“
1

4
𝑒´|𝜉 | p|𝜉| ` 1q .

iii) We can easily reduce the two integrals to suitable Fourier integrals

p𝑓 p𝜉q “

∫
R

1

p1 ` 𝑥2q2
𝑒´𝑖 𝜉 𝑥 𝑑𝑥.

Indeed: in the first case we have∫ `8

0

1

p1 ` 𝑥2q2
𝑑𝑥 “

1

2

∫
R

1

p1 ` 𝑥2q2
𝑑𝑥 “

1

2
p𝑓 p0q “

1

4
.

About the second, recalling that sin 𝑥 “
𝑒𝑖𝑥´𝑒´𝑖𝑥

2𝑖 , we have∫`8

0
sin 𝑥

p1`𝑥2q2
𝑑𝑥 “ 1

2𝑖

´∫`8

0
𝑒𝑖𝑥

p1`𝑥2q2
𝑑𝑥 `

∫`8

0
𝑒´𝑖𝑥

p1`𝑥2q2
𝑑𝑥

¯

“ 1
2

∫
R

1
p1`𝑥2q2

𝑒´𝑖𝑥 𝑑𝑥

“ 1
2
p𝑓 p1q “ 1

2𝑒 .

19.2. Inverse Fourier Transform

We can look at FT as a transformation that applies 𝑓 P 𝐿1 into p𝑓 . If the domain of this transformation
is clear (𝐿1), not the same can be said for its co-domain. For instance, according to Riemann-Lebesgue’s
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Lemma 18.1.2, we know that p𝑓 P 𝒞pRq and p𝑓 p˘8q “ 0, so we can say that

p : 𝐿1pRq ÝÑ 𝒞0pRq “: t𝑔 P 𝒞pRq : 𝑔p˘8q “ 0u.

Notice that the bound (18.1.1) tells that this mapping is continuous. Inversion theorem implies also
injectivity:

Proposition 19.2.1

The FT is injective, that is
p𝑓 “ p𝑔 ùñ 𝑓 “ 𝑔 a.e..

Proof. If p𝑓 “ p𝑔 then, by linearity {𝑓 ´ 𝑔 “ 0. Now, since 𝑓 ´ 𝑔 P 𝐿1 and, trivially, {𝑓 ´ 𝑔 “ 0 P 𝐿1,
according to the inversion formula,

p 𝑓 ´ 𝑔qp𝑥q “
1

2𝜋
{

{𝑓 ´ 𝑔p´𝑥q “
1

2𝜋
p0p´𝑥q ” 0, a.e.

We may wonder if the FT is also surjective, that is, a bijection from 𝐿1 to 𝒞0. Unfortunately, this is
false. This fact makes the inversion problem non trivial: given a function 𝑔 “ 𝑔p𝜉q, determine (if any) a
Fourier original of 𝑔, that is a function 𝑓 such that p𝑓 “ 𝑔. A partial answer to this problem is provided
by the following

Corollary 19.2.2

Let 𝑔 P 𝐿1pRq be such that p𝑔 P 𝐿1pRq. Then, there exists a unique Fourier original for 𝑔,

𝑓 p𝑥q “
1

2𝜋
p𝑔p´𝑥q, 𝑎.𝑒. 𝑥 P R.

Proof. If 𝑔, p𝑔 P 𝐿1pRq then

𝑔p𝜉q “
1

2𝜋
p

p𝑔p´𝜉q.

Now, setting 𝑓 p𝑥q :“ 1
2𝜋 p𝑔p´7qp𝑥q, recalling the properties of FT, we have p𝑓 p𝜉q “ 1

2𝜋
p

p𝑔p´𝜉q “ 𝑔p𝜉q.

The ”inverse” of FT is the operation

q𝑔p𝑥q :“
1

2𝜋
p𝑔p´𝑥q “

1

2𝜋

∫
R
𝑔p𝜉q𝑒𝑖𝑥 𝜉 𝑑𝜉.

Basically, this is again the FT again. This might leads to think that ”perhaps” FT is a bijection on 𝐿1.
This is false! As we know, rect1 P 𝐿1 but zrect1p𝜉q “

sinp𝜉q

𝜉
R 𝐿1. In fact, the image of 𝐿1 FT is difficult

to be characterized. So, what we can say is that FT is a bijection on a subspace of 𝐿1,

t 𝑓 P 𝐿1 : p𝑓 P 𝐿1u.

Unfortunately, since p𝑓 cannot be computed explicitly, it is hard to characterize condition 𝑓 , p𝑓 P 𝐿1.
Nonetheless, noticed that, for 𝑓 P 𝒮pRq Ă 𝐿1pRq we have also p𝑓 P 𝒮pRq Ă 𝐿1pRq, we can say that the
FT is a bijection on the Schwarz space 𝒮pRq.
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19.3. Exercises

Exercise 19.3.1 (˚˚). Let
𝑓 p𝑥q :“

sin 𝑥

𝑥p1 ` 𝑥2q
.

Compute the FT of 𝑓 .
Exercise 19.3.2 (˚˚). Let 𝑎, 𝑏 ą 0, 𝑎 ‰ 𝑏, and set

𝑔𝑎,𝑏p𝜉q :“
1

p𝜉2 ` 𝑎2qp𝜉2 ` 𝑏2q
, 𝜉 P R,

i) Show that 𝑔𝑎,𝑏 has a Fourier original in 𝐿1 and compute it. (hint: split the fraction and recall
that z𝑒´𝜆|7|p𝜉q “ . . .).

ii) Show that 7𝑔p7q has a Fourier original in 𝐿1 and find it in term of the original 𝑓 of 𝑔. Justify
carefully your answer.

Exercise 19.3.3 (˚˚). Let
𝑔p𝜉q :“

𝜉 cos 𝜉 ´ sin 𝜉

𝜉2
, 𝜉 ‰ 0.

i) Is 𝑔 P 𝐿1? Is p𝑔 P 𝐿1? Justify carefully.
ii) Discuss the problem of determining a Fourier original for 𝑔 and determine it (if any).
Exercise 19.3.4 (˚˚`). Let

𝑔p𝜉q “
1

1 ` 𝜉4
, 𝜉 P R.

Show that 𝑓 admits an 𝐿1 Fourier original and determine it. (hint: p𝜉4 ` 1q “ p𝜉2 `
?
2𝜉 ` 1qp𝜉2 ´?

2𝜉 ` 1q)

Exercise 19.3.5 (˚˚`). Let 𝑔p𝜉q “
𝜉

1`𝜉4
.

i) Show that 𝑔 has a Fourier original 𝑓 .
ii) Compute

∫
R
𝑥 𝑓 p𝑥q 𝑑𝑥 and 𝑓 1p0q.

Exercise 19.3.6 (˚˚). Let 𝑓 P 𝐿1pRq be such that 𝜉 p𝑓 p𝜉q P 𝐿1pRq.
i) Deduce that 𝑓 is a.e. continuous. (hint: check that p𝑓 P 𝐿1pRq. . . ).

ii) p`q Show that 𝑓 has weak derivative 𝑔p𝑥q :“
y

𝑖7x𝑓 p´𝑥q.
Exercise 19.3.7 (˚˚). For 𝑎 ą 0, let 𝑓𝑎p𝑥q :“ 1

𝑥2`𝑎2
. Use the FT to compute 𝑓𝑎 ˚ 𝑓𝑏 for 𝑎, 𝑏 ą 0.

Exercise 19.3.8 (˚˚`). Solve the equation∫
R
𝑓 p𝑥 ´ 𝑦q𝑒´|𝑦| 𝑑𝑦 “ 𝑒´2|𝑥|, 𝑥 P R,

in the unknown 𝑓 P 𝐿1pRq.
Exercise 19.3.9 (˚˚). Let 𝑓𝑎p𝑥q :“ 𝑒´𝑎𝑥1r0,`8rp𝑥q.

i) Compute the FT of 𝑓𝑎.
ii) Let 𝑔p𝜉q :“ 1

p𝜉`𝑖q2
. Is 𝑔 P 𝒞0? If yes, discuss the problem of determining a Fourier original

for 𝑔.





