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Foreword

Advanced Engineering Modeling demand knowledge and use of sophisticated tools of Analysis and
Probability. The goal of this course is to introduce to the most relevant of these tools in a practical and
essential way. This means that we do not privilege the theoretical depth but, rather, we aim to put the
focus on the tools and the methods they are used to solve problems.

Almost all the advanced tools we introduce here are based on the modern theory of Integration
proposed by Lebesgue at the beginning of XXth century. This theory is based on the fundamental
concept of measure, and this is our starting point. We will introduce the concepts of abstract measure
and abstract integrals, illustrating them on the fundamental example of Lebesgue measure and integral
(used in most of Analytical applications). Abstract measure and integral are also the fundamentals for
modern Probability as conceived by Kolmogorov. [...]

As said, our goal is to help students to familiarize with tools and methods. Therefore, proofs are
proposed only when their technical level is not excessive and they provide some insight into what the
corresponding statements say. Sometimes, proofs are proposed with extra assumptions than what actually
needed just to simplify them and to get quickly to the point. Other times proofs are just ”sketch” of proofs,
that is not formally rigorous proofs that could be made 100% true proof with some technical work (omitted
here). Yet, the goal is to help to understand “why”, rather than providing a complete view of the matter.
I know this approach is controversial. In my experience, it works better for students who do not have a
specific interest in the matter itself and that, nonetheless, need to learn tools to understand their curricular
disciplines.

A good number of solved problems is proposed throughout the notes, as well as several exercises
(without solution) at the end of each Chapter. The student is encouraged to try to solve problems right
after the first few examples have been shown in class. A = legend to distinguish between different levels
for examples and exercises:

e (%) denotes the basic level, that is the minimal and easiest level, where the focus is mostly on
the understanding of the definitions, being able to apply them on simple cases without particular
technical skills required.

e (xx) denotes the intermediate level, that is the level expected for the majority of the students.
Here the focus is on applying the theory to solve complex problems that, however, require the
application of standard procedures. A (x#+) indicates the presence of technical difficulties.

e (w:x) denotes the advanced level, that is a level that denotes a deep comprehension of the main
ideas behind the theory, including being able to organize an abstract argument (a proof) of a
general property.

To help the student with conceptual maps, a number of “checklist” is proposed. They are useful to quickly
remind “what to do” to respond to a certain question. The checklists are helpful to reach the intermediate
level, but they cannot replace the critical approach which is always required.

A final note. The notes contain a large number of errors of any type (mathematics, english, typos,
etc). Each student can participate to make these note better for the next students will come by pointing
out these. Thanks, and good luck with your job! May the wind be always at your back!
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LECTURE 1

Abstract Measures

A measure is a coherent way to assign positive numbers to sets. Coherent means that an empty set
must have zero measure, and the measure of a disjoint union of sets is the sum of the measures. In a
way, the measure of a set is an extension of the geometrical concept of area or volume. However, its
applications go much beyond Geometry. A probability measure is a measure with total value equal to
1. This Lecture introduces the first important definitions and properties of abstract measures, illustrating
some simple examples.

1.1. o —algebras of sets

A measure is a set function. Its domain is a suitable family of subsets of a set X. According to
the specific context, these subsets can have a geometrical interpretation, a stochastic interpretation (as in
Probability Theory, where they are called events) or others (as in engineering, where they represent the
information). In every case, this family must obey to a few elementary properties:

Definition 1.1.1

A family & < P (X) is called o—algebra if
1) 9,X € F;
i) if E € & then also E€ € &;
iii) if E, € #,ne N, thenalso | J,, E, € .
Elements of a o-—algebra are called measurable sets.

If a family of sets satisfies iii) but only for finite unions, we say that & is an algebra. The o is to
remind of countable unions. Apparently, the definition 1.1 is simple. However, it is not so easy to exhibit
non-trivial examples of o-—algebras. Let us start with some easy examples.

Example 1.1.2: (x)

Let X be any set.
o 7 :={@, X} is a o —algebra (trivial o—algebra).
o F = P(X) (parts of X) is a c—algebra.
e LetAS Xand A # @,then F = {@, A, A°, X} is a o —algebra.
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Example 1.1.3: (s:x)

Let X be any set, & := {E < X : atleast one of E, E€ is countable}. Then, F is a o —algebra.

Prookr. i) Clearly @, X € & (for @, @ itself is finite having zero elements, thus countable; for X,
X¢ = @ is countable). ii) Suppose E € F. Then E or E€ is countable, thus E€ or (E)¢ is countable, and
this means that E< € %. iii) Suppose (E,) < %. For each E,,, one between E, and E§ is countable. Let
E :=J, E,. We claim that one between E and E€ is countable. We may argue as follows: if all E,, are
countable, then E = Un E, is countable. Otherwise, there exists at least one of E,,, say Ex which is not
countable. But then, E]‘V must be countable. Therefore

c
E€ = <UE,,) = E5 < Eg,.
n n

is countable.

Let us see some remarkable example of families that are not o—algebras.

Example 1.1.4: ()

Let X = R?and & := {E < R? : E open}. Then & is not a o —algebra.

Proor. Indeed, while it is always true that countable (and also uncountable) unions of open sets are
open sets, it is in general false that if E is open, then E€ is open as well (indeed, this happens iff E = @, R9).

Example 1.1.5: (x)

Let X =R, # :={I c R : [interval}. Then & is not a o—algebra.

Proor. We may say that @ =]0,0[e & and X = R =] — o0, +o0[e F. However, the complementary
I¢ of an interval is not an interval (in general, it is the union of two intervals) and the union of two or more
intervals is not (in general) an interval.

Example 1.1.6: extension ()

Let X =Rand & := {{J, I, : I, intervals}. This & is not a o —algebra.

Proor. This time, @, X € & and if (E,,) c & then Un E,, € & (countable union of countable unions
is still a countable union). However, if E € & it is not true (in general) that E€ € . To check this is
a bit tricky. Let Q = {g, : n € N}, set [, := [gn,qn] and take E = Q = |J,, I, € F. However,
E° =R\Q ¢ #. Indeed, if E = R\Q = |J,, J» with J,, intervals, then J,, € R\Q. Because of the density
of rationals and irrationals in reals, this would force J,, to have empty interior, thatis J,, = [x,,, x, ] for every
n. But this would imply that R\Q = {x,, : n € N}, that is R\Q would be countable, which is impossible.
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A number of simple elementary properties follow from the definition of o-—algebra. In summary, we
may say that a o-—algebra is closed for set operations.

Proposition 1.1.7

Let & be a o —algebra of sets on X. Then
e ifE,De F, then E\D and E A D := (E\D) u (D\E) belong to &
e if E,€ F,neN, thenalso( ), E, € F.

The proof is left as exercise. A general method to construct a o—algebra is the following. Let
& < P(X) be a family of subsets of X, not necessarily a o —algebra (for example, & := {A — RY
A open}). Then, we look for the smallest (the most “cheap”) o-—algebra of sets containing &. We call
this o—algebra, the o—algebra generated by &. The existence and uniqueness of such o—algebra is
ensured by the

Proposition 1.1.8

Let X be any set, § < 9(X) a family of subsets of X. Then,
o(8) = ﬂ F
Fo8

is the smallest o-—algebra containing &§'.

Proor. First, the intersection is not empty: among all # S & there is = P(X). Thus, o°(&§) is well
posed. It is now straightforward to check that it is also a o —algebra (exercise) and, of course, it contains
&. Finally, by definition, if # © &, then & > o (S).

We already noticed that the & = family of open sets of R is not a o —algebra. However, 0/ (§) =: Bga
it is. This is called Borel o-—algebra, its elements are called Borel sets or borelians.

1.2. Definition of Measure

Definition 1.2.1

Let # be a o—algebra on X. A function u : & — [0, +00] is called measure on & if
i) u(@) =0;
i) if £ = Un E,withE, e F neNand E, n E, = @ for n # m (disjoint union of
measurable sets), then

u(E) = 3 u(En).

The triplet (X, %, u) is called measure space.
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Property ii) is called countable additivity. We introduce a convenient notation:

|_|En ::UEn, fE,NEp=@, n#m, —> ,u<|_|En> :Zp(En).
n n n n

Here are some elementary and introductory examples.

Example 1.2.2: (x) Dirac measure

Let X be any set, # a o —algebra. Let x € X and define

1, ifxekE,
04 (E) :=
0, ifx¢eE.

Then, d, is a measure on & . The proof is left as an exercise. O

Example 1.2.3: () counting measure

Let X be a countable set, for example X = N (but also X = Q or QV). In other words,
X ={x, : neN}. Let F = 2(X) and set

pE) = > 1=>16,,(E).

Then p is a measure on X (interpretation: w(E) counts the number of elements in the set E).
Check left as exercise.

A fundamental example is the Lebesgue measure on R¢. This is the topic of the next Lecture.

1.3. Basic properties

In this section we illustrate some of the most basic and commonly used properties of any generic
measure. Proofs are generally easy and following natural ideas.

Proposition 1.3.1

Let (X, %, u) be a measure space. Then,
i) (monotonicity) if E, F € &, E c F, then u(E) < u(F).
ii) (subtractivity) if E,F € &, E c F and u(E) < +o0, then u(F\E) = u(F) — u(E)
(with agreement that +00 — m = +co for every m € [0 + oo]).
iii) (finite additivity formula) if E, F € & are non necessarily disjoint, then u(E U F) =
H(E) + u(F) — u(E n F) provided u(E n F) < +00.
EcF,E,Fe%, — u(E)<u(F).
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Proor. i) Just notice that F = E 1 (F\E), and since F\E € & we have
u(F) = u(E) + u(F\E) > u(E).

———

=0

ii) By previous relation, since u(E) < +00, we have the conclusion.
iii) Noticed that E U F = E\(E n F) W E n F L F\(E n F), we have

WE UF) = p(E\(E A F)) + u(E n F) + u(F\(E  F))

D W(E) = p(E o F) + p(E 0 F) + u(F) — u(E A F),

which is the conclusion.

Let (E,) < F be a sequence of measurable sets. We say that
E, ', < EFEycE, c...cE,cE,;1C....

By monotonicity,
H(Eo) < u(Er) < ... < p(En) < p(Entr) < ...,
thatis, (u(E,)) < [0, +00] is an increasing sequence of numbers (accepting +00 as number). Therefore,

Flim u(E,).
n

The question is: is the limit of the measures the measure of some limit set? The answer is provided by
the following.

Theorem 1.3.2: continuity form below

Proor. The existence of the limit has been already discussed in the premises. We show the identity.
Let’s start from p (| J,, E»). Since sets are nested, the union is definitely not disjoint. However, we can
transform it into a disjoint union:

EoUE L UEsU---UE, U - =Egu (E1\Eo) u (Ex\E1) b -+ 1 (E,\Ey—1) Lt -+ -
Therefore, setting E_; := @, we have

M (U En> =M <|_|(En\En1)> = Z,u (En\Enfl) = mEI-Ikloo Z M (En\Enfl)
n n n=0

n

m
= o H ('—' E\E> = g B

n=0

\. J

Similarly, we say that

E,\, — EyoEiD>...0E,DE,;1D....
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By monotonicity,
u(Eo) = u(Er) = ... = p(En) 2 p(Ent1) = ...,

that is (u(E,)) < [0, +0o0] is a decreasing sequence of numbers (accepting +00 as number). Therefore,
Flim u(E,).
n

As above, the point is: is this limit measure the measure of a limit set? The reasonable guess for this set

is
() En-
n
Surprisingly, the answer is negative in general, as the following example shows.

Warning 1.3.3

Let X = N, & = 2(N) and yu the counting measure. Let
wi={nn+1ln+2,...}.

It is clear that:

o By N\
o u(E,) = +o0.

Howeyver,
E = ﬂEn =2, u(E) =0+ +00 =limu(E,). O
n
n

\. .

Nonetheless, the continuity from above becomes true as soon as we add a little (but fundamental)
requirement:

Corollary 1.3.4: continuity from above

Let (X, %, u) measure space, (E,) < %), E,, \.. Suppose moreover that y(E1) < +00. Then

3 lim pu(E (ﬂE)

In particular: if u is a finite measure, that is u(X) < +o0, then continuity from above always
holds true.

Proor. Call E := ("), E, and set
F, := Eo\E,, n > 1.
Since E,, \,, F,, /. Thus, by continuity from below,

lim 4 (F, (UF> =u (Eo\ﬂE ) = u(Eo) — u(E),
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by subtractivity. By the same property, u(F,) = u(Eo\E,) = u(Eq) — u(E,) thus, being everything finite,
we have
p(Eo) = limp(Ey,) = u(Eo) — p(E),

which is the conclusion.

1.4. Exercises

Exercise 1.4.1 (). Say whether the following are o—algebras or not:
i) X=Rwith% :={I cR : Iinterval}.
ii) X any countable set,  := {E c X : E is finite set}.
iii) X any infinite set,  := {E < X : E is countable set}.
Exercise 1.4.2 (x). Let X = {a,b,c,d}, S = {{a},{a, c}}. Determine o (8).
Exercise 1.4.3 (). Let X be a non empty set, A, B < X, A # B. Determine o ({A, B}).
Exercise 1.4.4 (x). Let X be an uncountable set, F := {A — X : one of A, A is countable}. Define,

0, if A is countable,
u(A) = { /

1, if A€ is countable.
Determine if  is a measure on (X, F).
Exercise 1.4.5 (xx). Let 81, So any two families of subsets of X, that is 81, S2 < P(X). Prove that
o($1 U S) =0 (0($1) vo(S$)).
Exercise 1.4.6. Let 1, 5 < P(X) be two o-—algebras of sets.

i) (%) Prove that also 1 N % is a o—algebra.
ii) (=) Is it true that also F1 U F is a o —algebra? Provide a proof (if true) or a counterexample
(if false).
Exercise 1.4.7 (xx). Let (X, %, u) be a measure space. State and prove a formula for uy(E 0 F U G)
where E,F,G € F.
Exercise 1.4.8 (xxx). Let X = [0, 1], E < X and define
1, (k
E):= lim —f{—€A : keN
H(E) n—lLIrloonﬂ{ne © }’
provided the limit exists.
i) Show that if E = [a, b] < [0,1] then u(E) = b — a.
ii) Show that u is additive, that is if A n B = &, then u(A v B) = u(A) v u(B).
iii) Take as A the set of dyadic numbers A := {2% :meN, k=0,1,...,2"}. What can be said
about p(A)? Use the answer to respond to the question: is u a measure?

Exercise 1.4.9 (xxx). Let (X, F, 1) be a measure space, (E,) < F. Suppose that
Z,u(En) < +o0.
n

Prove that the set
S = {x € X : x € Ej, for infinitely many j}.
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1) By suitable set operations, express S in terms of sets E,,, deducing that S € .
ii) Deduce the measure of S.



LECTURE 2

Lebesgue Measure

Lebesgue measure is a fundamental tool of Mathematical Analysis. It answers to the aim of having
a geometrical measure on sets of RV fulfilling few basic properties:

e measure of a rectangle is its area;
e measure is invariant by rotations and translations;
¢ natural sets as open and closed sets are measurable.

In this Lecture we sketch the construction of such a measure. Most of the proofs are technical and too
long, much beyond our scope, thus are omitted.

2.1. Outer Measure

Definition 2.1.1

Asetof type I = [ay,b1] x -+ X [ag,ba] < R4 is called (multi) interval. Its measure is, by
definition

’I’d = (b1 — al) ce (bd — ad).
If not expressely needed, we will write just |I| for |I]4.

As we know, the family of intervals is not a o —algebra. However, by exhaustion methods, we can use
intervals to fill any set E = R?. We say that a family of intervals (1,,) is a covering of E if E = | J, I,.

For each covering, the (possibly infinite) sum )., |I,,| represents an approximation by excess of the
measure of E. Since there are infinitely many coverings of a set E, we have (in general) infinitely many
approximations by excess of the measure of E. The best of these approximations is what we call outer
measure of E.
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Definition 2.1.2: outer measure

For E = R4 we set

A5(E) = inf {2 lIjla : EC Ulj, I; intervals Rd} .
J J
By definition, 1% (@) = 0. If not explicitly needed, we will write just *(E) for A% (E).

Notice that the outer measure is defined for every set E. Here some properties of 1*.

Proposition 2.1.3

The following properties hold true:

i) (coherence) A*(I) = |I| for every I interval;
ii) (translation invariance) A*(E + x) = A*(E), VE c R?, Vx € RY;
iii) (homogeneity) 1*(cE) = |c|¢1*(E);
iv) (monotonicity) A*(E) < A*(F)if E c F;
v) (sub-additivity):

Proor. i) Among all coverings of I there is also that one made of I only, thus A*(I) < |I] just by
definition. In particular, this shows that 1* () < +oo. For the vice versa, let | J; /; be a covering of I made
of rectangles such that

Sl < 2% (D) + e

J
Since I N I is a rectangle (easy), and I = I n | J; I; = J; I n I}, thus

<AL <Y < A*(0) + &
J J

Since & can be take arbitrarily small, we conclude that |I| < A2*(1).
i) Easy, just notice that every covering | J; I; of E corresponds to a covering | J;(1; +x) of E + x and vice
versa. And since it is easy to check that |/ + x| = |I], the conclusion easily follows (fill the details).
iii), iv) Exercise.
v) This is less easy. To begin, we notice that the conclusion is true if some of 1*(E,) = +o0. Thus we
may assume A*(E,) < +oo for every n. Then, for every E,,, there is a covering U « In,;j such that

£

Z\I,,J\ < A*(Ep) + o
J

Then

UEn < UUIn,j = Uln,j»
n n j n,j
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thus this is a covering for | J,, E,, made of rectangles. Consequently,

v (UE) < VMl = DD gl €35 (A2 (Ba) + ) = Y12 (En) + &,
n n,j n j n n

and since € > 0 is arbitrary, the conclusion follows.

Sub-additivity is weaker than countable additivity. Unfortunately, this last is false in general. This is
the consequence of the following difficult result:

Proposition 2.1.4: Vitali

A* is not countably additive.

Proor. (sketch for d = 1) The proof is based on showing that there exists a set E < [—1, 1] such that
[-1,1] c |_|(E +qn)  [-2,2],

n
where (¢,) = Q n [—1,1]. The existence of such a set is difficult and based on subtle logical arguments,
so we omit here. Accepting this, by monotonicity we would have

2 =2*([-1,1]) < A* <|_|E +xn> <A*([-2,2]) = 4.
If A* were countably additive, we would also have
a* <|_|E + Qn> = ZA*(E + Qn) = 2’1*(E)’
n n n

because the translation invariance. But then
2< ) A%(E) <4,
n

and this would be impossible. Indeed, either 1*(E) > 0 or A*(E) = 0. In the first case },, 1*(E) = +00,
while in the second ], 1*(E) = 0. In both cases, the previous bound would be impossible. mi

2.2. Lebesgue class and measure

The problem with outer measure is that it assigns a measure to each set of R?. Among these, there
are "bad sets” as the Vitali’s set, that makes countable additivity fail. To solve this issue, we restrict the
class of sets to which we assign a measure. This class should be large enough to contain natural” sets,
such as open and closed sets of R¢. The idea is to consider only sets which are well approximated” (in
the sense of measure) by an open set.

Definition 2.2.1: Lebesgue class

My :={EcR?!: Ye>0,30, DE, O, open, A*(0,\E) < &}.
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Here, some easy consequences of this definition:

Proposition 2.2.2

i) Open sets are Lebesgue measurable. In particular, @, R? € /.
ii) Intervals are Lebesgue measurable.
iii) Measure O sets are Lebesgue measurable.
iv) Any sets that differs by a measurable set by a measure O set is measurable.

Proor. i) If E is open, take O := E, then O ;\E = @ hence 1%(0\E) = 0 < &, for every & > 0.
ii) For simplicity, we show this in the case d = 1. Let I = [a,b]. Fore > 0, set O, =|a — &,b + ¢[.
Therefore O \I =]a — €,a[u]b, b + €[, hence, by sub-additivity,

(0 N\) < A*(Ja —&,a]) + 2% (b, b + &]) < 2e.
iii) Suppose A*(E) = 0. There exists then a covering [ J; /; such that

Z |I;] <A*(E) +e=e¢.
J
We may enlarge each /; to become an open rectangle /¢ such that [I7| < [/;] + 3. Then, setting
O, := U 12,
J
this is open (union of open sets), it contains E (because is contains one of its covering) and

&
2(0\E) < 2*(05) < LI < Y (Il + 55) = Dyl +2 =25 o
J J J

iv) Indeed let F = E U N with A*(N) = 0 and E € .#4; according to the definition, for every & > 0 there
exists an open set O such that 14(O\E) < &. Since also N is measurable (being a null set), there exists
another open O ;. O N such that 1*(O ;\N) < &. Then, O, U O is open, contains E U N and

2% ((og U O\(E U N)) — 2 (Og\(E UN) UON\E U N))
< A*(0\(E UN)) + A*(0:\(E U N))

S A*(0L\E) + *(0,\N) <2s. O

With some technical work it is possible to prove the

The family #, is a o—algebra of sets called Lebesgue class. Sets of .#,; are called Lebesgue
measurable sets. The outer measure /1:’; is a measure on .#,4, called Lebesgue measure. We
denote the Lebesgue measure by A4.

Of course, since the Lebesgue measure is just the outer measure on a sub-family of sets, it inherit
its properties. In particular, it is invariant by translations and it fulfills homogeneity. Actually, these
properties are particular cases of the following one:
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Proposition 2.2.4

Let T be a d x d invertible matrix. Then, if E € My, also TE := {Tx : x € E} € M4 and,
(2.2.1) A4(TE +v) = |det T|14(E), ¥v e RY.

2.3. Exercises

Exercise 2.3.1 (). Let N < R be a null set. Show that, necessarily, N€ is dense in R, that is the following
property holds:

V]a,b[c R, N°n]a,b[# @
Exercise 2.3.2 (x+ Cantor set). Define
Co :=[0,1],

2"_1‘1] 3% +1 3k+2

3n s 3n |:’ ne N7

and C := (1,59 Cn. Then C € M1 and A(C) = 0.

FiGure 1. Cantor set (left), Sierpinski carpet (right).

Exercise 2.3.3 (x* Sierpinski carpet). The Sierpinki carpet is a bidimensional set of Cantor type. Let
Ty := [0, 1] x [0, 1] and define recursively T, according to the following rule

3i+1 3i+2 3j+1 3j+2
n:— ,11\ U j| , 3 [X]J?)n , ]3,1 [,nEN.
i,j=0

Define finally T := (), Tn. Show that T is measurable and determine its measure.

Exercise 2.3.4 («x). Construct a Cantor like set by removing, at each step, the middle quarters. Show
that the limit set is Lebesgue measurable and compute its measure.
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Exercise 2.3.5 (xx). Let E C R2 be the set of points (x,y) € R2 such that x and y are rationally
dependent, that is
E ={(x,y)eR? : I(m,n) e N x N, (m,n) # (0,0) : mx +ny =0{.
Prove that A2(E) = 0.

Exercise 2.3.6 (#x). Let A < E c B, A,B € My with A(A) = A(B) < 4+. Deduce that E € M.
What about 14(E)?

Exercise 2.3.7 (xxx). Let A, B,C [0, 1] be such that the following property holds:
Vx € [0, 1] belongs to at least 2 sets among A, B, C.

Prove that at least one of these sets has measure > % (hint: 1 =A((AnB)U(AnC)u(BnC))and
argue by contradiction. . . )

Exercise 2.3.8 (%), Let N < [0,1] be such that A(N) = 0. Prove that A(N?) = 0, where N> = {x? :
x € N}. What if N  [—R, R] (that is N bounded)? What if N R is generic?

Exercise 2.3.9 (xxx). Let S < [0, 1] the set of numbers which do not have the digit 5 in their decimal
representation. Is S measurable? If yes, what is its measure?



LECTURE 3

Measurable Functions

As we have now a definition of measurable set, we introduce a definition of measurable function. The
idea is simple: we wish that natural sets as level sets of f, for instance {x : f(x) > a} are measurable
sets. Measurable functions are fundamental to define integrals (next Lecture). In Probability, measurable
functions are called random variables.

3.1. Definiton and first properties

Definition 3.1.1

Let & be a o—algebra on X. We say that f : E < X — R is &% — measurable (notation
feL(E,F))if

{fel}={xeE : f(x)el} e ZF, VI cR, Iinterval.
If the o-—algebra is understood we just write f € L(E).

Remark 3.1.2

If f € L(E) then, necessarily, E € &. Indeed: E = {f e R} € #.

Example 3.1.3: ()

Every constant function is measurable.

Proor. Indeed, if f = c, then

X, ifcel,
{fen- o
@, ifcé¢l.

Example 3.1.4: (x) indicator function

Let

Then, 1g € L(X),iff E € F.
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Proor. Notice that 15 € {0, 1}. Therefore

X, if0,1¢el,
E, iflel,0¢1,
EC, if0el, 1¢1,
@, if0,1¢l.

{].EEI} =

Thus, {l1p €I} e FIf E,E° € .

Definition 3.1.5

A simple function is a function assuming only a finite number of values. We may represent such
a function as

N

s = Z cklg,, where Ex = {s = ci}, UEk = X.
k=1 k

It is easy to check that a simple function s = Y, cx1g, is measurable iff Ex € & foreveryk =1,...,N
(exercise). It is sometimes useful to check measurability of a function through simplified conditions.

Proposition 3.1.6

The following properties are equivalent:

i) fis & —measurable.
i) {f >a}le F,VaeR.
iii) {f >a}e F,VaeR.

Assume ii) for instance. Notice that

1
>ay = Za+ — .
{f>a ngl {f n}
Indeed, clearly {f > a + 2} < {f > a} so the union is contained into {f > a}. Conversely, if f(x) > a,
choosing 7 in such a way that f(x) > a+ % (we can do this because a + % — a),wehavex € {f > a+ %}
so x belongs to the union. Now, since ii) holds, {f > a + %} e & for every n, and since F is a o —algebra,
also the union belongs to #, so {f > a} € %. This proves that ii) = iii). With a similar argument we
prove that iii) = ii).

To finish, let us prove that ii) = i). Let I be an interval. If I = [a,+oo[, then by ii) we have
{fel} +{f =a}e F.IfI = [a,b] we can write

{(fely={a<f<b}={f>a)\{f>b}
Since {f > a} € F (by ii)), {f > b} € F (by iii), which is equivalent to ii)), and F is a o—algebra, we
deduce that also their difference belongs to &, so {f € I} € %. With similar arguments we discuss all
possible types of intervals 1.

The class of measurable functions is closed respect to the main algebraic operations:
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Proposition 3.1.7

Let f and g be & —measurable functions. Then
i) every linear combination « f + g is ¥ —measurable.
ii) algebraic product f - g is & —measurable.
iii) ratio f/g is % —measurable if g # 0.

Proor. i) We will limit to prove that f + g is # —measurable. The remainder of the proof is left as
exercise (see Exercise 3.4.4). We prove that {f + g > a} € & for every a € R. We notice that

{(f+g><a}={x€eE : f(x)+g(x)>a} ={x€E : f(x)>a—g(x)}
So,ifx € {f + g > a}, f(x) > a — g(x), therefore there exists ¢ € Q such that

f@)>qg>a-gx), — xe|J{f>qtnfeg>a—q}
q€Q
We proved that
{(f+g>alc | J{f>an{g>a—q}
q€Q
Vice versa: if x belongs to the union, then there exists ¢ € Q such that f(x) > g > a — g(x), from which
f(x) + g(x) > a. Therefore,

{f+g>at=|J{r>atn{g>a—q}
q€Q

The r.h.s. is a countable union fo intersections of measurable sets (because f, g are both measurable), so
{f + g > a} € F, this for every a € R,from which the conclusion follows.