LECTURE 20

𝐿2 Fourier Transform

Apparently, FT can be defined only for 𝐿1 functions. The resulting operation has important features
but also a number of limitations. The major of these is, perhaps, the fact that we cannot clearly characterize
when inversion formula holds. In this Lecture we show that FT can be defined on 𝐿2pRq. This (new)
transform has a big pro: it is a bijection and, even more, an isometry, on 𝐿2pRq. In particular, inversion
formula holds for every 𝐿2 function. There is, of course, something to pay, and this is with the definition
of the Transform, for which we do not dispose a formula, unless the function is also in 𝐿1, and in this
case the 𝐿2 transform coincides with the 𝐿1 definition.

20.1. Duality lemma

Differently from the case when the measure of the domain is finite, there is no inclusion between two
different 𝐿 𝑝 spaces. For instance:

‚ 𝑓 p𝑥q “ 1
1`|𝑥|

, 𝑓 P 𝐿2pRq but 𝑓 R 𝐿1pRq;
‚ 𝑓 p𝑥q “ 1?

|𝑥|p1`|𝑥|q
, 𝑓 P 𝐿1pRq but 𝑓 R 𝐿2pRq.

Thus, it is not evident how can we define p𝑓 for 𝑓 P 𝐿2pRq when 𝑓 R 𝐿1pRq. Nonetheless, the following
Lemma suggests that FT should have some remarkable property with the geometry of 𝐿2:

Lemma 20.1.1: duality Lemma

Let 𝑓 , 𝑔 P 𝐿1pRq. Then

(20.1.1)
∫
R
𝑓 p𝑔 “

∫
R

p𝑓 𝑔.

Proof. First notice that both members of identity (20.1.1) are well defined: 𝑓 , 𝑔 P 𝐿1pRq implies
p𝑓 , p𝑔 P 𝐿8, so p𝑓 𝑔, 𝑓 p𝑔 P 𝐿1. The proof of(20.1.1) is just an easy computation:∫

R
𝑓 p𝑥qp𝑔p𝑥q 𝑑𝑥 “

∫
R
𝑓 p𝑥q

ˆ∫
R
𝑔p𝑦q𝑒´𝑖𝑥𝑦 𝑑𝑦

˙

𝑑𝑥
𝐹𝑢𝑏𝑖𝑛𝑖

“

∫
R
𝑔p𝑦q

ˆ∫
R
𝑓 p𝑥q𝑒´𝑖𝑥𝑦 𝑑𝑥

˙

𝑑𝑦

“

∫
R
𝑔p𝑦q p𝑓 p𝑦q 𝑑𝑦.

Apparently, the duality formula (20.1.1) can be interpreted as

x 𝑓 , p𝑔y “ x p𝑓 , 𝑔y.

143



144 20. 𝐿2 FOURIER TRANSFORM

However, this is not correct for two good reasons. First, in general none of 𝑓 , 𝑔, p𝑓 , p𝑔 P 𝐿2, so the scalar
product does not make any sense. Second, p𝑓 and p𝑔 are C valued functions. Thus the natural 𝐿2 structure
for this case should have hermitian product

x 𝑓 , 𝑔y “

∫
R
𝑓 𝑔.

To cope these two objections, we consider now the 𝐿1 FT restricted to Schwartz class 𝒮pRq Ă 𝐿1pRq X

𝐿2pRq with respect to hermitian product. It holds:

Proposition 20.1.2

Let x¨, ¨y the standard hermitian product of 𝐿2pRq. Then

(20.1.2) x p𝑓 , p𝑔y “
1

2𝜋
x 𝑓 , 𝑔y, @ 𝑓 , 𝑔 P 𝒮pRq.

In particular,

(20.1.3) } p𝑓 }2 “
1

2𝜋
} 𝑓 }2, @ 𝑓 P 𝒮pRq.

Proof. Let 𝑓 , 𝑔 P 𝒮pRq. Then,

x p𝑓 , p𝑔y “

∫
R

p𝑓 p𝑔
p20.1.1q

“

∫
R
𝑓
p

p𝑔.

Now,

p𝑔p𝜉q “

∫
R
𝑔p𝑦q𝑒´𝑖 𝜉 𝑦 𝑑𝑦 “

∫
R
𝑔p𝑦q𝑒𝑖 𝜉 𝑦 𝑑𝑦 “ p𝑔p´𝜉q.

Therefore, since inversion formula holds for Schwartz functions,
p

p𝑔p𝑥q “
p

p𝑔p´𝑥q “
1

2𝜋
𝑔p´p´𝑥qq “

1

2𝜋
𝑔p𝑥q,

thus
x p𝑓 , p𝑔y “

1

2𝜋

∫
R
𝑓 𝑔 “

1

2𝜋
x 𝑓 , 𝑔y.

The (20.1.3) follows taking 𝑓 “ 𝑔 in previous identity.

20.2. Plancherel Theorem

We already know that FT maps 𝒮pRq into itself. The proposition 20.1.2 says that if we look at 𝒮pRq

as a subspace of 𝐿2pRq, then
p : 𝒮pRq Ă 𝐿2pRq ÝÑ 𝐿2pRq

preserves length of vectors and angles modulo a scaling factor. This is the key for the

Theorem 20.2.1: Plancherel

There exists a unique extension of FT to 𝐿2pRq. This extension, called Fourier-Plancherel
Transform (FPT),
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i) coincides with usual 𝐿1 FT for 𝑓 P 𝐿1 X 𝐿2;
ii) fulfils

(20.2.1) x p𝑓 , p𝑔y “
1

2𝜋
x 𝑓 , 𝑔y, @ 𝑓 , 𝑔 P 𝐿2pRq.

and the Parseval identity,

(20.2.2) } p𝑓 }2 “
1

?
2𝜋

} 𝑓 }2, @ 𝑓 P 𝐿2pRq.

iii) fulfils inversion formula:

(20.2.3) 𝑓 p𝑥q
𝑎.𝑒.
“

1

2𝜋
x

x𝑓 p´𝑥q, @ 𝑓 P 𝐿2pRq.

iv) is a bijection on 𝐿2pRq with inverse

q𝑓 p𝑥q “
1

2𝜋
p𝑓 p´𝑥q.

Proof. We start proving the existence of the transform. Let 𝑓 P 𝐿2: by density, there exists p 𝑓𝑛q Ă 𝒮

such that 𝑓𝑛
𝐿2

ÝÑ 𝑓 . Consider p p𝑓𝑛q Ă 𝒮 Ă 𝐿2. We claim that this is a Cauchy sequence. Indeed,

} p𝑓𝑛 ´ x𝑓𝑚}2 “ } {𝑓𝑛 ´ 𝑓𝑚}2
p20.1.3q

“
1

2𝜋
} 𝑓𝑛 ´ 𝑓𝑚}2.

Since p 𝑓𝑛q is 𝐿2 convergent, p 𝑓𝑛q is a Cauchy sequence, hence also p p𝑓𝑛q it is. We define

p𝑓
𝐿2

:“ lim
𝑛

p𝑓𝑛.