Another important operation is

Proposition 3.1.8

If f is & —measurable and ¢ € € (R), then ¢( f) is F —measurable.

For the proof see the exercise 3.4.5. So, forinstance, if f is & —measurable, then also | f|, f 2, f 3. ef, sin f,...

are # —measurable. But warning! ¢(f) might be measurable even if f it is not.

Warning 3.1.9

Let £ be a non measurable set (thatisaset E < X but E ¢ & (“)). Set

f == 1E — 1Ec.
Then, f is a simple function, but since E, E€ ¢ &, f cannot be measurable ({f = 0} = E ¢ &).
Take now ¢(y) = |y|. Then ¢ € €(R) and ¢(f) = |f| = 1 € L(X). Thus, f ¢ L(X) but
o(f) € L(X). O

“This depends on the o—algebra %. If for instance & = P(X), then such a set cannot exist. If F = 4 is the
Lebesgue class, we know that there are sets £ — Rd, E ¢ & (for example, Vitali’s set).
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If X = RY and & = M, is the Lebesgue class, f : R — R is a numerical function of real variables.
We have that:

Proposition 3.1.10

Every continuous function f € € (R?) is Lebesgue measurable.

Proor. The proof is based on a remarkable property of continuous functions: for every open set
AcCR, {feA} cR%isopen. So,

{f >a}lisopen = {f >a}eF, VaeR.

3.2. Null sets, almost everywhere

Measure 0 sets, also called null sets, play an important role. Given a certain property p(x) with
x € X, (X, F, u) measure space, we say that p(x) holds for almost every x € E if

‘HNEFJ, u(N) =0, : p(x) truereE\N.‘

So for example:

e afunction f is such that f = O a.e. on E, if f(x) = 0, Vx € E\N with u(N) = 0.
e given f,g, wesay f = gae. on Eif f(x) = g(x),Vx € E\N, u(N) = 0.

Example 3.2.1: ()

Let (X,%,u) = (R, M1,21) and p(x) = x is irrational. We have that p(x) is true iff x € R\Q,
and since 11(Q) = 0, we conclude that p(x) holds a.e. x € R.

We now introduce an important

Definition 3.2.2

We say that a measure space (X, &, u) is complete if, for every null set N € F (thatis u(N) = 0),
we have
VEcCN, — Ee%.

Proposition 3.2.3

(RY, M4, 24) is complete.

Proor. Let N be anull set, 14(N) = 0. If E < N then
AN(E) < A5(N) = A4(N) =0,

and since all (outer) measure O sets are Lebesgue measurable we have the conclusion.
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Example 3.2.4: ()

Build an example of non complete space.

Proor. Let X = {a,b,c}, F = {2, X, {a}, {b, c}}. It is easy to check that & is a c—algebra. Define
u({a}) = p(X) =1, u({b,c}) = u(@) = 0. Itis easy to check that y is a measure on (X, F). Now,
{b},{c} = {b, c} but in this example they are not in F.

Any measure space (X, #, u) can be made complete basically by adding” subsets of null sets. This is
called the completion of (X, &, u).

Proposition 3.2.5

Let (X, #, u) be a measure space. Define
F:={EcX :3ABeF, Ac Ec B, u(B\A) =0}, A(E):=pu(A).
Then,
i) Fisa o —algebra containing & .
ii) u is a well defined measure on &.
iii) fZ(E) = u(E) forevery E € F.

So, if needed, we can always assume that our working space is complete. In this case, for example, we
can freely modify a measurable function on a measure zero set still obtaining a measurable function.
This makes us to appreciate, once more, how weak is measurability: if you just modify the value of a
continuous function in one single point, you loose continuity!

Proposition 3.2.6

Let (X, #, u) be a complete measure space. The following statements hold:
i) Let f = gae. onE. Then f € L(E)iffge L(E).
ii) if £ € L(E\N) with u(N) = 0, then f € L(E).

Proor. i) Let f € L(E) and let’s check that g € L(E). We can write,
{gel} ={xcE : gx)el}={xeE\N : glx)el}u{xeN :g(x)el}

N
Now: N — N and because & is complete, Ne % and ,u(ﬁ) = 0. Moreover,

{xe E\N : g(x)el} ={xeE\N : f(x)el}=({xeE : fx)elI})\({xeN : f(x)el})

—{fel\N
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where, again, N N (same argument used above for N) has measure 0. Therefore, {f € I}\N € F
(difference of measurable sets) so, in conclusion,

{gel}={fel}\NUN e Z.
Hg‘_z
ii) It is similar to i):
{fel}zier\N s fx)ellu{xeN : fx)el}eF. O

eF cN
Remark 3.2.7
In particular, if f = g a.e. on E c R% and f € €(E) then g € L(E). |

3.3. Pointwise limit of measurable functions

Another remarkable feature of measurability is that it is preserved under very weak limit operations.

Definition 3.3.1

Let (X, #, u) be a measure space, (f,,) < L(E) be a sequence of measurable functions. We say
that (f,,) converges a.e. to f on E (notation, f,, =5 f)if

Hnli)rfoofn(x) = f(x), a.e.x € E.

Almost everywhere limit of measurable functions is a measurable function:

Theorem 3.3.2

Let (X, %, u) be a measure space, (f,) < L(E). The following statements hold:
i) if f, — fforeveryx € E € #,then f € L(E).
ii) il f, — fae. x € E and (X, &, p) is complete, then f € L(E).

Proor. i) We prove that {f > a} € & for every a € R, from this the conclusion follows . The idea
is that f > a means that, f,, must be definitely > a, thus we can connect {f > a} to sets {f,, > a} for
which we have measurability by assumption. Let’s see this precisely. First, the set of x for which sequence
(fn(x)) is definitely larger than a b is

U {fa>bleF, vbeRr.
k n=k
Then, notice that the following identity holds:
{f>a= J UMh>btesF
beQ, b>a k n

Indeed: if f(x) > a then, since f,,(x) — f(x) > a, taking b € Q such that a < b < f(x), by definition
of limit f,,(x) > b for all n > k for a suitable k. Thus < holds. Viceversa, if x belongs to the r.h.s., then
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fu(x) > b for some b > a and for every n > k for some k. Thus f(x) = lim, f,(x) = b > a, and this
proves O.

ii) Let N such that u(N) = 0 and f, — f on X\N. Applying the previous part we deduce that
f € L(X\N), and since the space is complete, by the Proposition 3.2.6 it follows that f € L(X).

Remark 3.3.3

Other important properties such as continuity or differentiability do not ’pass” to the point-wise
limit. For example, f,(x) = x", f, € €([0,1]) and

0, 0<x<1,
falx) =x" —> =: f(x), Vx €0, 1].
1, x=1
Clearly, (fn) < L([0,1]) and f = 13 € L([0,1]) (this confirms previous thm), but while
(fn) < €([0,1]) we have f ¢ €([0,1]). O

3.4. Exercises

Exercise 3.4.1 (). Show that any monotone function f : R — R is Lebesgue measurable.

Exercise 3.4.2 (xx). Show that f is F —measurable iff {f > a} € F for every a € Q.

Exercise 3.4.3 (). Let & be a measured space. The aim of this exercise if to prove that
feL(E), — {feB}eZ, VBe BR?).

1) Check <—.
ii) Check = Define B — B(R?) the class of sets B € B(RY) such that {f € B} € F. Show that
B is a c—algebra and B = B(RY).

Exercise 3.4.4 (xxx). Adapt the ideas of the proof of the proposition 3.1.7 to check that if f,g € L(E)
then also f - g € L(E). (hint: if g > 0, fg > a is equivalent to f > 2

Exercise 3.4.5 (x#x). Prove the proposition 3.1.8. (hint: {¢(f) > a} = f~'(¢"'(Ja,+x))),
¢~ Y(]a, +l) is open being ¢ continuous; )

Exercise 3.4.6 (x). For each of the following sequences of functions (f,,) on (R, M1, A1), determine if
they are a.e. convergent and, in this case, to what.

i) fn( ) =1 nn+1]( )
ii) fn( ) = 1 [1/n, n]( )
111) fn( ) = 1[1 (41)"’3 (4—1)"]()6).

Exercise 3.4.7 (+#). Let g € €(R?) be such that g = 0 a.e.. Deduce that, necessarily, g = 0 that is
g(x) = 0 for every x € R9,

Exercise 3.4.8 (xx). Let (f,,) = L(E). Define
F@) = inf fo(a), gx) = sup foo)
Check that
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i) {f = —oo},{g =+x0} e F.

ii) if F := E\{f = —o0} and G := E\{g = +0}, then f € L(F) and g € L(G).
Exercise 3.4.9 (xxx). We recall that a sequence (a,) of real numbers is convergent iff it is a Cauchy
sequence, that is iff the following property holds:

Ve >0, IN =N(e)eN, : |a, —an| <&, Vn,m = N.
With this in mind, let (f,) < L(X, ) be a sequence of measurable functions on X. Check that the set
S:={xeX : (fulx)) converges in R}

is F —measurable. (hint: S is the set of x € X for which (f,(x)) is a Cauhcy sequence. .. Use set
operations to express S under this form).



LECTURE 4

Abstract Integral

Measure allows a general definition of integral. The relevance of such definition is both in its versatility
and in its power. Abstract integrals are used in Analysis and Geometry, they provides foundations to
Probability and to Quantum Physics. Their tools as by far stronger than usual Riemann tools. This is why
the integral introduced with this Lecture can be considered the true integration Theory”.

4.1. Lebesgue definition

Let (X, %, u) be a measure space and let f € L(E) be a measurable function on E — X. The goal is
to define the integral IE f du. The main steps of this construction are: (a) the case of positive measurable
functions; (b) extension to real-valued functions; (c) extension to complex-valued functions. This last
extension is important in its own right and is particularly relevant because the Fourier transform (the
characteristic function in probability) is the integral of a complex-valued function.

We begin with the case of positive measurable functions. The traditional Riemann approach to
integration is based on partitioning the domain, whereas the Lebesgue approach is based on partitioning
the co-domain. Fix n and divide the co-domain [0, 400 as follows:

1 1 2 22n _ 1
[0, +oo[= [O,Q—n{u[Q—n,Q—n[u...u[ o ,2"[u[2”,+oo[.

Then, we define simple functions s, (x)

2211

(4.1.1) sn(x) == )] ol b <yt +2"1 fog2n.
k=0

These are measurable simple functions (because f € L(E)) and, by their definition, their graphs are
below that one of f. Letting n — 400 we have a point-wise approximation of f:

Proposition 4.1.1

Let (X, %, u) be a measured space, f € L(E), f > 0 a positive measurable function. Let (s,)
the sequence of simple functions defined by (4.1.1). Then,

23
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i) so(x) < s1(x) < ... <su(x) < f(x), forevery x € E;
i) lim,—, o sp(x) = f(x), forevery x € E.

Proor. Define now sets
k k+1
Ek,n = {2_,1 < f < on

Since f is measurable, sets Ey , are measurable. Define now

}, k=0,...,2" =1, Eqm,:={f=2"}.

22n_1 k
sn(x) = ) g lEn T 21,
k=0
Clearly s, is a simple function and, by construction, s,(x) < f(x) for every x € E. It holds s, < s,41
(exercise). Let’s prove ii) of statement. Fix x € E and pick N big enough in such a way that f(x) < 2V.

Then, for n > N, there exists a unique E_, 3 x. In particular, s, (x) = 2%, whence hence
k+1 k 1
< = < - = —.
0 f('x) Sn ('x) 2}1 2}’[ 2}1

Letting n — +00 we get the conclusion.

‘We now set

2211

k k k+1

JEsn du = Z ok <2—n <f< o ) +2%u(f =2").
k=0

Since u could take value = +00, we need to specify how to handle the algebra with infinities. We will
assume the following natural algebraic rules:

400, ¢ >0,

With these agreements, the integral fE sn du is well defined and it can be considered as an approximation
by defect of the integral fE f du. We will now prove that the sequence of integrals fE S, du is actually
convergent. The limit value will be, by definition, IE S du.

Proposition 4.1.2

Let (X, %, u) be a measure space and f € L(E). Then,

4.1.2) 3 lim | s, du ::J fduel0+ o]
E

n—+o Jp
Proor. We prove that the sequence of integrals IE S, du is increasing with n. From this, it will follow
that the limit lim,, IE S, du exists, so the definition of fE f du makes sense and the conclusion follows. To
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prove this, we notice that

k k+1 2k 2(k+1) 2k 2k+1 2k +1 2k +2
ﬂ<2_n<f< 2n >_’u<2n+1<f<W =H 2n+1<f 2n+1 +,Lt 2n+1 \f<_‘2n+1
Therefore,

2n __
[psndn =05 e [n(Fa < F<285) +u(3m < f < B2)]+2u(f =27
P ok 2% % +1\ Tk 41 (2% 41 2% + 2
S Z 2n+1/'l 2n+1 S f =< 2n+1 + Z 2n+1 H 2n+1 = 2n+1 +
k=0 k=0
Z?i’gﬂ_l ##(#<f<2{1%11)
+2p(2 < f <2 42iu(f > 20
N
2(n+1) _ . . i1l
< S e (e < F < ) + 2P 2 2
= jE Sn+1 d:u

With some technical work, some first properties of this definition can be obtained

Proposition 4.1.3

Let (X, &, u) be a measure space. The following properties hold:

i)if f,ge L(E),0< f <g,thenjEfd,u == ngd/l.
ii) if f,g € L(E), f,g = 0and a,B > 0 are constant, then

JE(aer,Bg) dp = aLfd,u +,BLgd,u.

Proofs are left in the exercises. We now extend the definition of integral to real valued functions. We

introduce

f+ := max{f,0}, (positive part) f_ := max{—f,0}, (negative part).

Since max{y, 0} and max{—y, 0} are continuous functions of y, both f; are measurable if f is measurable.

Both are also non negative functions.
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Definition 4.1.4

Let (X, %, u) be a measure space and f € L(E). We say that f is u—integrable if

J |f| du < +o0.
X

[l o[

We write f € L1(X, %, u), if the measure space is understood, we just write f € L1 (E).

Remark 4.1.5

The definition is well posed. Indeed: since IX | f| du is finite, being 0 < fi < |f| we have that
also

In this case we set

| peaws ] 11 < e
X X

Thus the difference IX fy du — JX f— du makes sense (we do not have the indeterminate form
(+00) — (+00).

The final extension it to the case of complex valued functions.

Definition 4.1.6

Let (X, #, u) be a measured space. Given f : X — C, we say that f is measurable (notation
f € Lc(X)) if both Re f and Im f are measurable (that is Re f,Im f € L(X)). We say that f is
p—integrable (notation f € LL(X, %, u)) if

J 1] di < +o0.
X
In this case we set

Lf dy = LRefd,u+iLImfd,u.

Remark 4.1.7: A

so for this case, the definition is well posed. Indeed, since |Re f|,|Im f| < |f|, we have
fx IRe f| d,u,JX|Im fldu < fx |f| du < +co, thus Re f,Im f € L'(X) and both integrals
fX Re f du, JX Im f du € R. Hence, the value of fX f du is well defined.

4.2. General properties

We summarize, in the next proposition, the main properties of the abstract integral. Proofs are omitted
here.
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Proposition 4.2.1

Let (X, %, u) be a measure space. The following properties hold:
i) (linearity) if f,g € L'(E) and @, 8 € R (C) then

J (af +Bg) du = aJ fdu +ﬁj g du.
E E E
ii) (ordering) if f,g € L'(E) are real valued and f < g, then

j fdu < J g du.
E E
iii) (triangular inequality) if f € L'(E), then

I fdu‘ <J | f] dp.
E E
iv) (restriction)if f € L'(E)and F e &, F c E, then f € L'(F) and

J fdu=f flF du.
F E
v) (decomposition) if f € L1(E), L*(F) with E n F = @, then f € L*(E u F) and

| rau—| raus| rau
ELF E F
vi) (null sets) if 4(N) = 0 then IN f du = 0. In particular, if f,g € L*(E) and f = g a.e.,

then
J Jdu =J g du.
E E

An important inequality is given in the following

Lemma 4.2.2: Chebyshev’s inequality

Let (X, #, u) be a measure space, and f € L(X), f > 0 a positive measurable function. Then
<

1
4.2.1) u(f =a) <= fdu

This apparently simple inequality has important consequences. A first example is the following:
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Corollary 4.2.3

Let (X, %, u) be a measure space, and f € L(E), f > 0 a positive measurable function. If

| rau-o
E
then f = 0 a.e. on E.

Proor. Since fE Jf du = 0, by Chebyshev’s inequality we have that
u(f =a) =0, Ya > 0.
Our goal is to prove that
u(f >0)=0,

from which the conclusion will follow. To this aim, notice that, if E,, := {f > ’ll}, then E,, /' E :={f >
0}. By continuity from below,

u(f>0)—1i’£n,u(f>%>—0. i

Here is another application of Chebyshev’s inequality.

Proposition 4.2.4

Let (X, #, u) be a measure space, f € L(X), f = 0. Then

de,u<+oo, = f <+, a.e.
X

Proor. Just notice that {f = +o0} = (1),{f = n}, and since
1 C
wrzm<s | rau=
n Jx n

we get that u(f = +o0) < %, for every n € N. Letting n — +00 we have the conclusion.

4.3. Exercises

Exercise 4.3.1 (xx). Extend theorem 4.1 to any f € L(E). Prove that there exists (s;) of simple functions
such that
lim s,(x) = f(x), Vx € E.

n—+oo
(you may start writing f = f+ — f_)

Exercise 4.3.2 (xx). Let (X, %, u) be a measure space. Prove that

u(E) = J lg du, VE€ F.
X
(hint: distingush cases u(E) = 4o from u(E) < +0o0).
Exercise 4.3.3 (xx%). Let f,g € L(E), 0 < f < g. Show that
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i) sﬁ (x) < s5(x) (here, sf: , 55 are, respectively, the simple functions (4.1.1) built on f and g).
ii) from the definition (4.1.2), [ f du < [, g du.

Exercise 4.3.4 (xx). Given a measure space (X.F,u), let f € L(E), with 0 < u(E) < +00. Suppose
moreover that 0 < f(x) < M a.e. x € E. Show thatiffEf du = Mu(E), then f = M a.e. on E.

Exercise 4.3.5 (xx). Let (X, %, u) and let f € L' be such that

| rau =] 1n1an,

for some E € F. Prove that f has constant sign on E u—a.e.

Exercise 4.3.6 (). Let (X, %, u) and f € L(X), f = 0. Extend Chebyshev’s inequality:

1
u(f?cx)é—f fPdu, Ya >0, Vp > 1.

aP X
Is this still true for0 < p < 1?
Exercise 4.3.7 (xx). Let (X, %, u) and f € L(X), f = 0. Extend Chebyshev’s inequality as follows: for
¢ = ¢(x) : [0, +0[—> Rincreasing and convex function with ¢(0) = 0, prove that

1
ulf =z a <—I o(f) du, VYa > 0.
205 ) V)

(hint: remind that ¢ is convex iff p(tx + (1 —t)y) < tp(x) + (1 — 1)p(y), Vx,y, Vt € [0,1])

Exercise 4.3.8 (x%). Let (X, %, u) and f € L*(X) be such that

j fdu=>0,VEecF.
E

Show that f = 0 a.e.

Exercise 4.3.9 (+x+). Let f € L' (X, #, u) and suppose that

[ro

Prove that | f(x)| < M a.e. (hint: consider E = {f > M + &} with € > 0, use Chebyshev’s inequality to
show that u(E) < 40 and the assumption to prove that u(E) = 0; from this, deduce the conclusion. . . )

<Mu(E), VEe Z.







LECTURE 5

Lebesgue Integral

Lebesgue integral is the integral respect to the Lebesgue measure. It is usually written as

JE f(x) dx.

This because there is an important relation with the familiar Riemann integral taught in Calculus courses.
This Lecture focuses on this particular integral and on some of its main features.

5.1. Comparison with Riemann and Generalized Integrals

In dimension d = 1, the well known definition of integral are Riemann’s integral and generalized
integral. We now have a new definition of integral, Lebesgue’s integral

Lfd/ll.

While Riemann and generalized integrals are well defined integrations on intervals, Lebesgue’s integral
allows a large flexibility about the domain. However, when the integration domain is an interval, a
comparison makes sense. We start with the case of Riemann’s integral.

Theorem 5.1.1

If f € %([a, b]) (Riemann integrable) then f € L!([a, b]) and
b
(Riemann) j f(x) dx = J f dA1 (Lebesgue).
a [a,b]

Moreover, f € %([a, b]) iff f € L'([a, b]) and the set of discontinuities of f has measure 0.

In practice, to compute Lebesgue integrals in one variable we may use, where possible, tools from
ordinary Calculus. Thus, for example, if f € €1([a, b]) then

b
j £y = j £/(x) dx = £(b) — f(a).
[a.b] a

Warning 5.1.2

Lebesgue’s integral is a huge extension of Riemann’s integral. There are lot of functions which
are not integrable in Riemann sense, while they are integrable in Lebesgue sense. An example is
Dirichlet’s function 1o 17\g € L*([0, 1])\%([0,1]).

31
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Because of their identity on Riemann integrable functions, we will denote Lebesgue’s integral on [a, b] as
Jf f(x) dx. There is no ambiguity with this: when both are defined, they coincide; when only Lebesgue’s
integral makes sense, there is no risk of misunderstanding.

As known, Riemann integrable functions are necessarily bounded and defined on closed and bounded
intervals. For many reasons, it is interesting to have an operation of integral on unbounded intervals and
for unbounded functions, or for a combination of these two. This yields to the definition of generalized
integral. For sake of simplicity, here we will focus on generalized integrals on unbounded intervals, but
what we say here holds similarly for the other cases. We recall that

fmf(x) = lim j fx

a b—+w0

Other cases work in the same way. In general, it may happens that a generalized integral exists but the
corresponding Lebesgue’s integral is not.

Example 5.1.3

Function f(x) := S i5 integrable in generalized sense on [0, 4+-oo[ but is not L' ([0, 4-oo[).

Proor. To simplify technical details, we consider a slight modification of such f defining
+1, 0<x<1,

~1/2, 1<x<2, e 1
n
=9 +1/3, 2<x<3, =2, I nn+1(x).
flx): 1/3, 2 3 (=1 s (x)
n=1
Then
e Ol _ s ()
-1 — i iz N
s i [T s de= i L= 0

which is, after Leibniz’s test, a convergent series. Thus JJ * f(x) dx € R. However,

1
.[[0,+oc Z J‘n n+1[ g ; N

This means that f ¢ L*([0, +of).

1 n+1

In the previous example, | f| is not integrable in generalized sense, that is f is not absolutely integrable. 1t
turns out that, functions absolutely integrable in generalized sense are also integrable in Lebesgue sense
and the two integrals coincide:
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Theorem 5.1.4

If f is absolutely integrable in generalized sense on [a, +0[, that is f;oo | f(x)| dx < +00, then
f € LY([a, +oo[) and

+ao
(generalized integral) f(x)dx = I f dA; (Lebesgue).
[a,+oo[

a

5.2. Reduction Formula

In dimension d > 1, the basic tool of calculus is reduction formula. As the name says, this formula
allows to reduce an higher dimensional integral into a lower dimensional one. To illustrate the principle,
we consider a function f : E ¢ R — R written as

f = f(x,y), where (x,y) e R¥ x R" = R4,

Theorem 5.2.1: Fubini
Assume f = f(x,y) € L'(E). Then reduction formula holds true

(5.2.1) JEf(x,y) dxdyzj v (IE f(x,y) dy) dxzj . (E flx,y) dx) dy.
x : Ex#0 2 y: EY#Q y

where
E.:={yeR" : (x,y)eE}, E”:={xeRF: (x,y)cE}.

To apply reduction formula in practical cases, we need to know f € L!(E), that is

LE |f(x,y)| dxdy < +00.

Notice that, in this case, by (5.2.1) applied to | f|, we have

w0 [ el asay = | . (L £ y)| dy) dx = L o (L_ e y)| dx) dy.

A vice versa is also true:

Theorem 5.2.2: Tonelli

Assume f € L(E) be such that one of the integrals

[ .. (L_ o)l dy) a, | (] 1reniar) o

is finite. Then f € L'(E).

Theorems 5.2 and 5.2 are usually applied together. Given f € L(E) we apply first Thm 5.2 to check if
f € L'. If this is the case, then we may apply Thm 5.2 to compute the integral. The two statements
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joint are called also Fubini-Tonelli Theorem. But warning! It might happens that both iterated integral of

(5.2.1) are finite and f ¢ L'.

Example 5.2.3

Let
xX—Yy

EFSER (x,y) € E :=[0,1]°.

flx,y) =

Proor. Notice first that
y ¢ [0,1],

y € [0,1]

.

EY={xeR : (x,y)e[0,1]*} = {
[0, 1]

and similarly for E. Therefore

JthR ( Ev fxy) dx) dy = Ll <_ﬁ> dy = [(y + 1)_1]i:é = % —-1= -5

Exchanging x with y we obtain the same result except for the sign: JR (Ib f(x,y)dy) dx =

N—
Nl

Then _[x . E, 40 (IEX f dy) dx # fy Yo (ny f dx) dy (hence, in particular, f ¢ L'([0, 1]?)).

0,
Eyf(x,y)dx: Lx—y B 1x+y72yd7 ! 1 d ! 1
x| Tixoe T G | g dx
o (x+y) o (x+y) o (x+y) o (x+y)
Except for y = 0 (a measure O set) both integrals are finite and their value is
[(x+y)1"“1 ) [(x+y)2]"‘1 1 1, ( 1 1) 1
—_— —_ y _— [ y S = — .
-1 ] -2 J,o ¥y y+l (y+1)2  y? (y+1)?
Hence

y ¢ [0

ye [0

5.3. Change of variable formula

Change of variable is an important tool of calculus of integrals. Let f € L*(E) and suppose we aim

to compute

JE f(x) dx.

Suppose moreover that, to compute the integral, it looks to be convenient to introduce a new variable
y = ®(x). With this we mean that ® : E — F is a good (regular) transformation and a bijection, so
that we can also express x as function of y, x = ®~!(y). We wonder how the integral w.r.t. x variable

transforms into an integral into the y variable.

Proceeding informally, imagine we may decompose E into “small” sub-domains E,, that is £ =

||, En. Then we may expect that

L £(x) dx = ZL 09 e 3 FnAE),
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for suitable points x, € E, (of course this is a delicate point, but this is not a proof!). Now, since
F = ®(E) we may decompose F as

F=0® <|_|En> = | |@(En) =:| | Fa-
n n n
Since @ is regular, around x, € E,, we may linearize it, that is
D(x) ~ D(x,) + D' (x)(x — xp),
thus
F, = ®(E,) = ®(x,) + @ (x,)(En — xn),
and because of the invariance formula (2.2.1) we have
AF,) = A2(P(xn) + D (xn)(En — xn)) = (D (xp) (Ey — x)) = | det @' (x,,)|A(E — xn)

= | det @' (x,,)|A(En),

or
1

AEn) = Tt o]

A(F).
Thus, setting y, = ®(x,) € Fy,
[ef@) dx ~ 3, fon) rqmrary AFa) ~ X, f(q)_l(yn))mﬁ(ﬂz)

~ [ F@ O ramweay -

Finally, recalling that - = det A~! and that (®'(®1(y))
following

Theorem 5.3.1

Let®: E —> F = ®(E) be such that ® € €' with @~ € €' (we say @ is a diffeomorphism).
Then f(x) € LY(E) iff f(®~1(y)|det(® 1) (y)| € L' (F) and

(5.3.1) L f(x) dx = L(E) F(@71 ()| det(@1) (y)| dy

~' = (@1)'(y) we have an idea for the

5.4. Exercises
Exercise 5.4.1 (). Determine for which values of the parameter(s) the following integrals exist in L'
sense:
+00 1 +o . +o0 ,—ax _ ,—x
) J —_dx. i) J @G+ gy i) J . S Y
o x¥(1+xF) —0 0 xPB
Exercise 5.4.2 (). Detemine if the following integrals exists in L' sense:

~ [T° sinx o [T 1—cosx
e R e R
0 0
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Exercise 5.4.3 (x%). Determine for which values of « € R the function

n+1

FO) = 3n (),
n=1

belongs to L'([0,1]).