This definition is independent of any particular approximating sequence p 𝑓𝑛q. Indeed, if p𝑔𝑛q Ă 𝒮,
𝑔𝑛

𝐿2

ÝÑ 𝑓 , then

} p𝑓𝑛 ´ x𝑔𝑛}2 “ } {𝑓𝑛 ´ 𝑔𝑛}2 “
1

2𝜋
} 𝑓𝑛 ´ 𝑔𝑛}2 ÝÑ

1

2𝜋
} 𝑓 ´ 𝑓 }2 “ 0,

that is lim𝑛
p𝑓𝑛
𝐿2

“ lim𝑛x𝑔𝑛. With this the existence is shown. It remains to verify properties i) to iv).
i) Let 𝑓 P 𝐿1 X 𝐿2. We temporarily denote by p𝑓 the 𝐿1 FT, and by r𝑓 the ”new” 𝐿2 FPT. The claim is
p𝑓 “ r𝑓 a.e. Let p 𝑓𝑛q Ă 𝒮 be such that 𝑓𝑛

𝐿1 ,𝐿2

ÝÑ 𝑓 . This is possible according to the mollification theorem.
Therefore, on one side, p𝑓𝑛

𝐿2

ÝÑ r𝑓 , so, modulo a subsequence, p𝑓𝑛
𝑎.𝑒.
ÝÑ r𝑓 . On the other side, by RL Lemma

bound } p𝑓𝑛 ´ p𝑓 }8 ď } 𝑓𝑛 ´ 𝑓 }1, so, in particular, p𝑓𝑛
𝑝𝑤

ÝÑ p𝑓 , therefore p𝑓𝑛
𝑎.𝑒.
ÝÑ p𝑓 . But then p𝑓 “ r𝑓 a.e.

ii) Both isometry (20.2.1) and Parseval (20.2.2) identities follows from the definition of FPT. For instance:
if 𝑓 , 𝑔 P 𝐿2 and p𝑓

𝐿2

“ lim𝑛
p𝑓𝑛, p𝑔 𝐿2

“ lim𝑛x𝑔𝑛, with p 𝑓𝑛q, p𝑔𝑛q Ă 𝒮, then, by the continuity of the inner
product,

x p𝑓 , p𝑔y ÐÝ x p𝑓𝑛,x𝑔𝑛y “
1

2𝜋
x 𝑓𝑛, 𝑔𝑛y ÝÑ

1

2𝜋
x 𝑓 , 𝑔y.

iii) Let 𝑓 P 𝐿2 and p𝑓
𝐿2

“ lim𝑛
p𝑓𝑛 with p 𝑓𝑛q Ă 𝒮. Notice that, since FT applies 𝒮 into itself, p p𝑓𝑛q Ă 𝒮, thus

according to the definition of FPT,
x

x𝑓
𝐿2

“ lim
𝑛

p

p𝑓𝑛
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Since inversion formula holds on Schwartz functions in strong form p

p𝑓𝑛p𝑥q ” 2𝜋 𝑓𝑛p´𝑥q, we have
x

x𝑓
𝐿2

“ lim
𝑛

2𝜋 𝑓𝑛p´7q
𝐿2

“ 2𝜋 𝑓 p´7q, ùñ
x

x𝑓 p𝑥q
𝑎.𝑒.

2 𝜋 𝑓 p´𝑥q,

from which conclusion follows.
iv) exercise.

Here is a genuine example of FPT.

Example 20.2.2: p˚q

Let sincp𝑥q :“ sin 𝑥
𝑥

. Then sinc P 𝐿2z𝐿1 and

ysincp𝜉q “
1

2
1r´2,2sp𝑥q.

In particular, this example shows that, differently from 𝐿1 FT, the FPT of 𝑓 is not necessarily a
continuous function.

Proof. First, sinc P 𝐿2. Indeed,∫
R

|sinc 𝑥|2 𝑑𝑥 “

∫
R

ˇ

ˇ

ˇ

ˇ

sin 𝑥

𝑥

ˇ

ˇ

ˇ

ˇ

2

𝑑𝑥.

Function
`

sin 𝑥
𝑥

˘2 is continuous in 𝑥 “ 0 and it is also bounded by 1
𝑥2

at ˘8. Therefore it is integrable on
R, that is sinc P 𝐿2 and the 𝐿2 FT can be computed. Notice, however, that since sinc R 𝐿1, the 𝐿1 FT of
sinc is not defined. Now, recalling that

zrect1p𝜉q “ 2 sincp𝜉q,

applying both sides the 𝐿2 FT and recalling the inversion formula

ysincp𝜉q “
1

2
z

zrect1p𝜉q “
1

2
rect1p´𝑥q “

1

2
rect1p𝑥q “

1

2
1r´2,2sp𝑥q.

In the previous example, the FPT has been computed through a lucky trick. In general, for 𝑓 P 𝐿2, there
is no integral representation for FPT. The most closest to be a formula is provided by the

Proposition 20.2.3

Let 𝑓 P 𝐿2pRq. Then

(20.2.4) p𝑓 p𝜉q
𝐿2

“ lim
𝑅Ñ`8

∫ 𝑅

´𝑅

𝑓 p𝑥q𝑒´𝑖 𝜉 𝑥 𝑑𝑥.

We leave the proof of formula (20.2.4) to exercises. In any case, this formula has been handled with care:
indeed, the limit is in 𝐿2 sense, and as we know, it is not necessarily a point wise limit. We might have
infact that r.h.s. of (20.2.4) is never convergent!
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20.3. Properties of FPT

FPT fulfills basically the same properties of FT. In particular, we have same formulas for FPT of
derivative, derivative of FPT, FPT of a convolution. Of course, statements have to be adapted to the 𝐿2
setup and proofs have to be redone from scratch because 𝐿1 proofs rely on the integral representation of
FT. We will leave most of the proofs for the exercises.

20.3.1. Duality Lemma. Duality lemma extends to 𝐿2 in a quite simple and natural way:

Lemma 20.3.1

Let 𝑓 , 𝑔 P 𝐿2pRq. Then ∫
R
𝑓 p𝑔 “

∫
R

p𝑓 𝑔

Proof. We have∫
R
𝑓 p𝑔 “

∫
R
𝑓 p𝑔 “ x 𝑓 , p𝑔y “ x 𝑓 , p𝑔p´7qy “

1

2𝜋
x p𝑓 ,

p

p𝑔p´7qy “
1

2𝜋
x p𝑓 , 2𝜋𝑔p´p´7qqy “ x p𝑓 , 𝑔y “

∫
R

p𝑓 𝑔.

20.3.2. Derivative of FPT. Respect to FT properties, for the FPT we need to start from the transform
of derivative. We have the

Proposition 20.3.2

Assume 𝑓 , 𝑥 𝑓 P 𝐿2pRq. Then

(20.3.1) DB𝜉 p𝑓 p𝜉q “ z´𝑖7 𝑓 p𝜉q.

Proof. The first remark is that, since 𝑓 , 𝑥 𝑓 P 𝐿2, it follows 𝑓 P 𝐿1. Indeed,∫
R

| 𝑓 | “

∫
R

1

1 ` |𝑥|
p1 ` |𝑥|q 𝑓

𝐶𝑆
ď

ˆ∫
R

1

p1 ` |𝑥|q2
𝑑𝑥

˙1{2ˆ∫
R

p1 ` |𝑥|q2| 𝑓 p𝑥q|2 𝑑𝑥

˙1{2

ă `8.

Thus, 𝑓 P 𝐿1 X 𝐿2 and p𝑓 makes sense as FT too. Now, to prove (20.3.1), we have to verify that

p𝑓 p𝜉q ´ p𝑓 p0q “

∫ 𝜉

0

z´𝑖7 𝑓 p𝜂q 𝑑𝜂.

To this aim, notice that, by duality,∫ 𝜉

0

z´𝑖7 𝑓 “

∫
R
1r0, 𝜉 s

z´𝑖7 𝑓 “ ´𝑖

∫
R

z1r0, 𝜉 sp𝑥q𝑥 𝑓 p𝑥q 𝑑𝑥.

Now,

z1r0, 𝜉 sp𝑥q “ {1r´𝜉{2, 𝜉{2sp7 ´ 𝜉{2qp𝑥q “ 𝑒´𝑖
𝜉

2
𝑥
{rect𝜉{2p𝑥q “ 𝑒´𝑖

𝜉

2
𝑥2
𝜉

2

sinp
𝜉

2 𝑥q

𝜉

2 𝑥
“

2

𝑥
𝑒´𝑖

𝜉 𝑥

2 sin
𝜉𝑥

2
,
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and, recalling of Euler formula, sin 𝜉 𝑥

2 “ 1
2𝑖

´

𝑒𝑖
𝜉 𝑥

2 ´ 𝑒´𝑖
𝜉 𝑥

2

¯

, we obtain

z1r0, 𝜉 sp𝑥q “
2

𝑥
𝑒´𝑖

𝜉 𝑥

2
1

2𝑖

´

𝑒𝑖
𝜉 𝑥

2 ´ 𝑒´𝑖
𝜉 𝑥

2

¯

“
1

𝑖𝑥

`

1 ´ 𝑒𝑖 𝜉 𝑥
˘

,

thus ∫ 𝜉

0

z´𝑖7 𝑓 “ ´𝑖

∫
R

1

𝑖𝑥

`

1 ´ 𝑒𝑖 𝜉 𝑥
˘

𝑥 𝑓 p𝑥q 𝑑𝑥 “ p𝑓 p𝜉q ´ p𝑓 p0q.

20.3.3. FPT of the derivative. We can now show the FPT of the derivative formula:

Proposition 20.3.3

Assume 𝑓 , B𝑥 𝑓 P 𝐿2pRq. Then
yB𝑥 𝑓 p𝜉q “ 𝑖𝜉 p𝑓 p𝜉q.

Proof. Since 𝒮pRq is dense in 𝐿2, we have that
yB𝑥 𝑓 “ 𝑖𝜉 p𝑓 , ðñ xyB𝑥 𝑓 , 𝑔y “ x𝑖7 p𝑓 , 𝑔y, @𝑔 P 𝒮pRq.

Now, by duality,

x𝑖7 p𝑓 , 𝑔y “

∫
R
𝑖𝜉 p𝑓 p𝜉q𝑔p𝜉q 𝑑𝜉 “

∫
R
𝑓 p𝑥qx𝑖7𝑔p𝑥q 𝑑𝑥 “ ´

∫
R
𝑓 p𝑥qB𝑥

p𝑔p𝑥q 𝑑𝑥.

We now aim to integrate by parts. First notice that

𝑓 p𝑏q2 ´ 𝑓 p𝑎q2 “

∫ 𝑏

𝑎

B𝑥 𝑓
2p𝑥q 𝑑𝑥 “

∫ 𝑏

𝑎

2 𝑓 B𝑥 𝑓 𝑑𝑥.

Being 𝑓 , B𝑥 𝑓 P 𝐿2, by Cauchy-Schwarz inequality we have 𝑓 B𝑥 𝑓 P 𝐿1, thus, letting 𝑎 ÝÑ ´8 and
𝑏 ÝÑ `8 we get that D 𝑓 p˘8q, and since 𝑓 P 𝐿2, necessarily 𝑓 p˘8q “ 0. Therefore, recalling also that
p𝑔 P 𝒮, ∫

R
𝑓 p𝑥qB𝑥

p𝑔p𝑥q 𝑑𝑥 “

”

𝑓 p𝑥qp𝑔p𝑥q

ı𝑥“`8

𝑥“´8
´

∫
R

B𝑥 𝑓 p𝑥qp𝑔p𝑥q 𝑑𝑥 “ ´

∫
R

B𝑥 𝑓 p𝑥qp𝑔p𝑥q 𝑑𝑥.

Therefore,
x𝑖7 p𝑓 , 𝑔y “ `

∫
R

B𝑥 𝑓p𝑔 “

∫
R

yB𝑥 𝑓 𝑔 “ xyB𝑥 𝑓 , 𝑔y,

as desired.

20.3.4. FPT of convolution. Also for the convolution, the FPT converts convolution product into
an algebraic product.

Proposition 20.3.4

Let 𝑓 P 𝐿1pRq and 𝑔 P 𝐿2pRq. Then
z𝑓 ˚ 𝑔 “ p𝑓 p𝑔.
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Proof. By Young inequality 𝑓 ˚𝑔 P 𝐿2, thus its FPT is well defined. Let p𝑔𝑛q Ă 𝒮 such that 𝑔𝑛
𝐿2

ÝÑ 𝑔

and consider 𝑓 ˚ 𝑔𝑛. According to Young inequality p 𝑓 ˚ 𝑔𝑛q Ă 𝐿2. We claim that 𝑓 ˚ 𝑔𝑛
𝐿2

ÝÑ 𝑓 ˚ 𝑔. This
follows by Young inequality:

} 𝑓 ˚ 𝑔 ´ 𝑓 ˚ 𝑔𝑛}2 “ } 𝑓 ˚ p𝑔 ´ 𝑔𝑛q}2 ď } 𝑓 }1}𝑔 ´ 𝑔𝑛}2 ÝÑ 0.

Thus,
{𝑓 ˚ 𝑔𝑛

𝐿2

ÝÑ z𝑓 ˚ 𝑔.

Now, since p𝑔𝑛q Ă 𝒮 Ă 𝐿1 we have also that
{𝑓 ˚ 𝑔𝑛 “ p𝑓x𝑔𝑛.

We claim that this converges in 𝐿2 to p𝑓 p𝑔. Indeed,

} p𝑓 p𝑔 ´ p𝑓x𝑔𝑛}2 “ } p𝑓 pp𝑔 ´ x𝑔𝑛q}2
𝑅𝐿
ď } p𝑓 }8}p𝑔 ´ x𝑔𝑛}2 ÝÑ 0.

In conclusion,
p𝑓 p𝑔

𝐿2

ÐÝ p𝑓x𝑔𝑛 “ {𝑓 ˚ 𝑔𝑛
𝐿2

ÝÑ z𝑓 ˚ 𝑔.

20.4. Exercises

Exercise 20.4.1 (˚). Compute the FPT of 𝑓 p𝑥q :“ 𝑥
1`𝑥2

.

Exercise 20.4.2 (˚˚). Let 𝑓 p𝑥q :“ 1
𝑥`𝑖

.
i) Is 𝑓 P 𝐿pRq? Is 𝑓 P 𝐿2pRq?

ii) Show that at least one of FT or FPT of 𝑓 exists and determine p𝑓 (hint: 1
𝑥`𝑖

“ 𝑥´𝑖
p𝑥`𝑖qp𝑥´𝑖q

“

𝑥´𝑖

𝑥2`1
. . .)

iii) Show that p𝑓 can have sense only in one of FT or FPT.

Exercise 20.4.3 (˚˚`). Show that if 𝑓 P 𝐿2pRq then

(20.4.1) p𝑓 p𝜉q
𝐿2

“ lim
𝑅Ñ`8

∫ 𝑅

´𝑅

𝑓 p𝑦q𝑒´𝑖 𝜉 𝑦 𝑑𝑦.

Use this to compute the FPT of
𝑓 p𝑥q :“ sincp𝑎𝑥q.

Exercise 20.4.4 (˚˚). Let 𝑎, 𝑏 ą 0. Check that the integral∫ `8

´8

sinp𝑎𝑡q sinp𝑏𝑡q

𝑡2
𝑑𝑡

is well defined and use the FPT to compute its value.

Exercise 20.4.5 (˚˚). Let 𝑔p𝜉q :“ 1
|𝜉 |3`1

.

i) Is 𝑔 P 𝐿1? Is 𝑔 P 𝐿2? Has 𝑔 a Fourier original in 𝐿1? And in 𝐿2? Justify your answers.
ii) If 𝑔 has a Fourier original 𝑓 , compute∫

R
| 𝑓 ˚ 𝑓 1|2 𝑑𝑥.
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Exercise 20.4.6 (˚˚`). Let 𝑓 P 𝐿2pRq and

𝑓𝑘p𝑥q :“

∫ 𝑘`1

𝑘

𝑒𝑖𝑥 𝜉 p𝑓 p𝜉q 𝑑𝜉.

i) Check that the 𝑓𝑘 are well defined and 𝑓𝑘 P 𝐿2pRq for every 𝑘 P Z.
ii) Check that

𝑓
𝐿2

“

`8
ÿ

𝑘“´8

𝑓𝑘 .