Exercise 5.4.4 (). In this problem we assume that the value of the integral I := IR e~ dt is not known,
and we compute it. By using in a suitable way the Tonelli thm, prove that the function f : R? — R given
by f(x,y) = ye~ (X g in LY(R?) and by using Fubini compute its integral on [0, +0[. Deduce
the value of 1. Justify everything with care.

+00 2n y
J (J Ze Y ¥ ginx dx) dy.
0 o X

Exercise 5.4.6 (x+). Justifying all steps, compute

400 /40
J <J e Y a’y) dx.
0 X

Exercise 5.4.7 (x+). Let f(x) = g(|x|) € L(R™). Check that f € L*(R™) iffr™'g(r) € L*([0, +o0])
and

Exercise 5.4.5 (xx). Compute

f(x) dx = md,_(B™1) JOO ™ lg(r) dr.
R 0

(Am-1(Bpm_1) = Am_1({u e R™=L  ||lu|| < 1}). (hint: by symmetry, me f= QIxmzo f, hence notice

that x = ru where r = |x|| and u = i € (W +- - +uZ =1} = {u =1—|(u,...,um—1)|*} so

x =@ uy, ..., um-1)= (rug,...,ripy_1, r\/l — (w1, - . . s um—1)|?), then apply change of variable)

Exercise 5.4.8 (xx). Determine for which values of @ > 0 it holds f(x,y) = (1_+y)(, e L1([0,1]?).

Exercise 5.4.9 (xx+). Let E,, , := {(x,y) € R? : |x|P + |y|? < 1}, where p,q > 0. Show that

1 1 1
J —  dxdy < +0 = —+—>1.
Epq [XIP + [y]4 P q

(hint: adapt polar coordinates)



LECTURE 6

Monotone and Dominated Convergence

One of the most important features of abstract measure and integral is the extreme flexibility with
passage to the limit into integral. The problem is the following: let (f;,) = L' (X), under which conditions
can we say that

HlimJ‘ fa du :J lim f, du ?

Lebesgue’s integral shows properties without any precedent for the ordinary Riemann’s integral.

6.1. Monotone convergence

Consider a sequence (f,) < L(X) of positive (that is f, > 0) measurable functions. Suppose
moreover that the sequence (f,,) increases with n, that is

fn < fn+1, VHGN

It is clear that
j Jndu < J fn+1 du, VneN.
X X

Therefore, as well known,
Hlimj Jndu €0, +00].
noJx

At same time, since (f,,(x)) is increasing with n, also lim,, f,(x) =: f(x) exists. Clearly f > 0 and
f € L(X) (because pointwise limit of measurable functions is measurable, see Theorem 3.3). Thus
Jx f du € [0,+00]. What is the relation between the integral of f = lim, f,, and limit of integrals

limy, [, fo du?

Theorem 6.1.1: Beppo Levi

Let (X, #, 1) be a measure space, (f,) € L(E) be such that 0 < f, < f,+1 on E, for every n.
Then

(6.1.1) lim | f,du= J lim f, du.
n E n

Proor. We call f(x) := lim,, f,(x). By i) of Theorem 3.3, f € L(E). Now, since (f,,(x)) /,

falx) < fx), Vxe X, = Jf,,d,uéj fdu, = limJ fnduéf fdu.
X X noJx X

37
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The goal is to prove the >. Notice that if @ = lim, fX fn du = +00 then the conclusion is true. Suppose
then that @ < 400 and let S < JX f du. Our goal is to show that @ > . From this, being f arbitrary, it

follows that @ > JX f du, which is the conclusion.
To show this, let (sx) the increasing sequence of simple functions (4.1.1) for f, and similarly (s7) is for f,,.
Since Jx Sk du — Jx f du, there exists N such that

22N_1 ., . .
J J J+1
JESNdﬂZ Z Z—Nﬂ<2—N<f<2—N>+2NM(f>2N)>IB.
Jj=0

Consider now
2L |

J J Jj+1
L shodu =), SN H <2—N < fa < Q—N) +2Nu(fu = 2V).
j=0
We aim to take the limit n —> +o00 in previous identity. First notice that measures u(f, = a) are finite
and bounded in n. This is a consequence of Cebi$év inequality because

1
phza) < | fodus S wmen
a Jx a
Therefore, we can write
J J+1 J Jerll
#(2—N<fn<2—N> =,U<fn>2—N>/J<fn>2—N>-
Now, since F, := {f, = a} < {fu+1 = a} = F,1, by continuity from below we have

u(fn = a) — u(f = a),
and, by previous bound, it follows that u(f > a) < 4 < +co for every a > 0. Therefore,

J J+1 J J+1
”<Q_N<f"<2_N)‘>”<2_N<f<2_N>

limI s'lﬁ,d,u=J‘ sy du > .
n Jg E

From this it follows that

Thus, for M large enough
J s%’ du > B,
E
and since
a>f fMdﬂ>J sy du > B,
E E

the conclusion follows.

Corollary 6.1.2: monotone convergence theorem

Let (X, %, u) be a measured space, (f,) < L(E) be such that 0 < f,, < f,+1 a.e. for every n.
Then

(6.1.2) lim‘[ Jodu = J lim f, du.
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Proor. The apparently minimal extension is f, < f,+1 almost everywhere. That is:
fu(x) < fur1(x), Vx € X\N,, with u(N,) = 0.

Notice that the set N,, can depend on 7, that is it is not necessarily the same for all f,,. Now the trick is: let
N :=J,, N,. By sub additivity

n
that is N is a null set. Moreover, we can now say that
Fa(®) < fusr1(x), Vx € X\N, VneN.
Thus, applying Theorem 6.1 on X\N we have

lim fodu = J

n Jx\w X\
Finally, since N is a null set and f = lim,, f,, € L(E\N), we have that f € L(E) and

Jn dp = Lfn du, L\Nf du = Lf du.

lim f,, du.
N n

X\N
From this (6.1.2) follows.

Monotone convergence theorem requires very particular assumptions, in general hardly verified. Func-
tions f,, must be positive, so the theorem does not apply to real or complex valued sequences. Furthermore,
functions f;,, must be ordered in the sense that f,, < f,+1 a.e.. Let’s see some example of application of
this theorem.

Example 6.1.3: (xx)

Compute

Proor. Let f,(x) := nlog (1+ %) = log (1+ %)n Clearly (f,) < €([0,+x]) <
L([0, +0o0[) and f;, > 0. Recalling that

(1 + X) Je¥, Vy=0,

n
we have that f;,(x) < fu41(x) for every x € [0, +oo[. Thus, we can apply monotone convergence theorem
and, by (6.1.2) we have

—x —x\" —X
lim,, 4 oo L)HO nlog (1 + eT) dx = L;roc lim,,, + 0 log (1 + ‘37) dx = foﬂo loge® = dx =

_(t®

— o —X]xX=+0 _
=], e tdx=[-e] =1. o

x=0

Monotone convergence applies to series:
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Corollary 6.1.4

Let (X, %, u) be a measured space, (f,) < L(X), f, = 0 a.e.. Then

(6.13) ;Lﬁw=L;ﬂw

ProoF. Set g, := >.i_; fk. Clearly (g,) < L(X) and g, > 0. According to (6.1.2) we have

limJ‘ gndu = J lim g, du.
n X X n
Now,

n (o8]
lirrlngn = lir{n 2 i = Z Jies

k=1 k=1

ti [ gudp=tim [ ) fedu=tim Y} [ fiu= Y [ ide
"X "Iy " dx k=1YX

from which conclusion follows.

while

Example 6.1.5: (s:x)

Compute

Proor. Notice that f(x,y) := ﬁ € 6(]0,1]2\{(1,1)}) = L([0,1]*] and also f > O a.e. on [0, 1]°.

Recalling of the geometric sum Y., ¢" = ﬁ for |¢| < 1 we have that

1
1—xy

= S ) ) € [0 IP(L D), = ae. (1) € 0,12
n=0

Therefore, by (6.1.3), we have

1 0 a0
dxdy = J x"y" dxdy = J x"y" dxdy.
.[[0,1]2 1—xy [0,1]2 ,;0 ,;0 [0,1]2

Now, by reduction formula,

1 1 K+l =l yn+1 y=1 1
n..n d d — n n d d — = .
J[0,1]2xy e Lx on ye [”Jrl] ["Jrl] (n+1)?

x=0 y=0
Thus o o
1 - 1 1 n?
dxdy = = —- (— —> .
J[(),I]Q 1—xy ,;0 (n+1)? ,;1 n? 6

Integral of positive measurable functions allows to define large classes of measures.
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Corollary 6.1.6

Let (X, %, u) be a measured space and f € L(X), f = 0. Then,

ur(E) = JEfdu, EeZF,

is a measure on & . We write du s = fdu (for the origin of this notation see Exercise 6.3.6).

Proor. Clearly us(@) = 0. If E = | |, E, we have

us(E) = Lf dyt = LflE dut = L;flE,, du = ZL Pl di = S s En)

What about monotone convergence for a decreasing sequence of functions? In general, this is false, as
the following example shows.

Example 6.1.7: ()

On (R, /1, A1) consider f, := 1[, 4o Easily (f,) = L(R) and f;, > f,11 a.e.. Furthermore,
lim,, f,, = 0 thus

Jlimfndx=0.
Rn

However, IR fn dx = A1([n, +0[) = +00, thus

limJ fndx:—i—oo;éO:J lim f,, dx. O
n R Rn

This is, of course, the same phenomenon of continuity from above. By adding a finiteness assumption,
the conclusion holds:

Corollary 6.1.8: decreasing monotone convergence

Let (X&, u) be a measure space, (f,) < L(E) be such that f,, > f,+1 = 0 a.e. for every n.
Assume that [, fi du < +c0. Then (6.1.2) holds.

The proof is left for exercise.

6.2. Dominated convergence

Monotone convergence shows that, under suitable circumstances, pointwise convergence is sufficient
to pass limit into the integral. The two assumptions, namely f,, = O and f,, < f,+1 a.e., are too restrictive.
Is it possible to weaken these assumption? The next result is perhaps one of the most powerful results of
Lebesgue Theory.



42 6. MONOTONE AND DOMINATED CONVERGENCE

Theorem 6.2.1: Lebesgue’s dominated convergence

Let (X, %, u) be a measure space, (f,,) = L'(E). Assume that

i) (fn) converges a.e. on E, thatis 3lim,_, 1 fu(x) =: f(x),ae. x € E;
ii) there exists g € L'(E) such that

|f(x)| < g(x), a.e.x € E.

(g is called integrable dominant).
Then, f € L'(E) and

(6.2.1) lim | f,du= J lim f, du.
n E n

Proor. Arguing as in monotone convergence thm, we may assume that i) and ii) hold everywhere for
x € E. Since f is, by definition, the point wise limit of (f,,), f € L(E) (Theorem 3.3). Furthermore,

i) . ii) ii)
£ 2 7,01 S e — [ Ufldu< [ Jgldu <+,
thus f € L1(E). We prove now (6.2.1) by proving a stronger fact. Indeed, (6.2.1) is equivalent to
i [ (= fo) du =0,
n JE

Since

A
[Lo-ma [ 1= nla
E E
the conclusion follows once we prove
tiw [ 17 = ful du = 0.
n JE

Define
6n = sup|fx — f|-
k=n

Clearly 6, > | fy — f|. Furthermore, 6, € L(E) (exercise) and
Ont1 = sup |fi — f] <sup|fi = f| = 6n.

k=n+1 k=n

Thus 6, ™\, and since f,, — f point-wise on E, we have §,, — 0 point-wise on E. Finally, since
[ 1ortau= [ suplic— 1< [ sup(lsl+ L du < [ 2lgl e < +or.
E E k=1 X k=1 X
Thus, we verify hypotheses of the decreasing monotone convergence Corollary 6.1. Therefore

limJ |fffn|d,u<hmJ‘ 6nd/1=J lim&nd,uz‘[ udu =0.
m JE m JE E " E
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Example 6.2.2: (s:x)

Compute

—_n_

ProoF. Let f(x) := n? (1 — cos £) e~ 7+1*. Clearly f, € L*([0, +0|) for every n. Moreover

o X2 _a . X% _a x?
fo(x) ~nsqoo ﬁe it = 5 € 1Y —— —eT* =: f(x), Vx = 0.
Now,
2
x/n
[fu ()] < RQ%eV’TI‘X = x%e" AT, Vx > 0,
and since HLH 1, n”? > % forn > 1. Hence

X

[fn(@)| <x%e™2 :=g(x), Vn > 1, Vx € [0, +oo[.

Clearly g € L*([0, +00[), so it is an integrable dominant. By dominated convergence then

+00 +0 42 x2 +a0 +00 . +0
lim fa(x)dx = J ?efx dx = [—?ex] —&-I xe Y dx = [—xe | V+J‘ e “dx=1
0 0 0

0
n—=t0 Jo 0

Here is a version of dominated convergence for series:

Corollary 6.2.3

Let (X, #, u) be a measure space and let (f,) = L'(E) be such that

ZL | ful dp < +o00.

Then, Y., f, converges a.e., the sum belongs to L'(E) and

L;ﬁ=;Ln

6.3. Exercises

Exercise 6.3.1 (x%). Compute

+00 efn(xfn)
lim —— dx.
n—+w J, 1+ x?
Exercise 6.3.2 (xx). Compute
400 n
lim n (1 + )—C> sin ad dx.
n—+0o 0 n n
Exercise 6.3.3 (xx). Compute
400 n X
lim ———sin — dx.

n—+w Jo x(l +x2) n
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Exercise 6.3.4 («x). For which n € N we have f,(x) := dgg; e L'([0, +o0[)? Compute

+00

lim fa(x) dx.

n——+0o0 0

Exercise 6.3.5 (+#). Let f € L'([0, +o[). Prove that

+oo .
AET:@ . flx)e ™™ dx =0.

Exercise 6.3.6 (+x). Let (X, %, 1) be a measured space and f € L(X) and f > 0. Let u s the measure

ur(E) = | 1
The goal is to prove that
(%) Lg duy = Lgf du, Vg € L"(X,v).

e check () for s simple and positive.
o extend (x) to g € L(X, puy), 8 = 0 (use monotone convergence and Prop. 4.1).
o extend () to every g € L*(X, ).

Exercise 6.3.7 (xx%). Let (X, %, u) be a finite measure space. Show that
fell, — Znu(n< |fl <n+1) < +oo0.
n

What happens if u is not finite?

Exercise 6.3.8 (xxx). Let (X, F, u) a measure space. Suppose that (f,) < L(X) is such that
C
for some C and « constant, « > 1. Prove that f,, =5 0. (hint: use monotone convergence for series. . . )

Exercise 6.3.9 (x#x). Let f € L'(X), f = 0, (X, F, u) measure space. Prove the following continuity
property:
Ve >0, 36 >0, : I fdu<e YEeF,: u(E)<é.
E

(hint: start searching for M > O such that IfBM fdu<s...)



LECTURE 7

Integrals depending on parameters

In several applications, we need to discuss how an integral depends on some parameter. Formally, let

F€)i= | fle8) dulr), €< D < R

Here, the integral is respect to x—variable. We may expect that, under suitable assumptions on the
dependence of f on &, integral / will be continuous, differentiable etc. Exploring this is the scope of this
Lecture.

7.1. Continuity

Let (X, %, u) be a measure space, f = f(x,&) be defined forx €e E < X and é € D < R™. We
assume that

f(#.&) e LY (E), Vée D

In this way, the function
F€)i= | fl) dutr),

is well defined for every &€ € D. In this section we discuss its continuity.

Theorem 7.1.1

Let (X, %, u) be a measure space and f : E x D — R, D < R?. Assume that
) f(#,¢) e L'(E), V€€ D.
i) f(x,8) e €(D)ae. xeE.
iii) 3g € L'(E) such that | f(x,¢)| < g(x) forevery £ € D, a.e. x € E.

Then F(£) := [, f(x,€) dx € (D).
Proor. First, by 1), F is well defined for & € D. To prove continuity at point & € D, we have to check
that
V(n) € D, : & — & = F(6n) — F().
Notice that

F(é,) = JE £ ) it = JE Far) dit, where fo(x) = £(x,En).

The idea is to apply dominated convergence to (f,,). We have:

e byi) fu(x) = f(x,6n) — f(x.§) ae. x € D;
e by ii) [fu(x)| = [f(x.&n)| < g(x),ae. x € D.

45
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Thus, according to Lebesgue’s dominated convergence, we have

i F(6) =l | fydu = [ tim fy = [ ) du = Fe&)

7.2. Differentiability

Here we provide a powerful sufficient condition under which the integral function

F&) = | Fn8) duto

be differentiable.

Theorem 7.2.1: Differentiability under the integral sign

Let (X, %, u) be a measure space, f : E x D — R, D C R4, Assume that
) £(t,€) e L\(E), Ve € D.
ii) 30g f(x,€&) forall € € D and ae. x € E;
iii) 3g € L' (E) such that |0¢ f (x, £)| < g(x) forevery £ € D, ae. x € E.
Then

Proor. For simplicity on notations we consider D < R. i) ensures that F is well defined for & € D.
Let’s compute

Since limit limy,_,¢ can be computed sequentially, we take an arbitrary (%,) = R\{0}, #, —> 0 and notice
that
FE+hi)—F(§) _ J S &+ ha) —
E

hy, hy
Now, by ii) it follows that

it dp =: JE fn(x) du.

fx, &+ hy) — flx, €
falx) = ( h) (x.¢) — 0¢f(x,€), ae.x € E.
n
The difficult part is to find an integrable dominant for f,,. To this aim first notice that by Lagrange thm

there exists 7,, such that

123
FC6 &+ ) = F(,€)] = 106 (s madhal 2 80, 2 x € E,
thus
[fn(x)] < g(x), ae.xeE.
Therefore, by dominated convergence
F(+h,) —F
hn

D | pwdu— [ erte)

Let’s see a beautiful application of this result that will be important for the future:
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Example 7.2.2:

Let )
F(¢) := J ¢ 207 iEX dx, £ e R.
R

Show that 0z F(¢) is well defined for any ¢ € R. Deduce a differential equation for F, solve it and
show that

X2 .
ProOF. Let f(x,&) := e~ 20% ¢ 714, The integral is well defined because
J dx:J‘ e 307 dx = V2102 < +o0.
R R

In other words, f(-,&) € L' (R) for every & € R, that is i) of differentiation thm 7.2 is fulfilled. Notice also
that

.Y2 .
e 202 eilfx

x2
i) Ogf(x,&) = (—ix)e "$¥e 202, VEER, Vx € R;
2 2
iii) |0g f(x,&)| = |(—ix)e "¢¥e 202 | = |x|e 202 =: g(x) € L'(R), V&€ € R.

Hence, according to differentiation theorem,

. _X2 . .X2
0eF (&) = *iJ‘ e iex <xe2v2> dx = i(rQJ e Y0, <e2v2> dx
R R

2 X=+00 2
=ic? [e’fxezfrz] — J Ox (eﬂfx) e 207 dx
X=—00 R

. x2 . x2
= io-zj ife 6% 207 dx = 70'25‘[ e 1% e 207 dx = —02EF(€).
R R

Therefore ‘ o
0¢F(§) = —0%¢F(£), = F(&)=e 27 ¢ F(0).

x2
Finally, since F(0) = [, e~ 27 dx = V2702 we conclude.

R

7.3. Exercises

Exercise 7.3.1 (). Let

+00 :
F(x) := I e ” sin(xy) dy.
0 y
Show that F is well defined for any x € R, compute F' and determine F.

Exercise 7.3.2 («x*). Let

Show that F(x) is well defined for any x > 0, is differentiable and compute F’, hence deduce F.
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Exercise 7.3.3 (x%). Define
Lxé -1
F(¢) := J dx.
o logx
Show that F is well defined for any & > 0. Show that 30¢F. Use this to find out F.

Exercise 7.3.4 (xx). Let (X, %, ) be a finite measure space (that is a u(X) < +o) and let E € F.
Show that

i [ (1£() - ) du

exists and find it.

Exercise 7.3.5 (). Compute, fora > 0 and b > 0:
+00 2 b2
J <e_x - e_2> dx.
0

T log(1 + x cos
F(x) = J log(1 1 xcosy) o
0 cosy

1) Determine the domain of definition for F.
il) Compute F'(x) (where defined). Deduce F(x).

IS}

N

Exercise 7.3.6 (+x). Consider

Exercise 7.3.7 (xx+). Evaluate the integral
Jl log(1 + x)
0 1+ x2

— [Flog+éx) 4
T Jo 14x2

dx

by using the parametric integral F (&)

Exercise 7.3.8 («x+). Consider the function

+oo x dt
F(x):= e 7T —.
=], Vi
1) Determine the set of x € R for which F is well defined.
i) Discuss differentiability of F on its domain, and deduce a differential equation for F.
iii) Determine F explicitly.

Exercise 7.3.9 («%+). Let
1
Fy(a):= J x¥(logx)" dx.
0

Determine values of « for which F(a) is well defined and differentiable, compute F), and deduce a
differential equation for F,. Use this to explicitly determine F,.



LECTURE 8

Normed Spaces

In many problems, the natural framework is a vector space equipped with a way to measure distance
between vectors. This is needed to define limits and discuss convergence of sequence of vectors. The
most natural way to measure distance is through a tool extending the concept of modulus for real numbers.
This is called norm and it is the focus of this Lecture.

8.1. Definition of norm and examples

We recall that V is a vector space on R or C (field of scalars) if a sum f + g € V is defined for
every f, g € V and a product by scalars o f € V is defined, for every @ € R (or C) and f € V. Sum and
product by scalars verify a number of natural properties as:

i) (sum commutative) f + g =g+ f,Vf,geV;

ii) (sum is associative) f + (g +h) = (f+g) + h, Vf,g, heV;

iii) (sum has zero) 30y € V such that f + 0y = f,Vf e V;

iv) (sum has opposite) V f € V there exists g € V such that f + g = Oy (notation: —f := g);
v) (product is associative) (eB)f = a(Bf), Va,BE R (or C),Vf e V;

vi) (unit) 1f = f,Vf eV,

vii) (distributivity) (¢ + B)f =af + Bf.a(f +g) =af + Bg, Va,FeR (orC),Vf,ge V.

Definition 8.1.1

Let V be a vector space (on R or C). A function | - | : V. — [0, +0o0[ is called norm on V if the
following properties hold:
i) (vanishing) | f|| = 0iff f = 0;
ii) (homogeneity) |af| = |a|||f]. Ya € R (or C), Vf € V;
iii) (triangular inequality) | f + g|| < [ f| + [g[. Vf.g € V.
We say that (V, | - ||) is a normed space.

The remaining of this Section is devoted to show several important examples.

8.1.1. RY. Clearly, V = R< is a vector space on R with usual sum and product by scalars:

(X155 xa) + V1 eeosya) i= (X1 + Y15e o osXg +Ya), @(x1,...,xq) = (@x1,...,axq).
49
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The most natural definition of norm is suggested by Euclidean geometry and, in particular, by Pythagorean
theorem. It is the so called euclidean norm,

d
[(ers- o axa)2 o= | D) x2
k=1

The check that this is a norm is non trivial. Vanishing and homogeneity are straightforward. The difficult
part is the triangular inequality. Let x = (x1,...,x4), ¥y = (¥1,...,Ya). Then

bet 15 = 2w +300% = Dok + D+ 20wk = el I + 22 xk
k

Now, to have ||x + y[2 < ||x[|2 + ||y]2 we need the celebrate

Lemma 8.1.2: Cauchy-Schwarz inequality

(8.1.1) D Xk < |xf2fyle.
k

Identity holds true provided xocy.

Proor. Conclusion is evident if [|x||2 = 0 or ||y|2 = 0 (it reduces to 0 < 0). Assume ||x||2, [y[2 # O.
Thus (8.1.1) is equivalent to
Xk
Z [xll2 Hsz

Now, since we have ab < # (this comes from (a — b)?
2 2
Xk Xk Yk
— 4+ —= ] =1
Z |2 Hy||2 Z (IXE |y|§>

This proves (8.1.1). To finish the proof we n0t1ce that holds provided = hold in the elementary inequality
ab < “2'2H’ that is a = b, thus for all k, but this means xocy. |

> 0), we have also

HXH2 H)H

\.

On R4 other natural norms are defined, as, for instance,

[(x1,s .. sxa)|o0 = max Ixkl, [(x1s...xa)|l = Z |k |

Proofs are left in the exercises.

8.1.2. C4. As R4,C? is the vector space of d—ples of complex numbers (z1,...,z4). Sum and
product by scalars are defined in the same way as for R¢. We notice that in this case the field of scalars
can be both R as well as C. On C¢ we may define similar norms as for R%:

IGz1e- -zl =Dzl ezl o= D 2kl [z 2a) oo = max [zg|.
x \ &

The checks are left as exercise.
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8.1.3. Uniform Norm. Let X be a generic set and set

B(X) := {f:X—>R S flleo = Slel)I?|f(X)| <+OO},

the set of all real valued bounded functions with usual sum of functions and product of a function by a
scalar, that is

(f+8)(x):=f(x)+gx), xe X, (af)(x):=af(x), xeX, aeR.

Here, we may consider also the case of C valued functions, with scalars R as well as C. For sake of
simplicity we will limit to the case of real valued functions.

Proposition 8.1.3

(B(X), | - |loo) is @ normed space.

Proor. We start by checking that B(X) is a vector space. Indeed if f, g are bounded, then clearly
f + g is bounded as well, and similarly for e f. Let’s prove that || - |, is a norm. We have:

e vanishing: [|f]o = 0 iff sup,ex |f(x)| = 0, that is | f(x)| < O for all x € X, but then f = 0,
which is the zero of B(X);

o homogeneity: |@f]o = supyex [@f(¥)] = supyex |@||f(x)] = [a|supiex [f(¥)] = [a]]f]x
(by the way, this proves also that «f € B(X) once f € B(X));
e triangular inequality: first notice that
1f(x) + g@) < [f@)] + [g)] < |floo + [8llocs Vx € X, = |If + gloo < [ flloo + lglco-
This proves also that if f, g € B(X) also f + g € B(X).

Let D < R4, An important subset of B(D) is that of continuous and bounded functions on D:
(D) = {f € B(D) : fe (D))

Since sum and product by scalars of continuous functions are continuous, & (D) is itself a vector space.
Equipping €5, (D) with | - |, norm makes (€5 (D), | - || ) itself a normed space. In particular, if D = R?
is compact (that is, closed and bounded), then, according to Weierstrass theorem, any f € € (D) is
bounded. Thus

G»(D) =€ (D), (D compact).

Moreover, still by Weierstrass theorem, since |f| € € (D),

f| itself has maximum on D. This means

that,
[£lloo = sup [ f(x)| = max |f(x)].
xeD xeD
In other words, when D is compact, we may use maxp |f| as definition of || - ||, norm. As for the

euclidean norm, other norms are possible on (D). Here we illustrate an example of these.
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Example 8.1.4: (sx)
LetV := € ([a, b]) and set .

o= | 17@) a.

a
Then, || - |1 is a well defined norm on V.

Proor. We check first that | - | is well defined: if f € V = €([a, b]), then |f| € €([a, b]), thus | f]
is integrable (even in Riemann sense). To check that it verifies the characteristic properties we start with
vanishing. Suppose

b
\U%:f F(@)] dx = 0.

Now, since | f| is continuous we claim that the previous is possible iff | f(x)| = 0. Indeed, if | f(xo)| > 0

for some xq € [a, b] then, by continuity, |f(x)| = m for x € I, < [a, b], neighbourhood of xy. Thus
b |f (x0)]
0=l = [ lelar= | 1reldr= L0, -0

X0
Thus, we get a contradiction and vanishing holds. Homogeneity and triangular inequality are straightfor-
ward. Indeed,

b b
wwm:j|wuﬂm:j|wumuuZMWM

and

b b

£ (x) + 8(x)| dx < f fE| + [ dx = [ f]x + lg]s-

a

I+l = |

a

8.2. Norm comparison

As we have seen, in some cases, several norms can be defined on the same vector space V. It is
important to have a way to compare two norms.

Definition 8.2.1

Let | - | and || - |« be norms on V. We say that | - || is stronger than | - | if
3C >0, : [fl« <C|f], VfeV.

If each of the two is stronger than the other, we say that the two norm are equivalent.

Example 8.2.2: (xx)

Norms | - ||1, | - ||z and || - o on R¥ are equivalent.

Proor. We will prove that

[xl2 < Cllxlh < C'lxlleo < C”|x]l2, Vx € R,
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from which the conclusion follows. Noticed that |xg| < |x|; for every &,

1/2
XI2—< Xk|2> ( IXkIIXI1> = |x[1,
k

thus C = 1. Now, since |xx| < |x| o for every k

xls =D bl < dllxl o

K
thus C’ = d. Finally, since also |xx| < |x|2 for every k, we have

[¥lloo = max pee| < fx]l2,

thus C” = d.

This result is not incidental:

Theorem 8.2.3

If V is finite dimensional, then any two norms are equivalent.

Proor. We do the proof on V = R? (but the same proof can be easily adapted to a generic vector
space). Let | - | be a generic norm. We prove that | - || is equivalent to the Euclidean norm | - ||2.
To this aim notice that, denoting by (e;) the standard basis of R¢,

Y rier] < 3 Ieallel < (m;gx ek> 3 el = Cliel < Cdlel.
k

k k
This proves || - |2 is stronger than | - |. To prove the vice versa, we need to prove

IC’ ¢ x| < C'|x|, Vx € RY.

el =

Notice that, if this is true, then

1
(8.2.1) ]| = o= C" >0, VueR?, |uly =1.

Vice versa, if this last is true, setting u = | ;H , clearly ||lu|2 = 1, then

1 5
o S o
¢ Szl Tl H
Thus, (8.2.1) is equivalent to the conclusion. Notice that (8.2.1) means that the function 7'(«) := |u|| has a

positive lower bound on the surface of the sphere S := {u € R? : |ju|, = 1}. To prove this we first prove
that T in continuous as function R? — R respect to the | - |2 norm. Indeed,

T() =T = [lul = VI < u—v] < Cdfu—v],.
Since S is compact, by Weierstrass thm 7 has a minimum. Let u* € S be a minimum point: Then
T(u) = |ul| = Tu*) = |u*| > 0 (otherwise |u*|| = 0 would imply u* = 0, but u* € S cannot be = 0).
This completes the proof.

I, == lxl2 < C'llx].

J

The previous fact is no longer true when the space is infinite dimensional, as the following example
shows.
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Example 8.2.4: (s:x)

On V = €([0,1]), let us consider uniform norm | f{« := supjo 1) [ f(x)| = maxo 17 [f(x)| and
the norm

1
1] = JO F(x)] dx.

Then | - | is stronger than | - |1 but they are not equivalent.

Proor. We first prove that | - |4 is stronger than | - ||;. This is easy,
1

1
Iflx = L £ ()] dx < J [£lloo dx = | fllac, VS EV.

0
To prove that | - [|; is not stronger than || - |oc we need to prove that it does not exist C such that

[fleo < Cllfl1s VFEV. (%)

. . . 1 . .

To have (*) true, it means that if the area “under” f (the integral Jo | /]) is small, then, necessarily, max | f|
must be small, so |f| must be uniformly small. This seems to be false: we can have arbitrarily large
functions with small area instead. To formalize this example, define

n—n’x, 0<x<-,

(8.2.2) fulx) =
0 H<x<l
Notice that
Il j1|f<>|d LS T ) — £()]
= =—-n-— = —, o = su x)— f(x)| =n,
T IR T o e xe[Ol:)l] !

thus, if (x) were true, we should have n < C%, that is 2n? < C for every n € N. But this is impossible,
thus (*) is false.

Definition 8.2.5

We say that (V, || - |v) is embedded into (W, | - |w) if
VW, and |flw <C|flv, VfeV.
We write (V, || - [v) = (W, | - [w).

Example 8.2.6: ()

Let V = €1([0,1]) equipped with | f|v := |f(0)] + || f'lsc and W := B ([0, 1]) equipped with
|flw := | fllco- Check that (V, | - ||y) and (W, | - |w) are normed spaces and that (V, | - |v) —
(W, [~ flw)-

Proor. We already know that (W, | - |w) is a normed space. About V: easily, it is a vector space with
usual sum and product by scalars. Let’s check that || - ||y is a norm. Clearly, since f € V means f € €,
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| fIlv is well defined. Let’s check the characteristic properties. We have

[£(0) =0,

Iflv =0, < [fO]+[fc =0 <

[£"lleo = 0.
The first says that f(0) = 0. The second, because of vanishing for | - |, norm, tells ' = 0. But then,
f = C and since f(0) = 0 we conclude f = 0, that is vanishing holds. Homogeneity and triangular
inequality are straightforward, we leave as exercise.
Let us come to the embedding. Clearly V = €1([0,1]) € W = €([0, 1]). To show that this inclusion is
an embedding between the two spaces we need to check that there exists C > 0 such that
Iflw < Clflv. VeV, = [flo<CUfO]+]f o). VfeC([0,1]).

We need a way to express f(x) in terms of f(x). This is provided by the fundamental formula of Integral
Calculus, according which we have

F() — £(0) = f: F)dy, — f(x) = f(0)+ f: £(5) dy.
Then
FO < FO)] +

Jo £'0) dy| S 1FO1 + 5 1£0) dy < 1FO)] + 1o [y 1 dy

< [FO)] +x[ f"e0s ¥x € [0,1].
Therefore

[£llw = max|fx)] < r[gﬁff(lf(o)l +x[f o) = IF O + 10 = [ £]Iv-

this being true for every f € V. The embedding is now proved.

8.3. Exercises

03 i= (1l /Iy

Exercise 8.3.2 (+). Check that || - |, and || - |« are norms for R,

Exercise 8.3.1 (). On R? define

Is | - ||« a norm?

Exercise 8.3.3 (x%). OnV := €1([0,1]) we consider | - | norm and || f|v := | f|eo + |l f'|c0. Check
that || - |v is stronger than | - || o norm, but they are not equivalent.

Exercise 8.3.4 (xx). OnV = €([0,1]) consider the sup-norm | - ||, the total variation norm

1
11y = 1flee + 1£" T = 1l + L |f7(x)dx,

and the €* norm | fs := | flloo + |f'lcc-

i) Show that there exist ¢, C > 0 such that | f | < c||f]v < C|f]«-
ii) By using fi(x) := cgsin(knx) or gr(x) = cxxk, show that do not exist constants m, M > 0
such that | f|, < m| flo and | fl« < M| f],.
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Exercise 8.3.5 (+%). Let V := {f € €'([a,b]) : f(a) = 0} equipped with || f|y := f: |/ (x)| dx. i)
Check that | - ||y is @ norm on V. ii) Prove that (V, | - |v) — (€ ([a, b]), || - |x0)-

Exercise 8.3.6 (+%). Let V := {f € €*([a,b]) : f(a) = f(b) = 0} equpped with |f|ly :=
Ll; |f"(x)| dx. i) Check that | - |y is a norm on'V. ii) Show that (V, | - |v) < (€'([a, b)), | - |1 ) where
[ £l == [1f oo + 15" llco-

Exercise 8.3.7 (+x). Let {' := {(xp)nen € R : X, |xn| < +00} withnatural sum (x,)+(yn) := (Xn+yn)
and a(x,) := (ax,). Check that t* is a vector space. We set

[Gea)ler := D lenl-

Check that || - || ;1 is a well defined norm on €*.

Exercise 8.3.8 (xx+). Let {2 := {(xn)neN C D x2 < +oo}. Show that €% is a vector space with the
same algebraic operations defined in the previous exercise for £*. Define then

[Gea)le =, D53
k

Prove that | - || 2 is a well defined norm on €? (hint: adapt ideas from the Euclidean norm of R?).

Exercise 8.3.9 («x). Let V := € ([0, 1]) equipped with

Hf)]
e
i) Check that || - |v is well defined on'V and it is a norm.
ii) Check that usual || - || norm is stronger than || - |y norm.
iii) Define
Yn, 0<x<i
Julx) = 11
I om <x <1
Is (fn) € V? Compute || fn|v. What can you draw about the relation between | - ||, and | - ||y ?



LECTURE 9
L? spaces

Spaces of integrable functions are of paramount relevance in applications. In this Lecture we introduce
these spaces with their natural norms. We introduce also the space of essentially bounded functions,
namely the version of bounded functions for measurable functions.

9.1. L' space

L' is the space of Lebesgue integrable functions:

Definition 9.1.1

Let (X, #, u) be a measure space. We set

LX) i { £ € LX) ¢ I o= [ 1f]du < 0]

It is easy to check that L'(X) is a vector space with usual operations of sum and product by a scalar.
Indeed, if f,g € L'(X) then f + g € L'(X) because

[t vetaws [ Qrieleh du= [ It [ Jelau< e
X X X X

and similarly @ f € L1(X) for every a € R (or C). The quantity | - |; seems to be a natural way to define
the norm of a vector of L!(X). And indeed we have already shown that | - |1 is a true norm on a vector
space like € ([a, b]) (see Example 8.2). When we consider the space L' (X), however, | - |; verifies all
the characteristic properties of a norm except for vanishing, which takes a mild form:

Proposition 9.1.2

| - ||; verifies homogeneity, triangular inequality and vanishing in the following weak form:

[fl1 =0, — f=0, a.e.

Proor. Homogeneity and triangular inequality are easy and left to the reader. Let us focus on vanishing.
It is evident that if f = 0 a.e. then |f]; = fX |f| du = 0. Vice versa: if | f]1 = fX |f| du = 0O then
|f| = 0 a.e. follows from Cebisév Lemma 4.2 applied to | f|.

57
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Warning 9.1.3

Strictly speaking, || - ||; is not a norm. To make it a true norm we should modify the structure of
L'. The idea is the following: we say that f and g are equivalent is f = g a.e.. Given f € L(X),
we define { f} as the set of all functions equivalent to f. Then, we consider the so-called quotient
space, that is the set V made of all possible equivalence classes { f}. These will be vectors of a
new space, where
{1 +{g}={f+sg}h c{f}=A{cf}h

One can verify that these operations are well posed and give to V the structure of vector space.
The zero of the space is, of course, the class Oy = {0}. Finally, one set

1M = L nEn

a.e

Since f “=" g implies | f| “=" |g|, thus in particular fX |f| du = IX |g| du, previous definition is
independent of any particular element chosen from the class { f}. Furthermore

I =0, = [ 1fldu=0. = A0 = 0 = {f} =0} =0n.

So, this quotient space is a true normed space.

However, even if | - ||; is not a true norm, we consider such in all respects. The unique care is to remind
that vanishing works in a slightly weaker form.

9.2. LP space (1 < p < +0)

LP space is just an extension of L' space:

Definition 9.2.1

Let (X, #, u) be a measure space, 1 < p < +00. We set

LP(X) := {fe L(X) : L |7 du < +oo}.

1/p
Wty s= ([ 1517 an)

For the sake of simplicity, we will work out in detail the fundamental case p = 2, assuming real scalars.
For the general case we will limit to main statements, leaving the technical proofs in the exercises. The
first step is the

We define

J

Proposition 9.2.2

Let (X, #, i) be a measure space. Then, L?(X) is a vector space, and | - |2 is a norm on L?(X)
with vanishing | f|2 = 0iff f = 0 a.e.
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PrROOF. Let s start proving that L2(X) is a vector space. Let f, g € L2(X). Toprove that f +g € L?(X)
we have to prove that [, (f + ¢)? du < +0c0. Now, since 2ab < a* + b?,

(F+e)l =1+ +2fs<fP++ 1+ =2+,
thus, integrating,
J (f+g)2du<2j f2+g2du=2q f2d,u+J g2d/1> < +oo.
X X X X

By this f + g € L?(X). The proof that a f € L?(X) is straightforward.
Let’s now move on the properties of | - |2 norm. We start by the vanishing:

Ifl: =0, —> L\f|2du=o, — |fP=0ae, — f=0,aec

Homogeneity is straightforward. Finally, the triangular inequality. This is similar to the proof of the same
property for the euclidean norm on R¢. We start computing

\|f+gH§=J <f+g>2du=j f2dﬂ+J g2du+2j fgdu=\|fu§+ugn§+2f i
X X X X X

To have | f + gll2 < | fl2 + |g]2 we need the

Lemma 9.2.3: Cauchy—Schwarz inequality

©2.1) UX fe dﬂ‘ < Flsllela, Vfg € L2(X).

Moreover, equality holds iff focg a.e.

Proor. It is similar to the proof of CS (8.1.1) for euclidean norm. We first notice that if
[z = 0 or |g|l2 = O the inequality is a trivial 0 < 0. Thus we assume | f||2, ||g|2 # 0. Dividing
by Lh.s., the proof is reduced to
8

T
8 gl <1.
L 112 g2

. 2+b2
Again, by ab < =

bl

<
f g ‘ J /] gl 1<J f? J g’
—— du| < —— du < = du+ | ==du) =1,
Jx I£12 g2 x If12 g2 2 \Jx |I£13 x g3

and this proves (9.2.1). About equality, all < signs must be =. In particular, the last one implies

”L{”L = ﬁ a.e., and from this the conclusion follows.

Returning to the proof of triangular inequality, we have

2
If +gls < 1£15 + ligls + 21f12lgl2 = (1f12 + lgl2)*,
from which the conclusion follows by taking roots.

For the general case 1 < p < +o0 the argument is similar. The key step is the extension of the
Cauchy—Schwarz inequality to the important
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Lemma 9.2.4: Holder inequality

Let (X, %, u) be a measure space. Then

[ el <1r1e
X

q-

1,1 _
wherep—i—q 1.

See exercises for the proof. With some non trivial work (left to exercises) it is possible to prove the

Proposition 9.2.5

Let (X, %, 1) be a measure space. Then, for every 1 < p < 400, LP(X) is a vector space and
| - || is anorm on L?(X) with vanishing in weak form.

9.3. L™ space

The concept of bounded function fights with that one measure. For example, measure consider the
same any two functions which are a.e. equal. However, if we define, on X = R,

0
f=0, g= an{n},

n=1

we see that f = g a.e. but while f is constant, g is unbounded. In other words, we cannot use

[flloo = sup [ £ (x)]
X

to define a norm on L(X). However, from the point of view of measure, it is clear that we should consider
g essentially bounded.

Definition 9.3.1

Let (X, #, u) be a measure space, f € L(X). We say that fvis essentially bounded on X if
M >0, : |f|< M, a.e.
The class of essentially bounded functions on X is denoted by L*(X).

It is not difficult to prove that

Proposition 9.3.2

Let (X, #, u) be a measure space. Then, L*(X) is a vector space equipped with usual sum and
multiplication by scalars.

The proof is left as exercise. We now introduce a suitable norm on L*(X). If f € L*(X), there exists
M > 0 such that |f| < M a.e. We call this M an essential upper bound. It is clear that, every K > M
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is an essential upper bound as well. So, the essential best upper bound is the smallest of the essential
upper bounds,
[flloo =esssup |f| :=inf{K >0 : |[f| <K a.e.}.
Notice that, by definition of | f||, we have
Ve >0, |f| < | fleo + &, ae.

Setting & = 1 we have
n

1 1
(11> 11k = U112 o+ 21— w11 151) < D (191> U+ 2) = 0

n n

that is
9.3.1) /)] <[ f]oes aex€ X |

Definition 9.3.3

Let (X, #, u) be a measure space, f € L(X). We set
L*(X) :={f e L(X) : [fllo < +00}.

Proposition 9.3.4

Let (X, %, 1) be a measure space. Then, L*(X) is a normed space equipped with || - ||o;, with
vanishing in weak form.

Proor. Let’s verify the characteristic properties of a norm.
e vanishing: if | f],, = 0 then, by (9.3.1), | f(x)| < 0 a.e., thatis f = 0 a.e..

e homogeneity: by (9.3.1), |af(x)| = |e||f(x)| < |a||f|x a.e.. Therefore |af]o < ||| f]oo-
Now, since (by the same inequality), | f[ o = | (@ f)x < ‘—(1‘4 | f ] we get the conclusion;
e triangular inequality: by (9.3.1),

1< 1floos I8l < l8llccs ace. = |f + gl < [f] + 18] < [floo + I8llc0r a-e.
This says that [ f + gllo < [|f ]l + [&]lc- O

9.4. Exercises

Exercise 9.4.1 (). Let @ > 0. Determine for which p > 1 the function

Fx) = —

=——— xeRY,
T+ xo "

belongs to LP (R?) w.r.t. Lebesgue’s measure. (hint: look at Exercise 5.4.7)

Exercise 9.4.2 («x). The goal is to show that L? (X) is a vector space. To this aim, show the following
numerical inequality:
IC>0,: (u+v)P <Cu? +vP), Yu,v = 0.

Use this inequality to conclude.
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Exercise 9.4.3 (x#:x). The goal is to prove Holder inequality.
i) By using the concavity of function logt, prove the Young inequality

1 1
ab < —aP + =b4, Ya,b = 0,
P q

withl < p,g < +ooand% + % =1
i) Himitating the proof of CS inequality and using i), prove the Holder inequality.

Exercise 9.4.4 (sxx). The goal is to prove that || - |, is a norm (1 < p < 4+00). Vanishing follows from
Chebyshev’s inequality and homogeneity is straight forward. For the triangular inequality write

I+l = [ 17 sl du= [ 17+ glr sl dws [ 1R+ el daok [ lellr+ gl d
then apply Holder inequality.

Exercise 9.4.5 (xx). Let (X, %, u) be a measure space. Check that:

i) if u(X) < +oo, then || - |3 norm is stronger than || - |1 norm. (use CS inequality).
il) if u(X) = +oo, in general previous conclusion is false (consider X = [0, +oo[ and u =Lebesgue
measure. . . ).
iil) even if u(X) < +oo in general || - |1 and | - |2 norms are not equivalent (take X = [0, 1] with
u =Lebesgue measure. . . ).
iv) in certain cases || - |1 and | - |2 norm can be equivalent (take X finite set. . . ).

Exercise 9.4.6 (+x). Let f € L>(R).

i) Is it true that f € L*(R)? Prove in general, if true, disprove with a counter example, if false.
ii) Show that if x f (x) € L?(R) then, necessarily, f € L*(R), proving also the bound

I < V2 fl2 + [xf]2) -
Exercise 9.4.7 (xx). Let (X, %, u) a measure space, f € LP(X). Prove that

) u(lfl = @) < g5 | £} for every a > 0.
i) limg—ioo@?u(lf| = @) =0.

Exercise 9.4.8 (+#x). Let f € L?([0, +0]).

2
i) Prove that (I; ) a’y) < 24/x fg VYf ()2 dy, Vx = 0(hint: Cauchy-Schwarz’s inequality).
ii) Define g(x) := %fg f(v) dy. Check that g € L*([0, +o0[) and |gll2 < 2| f|2.
Exercise 9.4.9 (%), Extend Holder’s inequality: let f € LP, g e LY1andhe L" with1 < p,q,r < +®©
such that % + %1 + % = 1. Prove that

| £ghln < [£1plglqlnl--



LECTURE 10

Convergence

As for modulus in the real line, norm allows to define limits of sequences of vectors in a normed
space. When the normed space is a space of functions, convergence is almost never an easy matter. This
Lecture introduces to this topic through many examples.

10.1. Limit of a sequence

We start with the

Definition 10.1.1

Let (V,| - |) be a normed space. Given (f,)  V we say that

il = Jf-fl—0

The first remark is that if a limit exists, it is unique:

Proposition 10.1.2

If (f,) < V has a limit, the limit is unique.

Proor. If f, 1, fand f, 1R g, then

If —el <If =fall + 1fn =gl — 0. = [f-¢l=0, < f=¢ D

Remark 10.1.3

As the proof shows, uniqueness of a limit depends on vanishing of the norm. So, if we consider
an L? norm, the same proof leads to the following conclusion:

[} Il a.e.
fn—p)f’fn—p)g’: f:g
Thus, in principle (unless the unique measure zero set is @) the limit is not unique. This might be

disturbing. However, since any two limits differ by a measure zero set, from the point of view of
measure they are the same object, thus, we shouldn’t be worried too much!
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Example 10.1.4: (x)

Proor. We first have to guess a potential limit. We may notice that, for x € [0, 1] fixed,

0, 0<x<1,
lim f,,(x) = limx" = =: f(x),
n n

1, x=1

1 1
thus we may guess that f;, L, f. Now, since f = 0 a.e. this means f;, L7, 0. Let’s check this: we have

1 1 (1 7x=l 1
U =0k = ks = [ e = [ 2 ax = [ ]
0 0

n+1
that is our guess was correct.

x=0

Convergence is not an intrinsic property of a sequence, but it always depends on a specific norm. It may
well happen that the same sequence under different norms might have different behaviours. However, if
convergence happens in a stronger norm, then it happens also for a weaker norm.

Proposition 10.1.5

If | - | is stronger than | - |, then any sequence converging under | - | converges also under || - |
to the same limit.

ProoF. By assumption | f |« < C||f]| for every f € V and for a suitable C > 0. If f, LN f then

0< [ fu— fllx <Clfu—fI—0,
thus || f; — f|l« — 0, thatis £, L% 7.

Example 10.1.6: (sx)

OnV = %([0, 1]) equipped with uniform norm || - |, let us consider again the sequence f,(x) :=
x". This sequence is not convergent in uniform norm.

-1l

Proor. We already proved that f,, — 0. Since

1 1
Il = j F)] dx < j ko dx = [ 1o

the uniform norm on V is stronger than the L' norm. In particular, if f, Ve g € V then also f, Iy, g.

Since we already checked that f, I, 0, the unique possibility is f, (EY 0. However,

I = Olle = Ifulle = max "] = 14— 0.

So, the sequence ( f,,) cannot converge in uniform norm.
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An useful fact to know is the

Proposition 10.1.7

Let (V,
that is

- |) be a normed space. Then, every convergent sequence (f;) is necessarily bounded,

IM ;| fu] < M, ¥neN.

ProoF. Assume f;, M, f: then

IN ;| fe— fl <1, ¥u = N.
Thus in particular | f,|| < | fu — fIl + [ f] <[ f] + 1 forall n > N. Thus, if we define
M := max{| fol, [ il ..., [fw—all. [ £ + 1},

we conclude | f,,|| < M for every n € N.

Vv

10.2. Convergence in space of functions

Most relevant normed spaces are spaces of functions. The simplest way to converge for a sequence
of functions (f;,) is the point-wise convergence, that is

A natural problem arises: what relation exists between point-wise convergence and principal norms
convergence? This is what with want to investigate here in some remarkable cases.

10.2.1. Uniform norm. We start with the uniform norm | - ||, which, according to the case, might
be slightly different but more or less it works at the same manner.

Proposition 10.2.1

Let (f,) < B(X) be such that f, Il f. Then f,, — f point wise.

Prookr. Since | f;; — f]s —> 0 means
Ve>0,INeN : |fy — floow <&, Vn =N,
that is, according to the definition of uniform norm,
Ve >0, 3NeN : sup|fu(x) — f(x)| <&, Vrn =N,

xeX
or, again,
Ve >0, INeN : |fu(x) — f(x)| <&, Vxe X, Vn=N,

This says f,,(x) — f(x) for every x € X, and this is precisely point-wise convergence.

The converse is false,
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Example 10.2.2: ()

Let
n’x, 0<X<%,
- 2 1 2
Su(x) := n“x + 2n, r2l<x<n,
0, Z<X<1

Discuss point-wise convergence and uniform convergence.

2 0, forn = N(x) we have x > 2 thus

Proor. First: f,,(0) = 0 — 0 while for x > 0, since = =
Jfu(x) = 0 for such n. This means f,(x) —> 0. Conclusion: f,, —> 0 point-wise. Thus, if f, [l f then,
necessarily, f = 0. However, | f, — flow = | fu]oo = n — +00, so (f,) cannot be convergent in uniform

norm.

A similar conclusion holds for the L® norm.

Proposition 10.2.3

Let (X, #, u) be a measure space, (f,) = L*(X) be such that f, Jills f. Then, f, <% f, that is
fa(x) — f(x), a.e.x € X.

II-lloo

Proor. It is very similar to the proof of previous proposition. Suppose that f,, — f. Then

Ve >0, INeN : |fy — flow <&, Vn=N.

D

Recalling that
8| < |8l @€ x € X,
we have
Ve>0,INeN : |fu(x) = fX)| < |fi — fllo < & ae.xe X, Vn=N.

Here there there is a subtle passage. Previous statement says that, for each n > N, there exists a null set E,,
(thatis u(E,) = 0) such that

Ve >0, INeN : |fulx) = fx)| < | fn — flo <&, Vx € X\En, Vn = N.
Let E := |, En. By sub additivity u(E) < >, u(E,) = 0, thus E is a null set and of course

Ve>0,INeN : |fu(x) = fxX)| < |fu— flow <&, Vxe X\E, Vn = N.
From this it follows that f;,(x) — f(x) for every x € X\E, that is f, <% f.

J

10.2.2. L? norm (1 < p < +). Convergence in || - |, norm is also called convergence in
p—mean. Basically, saying || f, — f||, becomes small it means that the area between f,, and f (weighted
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to power p) is small. In principle, the area could be small also with huge gap between functions. That’s
why we cannot expect that L? convergence implies a.e. point-wise convergence. The next example shows
dramatically this phenomenon.

Example 10.2.4: ()

Let (f,,) = LY([0, 1]) defined as follows:

JS1:=1p01),
for=10,12p J3:=1p/2.1)
fo= 110,174 J5:= L[uya2/a) fo 1= Lj2/a3/4s Sfr:= 1[3/4.1)5

Eme = 1[0’1/2m], f2m+1 = 1[1/2m,’2/2m], e ,fgm+k = ]_[k/zm’(k_;’_l)/zm,],

Then f, z 0, but (f,,(x)) does not converge for every x € [0, 1].