Exercise 20.4.7 (˚˚`). By using FT, compute the convolution 𝑓𝑎 ˚ 𝑓𝑏 of two Cauchy distributions where
𝑓𝑎p𝑥q “ 1

𝑎2`𝑥2
. Use this to compute

lim
𝑛

?
𝑛

∫ ?
𝑛𝛽

?
𝑛𝛼

𝑓1 ˚ 𝑓1 ˚ ¨ ¨ ¨ ˚ 𝑓1
loooooooomoooooooon

𝑛´𝑡𝑖𝑚𝑒𝑠

𝑑𝑥.

Exercise 20.4.8 (˚˚˚). Let 𝑓 P 𝐿2pRq with weak derivative 𝑓 P 𝐿2pRq. Prove the Heisenberg inequality

}𝑥 𝑓 }2}𝜉 p𝑓 }2 ě
} 𝑓 }22

2
.

(hint: } 𝑓 }22 “
∫
R

| 𝑓 |2 𝑑𝑥 “
∫

p𝑥q1| 𝑓 |2 𝑑𝑥 “ . . . Justify with care) Can you determine when equality
holds?

Exercise 20.4.9 (˚˚`). Let 𝑇 : 𝒮pRq ÝÑ 𝒮pRq be defined as

𝑇 𝑓 :“ p𝑓 , 𝑓 P 𝒮pRq.

Look at 𝑇 as an operator on functions.
i) Prove that 𝑇4 “ I (here 𝑇4 “ 𝑇 ˝ 𝑇 ˝ 𝑇 ˝ 𝑇).

ii) Prove that all possible 𝜆 P C such that 𝑇 𝑓 “ 𝜆 𝑓 for some 𝑓 P 𝒮pRq, 𝑓 ‰ 0 are 𝜆 “ ˘1,˘𝑖.
iii) Determine 𝑓 such that 𝑇 𝑓 “ 𝑓 .
iv) Use the multiplication-derivation duality𝑇pB𝑥 𝑓 q “ ´𝑖2𝜋𝜉𝑇 𝑓 to determine 𝑓 such that𝑇 𝑓 “ 𝜆 𝑓

for 𝜆 “ ´1,˘𝑖.



LECTURE 21

Applications to Integro-Differential Equations

FT is a versatile tool that can be exploited to solve different problems. Among other features, FT
properties of derivatives and convolution play an important role to solve certain equations. In fact, FT
converts derivatives into multiplication by polynomials and convolution products into algebraic products.
As a consequence, certain differential or integral or combined integro-differential equations can be
converted into algebraic equations. The idea is that, given an equation

ℰr𝑢s “ 0,

in the unknown 𝑢 “ 𝑢p𝑥q, we apply FT (or FPT) to both sides, obtaining an algebraic equation for p𝑢,

ℱrp𝑢s “ 0.

The idea is that this equation is easier than the original one, leading to a solution p𝑢. At this point, to get
𝑢 we need to invert FT (or FPT) to compute q

p𝑢. In this Lecture we illustrate this method and ideas on a
number of significant cases.

21.1. An ODE

We start with an example for which we do not need FT.

Example 21.1.1. Determine all 𝑢 P 𝐿1 with 𝑢1, 𝑢2 P 𝐿1 solutions of the equation

𝑢2 ´ 𝑢 “ 𝑒´|𝑥|, 𝑥 P R.

Proof. Since 𝑢, 𝑢1, 𝑢2 P ℒ
1 and also 𝑒´|𝑥| P 𝐿1, we can apply FT to the equation: we get

{𝑢2 ´ 𝑢 “ z𝑒´|7|, ðñ p𝑢2 ´ p𝑢 “
2

1 ` 𝜉2
.

Since p𝑢2p𝜉q “ p𝑖𝜉q2p𝑢 “ ´𝜉2p𝑢p𝜉q, we obtain the equation

´p𝜉2 ` 1qp𝑢 “
2

1 ` 𝜉2
.

Here you may appreciate how an ODE has become an algebraic equation. We can solve this obtaining

(21.1.1) p𝑢 “ ´
2

p1 ` 𝜉2q2
.

Thus: if 𝑢 P 𝐿1 with 𝑢1, 𝑢2 P 𝐿1 is a solution of the ODE, then p𝑢 is given by previous formula. Now, to go back to
𝑢 we need to solve the inversion problem (21.1.1). Since we are here in 𝐿1 context (the argument for 𝐿2 solutions
would be easier), we may notice that 𝑔 :“ ´ 2

p1`𝜉2q2
P 𝐿1 and clearly also 𝑔1, 𝑔2 P 𝐿1, so p𝑔 P 𝐿1. Thus, equation

(21.1.1) has a unique solution

𝑢p𝑥q “
1

2𝜋
p𝑔p´𝑥q.

151
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Instead of proceeding in the calculation of p𝑔 we may observe that
ˆ

2

1 ` 𝜉2

˙2

“

´

z𝑒´|7|

¯2

“ z𝑒´|7|z𝑒´|7| “ {𝑒´|7| ˚ 𝑒´|7|,

so,
𝑢p𝑥q “ ´

1

2
𝑒´|7| ˚ 𝑒´|7|p𝑥q “ ´

1

2

∫
R
𝑒´|𝑥´𝑦|𝑒´|𝑦| 𝑑𝑦

Computing the convolution∫
R
𝑒´|𝑥´𝑦|𝑒´|𝑦| 𝑑𝑦 “

∫ 0

´8

𝑒´|𝑥´𝑦|𝑒𝑦 𝑑𝑦 `

∫ `8

0

𝑒´|𝑥´𝑦|𝑒´𝑦 𝑑𝑦.

If 𝑥 ě 0, previous integrals are

“
∫ 0

´8
𝑒´p𝑥´𝑦q𝑒𝑦 𝑑𝑦 `

∫ 𝑥
0
𝑒´p𝑥´𝑦q𝑒´𝑦 𝑑𝑦 `

∫`8

𝑥
𝑒´p𝑦´𝑥q𝑒´𝑦 𝑑𝑦

“ 𝑒´𝑥
∫ 0

´8
𝑒2𝑦 𝑑𝑦 ` 𝑒´𝑥

∫ 𝑥
0
𝑑𝑦 ` 𝑒𝑥

∫`8

𝑥
𝑒´2𝑦 𝑑𝑦

“ 𝑒´𝑥

2 ` 𝑥𝑒´𝑥 ` 𝑒𝑥 𝑒
´2𝑥

2 “ 𝑒´𝑥p1 ` 𝑥q,

while, as 𝑥 ă 0,
“

∫ 𝑥
´8

𝑒´p𝑥´𝑦q𝑒𝑦 𝑑𝑦 `
∫ 0
𝑥
𝑒𝑥´𝑦𝑒𝑦 𝑑𝑦 `

∫`8

0
𝑒´p𝑦´𝑥q𝑒´𝑦 𝑑𝑦

“ 𝑒´𝑥
∫ 𝑥

´8
𝑒2𝑦 𝑑𝑦 ` 𝑒𝑥

∫ 0
𝑥
𝑑𝑦 ` 𝑒𝑥

∫`8

0
𝑒´2𝑦 𝑑𝑦

“ 𝑒𝑥

2 ´ 𝑥𝑒𝑥 ` 𝑒𝑥 1
2 “ 𝑒𝑥p1 ´ 𝑥q,

thus 𝑢p𝑥q “ ´1
2 𝑒

´|𝑥|p1 ` |𝑥|q.
The conclusion of this argument is: if 𝑢, 𝑢1, 𝑢2 P 𝐿1 is a solution of the ODE then, necessarily, 𝑢p𝑥q “

´ 1
2 𝑒

´|𝑥|p1 ` |𝑥|q. This, however, does not prove yet that such 𝑢 is a solution: we should now verify that 𝑢 has
really first and second derivatives a.e. (easy) and this will close the argument. □

21.2. Convolution Equations

Convolution property (18.4.1) can be useful to solve certain integral equations that arises in application,
where the integral part has convolution form.

Example 21.2.1. Determine for which values of real parameter 𝜆 the equation

𝑢p𝑥q “ 𝜆

∫
R
𝑒´|𝑥´𝑦|𝑢p𝑦q 𝑑𝑦 ` 𝑒´|𝑥|,

in the unknown 𝑢 P 𝐿1 has a unique solution and, in that case, find it.

Proof. The equation can be rewritten as

𝑢 “ 𝜆𝑒´|7| ˚ 𝑢 ` 𝑒´|7|.

By applying to both members the FT we obtain

p𝑢 “ 𝜆z𝑒´|7|
p𝑢 ` z𝑒´|7|, ðñ

´

1 ´ 𝜆z𝑒´|7|

¯

p𝑢 “ z𝑒´|7|.

Now, recall that by (17.1.4)
z𝑒´|7|p𝜉q “

2

1 ` 𝜉2
,
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therefore
p𝑢p𝜉q “

1

1 ´ 𝜆 2
1`𝜉2

2

1 ` 𝜉2
“

2

p1 ´ 2𝜆q ` 𝜉2
.

Let’s look at this p𝑢. If 1 ´ 2𝜆 “ 0, that is 𝜆 “ 1
2 ,

p𝑢 “
2

𝜉2

and this function cannot be the FT of an 𝑢 P 𝐿1 (p𝑢 is not continuous). The same happens if 1 ´ 2𝜆 ă 0: in this
case we could write

p1 ´ 2𝜆q ` 𝜉2 “ p𝜉 ´
?
2𝜆 ´ 1qp𝜉 `

?
2𝜆 ´ 1q,

hence
p𝑢 “

2

p𝜉 ´
?
2𝜆 ´ 1qp𝜉 `

?
2𝜆 ´ 1q

.

By this easily we deduce 𝑢 R 𝐿1.
The conclusion of these remarks is that a solution 𝑢 P 𝐿1 is possible only if 1 ´ 2𝜆 ą 0, that is 𝜆 ă 1

2 . In this
case

p𝑢 “
2

p1 ´ 2𝜆q ` 𝜉2
p17.1.4q

“
1

?
1 ´ 2𝜆

2
?
1 ´ 2𝜆

p
?
1 ´ 2𝜆q2 ` 𝜉2

“
1

?
1 ´ 2𝜆

{

𝑒´
?
1´2𝜆|7|

that is
𝑢p𝑥q “

1
?
1 ´ 2𝜆

𝑒´
?
1´2𝜆|𝑥|. □

21.3. Heat Equation

The classical equation describing the heat diffusion on an infinite volume is the PDE

(21.3.1)

$

&

%

B𝑡𝑢p𝑡, 𝑥q “ 𝜎2

2 B𝑥𝑥𝑢p𝑡, 𝑥q, 𝑡 ě 0, 𝑥 P R,

𝑢p0, 𝑥q “ 𝜑p𝑥q, 𝑥 P R,

Here 𝑢 “ 𝑢p𝑡, 𝑥q represents the temperature at time 𝑡 ě 0 on each point 𝑥 of an infinite and homogeneous
rod with initial temperature 𝜑. By a suitable use of FT we can easily determine a formula for the solution
𝑢. To this aim we introduce the 𝑥´FT defined as

𝑣p𝑡, 𝜉q :“ {𝑢p𝑡, 7qp𝜉q ”

∫
R
𝑢p𝑡, 𝑥q𝑒´𝑖 𝜉 𝑥 𝑑𝑥, 𝜉 P R.

Of course we should do some assumption like 𝑢p𝑡, 7q P 𝐿1 to define this. Assuming also B𝑡𝑢p𝑡, 7q P 𝐿1

we may write,

{B𝑡𝑢p𝑡, 7qp𝜉q “

∫
R

B𝑡𝑢p𝑡, 𝑦q𝑒´𝑖 𝜉 𝑦 𝑑𝑦 “ B𝑡

∫
R
𝑢p𝑡, 𝑦q𝑒´𝑖 𝜉 𝑦 𝑑𝑦 “ B𝑡

{𝑢p𝑡, 7qp𝜉q “ B𝑡𝑣p𝑡, 𝜉q.

Here, the switching between derivation and integration requires some assumption. Let us skip this for
the moment, we proceed as if everything can be computed. According to properties of the FT

{B𝑥𝑥𝑢p𝑡, 7qp𝜉q “ p´𝑖𝜉q2{𝑢p𝑡, 7qp𝜉q “ ´𝜉2𝑣p𝑡, 𝜉q.
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So, in term of 𝑣 the heat equation becomes

B𝑡𝑣p𝑡, 𝜉q “ ´
𝜎2

2
𝜉2𝑣p𝑡, 𝜉q, 𝑡 ě 0, 𝜉 P R.

Moreover,
𝑣p0, 𝜉q “ {𝑢p0, 7qp𝜉q “ p𝜑p𝜉q,

thus, to find 𝑣 we have to solve the Cauchy problem

(21.3.2)

$

&

%

B𝑡𝑣p𝑡, 𝜉q “ ´ 𝜎2

2 𝜉
2𝑣p𝑡, 𝜉q, 𝑡 ě 0, 𝜉 P R.

𝑣p0, 𝜉q “ p𝜑p𝜉q, 𝜉 P R.

For 𝜉 fixed, this is a simple Cauchy problem for an first order linear equation. This can be easily solved
leading to

𝑣p𝑡, 𝜉q “ p𝜑p𝜉q𝑒´ 1
2 𝜎

2 𝜉2𝑡 , 𝑡 ě 0, 𝜉 P R.

Now recalling the Fourier transform of the Gaussian

𝑒´ 1
2 𝜎

2𝑡 𝜉2 “

{

𝑒
´

72

2𝜎2𝑡

?
2𝜋𝜎2𝑡

p𝜉q,

we have
{𝑢p𝑡, 7qp𝜉q “ 𝑣p𝑡, 𝜉q “

1
?
2𝜋𝜎2𝑡

p𝜑p𝜉q
{

𝑒
´

72

2𝜎2𝑡 p𝜉q “
1

?
2𝜋𝜎2𝑡

{

ˆ

𝜑 ˚ 𝑒
´

72

2𝜎2𝑡

˙

p𝜉q,

that gives, finally,

(21.3.3) 𝑢p𝑡, 𝑥q “
1

?
2𝜋𝜎2𝑡

ˆ

𝜑 ˚ 𝑒
´

72

2𝜎2𝑡

˙

p𝑥q “
1

?
2𝜋𝜎2𝑡

∫
R
𝜑p𝑦q𝑒

´
p𝑥´𝑦q2

2𝜎2𝑡 𝑑𝑦, 𝑡 ą 0, 𝑥 P R.

Some remarks on this solution. First: it is not difficult to show that if 𝜑 P 𝐿1, 𝑢 P 𝒞
8ps0,`8rˆRq

and 𝑢 is a solution of heat equation. This fact can be checked by direct verification, that is computing
B𝑡𝑢 and B𝑥𝑥𝑢 (through derivation under integral sign) and checking that B𝑡𝑢 “ 𝜎2

2 B𝑥𝑥𝑢 for every 𝑡 ą 0
and 𝑥 P R. (this is a technical but nice exercise that the reader is invited to do) Second: the 𝑢 given
by formula (21.3.3) is not defined at 𝑡 “ 0. This poses a problem: in what sense 𝑢 verifies the initial
condition 𝑢p0, 𝑥q “ 𝜑p𝑥q? We may provide the following justification. Since

1
?
2𝜋𝜎2𝑡

𝑒
´

72

2𝜎2𝑡 “: 𝛿1{
?
𝜎2𝑡
,

is an approximate unit,

𝑢p𝑡, 7q “ 𝜑 ˚ 𝛿1{
?
𝜎2𝑡

𝐿1

ÝÑ 𝜑, 𝑡 Ó 0, if 𝜑 P 𝐿1pRq.