Proor. The first check is easy: |fam k|1 = 5= —> 0 for m — +00. About the second: take

x € [0, 1]. Notice that, for every m fixed, there’s just one k* such that [’2‘%:, k:%l [3 x. Thus fom i (x) =0
for k # k* and = 1 for k = k*. This means that the sequence f,(x) is infinitely many times = 0 and

infinitely many times = 1. In particular, (f,(x)) cannot be convergent, whatever is x € [0, 1].

Nonetheless, we have the important

Theorem 10.2.5

Let (X, &, 1) be a measure space, (f,) = L?(X) (1 < p < +0) such that f, - f. Then, there
exists a sub-sequence (fy,, ) < (fn) such that f,, 25 7.

Proor. For simplicity, we consider p = 1. Replacing f;, with f,, — f we may always assume f = 0.

Thus we assume f;, L—l> 0, that is
| 1l au—o.
X

For every k there’s ny such that
1
J;( |fnk| dﬂ < 2_k
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We claim f;,, 2% 0. Indeed, by monotone convergence (for series)

1
JZ|fnk|dﬂ:2J ol dp <=2 =1 < +o0,
X7 T Jx k2

thus >, | fn, (x)| < 400 a.e. x € X. Now, recalling that if >}, aj converges then, necessarily, ay — 0,
we deduce f;, (x) — 0 a.e. x € X, which is the conclusion.

Remark 10.2.6

In the example 10.2.4, a sub-sequence of ( f,;) that converges a.e. is, for example, (fon). Indeed:
Jam (x) = 10,1/2m)(x) —> 1oy (x), Vx € [0, 1].

10.3. Exercises

Exercise 10.3.1 (). For each of the following sequences discuss: i) pointwise convergence on [0, +|[;
ii) a.e. convergence on [0,+oo[; iii) L([0, +00[) convergence; iv) L?([0,+[) convergence; v)
“([0, +0[) convergence.

n
1. fu ::% 2 fui=nlpg e 3. fu = ;0%1[,(,“21”].
Exercise 10.3.2 (++). Let V := €([0, 1]) equipped with usual | - ||oc norm. Let
fulx) = x" = X" g, (x) := X" — X
Clearly (fy), (gn) < V.

1) Discuss their convergence in V.
ii) What happens if we consider the | - | norm on V?

Exercise 10.3.3 (x). Let f,(x) = 1[_1,0)(x) + 1jo,1/n)(x)V/1 — nx. Discuss convergence of (f,) in
L*([-1,1]).

Exercise 10.3.4 (). Let

ful(x) == ,x€e[0,1], ne N,
x—l—%

i) Plot quickly the graph of f,. Is (f,) < L'([0,1])? Is (f,) < L*([0,1])?
ii) Is (f,) convergent in L*([0,1]) and, in the case, to what? Is (f,) convergent in L*([0,1]) and,
in the case, to what?

Exercise 10.3.5 (x). Let f,(x) := ﬁ, x € [0,+o[, n € N, n = 2. Plot quickly the graph of f,. Is
fn € LY([0, +00[)? Is (f,) convergent (and, in the case, to what) in L*([0, +00[)? Justify your answer.

Exercise 10.3.6 (x). On'V = %'([0, 1]) let’s consider

1
O 1 == 1f oo + 1 Noo- i0) [ f s = 1F O + 1 loo- 170) [f [ser := LF(1)] + L | (x)] dx.
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Which among these are norms? For those who are norms, consider then the sequence f,,(x) := % sin(n’x).

Discuss convergence of (fy) in each of the norms. Discuss also relations among the norms.

Exercise 10.3.7 (++). Let fu(x) := 153 X € [0,1]. Discuss convergence of (f,) in L ([0,1]) for
p =12 400.

Exercise 10.3.8 (xx). OnV := {f € €'([0,1]) : f(0) = 0} we define
171 := max '2|£'(1)].

t€[0,1]
i) Check that | - || is a norm on V.
i) Show that | f| is stronger than || f | on V.
iii) Define (f,) < V as
V4 re i1,
Ju(t) := 5/ )
an, e [0, ;[
Compute | f,,| and || fn |0 What can be deduced about equivalence of || - | and || - |00 ?

Exercise 10.3.9 (+#). Let (E,,) be a sequence of Lebesgue measurable sets of RY. Suppose that 1 E, I, f
for some f € L'(R). Prove that there exists a measurable set E such that f = 1g a.e..






LECTURE 11

Convolution

In general, Lebesgue integrable functions are very irregular and, among them, regular functions
(such as continuous, differentiable, . . . ) are certainly not the prototype of an integrable function. In fact,
we may think that regular function are pretty “rare” among integrable functions. Despite this intuition,
in this Lecture we show that any integrable function can be approximated, in L” norm, by a suitable
sequence of extremely regular (that is ™) functions. This is possible because of a powerful operation
called convolution product (or just convolution). The results of these chapter are very technical and most
of the proofs will be omitted. Nonetheless, in many contexts of Analysis it is very important to know
that we can always approximate any L? function through a sequence of regular functions. Moreover, the
convolution has several applications in Probability and Information Engineering.

11.1. Definition

A natural idea to approximate a generic (integrable) function f is to build a function whose value at
point x is an average of values of f around x. For instance, fixed € > 0 we might consider the function

1 xt+e

felx) POy = oo | FOMa e dy = [ £l =) d,

2e J_g

Calling 6 (x) := %1[—5,5] (x) we have

folx) = ij<y>6a(x —y) dy.

The r.h.s. is called convolution (product) of f with 6 .

Definition 11.1.1

Let f,g € L(R™). We call convolution of f and g the function

(f *8)(x) = ij<y>g<x —y) dy.

(provided it makes sense)

We expect that some integrability on f and g is needed to have f * g well defined. We have the

71
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Theorem 11.1.2: (Young)

Let f € L'(R™) and g € LP(R™) (1 < p < +00). Then, the convolution f g is well defined,
f = g € LP(R) and the Young inequality holds

(11.1.1) 1f*glp < [ fl:lellp-

Proor. We accept f # g € L(R™). For sake of simplicity we do the proof of Young inequality in the
case p = 1. We have:

nﬁﬂ1=LJﬁﬁwﬂ=JM

1Ol =) o] dv< [ [ lste =)l dy a

RmM

w [ ol -ntaray= [ ([ lete-nlar) irola
%gvjm(me@>&)vo>@~4vlmn

Example 11.1.3: (x)

Compute the convolution e~ x e~ with a # b and a,b > 0.

Proor. Clearly e‘“|x|, e bIxl ¢ Ll(R) for a, b > 0, so the convolution is well defined. We have
e 4 o=bH () J el g=blr=1 gy
R

For x > 0, we split the integral into three parts:

0 0 e—ax

I - J o~ a(=3) g=b(=3) gy — efaxj pla+b)y gy, ,
—o —o a+b

12 _ JX efu(xfy)efby dy — ¢ a¥ Jx e(ufh)y dy aib e~ ax e(aib)x —1 _ eibx — e X '
0 0 a—2>b a—>b ’
+00 +o0 e—bx

I3 = J e—a(y—x)e—by dy = eale e—(a+b)y dy = )
x x a+b

Summing 11 + I + I3 gives

(f+g)x) = ﬁ(a e b — be*‘”‘).

For x < 0, the calculation is the same with —x replacing x. Therefore,

2 —Db|x| —
ae be a‘x‘).
—b2<

(f*8)x) = —

Convolution f * g is an operation that produces a function given two functions f and g. Previous Theorem
shows that if f,g € L' then f % g € L'. This operation fulfils properties similar to algebraic product of
numbers:
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Proposition 11.1.4

Convolution product fulfils:
i) (commutativity) f x g = g = f, for f,g e L;
ii) (associativity) f * (g * h) = (f * g) = h, for f,g,he L';
iii) (distributivity) f* (g +h) = f*g+ f = h,for f,g,he L'

Proof is left as exercise. We may wonder if a unit exists, namely a function ¢ € L' such that f * 6 = f
for every f € L'. This & does not exists. We show this in dimension m = 1. Taking f = l_geisa
unit ¢ would exists, we would have

&
frs=f = | str-y)dy =1 eaW.
—&
thus, in particular, for x = 0,
&
lzj 6(—y)dy — 0, e — 0.
— &

In other words, a unit should be the famous Dirac’s delta function. Nonetheless, “approximate units”
exists, and this is the content of next Section.

11.2. Approximate units

Even if there is not a unit for the convolution, there are ”approximate units”.

Definition 11.2.1

Let 6 € L*(R™) such that
0=>0 ae., I 6(x) dx = 1.

m

The family of functions (6. )¢~0 defined as

1
Oe(x) := g—mé (Z) , xeR™

is called approximate unit.

Remark 11.2.2: B

definition, 6, > 0 a.e. and

J Se(x) dx = L ) ()—C> ax 72 if 6(y)e™ dy = 1.

gm Rm

Here some examples of approximate units.
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The next example plays a very important role in many applications. Differently from the previous unit,
the next one is also a very regular function (a € function with very fast decay at infinity).

Example 11.2.4: Gaussian approximate unit

Let
1 _x2 1 _ X2

5(x) = e 7, = §.(x)= e 227,

We can also have units vanishing outside a compact interval.

Example 11.2.5

Let .
e =2, x| <1,
8(x) =
0, |x| > L.
This is € (R) function. Indeed, the unique problem is at x = +1. Easily we verify that § is continuous at
x = 1. Computing the derivative we have

1 o
e 1-x2 (1_7)2, ‘X‘<1,
o' (x) =
0, x| > 1.
Therefore,
lim 6 (x) = —2 i T g 2 lim 2e~" =0
Jp o) =2 lim gy = 72, limre =0,

and, similarly, 6'(—1+) = 0. Since §'(1+) = §'(—1—) = 0, we conclude that 36'(£1) = 0, and, in
particular § € €!(R). Iterating this argument we have the conclusion.
Clearly, 6 = Obut [ := IR 8(x) dx is not necessarily = 1. However, rescaling 6 by %, that is taking %6 we

can define an approximate unit
o) 1= =0 (2)
x):=—d0—-]).
“ el \¢

Notice that §.(x) = 0, if |x| > .

Approximate units deserve this name because f * 6. ~ f when & ~ (. Precisely, we have the
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Proposition 11.2.6

Let f € LP(R™) and (6.) = L'(R™) be an approximate unit. Then
(11.2.1) fese 2 7.

Proor. (sketch, case p = 1, m = 1) To show that f * § R f, we start noticing that
1 y u:=%
7460 = [ fle=n6.0)dy = [ fle-nz6(2) v = [ flx - cwpstaydu.
R R £ \& R

Recalling that fR 6(u) du = 1, we have

e e J (f(x — u) — £(x)) 8(u) du

SO

7o~ gl < [ ([ 176 ew = seoloty ) a = [ ([ 1t = o) - 5600 ax) o)

Introducing the translation operator Ty, f := f(# + 1), we may write

jR Fx— ew) — £ dx = |[T—uf — fl1.

At this point we need the

Let f € LP(R™). Then
tim |74 = £l = 0.

The proof of the Lemma is technical and is omitted here. We can now conclude the proof: since

I *60 — fli < LR IT—suf — fl16(u) du,

to compute the limit for € | 0, we apply dominated convergence. We have

e (pointwise a.e. limit) by the Lemma |7_, f — f|16(u) — 0, for every u € R.
e (integrable dominant) since ||T_ . f — f|1 < |T—zuf|1 + |1 = 2| f]1,we have

IT-euf = fli6(u) < 2| f116(u) =: g(u) € L' (R).

Thus, assumption of dominated convergence thm are fulfilled and the conclusion now follows. O

11.3. Mollification Theorem

Doing the convolution with an approximate unit introduces an approximation of any f € L? function.
Since

Frou) = [ f00= ) ay

we see that f * §.(x) depends by x through §.(x — y) under the integral sign. This suggests the idea
that if 0 . (hence ¢) is regular enough (that is, differentiable a certain number of times), also f * . could
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be differentiable, this because of the differentiability under integral sign theorem. This opens the way to
approximate any f € LP through regular functions. This operation is also named mollification of f.

There are many classes of regular functions and corresponding approximation results. Here, we
will choose a particular class that plays an important role in the theory of Fourier Transform. Roughly
speaking, this is the class of €* functions decaying fast at co. To keep light notations, we will limit to
the case of functions of one real variable, but the definitions and results extends in a straightforward way
to functions of vector variable.

Definition 11.3.1: Schwartz class

S(R) := {f e €P(R) : sup(l + |x|)N|0X f(x)| < +oo, YN, k GN}.
xeR

In words: a Schwartz function is a €*(R) function decaying at infinity with its derivatives faster than
any polynomial. For example:

. e"‘Q,e_XZL,xze_x2 e §S(R);

e ¢ It ¢ §(R) (problem: regularity at 0);

. # ¢ §(R) (problem: not decaying fast enough at +00).

It is not difficult to prove that Schwartz class is contained in any L” space:

Proposition 11.3.2

Proor. (p = 1) If f € & then, in particular, f € €, thus f is integrable in every closed and bounded
interval. For integrability on R in L' sense, we have to check the behaviour at +-00. Since
C
1+ x| f(x)| < C, = x)| < ——eL".
(1 + kD21 ) £ < e

\ J

Theorem 11.3.3: mollification

Schwartz class is dense in L? (R) for every 1 < p < +00. Precisely:

VfeLP(R), () c SR) : fu > f.

Proof. (p = 1) Let f € L'(R). The idea is to take f * 6., where (J.) is the Gaussian unit. To
check that f « 6. € S(R) we need f be zero outside an interval. This is not true in general, so we need to
approximate f by functions zero outside an interval. We start from this task.

Define fr := f1l{_g,r). Cleartly fg € L'(R). A straightforward application of dominated convergence
(exercise) shows that

If = il = j F() — frx)] dx = ij<x>1[,R,R]c<x> dx, R — +o0.
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Define now,

_=y? M _dy
i) = i 0ulr) = [ fu(r)e 5 W j o —

we would have

_ =y
o) = = [ ke 0y
e =

2
We will verify in a moment that this passage is really allowed. Before, we notice that since 0fe™ 22

Thus

R (x=y)?
FOIPe(x —y)e” = dy.
V2re? J;R O)pel )
Notice that since |pX (r)e="/2¢*| < Ck for every t € R, we have a bound

< Cglf(y)] = 8(v) € L'([-R, R]),

thus differentiation under integral sign is justified. We now prove the decay at co: we have to prove that
: N Ak _
(11.3.1) xgrilw |x|™ 0% fr.e(x) = 0.

a];fR,e(x) =

(€3 7v)2

FO)Pex—y)e 2

If |x

vl = |x| = |y| = |x| — R, thus

 x—»)? _ (x|=R)2
e 2:2 L e 282

while, being p% (¢) < ak|t|*¥ + bk (for suitable constants a¥, bX), we have that

|p8(x—y)|\a£|x—y|k+b’;\a8(x ) +b’;

Therefore

|05 fr,e (x)] <

i (Ix|=R)? —x2
[ 700 dy (ah0sl+ R 4 08) e 5 < b abeite 3,

\V2ne?

for a suitable constant c . From this bound limit (11.3.1) easily follows.

|f—fr, |1 < L. Bykey property (11.2.1) of approximate units, choose now &, such that | fx,., — /&, |1
L. Therefore

2
If = froenll < =

hence fr, &, L, f. According to what shows above, (fg,.s,) < $(R), and the proof is complete.

Let’s check that fg . € §(R) for every & > 0 (fixed). Notice that, deriving under integral sign (if allowed),

12
pk(t)e™2e%, where p. is a certain k—th degree polynomial (it is irrelevant here the particular form of this).

Conclusion: we can now put together the two arguments. Fix n € N, n > 1. Choose R, such that

<

11.4. Exercises

Exercise 11.4.1 (). Compute the convolutions 1;_1 1] * 1[_1 1) and 1o 1] * 119, 1]-

Exercise 11.4.2 (). Check that the convolution integral of x1{q [ and x21[0’+oo[ is well defined.
goes wrong with Young’s theorem?

What



78 11. CONVOLUTION

Exercise 11.4.3 (). Let f,g € L' (R) be even functions, that is f(—x) = f(x) and g(—x) = g(x) a.e.
Check that f = g is even.

Exercise 11.4.4 («). Prove the Proposition 11.1.4.

Exercise 11.4.5 (+). Let f,g € L?(R). Check that f * g is well defined and it belongs to L*(R) and
If = gloo < |fl2llgll2- Extend this to the case f € LP and g € LY with 1 < p,q < +00 such that
S+a=1

Exercise 11.4.6 (+xx). Goal: prove Young inequality.

i) prove the case f € L' and g € L.
ii) Prove the case f € L' and g € L? by using the following trick:

IF ()8 = y)| = £V [g(x — ),

then use Cauchy-Schwarz inequality.
iii) Extend trick shown at point ii) to prove the case f € L' and g € L? (1 < p < +0).

Exercise 11.4.7 (xxx). Let 6(x) = 31;_11](x) and f € L*(R). Prove that f * 6, € €(R) for every
g > 0.

Exercise 11.4.8 (x%). Let f,g € L'(R), f = g =0 off[-R, R]. Is f * g = 0 off a suitable interval?

Exercise 11.4.9 (xx+). Let f € L'(R) and g € €' (R) with g’ € L*(R). Check that f * g is differentiable
and

(f=g) =f=*¢g.
Deduce the bound |(f + g)'|1 < | f]1]g"]1-



LECTURE 12

Completeness

Discussing convergence in a normed space might be complicate, particularly when the space in
infinite dimensional. Often, the sequence is not explicitly given but is defined as the solution of a certain

equation. A question arises: is it possible to establish convergence of a sequence without explicitly
determining its limit? This is the focus of this Lecture.

12.1. Cauchy property

The Cauchy property is an intrinsic property fulfilled by any convergent sequence:
Proposition 12.1.1

Let (V, | - |) be a normed space. If (f,) < V is a convergent sequence to some f € V, then fulfills
the Cauchy property:

Ve >0, IN : ||fu — fm| <& Vn=N.

Proor. If ||f, — f|| — 0, according to the definition of limit,

Ve>0,INeN, : |fu,— f| <& Vn=N.
Then,

”fn _me < an _fH + Hf_me < 2‘9’ Vn,m = N.

Unfortunately, this condition is not always sufficient to ensure convergence.

Example 12.1.2; (xx)

LetV := €([—1,1]) equipped with | - |; norm. Define

-1, -l1<x<-1
fn(x) nx, 1 < X < %7
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Then (f,)is a Cauchy sequence not convergent in V respect to | - ||;.

Proor. Cauchy property: just notice that, if m > n, |f, — fulh < 324 = 5= < & provided

m,n= N = [%] + 1. Let’s prove now that (f;,) cannot be convergent in V. First notice that if we look at

(fu) © LY([~1,1]). theneasily f,, > —1;_y o+ 1[0, (indeed: | f—(~1[_1.0]+1[0.1)]1 < & —> O).
However, —1{_1 ) + 10,1 ¢ €([—1,1]) thus we cannot conclude that (f,,) converges in V. Actually, we

may use this fact to just prove the opposite. Indeed: assume that f, I, g for some g € €([—1, 1]). Since

€([0,1]) = L*(]0,1]), we have at once
L' L'
Jon—8& AN fu— 110+ 101, = &= —1[—1,0] + 1[0,1]> ae..
We claim that g = —1j_1,g) + 10,17 on [—1,1]\{0}. Indeed: take xo < 0. If g(xo) # —1 then, by
continuity of g, g(x) # —1 in a neighborhood I, of xo. But then there would be a positive measure set
I, on which g # —1[_y o] + 1jo,1] contradicting g = —1{_1 0] + 10,17 a.e.. Similarly, g(x) = 1 on ]0, 1],

s0 g = —l{_1,0] + 1jo,17 on [—1,1]\{0}. But then g cannot e continuous at x = 0, and this contradict
g€ €([-1,1]).
This example is quite "pathological”. Indeed, | - |; is not the natural norm for the set of continuous

functions € ([0, 1]) just because convergence in “mean” is too weak to ensure continuity to the limit.

12.2. Banach spaces

Fortunately, in most important normed spaces Cauchy sequences are convergent. This deserve a
special

Definition 12.2.1

A normed space (V, | - |) is called Banach space (or complete space) if every Cauchy sequence
(fa) < V is convergent.

We will now illustrate this Definition on the most important cases we considered in this course. We start
with finite dimensional spaces. The following fact is know from Mathematical Analysis:

Theorem 12.2.2

®R,|-D. (C,|-]), (RE, | -|) (any norm), (C¥, || - |) (any norm) are Banach spaces.

We do not prove this theorem, but we will use in the next results with focus on infinite dimensional spaces.
We start with the simplest case,

Proposition 12.2.3

(B(X), |l - |o0) is a Banach space.




12.2. BANACH SPACES 81

Proor. Let (f,) < B(X) be a Cauchy sequence:
Ve >0, AN : | fu — fmlow =sup|fu(x) — fiu(x)| < &, Yn,m = N,
xeX

or, equivalently,

(12.2.1) Ve >0, AN : |fu(x) — fm(x)| <&, Vn,m = N, Vx € X.

Thus, in particular, (f,(x)) < R is a Cauchy sequence in R, and being this last complete,
3f(x) = lirIlnfn(x), Vx e X.

This defines a function. We prove that f € B(X) and f, Il f. About the first notice just that
IfEI < |f) = v+ v <&+ [fvlw VXX, = [flo <&+ [fn]o
thatis f € B(X). Finally, letting m — +oc0 in (12.2.1)we have
o) = F@] S &, Y2 N, Ve X, = [y = flie = sup|fu() = £(3)] < &, Vm > N
XE.

that means | f,, — f|oo — 0.

A particular case of space of bounded functions is € (K) where K is compact in R,

Proposition 12.2.4

(B(K),| - |o0) with K = RY compact, is a Banach space.

Proor. We know that €(K) < B(K). Therefore, if (f,) = €(K) < B(K) is a Cauchy sequence,

according to previous Theorem, f, Il f € B(K). It remains to prove that f € & (K), that is f is
continuous on K,

Tim f(x) = f(x0), ¥xo € K.

Let fix xo € K. We have
If(x) = flxo)| < |f(x) = fa@)[ + [ fu(x) = fu(x0)| + [fa(x0) — f(x0)]

< 2w = Flloo + 1fnx) = fu(x0)]-

Now, since | f, — f|lcoc — 0, for € > 0 we find N such that | fxy — flcc < &. Thus

£ (x) = f(x0)| < 26 + | /v (x) = fiv(x0)l,
and since f € €(K),

dim [£(0) = fxro)l < &+ lim |fiv(x) = fiv(x0)| = &,

and since ¢ is arbitrary, we conclude that lim,_,, | f(x) — f(x0)| = 0.

This last result enlighten a general fact.
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Proposition 12.2.5

Let (V,| - |) be a Banach space and W < V a subspace of V. Suppose that W is closed, that is:

(12.2.2) V() e W, fodl r— few.

Then (W, || - |) is a Banach space.

Proor. Let (f,) € W < V be a Cauchy sequence. Since (V,|| - ||) is a Banach space, f;, N f and,

by (12.2.2), f € W. Thus (f,) converges in (W, | - |).

Also L? spaces are important examples Banach spaces.

Theorem 12.2.6

Let (X, &, u) be ameasure space. Then, (L?(X), ||-||,) is aBanach space (forevery 1 < p < 400).

Proor. (sketch, p = 1) Let (f,) = L'(X) be a Cauchy sequence, that is
Ve >0, IN : ||fu — fml1 <& VYa,m = N.

We know that even if (f;,) were convergent in L', it would not necessarily converge pointwise. Nonetheless,
we need to identify a candidate limit f. To do this, we will now extract a subsequence from (f;,) that
converges pointwise. We proceed in the following way:

o fore = 1,letng := N(1);

o fore = 1, let n; > max(ng, N(1/2)) = ng = N(1). In this way | f,, — fuo 1 < 1.

o fore = 55, let ny > max(ny, N(1/2%)) = ny = N(1/2). In this way | fu, — fu, |1 < 3.

e in general, for & = 2% let n > max(ng_1, N(1/2%)) = nx_y = N(1/25=1). In this way

1
| for = fria i < pr

We claim that (f,,, ) converges a.e.. Indeed, by monotone convergence for series

1
‘szl \fuie = S| dp = zk:L( \fue = Joua | dp = Zkl I foe = farr 1 < Zkl ok—1 =2.

In particular, 4 (3 | fue — fue_i| = +90) = 0 (Chebyshev inequality), so >, [fu, — fue_,| < +0 ae.
This says that the series >, (fn, — fn,_,) is absolutely convergent, hence convergent, and since its partial

sums are ]
J
S Z (fre = S r) = fnj — fno»
k=1
it means that (f,;) must be convergent. We finally have a point-wise limit

fo=Tlim f,.

Being this the pointwise limit of measurable functions, it is itself measurable.
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. We now claim that f;, R J. We begin showing that f,; R f. Recalling that

J 0
fF=lm o, = fao +Hm D" (fo = Frur) = Fao + O, (e — Fris)-
J J = k=1

we have
oo
F=foy= D, (= Fus)s
k=j+1
SO
Hf*fn_,'Hl = Z (f"k 7f"k—1) < 2 ank *fnk71”1 < Z ok—1 < 2_J — 0,
k=j+1 1 k=j+1 k=j+1

from which f,,; RN f. Finally, since

Hf - anl < Hf - fn_,-Hl + an_,- = Jn

by choosing n, nj large enoughin suchaway | f—f,;[|1 < & (by the previous conclusion) and || f,, — fu |1 < &
(by the Cauchy property), we get the conclusion.

1,

12.3. Banach fixed point Theorem

A way used in many models to define a sequence is through a recurrence equation like

fn+1 = T[fn],
(12.3.1)
f() eV.
Here we assume that (V,| - ||) be an underlying vector space, fy € V is known (first element of the

sequence) and T : V — V is just a map (function) from V to itself. Since T is a function on a normed
space, a natural definition of continuity makes sense: T is continuous if

fl s — i) T,

Now, if f, 1, f and T is assumed continuous, then

f— fat1 :T[fn] "T[f]’ = f:T[f]

The possible limit is what is called a fixed point of the map T. Of course, this argument does not show in
any way that a limit exists. The Banach’s fixed point theorem provides an important sufficient condition
to ensure existence of the limit for a recurrence sequence.

Theorem 12.3.1: (Banach)

Let (V,
(12.3.2) AL <1, - T[f]-TIgll < L|f — ¢l Vf.g € V.

- |) be a Banach space. Assume 7 : V — V be a contraction, that is
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Then, for every fj € V, the sequence ( f,,) recursively defined by (12.3.1) converges to the unique
fixed point f € V of T. The following bound holds:

L
(12.3.3) Ifn— fl <

1= LHfl — fol.-

Proor. Existence. We prove that (f;,) is a Cauchy sequence. Notice first that
| far = Sl = ITUfa] = TUfaa]l S Llfo = foill S L[ fam1 = a2l < ... < L[ i — fol.-
Thus, if m > n,
Ln
1—-L

m—1 m—1 o]
[ = fall < D3 Ifesn = fil < X5 LEIA = fol <L )] LHIA = foll = 1A = fol.-
k=n k=n k=0
Since L < 1, L™ — 0 and by this it follows that ( f,,) is a Cauchy sequence. Being V a Banach space,

I A, f for some f € V. To conclude existence, just notice that since 7 is a contraction, it is also

continuous, then

[ for1 =Tl — T[f], = f=T[f]
This proves, at once, that ( f;,) converges and that T has (at least) a fixed point.
Uniqueness: we show that T’ can has at most a fixed point. If g = T[g] then f — g = T[f] — T[g]. thus
If =gl =IT[f]1—Tlg]l < L|f—gllor(1—L)|f— gl <0. Butsince L < 1 this is possible only if
I — gl = 0 thatis f = g.