Thus (21.3.3) fulfils the initial condition in a ”weak form”. Last remark: formula (21.3.3) makes sense
for 𝜑 P 𝐿 𝑝, 1 ď 𝑝 ď `8. In particular, 𝜑 P 𝐿8 makes sense. This is apparently conflicting with the
argument that led to (21.3.3), because at certain point we needed p𝜑 and, in general, there is no p𝜑 for a
𝜑 P 𝐿1. However, formula (21.3.3) makes sense. As pointed out in the first remark, it is not difficult to
check that (also in case 𝜑 P 𝐿8), 𝑢 P 𝒞

8ps0,`8rˆRq and it solves the heat equation. In other words,
formula (21.3.3), derived through FT, goes much beyond the original problem setup.
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21.4. The Black–Sholes Equation

The Black–Sholes equation is a PDE describing the behavior of the value of a financial derivative
written over a risky asset whose price is stochastic. We do not enter in the derivation of the equation, we
will limit to a qualitative description of the model.

The Black–Sholes model describes a simple market model where two assets are available:
‚ a risk free asset, called bank bond, delivering a deterministic instantaneous return rate 𝑟 , that is

𝑑𝐵p𝑡q

𝐵p𝑡q
“ 𝑟 𝑑𝑡.

‚ a risky asset, called stock, delivering a stochastic instantaneous return

𝑑𝑆p𝑡q

𝑆p𝑡q
“ 𝜆 𝑑𝑡 ` gaussian r.v. mean 0 and variance 𝜎2 𝑑𝑡.

The uncertainty delivered by 𝑆 makes uncertain any investment on it. In other words, while 𝐵p𝑇q is
deterministic, 𝑆p𝑇q is a random variable. It is therefore natural to look to forms of protection against
financial risks ensuring a final payment 𝐹p𝑆p𝑇qq. This payment should be delivered by the issuer to the
owner of such a contract at time 𝑇 . The contract is written at time 𝑡 “ 0 (initial time), when the owner
pays a sum to the issuer to receive such a right. A major question is: how much should one pay for that
contract?

Before Black and Sholes, such price was determined on the base of historical data. Black and Sholes
discovered that the price should be based on a rational mechanism. They introduce 𝑉 “ 𝑉p𝑡, 𝑥q, price of
the contract starting at time 𝑡 knowing that the value of the underlie is 𝑥, namely 𝑆p𝑡q “ 𝑥, and expiring
at time 𝑇 delivering 𝐹p𝑆p𝑇qq. They assume a simple financial principle: market is arbitrage free, that is
there’re no financial assets delivering certain profit or certain loss. By this it follows that, for example,
𝑉p𝑇, 𝑥q “ 𝐹p𝑥q. Indeed, if 𝑉p𝑇, 𝑥q ă 𝐹p𝑥q, that is if the value of a contract written at time 𝑇 when
𝑆p𝑇q “ 𝑥 paying 𝐹p𝑆p𝑇qq “ 𝐹p𝑥q at time𝑇 itself is less than 𝐹p𝑥q, then the buyer has a money machine:
they pay 𝑉p𝑇, 𝑥q to receive 𝐹p𝑥q realizing a risk free profit 𝐹p𝑥q ´𝑉p𝑇, 𝑥q. Similarly, 𝑉p𝑇, 𝑥q ą 𝐹p𝑥q is
impossible.

By similar arguments, Black and Sholes derived a condition on 𝑉p𝑡, 𝑥q at any time 𝑡 ă 𝑇 . They
proved that 𝑉 must fulfil the following PDE,

(21.4.1) B𝑡𝑉p𝑡, 𝑥q `
1

2
𝜎2𝑥2B𝑥𝑥𝑉p𝑡, 𝑥q ` 𝑟𝑥B𝑥𝑉p𝑡, 𝑥q ´ 𝑟𝑉p𝑡, 𝑥q “ 0.

This, together with above mentioned condition 𝑉p𝑇, 𝑥q “ 𝐹p𝑥q leads to the following problem:

(21.4.2)

$

&

%

B𝑡𝑉p𝑡, 𝑥q ` 1
2𝜎

2𝑥2B𝑥𝑥𝑉p𝑡, 𝑥q ` 𝑟𝑥B𝑥𝑉p𝑡, 𝑥q ´ 𝑟𝑉p𝑡, 𝑥q “ 0, 0 ď 𝑡 ď 𝑇, 𝑥 ě 0,

𝑉p𝑇, 𝑥q “ 𝐹p𝑥q, 𝑥 ě 0.

The problem (21.4.2) is apparently similar to the (21.3.1). However, it is not evident how to use the FT
being the spatial domain 𝑥 asymmetric. Setting 𝑦 “ log 𝑥, that is 𝑥 “ 𝑒𝑦 and

𝑢p𝑡, 𝑦q :“ 𝑉p𝑡, 𝑒𝑦q,
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easily we have

(21.4.3)

$

&

%

B𝑡𝑢p𝑡, 𝑦q ` 1
2𝜎

2B𝑦𝑦𝑢p𝑡, 𝑦q ` 𝑟B𝑦𝑢p𝑡, 𝑦q ´ 𝑟𝑢p𝑡, 𝑦q “ 0, 0 ď 𝑡 ď 𝑇, 𝑦 P R,

𝑢p𝑇, 𝑦q “ 𝐹p𝑒𝑦q, 𝑦 P R.

We can now use the FT to solve this problem. Let

𝑣p𝑡, 𝜉q :“ {𝑢p𝑡, ¨qp𝜉q.

Then
B𝑡𝑣 `

1

2
𝜎2p´𝑖𝜉q2𝑣 ` 𝑟p´𝑖𝜉q𝑣 ´ 𝑟𝑣 “ 0,

or

B𝑡𝑣 “

ˆ

1

2
𝜎2𝜉2 ` 𝑖𝑟𝜉 ` 𝑟

˙

𝑣.

This is an ordinary differential equation in 𝑣p𝑡, 𝜉q (𝜉 fixed). The final condition on 𝑢p𝑇, 𝑦q becomes

𝑣p𝑇, 𝜉q “ {𝑢p𝑇, ¨qp𝜉q “ z𝐹p𝑒7qp𝜉q.

Therefore

𝑣p𝑡, 𝜉q “ 𝑒p
1
2 𝜎

2 𝜉2`𝑖𝑟 𝜉`𝑟qp𝑡´𝑇q𝑣p𝑇, 𝜉q “ 𝑒´𝑟p𝑇´𝑡q𝑒´𝑖𝑟p𝑇´𝑡q𝜉 𝑒´ 1
2 𝜎

2p𝑇´𝑡q𝜉2
z𝐹p𝑒7qp𝜉q.

We can now return to 𝑦. First recall that

𝑒´ 1
2 𝜎

2p𝑇´𝑡q𝜉2 “

{1
a

2𝜎2p𝑇 ´ 𝑡q
𝑒

´
72

2𝜎2?
𝑇´𝑡

thuse

𝑒´ 1
2 𝜎

2p𝑇´𝑡q𝜉2
z𝐹p𝑒7q “

{1
a

2𝜋𝜎2p𝑇 ´ 𝑡q
𝑒

´
72

2𝜎2?
𝑇´𝑡 ˚ 𝐹p𝑒7q.