Banach’s fixed point theorem can also be interpreted as an existence and uniqueness result for the solution
of a fixed point equation

f=Tlf]

Under the assumptions of the theorem, the solution is unique. Furthermore, it can be determined as
limit of a sequence (f,), recursively defined (f,+1 = T[f»]) and with arbitrary initial point fy. In this
direction, a useful extension of the theorem is provided by the following

Corollary 12.3.2

Let (V, | -||) be a Banach space. Assume T : V — V be such that some iterated TV = To---oT
of T is a contraction on V. Then T has a unique fixed point f € V.

Proor. By Banach thm, TV has a unique fixed point f, that is TV [f] = f. We claim that f is also
the unique fixed point of 7. First, it is a fixed point for 7": indeed,

TLf] =TTV = TV ] = T[T LA,
that is T[] is also a fixed point for 7V, but since this has a unique fixed point f it must be T[f] = f.
Second, f is unique. If T[g] = g then T?[g] = T[g] = g and, in general, TV [g] = g, thus g is a fixed
point for TV, so g = f by uniqueness.
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An important application of fixed point equations is to theCauchy problem for differential equations. We
consider the problem

Y(t) = f(t,y(1)),
(12.3.4)

y(to) = yo.
We assume, for the moment, minimal requirements as f : D € R x R — R and f € €(D). A striking
remark is that, by integrating side by side the equation on [z, t] we get

(0) = () = |

to

t

y'(s)ds = Lz f(s.y(s)) ds,

that is, because of the initial condition, y solves

(123.5) ym:m+jf@wmm.

Thus, if y is a solution of Cauchy problem (12.3.4), then y is a solution of the integral equation (12.3.5).
Vice versa, assume that y € € solves the integral equation (12.3.5) then y solves also the Cauchy
problem (12.3.4). Indeed, clearly by (12.3.5) we have y(79) = yo, thus the passage condition is verified.
What is not immediately evident is that y is differentiable and solves the differential equation. By integral
equation (12.3.5) we notice that y is a constant plus the integral function of a continuous function (namely,
f(s,¥(s))). According to the fundamental theorem of integral calculus, this last is differentiable and the
derivative is just f(z, y(¢)). Thus

' (t) =0+ f(t.y(1)) = f(t.y(1)),

and this means that y solves the differential equation.
The conclusion is that solving the Cauchy problem (12.3.4) or the integral equation (12.3.5) is
equivalent. Introducing the operator

T:6— €, Ty|(t):=yo+ Lt f(s,y(s)) ds,

we are led to show that
ye® : y="TIyl.

In this way we see that the sought solution y is a fixed point of the operator T

Theorem 12.3.3: (global Cauchy-Lipschitz existence and uniqueness)

Assume f : D = [a,b] x RY — R? be such that
i) fe€([a,b] xR);
ii) f is Lipschitz continuous in y uniformly in ¢, that is,
£, y1) — f(t.y2)] < Cly1 — y2l, Vt € [a,b], y1,y2 €R.

Then, for every passage condition (9, yo) € [a,b] x R, there exists a unique y € €*([a, b])
solution of the Cauchy problem (12.3.4).
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Proor. Let V := €([a, b]) equipped with usual | - |, norm that makes V a Banach space. We apply
Corollary 12.3 to

T[y] :=yo + Jtt £(s.y(s)) ds,

showing that some iterated of 7 is a contraction. Let’s start by 7 itself noticing that

Tly](e) = T[y](r) = Lt (f(s,3(s)) = f(s,5(s))) ds,

0
hence

(12.3.6) IT[y](t) —

~

) = S5 &

<|| ebe-5e1a.

From this we have

IT1() = TFO] < Cly = Floo(t — 20) < C(b = a)ly = Flloo
and taking max, we have finally
ITY] = T[]0 < C(b = a)lly = Voo, V3,7 € V.
Thus, if C(b — a) < 1, T is a contraction on V. The conclusion would follows now by Banach theorem.

This would prove existence and uniqueness in the case when [a, b] is short enough, thatis b — a < % It
this is not true we continue with the argument and we pass to T2'

12010 - T2HI0| = [TEDT (@) -TEET ] < i CITLF1(s) = Tlg](s)] ds

6) t a1
c? LO LSO ly(r) — ¥(r)| dr ds.
Iteraring this arugment, we get

VDI - TVEIO] <Y Jy [ [ [ y(sw) = Fsw) | dsw dsw—a -+ dsy

< CN|y = Fop 4525,

from which
(C(b—a)

N!
Now, since (C(b,\,;!a))lv — Owhen N — +00, choosing N large enough, we can make L :=

so TV is a contraction and Corollary 12.3 applies.

IT[y] = TV 30 < Iy = Fleo-
(Co-a)™

i <1,

12.4. Exercises

Exercise 12.4.1 (x%). Let @ > 0 be fixed and define
~{rewored 1= swpemis] < v .

i) Check that V, is a vector space and || - | is a well defined norm on V.
ii) Is Vo a Banach space?
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Exercise 12.4.2 (). Let

V= {fe%([(),l]) 2| fl := sup @<+oo}.

t€]0,1]

i) Check that | - || is a well defined norm on'V.
ii) Let f, be defined as

Vi, <<l

Is (fn) < V? Ifyes, is f 1, f for some f € V?

il) OnV is also defined the | - | norm. Show that | - | is stronger than | - |«. Are the two also
equivalent? (prove or disprove)

iv) Is V a Banach space under || - |.

Exercise 12.4.3 (xx+). Let (X, F, i) be a measure space. Prove that L*(X) is a Banach space. (hint:
argue as in the proof of completeness of B(X)).

Exercise 12.4.4 (xx). Let V := €*([0, 1]) equipped with || - | norm. Consider the map T : V — 'V,
defined by T|f] := f'. Is this map continuous on (V, | - |« )? Provide a proof, if true, a counterexample,
if false.

Exercise 12.4.5 (+++). Let V := €1([a, b]) equipped with norm ||| := |flle + | f'|c0. Prove that
(V.| - |) is a Banach space. (hint: take (f,) < V Cauchy sequence, check that both (f,) and (f,)) are
uniformly convergent, then use the fundamental theorem of integral calculus f,(x) = fy(a)+ f; fi(y)dy
and pass to the limit . .. )

Exercise 12.4.6 (xx+). Let (V.|| - ||) be a normed space. Show that V is a Banach space if and only if
the following property holds:

V(un) < S:={feV : |f| =1}, (un) Cauchy sequence — uy, M,y e s,

Exercise 12.4.7 (xx). Let (V,
convergent if

-||) be a Banach space. Let (f,) < V. We say that the series Y, fn is

n
3l 0, S
Show that if 3, || fi|| converges (in R), then also Y, fi converges (in'V).

Exercise 12.4.8 (x). Determine the Banach’s theorem recursive sequence (f,) obtained to solve the
Cauchy problem y'(t) = ty(t) with initial condition y(0) = 1. (hint: take fo = 0). What is the
conclusion?

Exercise 12.4.9 (xx+). The following integral equation for f : [—a,a] — R arises in a model for the
motion of gas particles on a line:

114 1
f(x):1+;Jamf(Y)dy,for —a<x<a.

For any fixed a > 0, show that this equation has a unique, bounded and continuous solution.






LECTURE 13

Hilbert Spaces

Hilbert spaces are particular Banach spaces in which the norm is induced by an inner product. The
inner product add an euclidean flavour to the structure of normed space through the idea that we can
define “angles” between vector.

13.1. Scalar and Hermitian products

There are little (but significant) algebraic differencies on inner products when the field of scalars is
R or C. We start with the real case, a bit simpler:

Definition 13.1.1: (scalar product)

Let V be a vector space on R. A function (-,-) : V x V — R is called (real) scalar product if
i) (positivity) {f, f» = 0 for every f € V;
ii) (vanishing) (f, f) = 0iff f = 0;
iii) (linearity) (@ f + Bg, h) = a{f, h) + p{g, h),Vf,g,h €V and Va, B € C,
iv) (symmetry) (f,g) = (g, /). Vf.g V.

We notice that, combining linearity with symmetry, {-, - is linear also in the second argument:

iii iv)

af + )™ Caf + g by "™ alf, hy + Blg by " alh, £y + Blh, g).

In other words, (-, -) is a bilinear function of its arguments.

Example 13.1.2

On R4,
d
(X1 a%a) - (V1e- -2 Vd) = D) XkVk
k=1

is a scalar product.

Example 13.1.3

On L%(X),
(f.8)2:= J fg du
X

89
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is a scalar product, with vanishing in the weaker form (f, f)o = 0iff f =0 a.e..

Proor. First notice that { f, g) is well defined for f, g € L?(X). Indeed, according to CS inequality,

[ el di= [ 111letd < 1l <+

Positivity is evident. Vanishing:

fofr2=0, = fo2d#:0’ — f2=0,ae, — [f=0,ae.

Linearity and simmetry are straightforward.

J

When V is vector space on C, the previous definition leads to contradictions: indeed, according to

positivity, (if,if) = 0; however, by linearity (if,if) = i?(f, f) = —(f, f)» < 0, thus {f, f) = 0 for
every f € V. This explains why we have to adjust the definition:

Definition 13.1.4: (hermitian product)

Let V be a vector space over the scalar field C. A function (-, -) : V x V — Cis called hermitian
product if positivity, vanishing, linearity holds true, and moreover (-, -» is anti—-symmetric:

(f.8) =48 f) Vf.geV.

Easily (-, -) is additive in second variable because

(frgr+82) = (g1 + g0 ) "2 Lan, £y + (eon fy = (fr 1) + ([ 82).

However,

(f,8) =g, ) = Ag, f) = X[ g)-

Example 13.1.5

On C4 p
(215 es2d) - W1y oo swy) = Z ZkWks
k=1

is an hermitian product.

Example 13.1.6

Let (X, %, u) be a measure space. On L2 (X) (L2(X)),

(f.8)2:= JX fg du <<f, g2 = L g d,u>

is a scalar product (hermitian product), with vanishing in the weaker form {f, f), = 0iff f = 0
a.e..
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A remarkable particular case of L? space is the following:
Example 13.1.7: (*)

On

%= {(xn) cR: in < +oo},

n
we define

<(xn)’ (yn)>f52 = anyn-

Then, (-, )2 is a scalar product. Actually, 2 = L?(N, P(N), v) where v is the counting measure.
Here notice that vanishing holds in the strong form:

Sifer=0, = Y fI=0, <= f,=0, iff f=0.

Little £? space is an interesting example. On one side, it provides a straightforward extension of the
euclidean space R". On the other side, it is a good space to build examples and counter examples. And
finally, it turns out that £2 is basically the prototype of a generic Hilbert space (we will be more precise
on this in the next chapters).

13.2. Norm induced by scalar/hermitian product

In the Euclidean space R™, the canonical scalar product

m
Xy = Z XkYk>
k=1

is tightly related to the Euclidean norm. Indeed,
m
X-x = Z X2 =[x, = |x| =+x x
k=1

The same happens in other cases, as for example, for the L?(X) norm. This is actually true in general:
every scalar/hermitian product induces a natural norm on the vector space where it is defined setting

I£1 = S 1)

To show that this is a true norm is the goal of the main result of this section. The proof follows an
argument similar to the proof that the Euclidean norm is a norm on R"”. The key ingredient is the abstract
version of the Cauchy-Schwarz inequality.

Lemma 13.2.1: (abstract Cauchy—Schwarz inequality)

(13.2.1) Kol < Ifllgll, vr.geVv.
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Proor. (Lemma) Let g # 0 (otherwise is trivial) and define ¢(a) := ||f + ag|? = 0. Notice that

ola) = {f +ag, f+ag) = a?|g|? + 2a(f,g) + | f|? attains its minimum at a* = —<”’;’|“?. Since
¢(a@*) = 0 we obtain
f.8? {f8)?
B} -2 2 +|‘f“2>o’
lel &l

and by rearranging this we obtain

e < |fllel-
Exchanging f with — f and using linearity and homogeneity, we get

—<f8 < |71lgl-

Combining these two inequalities we have,

—I7 el < <f-8> < 1 fllgl,

which is the conclusion.

Proposition 13.2.2

Let (-, -) be a scalar/hermitian product on V. Then

£ == A/<fo ), fEV,
isanormon V.

Proor. (case of scalar product) Clearly, by positivity, | f| is well defined and positive for every f € V.
Norm vanishing and homogeneity follows directly from vanishing and homogeneity of the scalar product.
For triangular inequality we have

If+gl? =<{f+&rf+e={H+{e+&fH+{&g=IfI>+gI*+2f. &

cs ) ) .
< [IFI% + lgl® + 2] £1lgl = (Al + gl
from which the conclusion follows.

According to the Cauchy-Schwarz inequality we have that, for f, g # 0,

|<f,g>|<1 . e

< 1 € [_1’ 1]'
[71gl 171Nl
It turns out that, if V = R? and (-, -) is the canonical scalar product of R?, the previous quantity is the
cosine of the angle 6 € [, 5] made by the two vectors f and g. This explains why we set
cosf = @,
[ £ gl

and we call this angle made by f and g (provided f, g # 0). In this way the identity
If+8l? = 1717 + lgl® +2{f, 8> = |71 + lgl* + 2| f]l1g] cos 6,

is the general version of the cosine theorem of Trigonometry.
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Definition 13.2.3

We say that f and g are orthogonal (notation f | g)if {f,g) = 0.

Example 13.2.4

OnV = L?([0, 2]) with usual scalar product sin | cos. Indeed:

(sinx)2]x—2"

= 0.

2
{sin, cos)y = J‘ sinx cosx dx = [ 5
0

x=0

For orthogonal vectors we have the general version of the Pythagorean theorem:

fle = If+sel*=If17+lgl*

Another remarkable identity is the

Proposition 13.2.5: (parallelogram identity)

Let V be a vector space equipped with scalar/hermitian product (-, -). Then,
(13.2.2) 1f +8l* +1f —gl* =2 (I£1* + 1g]*) . V.8 € V.

Proor. We do the proof in the case of scalar product, leaving the case of hermitian product as exercise.
We have ) ) )
17+ &l = 1717 + lgl* + 2¢f> &,

If =gl = 117 + llgl* — 2(f. &

and summing up these identities the conclusion follows.

Norm induces convergence for sequences of vectors. An important fact is the

Proposition 13.2.6

Let V be equipped with a scalar/hermitian product. Then, the scalar/hermitian product is contin-
uous in each component respect to the natural norm, that is:

Jn M’f, = (fn,8) — {f,g), VgeV.

Proor. Just notice that

e 8) = fo8)| = 1o = £.8)1 < 1o = Fllg] — 0.

Definition 13.2.7

A space V equipped with a scalar/hermitian product ¢-, -) is called Hilbert space if (V.| - |) is a
Banach space.
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13.3. Exercises

Exercise 13.3.1 (+x+). Let V := {f € €' ([0, 1];R) : f(0) = 0}. OnV we define

1
(f.8) = L f(x)g' (x) dx.

i) Check that {-,-) is a scalar product on V.
ii) Determine if' V is a Hilbert space.

Exercise 13.3.2 (x). Let V := R[X] be the set of all the polynomials with real coefficients. For p,q € V
we define

2

{p.q)B = JRp(x)q(x)ex dx.

i) Check that {-,-)y is a well defined scalar product on V.
il) Compute (x™,x" ). For which m,n € N is x™ 1 x"?
ii1) Solve

. 2 2
min [x° — (ax + b V-
a,bleR H ( )H

(hint: compute the norm and apply ordinary calculus tools)

Exercise 13.3.3 (x). Let V := L([0, 1]4) equipped with the standard L? hermitian product

Gogyi= | reh)ax
[0,1]4
Check that functions f,(x) := €™ n = (ny,...,nq) € Z¢ are orthogonal.

Exercise 13.3.4 («x). Let (V,{-,-)) be a scalar/hermitian product space. Show that

Ifl = sup <(f,g),VfeV.

geV : [g]=1

Exercise 13.3.5 (xx). Let V := R™*™ be the set of m x m matrices with real entries and usual algebraic
sum and product by scalars. Given A, B € V, let

(A,B) := Tr(A*B),

where Tr(M) is the trace of matrix M (sum of the elements of the diagonal), A* is the transposed matrix
of A. Check that {-,-) is a well defined scalar product.

Exercise 13.3.6 (xx+). Prove the Cauchy-Schwarz inequality for an hermitian product. (hint: adapt the
proof of the real case, but consider ¢(a) := | f + ae'®g|? for a suitable 6. . . )

Exercise 13.3.7 (x%+). Let (V,{:,-)) be an Hilbert space. Let (f,) < V be such that || f,|| = 1 and

Wlll_{n_i_oo I fo + full = 2.

n,

Prove that (f,,) connverges in'V.
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Exercise 13.3.8 (xx+). Let (V, | - ||) be a normed space on real scalar, with norm verifying the parallel-
ogram identity. We define

(f.8):=
Check that the product (-, -) verifies

i) positivity, symmetry, and additivity in the first factor.
il) homogeneity (Af,g) = Af,g)ford =—1, 1€ N, 1 € Z A € Qand, finally, extend to A € R.

Exercise 13.3.9 (xxx). Let (V,{,-,)) be an Hilbert space and (f,) < V an orthogonal sequence of
vectors, that is {fy, fm) = 0 for all n # m. Prove that the following statements are equivalent:
i) >, fn convergesinV.
i) > | ful? converges in R.
iit) Y., {fn, g) converges for every g € V.

5 (17 + 81 = (LFI? + 181%))






LECTURE 14

Orthogonal Projection

Let (V,

- |) be a normed space, U — V a linear subspace of V. Let f € V. A very important applied

problem is the following: determine the best approximation of f by a vector of U. Usually f is a function
that we wish to approximate, in the best possible way, with a function of class U c V. Formally, we aim

to determine

min If — ull.

Of course, as for every optimization problem, the first issue concerns existence of a solution. Next,
characterization of the solution would be welcome. In general, this is problem is very complex. In

Hilbert spaces, however, it has a powerful and elegant solution. This is the focus of this Lecture.

14.1. Main Theorem

Theorem 14.1.1

Let (H,<{-,-)) be an Hilbert space and U — H be a closed subspace. Then, for every f € H there
exists a unique Iy f € U such that

(14.1.1) If —Oyf] = min If — ull.

[y f is called orthogonal projection of f on U and it is characterized by the following orthogo-
nality condition:

(14.1.2) (f =Ty f,uy=0, Yuel.

Proor. The proof is trivial if # € U: in this case [I;;f = f. So, let f ¢ U. The proof is organized as
follows:

(1) we prove existence of min, hence of Iy f.
(2) we prove that Iy f is unique.
(3) we prove the characterization (14.1.2).

(1) Let
= inf | f — u|.
= inf |[f —ul
According to the characterization of best lower bound,

1
(14.1.3) Vn=1, Ju,elU : a<||f—uy| <a+ -.
n

The goal is to prove that (u,) converges and the limit is the minimum point for | f — u|. To prove (u,)
converges, we prove that (u,) is a Cauchy sequence (then convergence follows by H Hilbert space).

97
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.We need an estimate of |u,, — u,,|. The key ingredient is the parallelogram identity. Indeed,

ltn = wml* = (tn = £) = (= NP =2 (Jun = FI? + st = f1?) = [ (an = ) + (m = )]

1\?2 1\2 )
<2((a+=) +(a+—= — [ (un + um — 21)|

n m

1 1 1 1
=4a2+4a(—+—)+2<—2+—2>—4—

n m n m

Since U is a linear space and u,,, u,, € U, we have ””Jr% € U. Therefore H“’ﬁ% - fH > . From this,
1 1 1 1
[t — wum|?® < 2 (— + —) +2 (—2 + —2) <& Vn,m = N.
nom n m

This means that (1, ) is a Cauchy sequence, thus it is convergent because H is complete by assumption.
Now, let u,, —> u*. Since

1
a<If—ml<at= — a<|f-uw|<a,

thatis | f — u*| = @ = inf,ey | f — ul|. This means the inf is achieved at u = u*, thus it is a minimum.

(2) We show that u* is unique. Suppose u** € U is such that | f — u**| = @. Again by parallelogram
identity,
2

*_ %12 Z o (Il — fl2 % o2 *LR% 912 _ 40?4 u* +u* < do—40? —
Ju*—u** |2 = 2 (Ju* — £ + |u** = £]?) +|u* +u** =2 = 4 —— —f| <4a°—4a”=0

that is u™ = u**. This authorizes to call this unique element Iy f.
(3) Foreveryu € U,
If =Ty fI? < If = Mo f +w)|> = |(f =Ty f) +ul® = |f =Ty f? + Jul® + 2f - Oy £, u),
from which
|u|? + 2(f =TIy f,u) =0, YueU.
Replacing u by tu (here t € R), we have
lul® + 2t(f —My f,u) >0, Yue U, VteR.

Taking ¢ > 0 and simplifying, letting t — 0+ we have

(f—Myf,uy=0,Vuel.

Finally, replacing u with —u,
f—Muf,u) <0,
and by this the conclusion follows.

The projection theorem enlighten the relevance of closed subspaces of an Hilbert space. We remind that
asetS <V, (V,|-|) normed space, is closed if and only if it contains limits of convergent sequences of
vectors of S, that is

V) c S, : fo il — res.

In concrete cases this property can be checked directly. A useful fact to know is the
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Proposition 14.1.2

If (V,| - ) is a normed space and S is a finite dimensional subspace of V, then S is closed.
Proor. Letvy,..., vy abasis for S. We can assume that vectors vy, ..., vy are linearly independent.
For every f € S, there exist a unique array (f1,..., f") € RN such that f = Y7_, f*vx. The map
T:(f'...,fN)— fis linear, bijective (thus invertible) and
N N
1T M =D e < D5 1l < KIGEL - £ s
k=1 k=1

having defined K := maxy |[vi|. Now, set

I M) = T L )
It is easy to check that | - ||, is well defined, positive, homogeneous and it fulfils the triangular inequality.
Moreover, ||(f1, ..., fN)|« = 0iff 0, f¥vi = 0, and this happens iff f* = 0 for every k. So, | - |+
fulfils also vanishing. In other words, | - [ 4 is a norm on RY, and since all the norms on R" are equivalent,
M >0, (o ) < MG )
Let now (f,) < S with f, A, f. The goal is to prove that f € S. We start noticing that (f,,) is a Cauchy
sequence w.r.t. || - |. Since each f;, € S, we can write

fo= 2 fve=T(fl . fY).
k=1 —
=:g,€eRN
for suitable f¥. Therefore,

Hgn - gm”l < M”gn - gmH* = MHT(gn - gm)” = MHTgn - Tgm“ = Man - fm

[l

from which (g, ) is a Cauchy sequence in RY w.r.t. | - ||; norm, and since this is a Banach space, g, il g

for some g = (g',...,g") € RV. From this it follows that
E S
Ifo =Tl = [Tgn — Tg| <Klgn—gls — 0, = fo—>Tg= ) gk,
k=1

and since the limit is unique, we conclude that f = Tg = Zszl gkvi e s.

Example 14.1.3

Determine the best approximation of x? through a first degree polynomial under L2([0, 1]) norm.

Proor. Let V = L%([0, 1]). We have to minimize the L%([0, 1]) distance between x2 and ax + b,that

is to determine
1 1/2
min (J |x? — (ax + b)|? dx> .
a,bER 0

LetU :={ax+ b : a,b € R} = Span(1l,x). U is finite dimensional, hence it is closed. Therefore, the
best L2([0, 1]) approximation of x? through an element of U is ITyx2. Now, [Iyx? = Ax + B for suitable
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A and B, to be determined in such a way that orthogonality condition
1
x? = Myx?,w) = J (x? = Hyx*)w(x) dx =0, Yu e U.
0

Since U is generated by 1 and x through linear combinations, the orthogonality condition can be reduced
to just two conditions

[;(® = (Ax + B))Ldx =0, 1_4_p—y,
<
1 1_A_B
f()(XQ*(AxJFB))de:O’ 1i—5-2=0
By solving the linear system we find A = 1 and B = f%, that is ITyx? = x — %.

J

Warning 14.1.4

The assumption U closed is essential for the projection theorem. Indeed, on ¢? take U :=
{(xn) : 3N, x, =0, = N}. Itis easy to check that U is a linear subspace of £? and that it

2
is not closed: the sequence (fy), where f, = (1,%,...,%,0,...) € U, we have f;, . i =
1 1 1
(1, Soee sy AT ) because
2 o0
1 1 1
2
_ = 0,...,0, g =———g000 = __>0’ — +00.

This also says that
inf | f —ulez < |f = falez — 0, = inf | f —ule2 = 0.
ucU ueU

However, the minimum is not achieved otherwise there would be u € U such that | f — u[,2 = 0,
thatis f =uec U,but f ¢ U.

14.2. Orthogonal complement

Definition 14.2.1

Let V be an inner product space, U < V a subspace. We call orthogonal complement of U,
Ut:={veV : (v,u)=0}.

It is easy to check that U is always a closed linear subspace of V, no matter whether U is closed or not.
Indeed, if (v,) = U+ and v, — v, then

0=nu)— vu), Vuel, — velU™ .

Therefore, if V is a Hilbert space, the orthogonal projection Il;;1 is always well defined. It is sometimes
useful to know that
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Proposition 14.2.2

Let H be an Hilbert space, U a closed subspace. Then
Oy f=f—-Muf.

Prook. Let’s check thati) f — Iy f € U+ and ii) f — Iy f verifies the othogonality condition (14.1.2)
for U*. Indeed, by (14.1.2), we have

(f—Myf.u)=0,VuelU, — f—TlyfeUt
Moreover, since 1y f € U, we have
(f = (f =Myf),v) = Iy f,v) =0, Vv e Ut

Therefore, i) and ii) areverified and the conclusion follows.

Warning 14.2.3

From the previous proposition, apparently,

Hyf =f—HyLf,
is the orthogonal projection on U. We stress once more the fact that this is true only if U is
closed. Indeed, take H = ¢2 and the subspace U = {(f,) : 3N, f, =0, n > N}. Notice that

veUt, — v,uy =0, YueU.

We claim that v = 0 = (0,...). Indeed, if v = (v,) with vy # 0 for some N, then taking
u= (6npn-...) €U we would have

0=LLuy= Zvndzvn = VN,
n

which contradicts vy # 0. Therefore, U~ = {0} and, as a consequence, I1;,. f = 0. Therefore,
if Iy f = f — Iy f = f, but this is possible iff f € U < ¢2. Therefore, ITy f is not defined
unless f € U.

14.3. Exercises

Exercise 14.3.1 (). Let f(x) := cosx € L%([0,2n]). Determine the best possible second degree
polynomial closest to f in the L*([0, 2r1]) norm.

Exercise 14.3.2 («x). Solve

1
min ¥ + ax? + bx + c|* dx.
a,b,ceR ) _q

Exercise 14.3.3 (xx). Solve

+o0
min J le™ — (ae™* + be™3")|? dx
a,beR 0
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Exercise 14.3.4 (xx). Solve

1
max J‘ f(x)e* dx.
feL2([0.1]) : [y £2 dx=1J0

Exercise 14.3.5 (x#+). Let V := L%(R) equipped with usual real scalar product. Consider
U:={feV: f(—x) = f(x), ae.x eR}.

i) Show that U is closed (hint: recall that f;, L f does not imply that (f,) converges pointwise
but...).
ii) Check that Iy f(x) = $(f(x) + f(—x)).

Exercise 14.3.6 (x+). Let H := L*([0, 1]) equipped with usual scalar product and set

U= {feH : Llf(x)dx=0}.

1) Is U a closed subspace of H?
ii) Determine U™+

Exercise 14.3.7 (xx). Let (V,{-,-)) be a real Hilbert space, ¢, € V two linearly independent unit
vectors (that is |¢| = |¢| = 1). Let also Wy := {@¢ : a € R}, Wy := {By¥ : B € R} and
Wi+ Wa = {wi +wa : wy € Wi, wg € Wa}. Clearly, W; and Wy are closed. We accept Wy + Wy is
closed as well.
i) Determine the orthogonal projections Iy, and Ilyy,.
ii) Determine Ilw, +w,.
iii) Under which condition on ¢, ¢ is it true that Iy, +w, = IIw, + Iw,?

Exercise 14.3.8 (sx+). Let (V,{:,-)) be an Hilbert space, U < V a linear subspace. Discuss under
which conditions is (U L)l = U, proving what true, and disproving by an example what false.

Exercise 14.3.9 («x+). Let (V,{-,-)) be an Hilbert space, U < V be a closed subspace of V. Let Iy f
be the orthogonal projection of f on U.
i) Prove that Iy (f + g) = Uy f + Hyg and My (af) = ally f for every f,g € V and a € R.
i) My (y f) = Uy f, for every f € V.
iil) (M f,g) = {f.Mug), forevery f,g € V.



LECTURE 15

Orthonormal bases

In Linear Algebra, a basis is a family of linearly independent vectors such that any other vector can
be expressed as (finite) linear combination of vectors of the basis. For an infinite dimensional space, this
definition implies an extremely large (uncountable) set of vectors. It is preferable to deal with an infinite
but countable basis, accepting that every vector might be expressed as infinite linear combination of the
basis’ vectors. Since the spaces we work with are normed spaces (at least), it is not a problem to deal
with infinite sums as limit of finite sums.

15.1. General definition and properties

We start by the

Definition 15.1.1

Let (V,| - ||) be a normed space. Given a sequence of vectors (f,) < V, we set

0 N
D fui= im0 f
n=0 n=0

provided the limit exists in V.

A sufficient condition to ensure convergence of a series of vectors in a Banach space is the normal
convergence test:

Proposition 15.1.2: (Weierstrass)

Let (V,| - |) be a Banach space. Then,
Z Ifull < 400, = anconverges.
Iz n

Proor. We check that the sequence of partial sums s, := »,;_ fx is a Cauchy sequence. Notice that,
if n > m,
n

= Z Ifil = on — om, <Where On = Z fk|> .
k=0

k=m+1

ka

k=m+1

(15.1.1) Isn — Sml =

103
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Since, by assumption, Y., | f»| is convergent, the corresponding sequence of partial sums (o7, ) is a Cauchy
sequence, SO
Ve >0, 3N, : |0y — om| <&, Vn,m = N.

In particular, forn > m > N, being 0, > o0, we have

(15.1.1)

sn —sml| < opn—0m=|on—0ml <&, Vn>m=N,

and this is the Cauchy property for (s,). Since the space (V,|| - ||) is complete, the sequence (s;) is
convergent and we have the conclusion.

In a Hilbert space, the Weierstrass test can be sharpened:

Proposition 15.1.3

Let (H,{-,-)) be a Hilbert space. Then, if (f,) is a sequence of orthogonal vectors,
(15.1.2) an converges <= Z Iful? < +o0.
n n

Proor. Let s, := > ;_, fk be the n—th partial sum of the series Y., f,. By the Pythagorean theorm

we have that, for n > m,

2 n

n
T (wherws :=2fk|2).
k=0

k=m+1

D kK

k=m+1

lsn — SmH2 =

It is therefore clear that (s,,) is a Cauchy sequence in H iff (o2) is a Cauchy sequence in R. From this the
conclusion follows.

We are now ready for the

Definition 15.1.4

Let (V,{:,-)) be a vector space equipped with an inner product. A set of vectors (e, ) is called
e orthonormal system if (¢;,e;) = J;;;
e orthonormal basis if it is an orthonormal system and

VfeV,3(en) SR(C) : f = cnen.

Example 15.1.5: ()

On H = 2 (see Example 13.1.7 for the definition), let e,, := (6, ). Then (e,,) is an orthonormal
basis for £2.
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Notice that, if f = )} cpe, then

(f.ej)= <Z Cnén,€j) = <lirrln Z Crek,ej) = lizn(Z Crek,ej) = li;n Z crlex.ej) = chdnj =cj.
n k=0 k=0 k=0 n

Thus,

(15.1.3) f =Y {fenen.

The series at r.h.s of (15.1.3) is called abstract Fourier series, ({f, ¢, )) are called Fourier coefficients.
Notice also that, in this case,

L2 = Cfo ) = DS en)(fremXenemy = O [{f el

which is called Parseval identity.
Given a finite or countable orthonormal set (e,) — H, we call

Span(e,) := {Z cnen€H @ (¢y) <R (C)} .

n

Notice that ,according to the convercenge test (15.1.2), we have
chen EH, <« Z:chenﬂ2 :Z|cn|2 < 40o0.
n n n

Therefore,

Span(e,) = {Z Cnen : Z lenl? < +oo} .

n

This shows an interesting fact:

Proposition 15.1.6

Let H be an Hilbert space and (e,) an orthonormal system. Then Span(e,) is isometrically
equivalent to £2. In particular, Span(e,,) is closed in H. If (e,,) is an orthonormal basis, then H
itself is isometrically equivalent to £2.

Proor. Consider the map T : Span(e,,) — ¢? defined by

T (Z cnen> = (@)

2 2
T (Z Cnen> = H (Cn)H?2 = Z |Cn|2 = chen s
n r2 n n H

that is |7 f ||,z = || f|# for every f € Span(e,). This means that T preserves norm, that is is an isometry,
between Span(e,,) and 2. Since £? = L?(N, v) (v is the counting measure) it is Hilbert space, Span(e,,) is
also an Hilbert space, in particular it is closed.

Then
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We may say that £2 is in fact the prototype of an Hilbert space with an orthonormal basis.

Orthonormal bases are useful to have a representation of orthogonal projection

Proposition 15.1.8

Let (H,{,-)) be an Hilbert space and U a closed subspace of H. If (e,) is an orthonormal basis
for U then

(15.1.4) Oy f = ) Xf.enven.

Proor. Clearly Iy f defined by (15.1.4) belongs to U. We prove that Iy f fulfils orthogonality
condition (14.1.2). Let u € U. Since (e,) is an orthonormal basis for U, u = »,,{w, e, e,. Then,

f —Muf,uy={f,uy —Muf,uy= Z<”’ en)fren) — Z<f’ en ) en,uy = 0.

Corollary 15.1.9: Bessel inequality

Let (e,,) an orthonormal system of vectors for (H, (-, -)) Hilbert space. Then

(15.1.5) LK F ey <|fI Vf e V.

Proor. Let U := Span(e,). U is a closed subspace of V, and
Iy f = Z(f, enyen.
n

According Pythagorean theorem

f=Tuf+(f ~Tuf), = |fI> = Mofl® +f - Tuf|? = [Tufl® = Y K el

15.2. Test for orthonormal bases

Under which conditions an orthonormal system (e,) is also a basis? Of course, if we can prove that
every f is sum of its Fourier series under (e, ), we are done. Next proposition provides an intrinsic test:

Proposition 15.2.1

Let (H, (-, -)) be an Hilbert space. Necessary and sufficient condition for (e, ) orthonormal system
to be a basis is

(15.2.1) (f.en)=0,VneN, — f=0.
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Proor. Necessity: assume (e, )isabasis. If (f, e,) = Oforallnthen, by (15.1.3), f = >, (f, enye, =
0.
Sufficiency: assume (15.2.1) holds. Let U := Span(e,). It is not difficult to check that U is a closed
subspace (we accept this). Let IT;; f be the orthogonal projection over U. We have Iy f = >, (f, en)en.
Since

f=Tyf+(f—Tuf) =Y {frenyen+ (f —Tuf),

the conclusion follows once we prove f — IIyy f = 0. Now, since by orthogonality condition (14.1.2) we
have {f — Iy f, e,y = 0 for every n, by (15.2.1) this implies f — Iy, f = 0.

Here is an example how density test (15.2.1) works:

Proposition 15.2.2: Haar basis

On L2([0,1]) equipped with usual scalar product and define the Haar functions

n—1 _
277, k2n1 <x < 2%,
—1
eo(x) =1, exm(x) =4 —2"7, £ <x< k;l, k=1,...,2" =1, kodd, n > 1,
0, otherwise.

Then (e, e x )x.n is a basis for L2([0, 1]). In particular,
2"

[e'e) 2" —1

f={fey+ ), D, {frexpmersm, Vf € L*([0,1]).

n=0k=1, k odd
(this formula is among the simplest wavelet reconstruction formula of a function f).

Proor. Orthonormality can be easily checked as exercise. Assume that f L e, e Jon for all k, n.
Notice first that

s ki1 * ki1
0:<f,ek/2n>2:2%ﬁ_lf(x)dx—?n%Jk fx)dx, = L_lf(x)dx:Jk f(x) dx.

on

2 7
Therefore

1
1
0

0={_f,e0)2 = Llf(x) dx = QJj fx)dx = 4J fx)dx=...= 2”{02% Sf(x) dx,

k+1

and again, by previous identity, | ** f(x) dx = 0 for every (n, k). By this it is easy to deduce that
&
2"

b
k
L f(x)dx =0, Va,be{Q—n :neN, ke{O,l,...,Z"}} =:D,
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the set of dyadic numbers. Now, it is known (we accept it) that D is dense in [0, 1]. Therefore, the previous
identity extends to every a, b € [0, 1]. Ttis now a standard job to conclude that IE f =0forevery E c [0,1]
Lebesgue measurable, and by this the conclusion follows.

15.3. Gram-Schmidt orthogonalization algorithm

Does an orthonormal basis always exist? A first remark is the following: if H has an orthonormal
basis then, the set

§:= {Z‘hen : (gqn) © Q} )

is countable (same cardinality of N) and every f = lim,, f,, with (f,) € S (we skip the details). In other
words, there is a countable set S — H dense in H.

Definition 15.3.1

We say that a normed space (V, | - |) is separable if there exists a countable set S dense in V.

Thus, to admit an orthonormal basis, the space must be separable. This condition is also sufficient:

Theorem 15.3.2: (Gram—-Schmidt)

Let (H,{-,-)) be a separable Hilbert space. Then, H admits an orthonormal basis. This can be
constructed in the following way: if (u,) is any set of linearly independent vectors dense in H,
defining
Uy — S, e Ve
(15.3.1) o= —2 | ey = — ‘i C L (n=1),
HMOH ‘Mn = Z’;;O<un’e]>e]H

we have that (e,,) is an orthonormal basis for H.

Proor. First step. Since H is separable, there exists a countable set (u,,) dense in H. We define S as
the set of finite linear combinations of u,. It is clear that S > (u,), thus S is dense in H and also we can
eliminate u, who are linearly dependent from others obtaining the same S. In other words, we have that
there exists (u,) of linearly independent vectors such that

S = {finite linear combinations of (u,)}

is dense in H.

We now check that the definitions (15.3.1) are well posed and they are an orthonormal basis for H. We
argue by induction. For n = 0, e is well defined because 1y # 0 (by linear independence of vectors of §).
Furthermore, Span(eg) = Span(ug). Assume now the check of good position and orthonormality has been
done on ey, ..., e, and Span(eq, . ..,e,) = Span(ug,...,u,). Since U, = Span(ug,...,u,) is closed,
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orthogonal projection Iy, is well defined and

My, f = Y {f>exex.
k=0

Now, we claim that u,1 — My, upt1 # 0. If not, upp1 = Hyunt1 = 2p_olnt1,errex €

Span(eq,...,e,) = Span(ug,...,u,). But this is is in contradiction with linear independence.
Thus |up+1 — My, uns1| > 0 and vector e,41 is well defined. Clearly |le 1| = 1, and since
ent1CUn+1 — Hy, up1 L Uy, we have that e, 1 L Span(eq, ..., e,), thus eq, . . ., ¢, are orthonormal.
Finally, Span(eq, ..., e,+1) = Span(uo, ..., un+1). This proves that (e,) is an orthonormal system. To
check that it is also a basis for H we apply the test for orthonormal bases provided by Proposition 15.2. Let
f € H be such that {f, e,y = 0 for every n. Since S is dense in H, (s,) < S such that s, — f. Since
S < Span(u,) = Span(e,), we have that {f,s,) = 0 for every n. But then, letting n — +0, we have
{f, f) =0, thatis | f|?> = 0, from which f = 0.

15.3.1. Hermite polynomials. L?(R) is a very common framework in many applied problems. In
this Section, we will compute an orthonormal basis for it. To attack the problem, we start by changing
slightly the setting by considering

x2

:{f:R—>R : JR|f(x)2 _

L dx < +oo} = L3R, V),
T

%2
that is the L? space respect to the probability measure d ¥V = ¢—== dx called also standard gaussian.
H is an Hilbert space with scalar product and norm

5

x2

(g ij<x>g<x> e dn lf1t= j e

‘We notice that,

1,x,x ,...,x”,...eL2(R,./V).

x2
In general, the x are not orthogonal because (x", x™) = JR Xt e 2 dx = 0iff n+m is odd. However,

Vern
we can apply the Gram-Schmidt algorithm to ”orthogonalize” powers. Set

1 H,
e":an< Z<x >> TH

So, for instance

_ 1 2 _ e
€g = o 1’ (IO - IR

x2
elzail( —{x,epyep) = a—1<x—fRyr y) 1x, a/%szxM\/% dx = 1.
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Therefore eg(x) = 1, e1(x) = x. Again
1
@2

1

es = — (x* — (X% egren — (x% eder) = é (x* = (%, Lye — (x%x)er) = Q—Q(XQ —1).

The value of as is

_x2 _x2 _x2 _xZ
2 2

e e e” 7
dxzjx4 dx—2jx2 dx+J dx=3-2+1=2.
V2 R 27 R 27 R V21
1

In conclusion eg(x) = 75()62 — 1). It is clear that we can compute e3, ey, . .. in this way, but it looks

to be difficult to have a quick” recipe to compute e,, for every n. To do this, notice first that the H,, are
polynomials called Hermite polynomials. Precisely, H,(x) = x" + p,_1(x), where p,_1 is an n — 1-th
degree polynomial. In particular, H, has degree = n and

a% =J (x2 —1)2e
R

Span(Hy, ..., H,) = Span(1, x,...,x").
Furthermore, by construction H,, 1. H,,, n # m. In particular,
H, L Span(Hy, ...,H,_1) = Span(1,...,x"1).

Let’s see how to determine more efficiently the H,. The first step is the

Proposition 15.3.3

(15.3.2) H) =nH, .

Proor. Notice that
n—2
H,=nm""'+p, | =nH, 1+ quo=nH, 1+ Z cjH;.
J=0
Now, multiplying both sides by Hy, in the scalar product, we obtain
<H;1,Hk> = n<Hn_1,Hk> + Ck”HkH2 = CkHHkH2, Vk <n-—2.
On the other side

S

X _x2

H',H :J H H dx”‘i”—J Hy(H, — xHy)S— dx — H,, H, — xH;) =0,
<nk>Rnk\/§ Rn(k k)\/ﬁ (Hn, Hy k)
because H,’( — xHj € Span(1,x,...,x" 1) if k <n— 2. The moralis ¢, = 0 forevery k =0,...,n— 2,

from which the conclusion follows.

J

The (15.3.2) is not a good rule to compute H,, because even if we know H,,_; we should proceed with
an integration, which is not a problem being H,_; a polynomial but it involves a free constant to be
determined by other conditions. Notice that, in proving the previous Proposition we proved the integration
by parts formula

(15.3.3) r'.q) ={p,(xq —4')), ¥p, q polynomials.
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Indeed,

X2 2\
WLy = o pWa)e Lo = — [ p(x) (gwe ) 2=
x2
= = o () (¢'(x) —xq(x)) e % £ = (p.xq — ')
By this we obtain easily the

Proposition 15.3.4

(15.3.4) H,. 1 =xH, —H.

Proor. Consider the polynomial xH,, — H),: we already proved that xH, — H,, 1 Hy for k < n.
Hence, xH,, — H,, | ey for k < n and because this is an orthonormal base,

! o~
xH, — H, = cpi1€nt1 = Cpr1Hpy1

Noticed that xH, — Hj, = x(x" + pp_1) — (X" + pp_1) = x"T1 + (xpp_1 —nx""' —=p/ ) =x"T1 +p,,
we deduce that ¢, 1 = 1.

By recurrence relation (15.3.4) we have, for instance,
Hs = xHy — H) = x(x* — 1) — 2x = x% — 3x,
Hy = xHs — Hy = x(x® — 3x) — (3x? — 3) = x* — 6x* + 3,
Hs = xHy — H) = x(x* — 6x + 3) — (4x3 — 12x) = x® — 10x® + 15x,

definitely much easier than rule (15.3.2). Let’s now compute the norm of H,, to determine the scaling
factor of e¢,,. We have

HHnH2 = <Hl’l9 Hn> = <XHn—1 - H/_la Hn> = <Hn—1,an> - <H;L_1, Hn>

n

29) (41, xHyy — (Hyor.xHy — HLY

(22 o Hy 1, Hoot) = nl| Hp 1%
Therefore,
|Hal? = | Hy-1|? = n(n — D)|Hual = ... = n!| Ho|* = n!
In conclusion

1
(—Hn (x)) is an orthonormal system for L (R; 4/ (0, 1)).
\/m neN

As a consequence,

1 x2
H, (x)e_4> is an orthonormal system for L?(R).
( V2! n

To verify that this is also an orthonormal basis, we will need Fourier transform.
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15.4. Exercises

Exercise 15.4.1 (). Discuss, in function of the real parameter @ > 0, the convergence for the series
|

Z e cos(nx)

n=0
is L' ([0, 27]) and L%([0, 2x]).
Exercise 15.4.2 (+%). Let H := L?([0, +0[) equipped with usual real scalar product. Define
en(x) = \/’Zl[n,nJr%](x)

i) Discuss point-wise convergence and H convergence of (ey,).
ii) Is (en) an orthonormal system? Is it a basis for H?

Exercise 15.4.3 (x). Let H be a Hilbert space, (e,,) an orthonormal system such that the Parseval identity
holds,

12 = D1 Kf enpl?. Vf e H.

n=0
Can we say that (e,) is an orthonormal basis for H?

Exercise 15.4.4 (x). Let H = L?([0, 1]) equipped with usual scalar product. Accepting that ey(x) = 1,
en(x) = V2 cos(nnx) is an orthonormal basis for H, apply the Parseval identity to

Fx) = x1p0,1/2)(x) + (1 —x)131/2,17(%),

to prove that
2

AR S
8 A (2k+1)%

Exercise 15.4.5 (+). On H = L2([0, 1]) equipped with the usual scalar product, apply the Gram-Schmidt
algorithm to v, (x) := x™ n € N, to compute ey, . .., ey.

Exercise 15.4.6 (xx). On H := {f € L([-1,1]) : il % dx < 400} we define the scalar product

1
fx)g(x)
,8) = — " dx.
e
We accept this is well defined, a scalar product on H (with weak vanishing) and (H,{-,-)) is a Hilbert
space.

i) Define T,,(x) := cos (narccosx). Find (c,) < R such that (c,T,) be an orthonotmal system.
ii) Compute Ty and Ty, and prove that T,,+1 = 2xT,, — T,,—1. Conclude that T,, are polynomials.
iii) Let G(t,x) = >0 Tu(x)t". Check that the series is convergent for |t| < 1 and use the
recurrence relation to prove that

1—1x

Glr.x) = 1—2tx +12°

¥(r,x) € [-1,1] x [~1,1].
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Exercise 15.4.7 (x#x). Let H be a Hilbert space, (e,) an orthonormal basis. Let (€,) be another
orthonormal system. Check that if

0
(*) D len —2ul® < +o0
n=0

then also (€,) is an orthonormal basis for H.
Exercise 15.4.8 (Legendre polynomials (x#+)). Let H := L*([-1,1]) and v, := x", n = 0,1,2, . ...

i) Applying the Gram—Schmidt algorithm to (vy,),, compute eq, e1, €2, €3.

ii) Let po(x) = 1, pu(x) = 57 %(ﬂ — 1)". Show that {p,, pmy = 0 if n # m.
iii) Compute | py||2.

Exercise 15.4.9 (xx+). Let H be a separable infinite-dimensional Hilbert space. Show that there is
no “Lebesgue measure” on H; that is, there is no measure u on the Borel o-algebra of H such that
(i) p is finite on bounded sets, and (ii) p is translation-invariant. (hint. Let (e,) be an orthonormal
basis and choose r > 0 small enough so that the balls B(e,,r) are pairwise disjoint. Consider the set
E =", B(en,r]. Use translation invariance and finiteness on bounded sets to derive a contradiction.)






LECTURE 16

Classical Fourier Series

Classical Fourier Series arise from a very natural problem: is it always possible to represent any
T—periodic function as a (possibly infinite) linear combination of elementary T—periodic functions?
This Lecture discusses about this problem. As we will see, a natural way to look at this problem is the
language of orthonormal bases we introduced in previous Lecture.

16.1. L? convergence

Let f be an arbitrary T—periodic function f : R — R (that is, f(x + T) = f(x) for every x € R).
Classical examples of such a function are the fundamental harmonics

. 2r 2r
sin{ —nx |, cos| —nx ), neN.
T T

For an arbitrary f we ask whether it is possible to determine coefficients a,,, b, such that

flx) = nZ:]() (an cos <27ﬂnx> + b, sin (?nx)) =agy + Z (an cos <2?ﬂnx> + b, sin (27ﬂnx>> .

n=1
The series on the right-hand side are called trigonometric series. This problem has a natural formulation

in Hilbert space theory. Let us see how. The first step is to rearrange the form of a trigonometric series.
Recalling the Euler identities

el 4 emi0 00 _ p—i0

(16.1.1) cos = ——, sinf = ————,
2 21
after straightforward calculations, we can write
o0 2 i (27 _ o0 an—iby ,i2%nx | an+tiby ,—i%Znx
ap+ X, (ancos (?nx) + b, sin (?nx)) =a0+ D, ( B el T o Snon el
271
= Dnez Cne' T

Notice that we can pass from real form to complex form and vice-versa according to rules

ao, n=020,
— ag_—ib" n>1 _ €o, n:O, b, = 0’ n:O’
Y Lz _ =17 a,=2Re(cy), n=1, """\ by=—-2Im(c,), n>1.

2 bl
We call trigonometric series a series of the form
F 27
I=5nx
Z cne' T, (cp)nez < C.
nez

115
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. 2
Functions e, (x) := ' 7" are also called characters.

Proposition 16.1.1

Let H := Lé([O, T]) be equipped with hermitian product

(frg) = j fx

Then (e,,)nez is an orthonormal system in L2([0,7])

Prookr. Itis just a simple calculation:

7 Jo ldx =1, m=n,
1 (7 . 1 (7T .
<en’em> _ _J ei%nxei%‘mx dx = _I ei?”(n—m)x dx = _r
T 0 T 0 1 eiz%(n m)x 0 7&
T %(n m) . = m m
x=

So, the identity
f= Z Cné€n
nez

becomes true in L2 ([0,7]) once we prove that (e, ),ez is an orthonormal basis. This is true, however the
proof is long and non trivial, and in fact consists showing directly that any f is sum of its abstract Fourier
series. We will omit this proof here:

Theorem 16.1.2

The set of characters e, (x) := e’ %1% e 7, is an orthonormal basis for L2([0,T]). Thus, in
particular,

(16.1.2) FES fnen,
nez
where
~ 1 T .27
(16.1.3) fn)={f,en) = TJ f(x)e " T dx, neZ.
0

Identity (16.1.2) holds in L? sense. This doesn’t necessarily mean that

=Y fln)e! T, vx e [0,7].
nez
This because, as well known, L? convergence does not imply point-wise convergence. More precisely:
the infinite sum ), _, f(n)ey is ae. equal to f. But when we take finite sums sy := 2in|<N f(n)en,
we cannot say that sy (x) — f(x) a.e. x. Infact, there are examples for which it may happen that
sy 1s never point-wise convergent. These are quite “exotic” examples, however with some regularity
requirement on f, the point wise convergence holds. Let’s see a couple of examples.
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Example 16.1.3: (square wave )

Determine the FS of

0, xe]l0,n],
fx) =
1, x¢€|[n2n][,
Proor. We have
L (2" 1
— J dx = =, n =20,
R 1 2 ) 2r T 2
j‘(n) — 2_ e—mx dx —
T Jr 1 efinx x=2n B 11— e*inzr B 1 o (71)11 . 0
o2 | —in | ._, 27 —in o 0 PTH
Therefore the Fourier series for f is
1 1—(=1)" 1 i , 1 & 2
-+ Z [—————e"™ = -+ Z kY Z —————sin((2k + 1)x).
2 neio} 2nm 2 & (2k + D)m 2 &2 (2k + D)n

It is interesting to plot some graphs of partial sums of the series and to compare it with the graph of f.
Here’s the case of the partial sum of previous series of the first 5,20 and 100 terms respectively.

o

The picture seems to indicate at least a pointwise convergence for x € [0, 2] except in the discontinuity
points of f (thatis on x = 0, , 27). For example, if x = 7, the point-wise evaluation of the sum leads to

1

1 < 2 : 1 & 2
5 0 @D NI =5 - Gy 0 p AL

4,
=

[V V-

Remark 16.1.4: (x)

The previous Example shows a remarkable application of the Parseval identity. According to this

identity,
~ 1
171 = Y 1FmPE =7+ Y,

nez n odd

1 2

1—
niw

1 2 1
:—-|-— P e E———
4 712];)(21{4-1)2

: 2 2
and since || f|2 = %fon |f(x)]? dx = %fﬂn 1dx = 3, we get

n? i 1
L _ —.
8 = (2k+1)
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Now, since
[ee} 0 0 Q0 [ee}
1 1 1 1
2_2_2 (2k)2 §2k+1 _12:1_2 Park 2k+1
we obtain the remarkable harmonic sum
o0 o0
1 4 1 n?
2 3 lm -6
n=1 k=0

Example 16.1.5: (triangular wave )

Determine the FS of

X, x € [0, [,
fx) =
2n —x, x¢€ | 2n|
Proor. By definition
~ 1 (%" 1272 n
f( )—ﬁ . f(x)dx—§7—§7

while, as n # 0, integrating by parts,

A~ 1 (27 1 m _ 27 '
f(”l) f( ) —inx dx = — <I xe Y dx 4+ J‘ (27T _x)e—mx dx)
2 2 \ Jo

Ve

1 —inx |X=7 T —inx —inx 1 X=27 2r —inx
il [xe - ] —J ¢ - dx—l—[(Qﬂ—x)e - ] +I ¢ — dx
21 —in |,_, o —in —in

X=r P —in

A R V. W YET (“D)ng 1 [eminx RN
27 : n in| —in |, ' n in| —in

1 1 n 1 ) (=" -1
- (o -y - - o) - S

Therefore the Fourier series is

T + ( 1)112 1emx T 2 Z 1 > i(2k+1)x

2 &= 2 mHE(2k+1)
For the real form we have ag = 7 =2Re (f(n)) = 2<_71r>n’; whereas b, = —21Im (f(n)) = 0 for
any n > 1. Therefore the real form is

T o4& 1
5 Z:] CTESE cos((2k + 1)x).