Moreover, the multiplication by 𝑒´𝑖𝑟p𝑇´𝑡q𝜉 in the FT means a translation in the variable of ´𝑟p𝑇 ´ 𝑡q in
its original. Putting together these facts,

𝑢p𝑡, 𝑦q “ 𝑒´𝑟p𝑇´𝑡q 1?
2𝜋𝜎2p𝑇´𝑡q

𝑒
´

72

2𝜎2?
𝑇´𝑡 ˚ 𝐹p𝑒7qp𝑦 ´ 𝑟p𝑇 ´ 𝑡qq

“ 𝑒´𝑟p𝑇´𝑡q
∫
R
𝐹
`

𝑒𝑦´𝑟p𝑇´𝑡q´𝜂
˘

𝑒
´

𝜂2

2𝜎2p𝑇´𝑡q
?

2𝜋𝜎2p𝑇´𝑡q
𝑑𝜂.

Returning to 𝑉 we finally obtain

(21.4.4)

𝑉p𝑡, 𝑥q “ 𝑢p𝑡, log 𝑥q “ 𝑒´𝑟p𝑇´𝑡q

∫
R
𝐹p𝑒log 𝑥´𝑟p𝑇´𝑡q´𝜂q

𝑒
´

𝜂2

2𝜎2p𝑇´𝑡q

a

2𝜎2p𝑇 ´ 𝑡q
𝑑𝜂

p𝑧 :“ ´
𝜂

𝜎
?
𝑇´𝑡

q “ 𝑒´𝑟p𝑇´𝑡q

∫
R
𝐹

´

𝑥𝑒´𝑟p𝑇´𝑡q`p𝜎
?
𝑇´𝑡q𝑧

¯

𝑒´ 𝑧2

2

?
2𝜋

𝑑𝑧
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This is the famous Black formula, still used to price contracts. For instance, the call option is a contract
with payoff function 𝐹p𝑥q “ maxt𝐾, 𝑥u. The price at 𝑡 “ 0 if 𝑆p0q “ 𝑥 is

𝑉p0, 𝑥q “ 𝑒´𝑟𝑇

∫
R
max

!

𝑥𝑒´𝑟𝑇`p𝜎
?
𝑇q𝑧 , 𝐾

)

𝑒´ 𝑧2

2

?
2𝜋

𝑑𝑧

“ 𝑒´𝑟𝑇

˜∫ 1
𝜎

?
𝑇
log 𝐾

𝑥
` 𝑟
𝜎

?
𝑇

´8

𝐾
𝑒´ 𝑧2

2

?
2𝜋

𝑑𝑧 `

∫ `8

1
𝜎

?
𝑇
log 𝐾

𝑥
` 𝑟
𝜎

?
𝑇

𝑥𝑒´𝑟𝑇`𝜎
?
𝑇𝑧 𝑒

´ 𝑧2

2

?
2𝜋

𝑑𝑧

¸

“ 𝑒´𝑟𝑇

˜

𝐾Φ

ˆ

1

𝜎
?
𝑇
log

𝐾

𝑥
`
𝑟

𝜎

?
𝑇

˙

` 𝑥𝑒´𝑟𝑇

∫ ´ 1
𝜎

?
𝑇
log 𝐾

𝑥
´ 𝑟
𝜎

?
𝑇

´8

𝑒´𝜎
?
𝑇𝑧 𝑒

´ 𝑧2

2

?
2𝜋

𝑑𝑧

¸

“ 𝑒´𝑟𝑇

ˆ

𝐾Φ

ˆ

1

𝜎
?
𝑇
log

𝐾

𝑥
`
𝑟

𝜎

?
𝑇

˙

` 𝑥𝑒

´

𝜎2

2 ´𝑟

¯

𝑇
Φ

ˆ

´
1

𝜎
?
𝑇
log

𝐾

𝑥
´
𝑟

𝜎

?
𝑇 ` 𝜎

?
𝑇

˙˙

.

where we denoted by

Φp𝑤q :“

∫ 𝑤

´8

𝑒´ 𝑧2

2

?
2𝜋

𝑑𝑧

the distribution function of the standard gaussian.

21.5. Exercises

Exercise 21.5.1. Solve the following equation in the unknown 𝑢 P 𝐿1∫
R
𝑢p𝑥 ´ 𝑦q𝑒´|𝑦| 𝑑𝑦 “ 2𝑒´|𝑥| ´ 𝑒´2|𝑥|.

Exercise 21.5.2 (‹). Solve the following equation in the unknown 𝑢 P 𝐿1pRq such that 𝑢1, 𝑢2 P 𝐿1pRq:

𝑢2p𝑥q ´
1

2

∫
R
𝑒´|𝑦|𝑢p𝑥 ´ 𝑦q 𝑑𝑦 “ 𝑒´|𝑥|sgnp𝑥q. p‹q

Exercise 21.5.3 (‹). Solve the following equation in two cases: i) 𝑢 P 𝐿1pRq, ii) 𝑢 P 𝐿2pRq:∫
R
𝑢p𝑦q𝑢p𝑥 ´ 𝑦q 𝑑𝑦 ` 𝑢p𝑥q “

1

1 ` 𝑥2
.

Exercise 21.5.4. Consider the Cauchy problem for the wave equation on an infinite interval
$

&

%

B𝑡𝑡𝑢p𝑡, 𝑥q “ 𝑐2B𝑥𝑥𝑢p𝑡, 𝑥q, 𝑡 ě 0, 𝑥 P R,
𝑢p0, 𝑥q “ 𝜑p𝑥q, 𝑥 P R,
B𝑡𝑢p0, 𝑥q “ 𝜓p𝑥q, 𝑥 P R.

Setting 𝑣p𝑡, 𝜉q :“ {𝑢p𝑡, 7qp𝜉q, determine 𝑣p𝑡, 𝜉q. Deduce D’Alembert formula

𝑢p𝑡, 𝑥q “
1

2
p𝜑p𝑥 ` 𝑡q ` 𝜑p𝑥 ´ 𝑡qq `

1

2

∫ 𝑥`𝑡

𝑥´𝑡

𝜓p𝑦q 𝑑𝑦.
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Exercise 21.5.5. Find the solution of the following problem
$

&

%

B𝑥𝑥𝑢p𝑡, 𝑥q “ B𝑡 𝑥𝑢p𝑡, 𝑥q, 𝑥 P R, 𝑡 ą 0,

𝑢p0, 𝑥q “ 𝑒´|𝑥|, 𝑥 P R.

Exercise 21.5.6. Find the solution of the following problem
$

&

%

B𝑡𝑢p𝑡, 𝑥q ` 𝑡B𝑥𝑢p𝑡, 𝑥q “ 0, 𝑥 P R, 𝑡 ą 0,

𝑢p0, 𝑥q “ 𝑓 p𝑥q, 𝑥 P R.

Exercise 21.5.7. Find the solution of the following problem
$

&

%

B𝑡𝑢p𝑡, 𝑥q “ 𝑒´𝑡B𝑥𝑥𝑢p𝑡, 𝑥q, 𝑥 P R, 𝑡 ą 0,

𝑢p0, 𝑥q “ 𝑒´|𝑥|, 𝑥 P R.

Exercise 21.5.8. Find the solution of the following problem
$

’

’

’

’

&

’

’

’

’

%

B𝑡𝑡𝑢p𝑡, 𝑥q ` B𝑥𝑥𝑥𝑥𝑢p𝑡, 𝑥q “ 0, 𝑥 P R, 𝑡 ą 0,

𝑢p0, 𝑥q “ rect1, 𝑥 P R,

𝑢𝑡p0, 𝑥q “ 0, 𝑥 P R.

Exercise 21.5.9. The model of heat diffusion with convection is described by the Cauchy problem
$

&

%

B𝑡𝑡𝑢 “ 𝑐2B𝑥𝑥𝑢 ` 𝑘B𝑥𝑢, 𝑡 ą 0, 𝑥 P R,

𝑢p0, 𝑥q “ 𝑓 p𝑥q, 𝑥 P R.

Find the evolution of the temperature in the case 𝑐 “ 1, 𝑘 “ 1
2 and initial temperature 𝑓 p𝑥q “ 𝑒´𝑥2 .