Also in this case let’s see some plots of partial sums. The next picture shows sums of 1,4,15 terms
respectively.
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Here we clearly see that the approximation appears to converge to f pointwise, and even uniformly.
Moreover, it seems much “better” than in the previous example. This indicates that regularity plays an
important role in the rate of convergence. Finally, if—as it appears—the sum of the series is f(x) for every
x, then by taking x = 0 we obtain the remarkable identity

0 4i — ﬂz*i 1
0=7 ) 2k+ 8 A (2k+1)

16.2. Uniform convergence

The examples shown in the previous section suggest that pointwise convergence holds, provided that
f is regular enough. This is a consequence of the following important fact: the higher is the regularity
of f, the faster Fourier coefficients decay to 0 as n —> +00. As we will see, this implies stronger
convergence of the FS. As a general remark, we notice that

. 1T cs1 /(T 12 /ot 1/2 1 (T 1/2
fol< g [ uwia S L (i) ([Crera) = (F[010F) =1k

This bound shows that | f (n)| is always bounded in n. With some extra regularity than simple L2
measurability, we can get much more:

Proposition 16.2.1

Let f € €X([0,T]), fY)(0) = fFUNT), j = 0,1,2,...,k — 1. then

—_— k ~
(16.2.1) f®)(n) = (z%’%) f(n), Vnez.
In particular
~ ClFf® |,
(16.2.2) |f(n)] < I/~

Proor. We limit to the case f € € with £(0) = f(T) (the general case follows similarly). Integrating
by parts we have

o~ 17 - 1
f/(n) — TJO f/(x)efl?nx dx = f <[f(x)e i3z nx J f (—l—n) e —iZEnx dx>

1 2nn

T ~
= (f(T)e_iQ”" — £(0) +i2?7rn£) flx)e T~ dx) = iQ?ﬂnf(n).




120 16. CLASSICAL FOURIER SERIES

This proves the (16.2.1) for k = 1. Moreover, for n # 0,
N C
lf()| = —

~|n]

|F' ()]

and since

T

A 1 (T _-om 1 (T
Pl <7 | |re@e #| v < g [ 1o ds = 17

we finally have

/
_ Ol

1F(m)] < » Vn # 0.
n|

The fast decay of Fourier coefficients has implications on the way the FS converges.

Corollary 16.2.2

Let f € €2([0,T]), fU)(T) = £U)(0), j = 0, 1. Then, the FS of f converges uniformly to f.

~

Proor. First step: FS converges uniformly. Let sy := Z\n|< ~ f(n)e, be the N—th partial sum.
Clearly (sny) < €([0,T]). We claim that (sx) is convergent in || - |, norm. To this aim, we apply the
Weierstrass test: since e, |0 = maxyefo,7] et | = 1, we have

D Ifmenllos = Y317 lenlo = D317 ()],

By the assumptions on f and the bound (16.2.2), we have

A L
)l < = n# 0,

SO
A 2 K
Zlfwenls < O]+ X7 < +oo.

Therefore, the Weierstrass test applies and we have the conclusion.
Second step: FS converges to f. By the first step we know there exists g € € ([0, T]) such that
SN w

Moreover, we already know that sy w» f. We claim f = g on [0,T]. Indeed, by the former we know

II-lloo

that there exists a subsequence (s, ) such that s, —> f a.e.. Since sy, — g, in particular sy, — g
pointwise on [0,7]. Thus f = g a.e.. But both f and g are continuous functions (f by hypothesis, g being
the uniform limit of continuous functions), thus f = g on [0, 7], and the proof is complete.

Remark 16.2.3

The two arguments in the previous proof are essentially independent of one another. In particular,
the second argument shows that once we know that the FS of f € € converges uniformly (in the
| - ||oo norm), then it necessarily converges to f itself.
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The previous result is quite demanding on f. There are weaker versions of it with mild assumptions on
f. For our purposes in this course, the previous corollary is sufficient.

16.3. Exercises

Exercise 16.3.1 (). Let f(x) := x(1 — x), x € [0,1]. Compute the L*([0,1]) FS of f and discuss its
convergence in L* ([0, 1]). Is the FS also point-wise convergent? If yes, what is the point-wise limit?

Exercise 16.3.2 (). Let f(x) = x, x € [—n,n|. Compute the FS of f. Use this series to prove (once
© 1

2
more!) the formula % = 3, _ | 5.

Exercise 16.3.3 (). Let f(x) = x2, x € [—nx, n]. Compute the FS of f. Is the FS uniformly convergent?
Use this FS to compute the value of the sum ZZO:1 1

nt’
Exercise 16.3.4 («x). Use the FS of f(x) = |sinx| on [—n, ] to determine a ”cosine series” for sin x
for x € [0, ], that is a representation of the form
0
sinx = Z by cos(nx), x € [0, x].
n=0

Discuss carefully for which values of x such identity holds.
Exercise 16.3.5 (x#). Let f(x) = coshx, x € [—n,n]. Compute the FS of f and discuss whether it
converges to f or not on [—n, rt|. Use this FS to compute the value of the sum Zflozo nzlﬁ
Exercise 16.3.6 (xx+). Let b € [0, 1] be fixed and set f,(x) := min{x, b}, x € [0, 1].
i) Compute the L*([0,1]) FS of f. Is fp the sum of its FS? Is the FS uniformly convergent to f;?
ii) Deduce, by i), the formula

it < 5 3 (e (5 ) (s o 2) )

Exercise 16.3.7 («x). Let f € L2([0,2T]) be such that f(x + T) = — f(x) a.e. What can you deduce on
the Fourier coefficients for the real form of the FS?

Exercise 16.3.8 (x++). Let f,g € L%([0,T]). We define convolution product of f and g the function

T
(o)) = 7 | Fle=)s0) .

i) Prove that the convolution is well defined and it belongs to L*([0, T)), proving a Young inequality
forlfegls
ii) Check that f = g(n) = f(n)g(n), for everyn € Z.

= f(n
Exercise 16.3.9 (+%). Let f € L*([0,T]) be such that
Z |nf(n)\ < +o0.

Prove that the FS of f is uniformly convergent.






LECTURE 17

L! Fourier Transform

In previous Lecture we have seen that, if f € L2([0,T]), then

2nn
T X

(17.0.1) £ E S fnet

nez

This formula has remarkable applications in signal processing, especially with sound signals that exhibit
a periodic behavior. Since the r.h.s. is just a T—periodic function, the period [0, 7] can be any interval
of length 7, as for example [— %, %] In particular then,

~ 1 T/2 2nn
f<n>=—f FO)e T ay,

T J 1
and
~ o g 1 (72 2n 27n
£0) = X e = 3 (F [ e P ay )
T ) 12
nez nez
Now, suppose T = 27N with N — +00. Introducing points &, := 47, n € Z as a subdivision of R in

such a way that d¢,, = &,41 — & = % we would have

1 (7N . ) 1 (t® +00 . .
10=% (52 [ st ay)eerrag, — o [ ([ gmete ay) e ae

neZ 21 ) _an 21 ) 0 -

The integral

(17.0.2) fle) = JRJ‘(y)e"ny dy

is called Fourier Transform of f and the previous formula suggests that

(17.0.3) f) = o f (=)

The (17.0.3) is the analogous of (17.0.1) and it suggests that f € L2(] — oo, +00[) can be “reconstructed”
from its Fourier Transform. Of course, our argument was very informal. The scope of this and next
chapters is to introduce the FT in a rigorous way, and see when formula (17.0.3), also named inversion
formula, holds true.

123
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17.1. Definition and first examples

A first problem with (17.0.2) is that the natural condition on f ensuring its well position is f € L (R)
and not f € L?(R). Indeed,

I|f(x)ei§x|dxzj |f(x)] dx < +0, < feL'YR).
R R

We introduce now the
Definition 17.1.1
Let f € L*(R). The function

17.1.1) f&) = JRﬂy)e‘fy dy, €€ R

is called Fourier Transform (FT) of f

| \

Warning 17.1.2

In the literature, there are slightly different definitions of FT. The mathematicians FT is defined as

f©)= [ rore e ay
Basically, respect to our definition, it changes ¢ with 27£. The advantage with this definition

is that inversion formula (17.0.3) becomes slightly easier, f(x) = f(—x). Furthermore, with
mathematicians definition, the L? Fourier-Plancherel Transform becomes a true isometry (see
Lecture on L? FT). On the other hand, the presence of fact 27 complicates formulas and make
them a bit more difficult to memorize.

In Probability, as we will see, FT appears as characteristic function, which is an integral of type

B(£) = fRﬂy)elfy )

In this case, it is evident that we changed —¢ into £.

Let’s see some important examples. We already computed

Example 17.1.3: Gaussian distribution ()

uQ
(17.1.2) e 207 (&) = V2ro2e 278 (o> 0).

Proor. See (7.2.1).
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Example 17.1.4: rectangle ()

etrecty := 1[_4 4]- Then

(17.1.3) recty (¢) = 2a@
a

?’ , with the agreement that sinc 0 = 1).

=: 2a sinc(aé), V¢ € R.

(where sinc 7 :=

Ya\ ~
VARV,
Proor. Clearly rect, = 1{_, 4 € L'(R). We have
¢ =0, :fju dy = 2a,
rgct\a(f) = J e Y dy = _
_ e—iy 1774 —i i sin(a &)
“ ‘f #* 0, = [T{;]y=fa = _% ((3 iag _ e‘a‘f) = 2(17
Example 17.1.5: exponential
(17.1.4) eall(g) = 2% £eR, (a>0).
a’ + &2

Prook. Clearly e~ !l € L'(R) if @ > 0. By definition

+00 » 0 » +0o0 »
e—alil(g) = J o=l g=i€y gy _ I W eIEY gy +J €Y gy
—0 —o0 0

0 +o0 —ig)y1y=0 —(a+i&)y 1Y=1®
J i)y gy +J e~ (@ti€)y gy _ [M] n [_M]
—0 0 a+ lf y=0

1 N 1 B 2a
a—ié  a+ié  a?+ &

The Definition of FT extends naturally to multidimensional functions:
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Definition 17.1.6
Let f € L'(R9). The function

(17.1.5) £(&) = ij@)e"'f Y dy, §eR?
is called Fourier Transform (FT) of f

Example 17.1.7: multivariate gaussian ()

Let C be a strictly positive definite symmetric matrix (that is: Cx - x > 0 for very x € R\ {0},
= (). Then

(17.1.6) e~ 3CTEE(g) = \/(2m)d det Ce2CE¢.

Proor. We notice first that C~! is diagonalizable. Indeed: C is positive definite, and by this it follows
that C is invertible. Since C is symmetric, C~1 it is. Thus C~! is symmetric, hence it is diagonalizable,
that is C™! = T~'A~!T for some T orthogonal matrix, that is 7—! = 7" (transposed matrix), and
Ali= diag(é, ces #) a diagonal matrix. Therefore

d
C_ly Ly = T’A_lTy Sy = A_lTy -Ty.

Now, notice that

e~ 3CTHE(g) = J e TNy Ty, —iE T Ty gy, x<Ty f e—é’\”x"‘e—”‘f"‘| det T*| dx,
: R4 R4

and because 7' = T~ ! easily | det T*| = 1. Therefore

— d 1
e~3C () T=T HI e w7t e 1T gy, = ne (T¢), ) 722 1_[4/271'0' e 27 TE].
R

j=1"
To finish notice that
1_[0']2 =det A = det(TC'T1)™!) = det C,
J
and

DIHTE = (ATTE) T = TIATE & = CE -,

and by these identities the conclusion follows easily.

Let’s finish this Section with few useful “algebraic” properties of the Fourier transform:

Proposition 17.1.8

Let f € L'. Then
) f(—x0) = e f.
ii) e #Vf(€) = f(€ + ).
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Proor. We limit to prove the first one, the remaining being similar (exercise). We have

FC=x0)(€) = [pu f(x — x0)e™ 6% dx = e~ [, f(x — xo)e 4 (x=x0) dx

= e f(g).

J

For future developments we will deal with 1-dimensional FT, the majority of the results extend to the
general case with straightforward adjustments.

17.2. Exercises

Exercise 17.2.1 (x). Compute the Fourier transforms of the following functions:

L. x recty(x). 2. (a — |x|)recty(x). 3. (cosx)rect, o(x). 4. e Wlsgn(x). 5. e 1[0 +oo[(X).

—_

Exercise 17.2.2 (). Compute 1|_, 4ja.
Exercise 17.2.3 (xx+). Compute the FT of f := 1,22, 2,2

Exercise 17.2.4 (xx). Show that if f is real valued and even (that is f(—x) = f(x) a.e.), then f is real
valued.

Exercise 17.2.5 (xx). Let R be an orthogonal matrix, RR' = R'R = 1. Express the FT of f(Rx) in terms
of f.

Exercise 17.2.6 (xx). Prove the properties of the Proposition 17.1.8.

ExercisAe 17.2.7 (%). Let f(x1,...,xn) = [[j_; fix;) € L*(R™). Prove that f(£1,....&,) =
[T7-1 fi(€)).

Exercise 17.2.8 (+#+). Let f € L'(R) be such that f(x) > 0 a.e.. Prove that |f(£)| < f(0), V& # 0.
Exercise 17.2.9 (xx+). Let f € LY(R) be such that f(x) = 0 for |x| > R. Prove that f is a power series.






LECTURE 18

Properties of L' FT

In this lecture we present some of the most important properties of the FT. Among others, a special
role is played by differentiation: the FT converts a differential polynomial into multiplication by an
algebraic polynomial. Concretely, this means converting certain differential equations into algebraic
equations. Of course, this has many consequences in applications, some of which will be presented in
subsequent lectures.

18.1. Riemann-Lebesgue Lemma

What can be said about the FT f of f € L'? For example: is f € L' (R)? This question is particularly
important in order the inversion formula

1=

£x) = 5= 7).

makes sense. Unfortunately, the answer is negative.

Example 18.1.1

Let f = recty € L'(R). Then, f(¢) = %4£ ¢ L'(R). O

In fact, f is qualitatively very different from its original f:

Lemma 18.1.2: Riemann-Lebesgue

Let f € L*(R). Then
i) fe®B(R)n L®R) (continuous and bounded) and

(18.1.1) | Flo < [1£11, VE € R
ii) Furthermore,
(18.1.2) fngr_rloo f(&) =0o.

Proor. The continuity follows by continuity of integrals depending on parameters. Indeed, setting
f(x, &) = f(x)e™i¢* we have f(f,£) € L' (R) for every £ € R; f(x, 1) € €(R), a.e. x € R; the following
bound holds

If()e 7 < |f(y)] e L'(R).

129
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Thus, hypotheses of Thm 7.1 are fulfilled, f € €(R). The bouns (18.1.1) follows from

7€) < jR F()e| dy = jR FO) dy = I f]h-

The proof of (18.1.2) is more complex. We omit here this proof, we will obtain it under more restrictive
assumptions in next results.

18.2. Fourier Transform of Derivative

The Riemann—Lebesgue (RL) lemma does not ensure that f e L' (and indeed, this is false). Knowing
that f € % (R) ensures there are no integrability issues on any finite interval [a, b]. Thus, the issue
concerns the behavior of f at +£00. According to the RL lemma, f (&) — 0 as ¢ —> +oo, but this is
insufficient to conclude. However, as with FS, by imposing some regularity on f we obtain more precise
behavior at +c0 and, ultimately, integrability. Before we attack the main result, we need to introduce the
concept of weak derivative:

Definition 18.2.1: weak derivative

Let f € L'(R). We say that 30, f € L'(R) if there exists a function g € L'(R) such that

(18.2.1) f(b) — f(a) = J g(x)dx, a.e.a,b eR.

a

Weset 0, f := g.

It can be proved that the definition is well posed modulo a.e. equivalence.

Example 18.2.2

If f e L'(R) n €' (R), then 0, f exists pointwise in the ordinary sense and, according to the
fundamental theorem of Integral Calculus, the identity (18.2.1) holds with g = d,f. So, if
Oxf € L'(R), the ordinary derivative is also the weak derivative.

Example 18.2.3

If f(x) = e~ |, then f € L'(R) has weak derivative 0, f (x) = —sgn(x)e~*! (defined for x # 0).
Proor. Indeed,
o ifl<a<b

b b
I —sgn(x)e ¥ dx = f —e N dx=[e*]"Zh =7t — 79 = f(b) — fla).

a a

e if a < b < 0 the argument is similar.
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e ifa < 0 < b, we have

LIZ —sgn(x)e PMldx = fao e~ dx + fé’ —e " dx = [ [XZ0 + [e Xk

=(1—e+(e?—1)=e?—e?= f(b) — f(a).

Proposition 18.2.4

Let f,0,f € L'(R). Then
(182.2) Oxf(§) = iEf(£).

In particular:

(18.2.3) 7(8)] < “9§|‘|1.
More in general, if 0% f € L'(R), k = 0,1, ...,n, then
(18.2.4) f(€) = ()" f(£).
In particular:

(18.2.5) 7)< ‘Tﬂf I

8T = | ot e e e = [fwe ST - [ pwo (i) an,
The key remark is f(x) —> 0 at x —> 400 (9), Indeed,

X oo
f(x) = f(0) = L oyf(y) dy — L dyf(y) dy € R, because oxf € L' (R).

Therefore the lim,_, 4+ f(x) exists finite. Being f is integrable, such a limit cannot be anything else than

0. Now, being ¢ ~'¢¥ bounded function, we obtain that [ f(x)e~'¢ x]ij_rz = 0. Hence

(&) = - IR Fx)0x (e77¢%) dx = ig fR Fx)e™ dx = ig f(£).
This proves (18.2.2). For the bound (18.2.3) we have

oo 0f ()] 081D 0y S
\f(f)\——w| < e

The general case of the formula (18.2.4) can be obtained iterating the formula (18.2.2).

“Warning! This is not true in general for an f € L'(R): for example f(x) = x1z(x) € L'(R) (clearly f = 0 a.e.) but
f is not even bounded as |x| —> +o0.
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Example 18.2.5

Let
0, x < —2a, x = 2a,

fa(x) :=<{ x4+ 2a, —2a <x<0,
—Xx +2a, 0<x<2a.

Compute 0, f, and deduce fa

Proor. Clearly f, € L*(R). Moreover,

0, x<—2a, x> 2a,
axfa(x) = 1, —2a <x < 0, = 1[_2a’0](x) — 1[0’2a](x) e Ll(R)
-1, 0<x<2a.
By (18.2.2) X B
i£a(§) = O al®) = X001 (©) — X0l ()
and since
100®) = 1) (+0). — 1 a0y (€) = recty G+ a)(8) = o6 ),
Similarly |
1020 (£) = recty (£ — a)(&) = e—iaé‘w.
Thus | | ¢ 2
Onfalf) = (e19€ — emiat) Sm;aﬂ o (Sm(f)) ’
hence, finally E
2o _ sin(ag))2
fule) (—f |

For n = 2, bound (18.2.5) ensures integrability. This yields a simple test for f e L

Corollary 18.2.6

If f,0xf, 0%f € LY(R), then f € L(R).
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Proor. By (18.2.5)
= 193/, K
fél<s—=F— =4
fen< =g =g
Now, by RL lemma f € €(R), thus f is integrable on any closed and bounded interval. To establish
integrability on R we look at behaviour of f at +oo. Thanks to the previous bound, |f| decays faster than
%, which is integrable at +00. The conclusion now follows.

18.3. Derivative of Fourier Transform

The (18.2.2) shows a remarkable feature of the FT: the FT converts “derivations” into “multiplications by
i¢”. Reversing the order of the two operations—namely, FT and differentiation—the same phenomenon
occurs: the FT converts “multiplications by —i&” into “derivations”. Here is the precise statement:

Proposition 18.3.1

Let f € L'(R) such that x f(x) € L*(R). Then

L —_

(18.3.1) 30 £ (&) = [(—if) F(})](€), V& e R.

Proor. It is an application of the differentiation under the integral sign. By definition

7 = [ reeiera.
R
Differentiating,
06O = | —ixflr)ei d = [EFERIE)

To justify this, we need to dominate —ix f (x)e~*¢* uniformly in & with an L' function in x. But this follows
immediately by our assumptions being

|—ixf(x)e™"¢¥| < [xf(x)| € L', V€ eR.

Combining formulas (18.2.4) and (18.3.1) we obtain the relation
(18.3.2) (~igyikf = oL | o) F|.

A remarkable consequence of this relation is the following

Proposition 18.3.2

FT applies S (R) into itself, that is: if f € S(R) then f € S(R).
Proor. Let f € S(R). To show that f € S(R) have to check two facts:
i) f\ € €%,
ii) £ is rapidly decaying at 0.
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Let’s see how both are direct consequences of the multiplication-derivation duality. Indeed, since f € &
we have x¥f € L'. By Proposition 18.3 it follows that 36'; f = —it*f € B(R) (Riemann-Lebesgue).

Conclusion: f € €* for every k, that is f € G”.
Moreover, by formula (18.3.2)

— (18

168)" 0 7€) = [0 R A1) = 1" (i) Fll = Chse < +o0.
Therefore

i“ﬁi(l + €N 0k (€)| < +o0, Vh, k,

and this precisely means that f € §(R).

18.4. Convolution

Another remarkable property of FT is that it converts convolution products into algebraic products:

Theorem 18.4.1

Let f,g € L'(R). Then
(18.4.1) Fvg=f2

Proor. By Young inequality, f * g € L' so FT makes sense. Computing its FT we get:

2o = [0 ar=[ ([ 1r-nst ac) e

- [ ([Lro-nswee ar) o

rn [ glayentes (j fly = x)em070 dy) dx
R R

Remark 18.4.2

Here’s another argument that shows that convolution product has not units, that is 46 € L' such
that f « 0 = f forevery f € L'. If a unit § exists, then

fxdo=f <« fo=f VfelLl

So, for instance, taking f the Gaussian, f is still a Gaussian, thus in particular, f # 0 always, we would
obtain

~

6(6) =1

But, according to RL lemma, §(¢£) —> 0 for & —> +c0 and this is impossible.
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18.5. Exercises

Exercise 18.5.1 (x). By using the multiplication-differentiation duality, compute |j21[,1,1].

2

Exercise 18.5.2 (x). Compute the FT ofxe_"2 xe Y,

Exercise 18.5.3 (+*). Let a > 0 and define f,(x) := e~ 1o o[(x). Compute the FT of f, * fp (with
a,b > 0).

Exercise 18.5.4 (x%). Leta,b > 0, a # b and define

e_alx‘ — e_blx‘

fa,b(x) =

Is fap € LY(R)? If yes, compute f/a\b

x2
2

Exercise 18.5.5 (xx). The scope of this exercise is to compute the FT of the standard gaussian f (x) = e
in a “smart” way. Start noticing that f'(x) = —x f(x), hence apply the FT both sides. . .

Exercise 18.5.6 (+%). Let f € L'(R) be such that f',xf € L'(R). Show that fe LY(R).
Exercise 18.5.7 (x#). Let f € §(R"). Compute &;‘ where Af = Z;l:l ajz.f ((here 512. = 0)20,).

Exercise 18.5.8 (+++). Let f,xf € L*(R) be such that IRf(x) dx = 0. Let

g(x) := Jxoo f(y) dy.

i) Check that g is well defined and belongs to L'(R).
ii) Determine the relation between the FT of g and that one of f.

Exercise 18.5.9 (xxx). Let f € L' and define

Zerp
fe(x) = (e : f)(—x).
i) Check that f is well defined.
1
ii) Show that f. = f.






LECTURE 19

Inversion Formula

This Lecture is devoted to prove inversion formula
F) = 5 (=)
X) = — —X).
2

19.1. Main result

Theorem 19.1.1

Let f € L*(R) be such that f € L!(R). Then, inversion formula holds in the sense that

(19.1.1) flx) = %?(—x), a.e.x €R.

Proor. A naive attempt to prove inversion formula would start noticing that
f(=x) = f (J f(y)e™' dy) SENdE = | f()e't ) dyde.
R \JR RxR

Here, there is a first trouble. Fubini’s thm applies provided f(y)e’¢ =) is L'(R?) in (y,£). However,
unless f = 0 a.e., we have
J.

So, to make this false departure a true one, we introduce a weight e~ 2¢°¢” that will be eliminated letting
€ | 0. That is, let’s consider the integral

PO dydg = [ 17(0)] dvdg =+

Io(x) = | f(y)e 2= 8760 dydg
R2
Notice that now f(y)e™ 2 €% /€= js L1(R2) in (y, &) being
2 &2 1 2 &2 2

f fly)e 3 € G dydfzj PO dyae | £y 55

R2 R2 &
This allows to use RF on /.. We will do in two ways. On one side,

) = | (J e dy) e g = [ flere i e g
R \JR R

To compute the limit when & | 0, we apply dominated convergence. Notice that
o f(&)e 257X s f(£)eit7, ae. £ €R;
o [f(§)e 2" elex| = |f(£)|e725°¢" < |f(¢)] € L'(R), Ve > 0.

137
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Therefore,

(19.1.2) I(x) — J f&)e't* d¢ = f(—x), Vx eR.
R

On the other hand, we may also write

u@y—k(keﬁ*faﬂ*”&)f@ww

£2

The innermost integral is the FT of gaussian e 2(/=%) evaluated at x — y, thus

DB o 2 _ (x=y)?
j e B g =\ [ZeTRE = 5u(x - ),
R

where (6 ) is the Gaussian approximate unit. Thus
() = [ F0)0ule—3) dy = £ 20,

1
Now, by (11.2.1), f % ¢ L, f for & | 0. We know that this is not necessarily a point wise limit, however,
extracting a suitable subsequence, we may say that

I.(x) = f#6:(x) — f(x), a.e.x€eR.

Combining this with (19.1.2) we get the conclusion.

Example 19.1.2: Cauchy distribution ()

(19.1.3)

Proor. Thisis a calculation that, to be done by the definition, requires non trivial techniques of calculus
for integrals. He we illustrate how inversion formula provides a remarkable shortcut. Recall that, according
to (17.1.4)

= 2a
e—altl(¢) = = £eR, (a>0).
From this, it is evident that 5-e—4/#l(¢) = a241r§2 e L'(R) and since also z—e~“l#l € L!(R), according to
inversion formula we obtain
1 _ L atipy = L pmal-el _ 1 —ale
a2+ﬁ2(§)_2ae (g)_Qae ~2¢ '

Example 19.1.3: (sx)

Let f(X) = m

——

i) Use multiplication-derivation duality to compute £ (#) (hint: xf(x) = 0y ...).
ii) Use i) to determine f.
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iii) Use f to compute

. 1 1
xf(x) = (1 +xx2)2 = _5(7)(1 + 2
o) - o |
@) = —%axl +1ﬁ2 (&) = —%(if)l +1 7 (&) = ige—hfy

ii) Now, recalling that

~ o —

06f(€) = BT G)(€) = igée 1€ = —qee el

In particular f is a primitive of —%f e~ €1, Let’s determine this. Because of the modulus, we distinguish
& = 0by ¢ < 0. In the first case,

~

1 1 1
f(é) = —foeff dé +c = 1 (fe‘f - J e ¢ df) te=7 (e +e ) +c
In the second case
A~ 1 1 1
f(é) = —ije‘fdf—&-c: ~7 (fe‘f—Jef df) te=—7 (€et —e®) + ¢
To determine ¢, ¢’ we notice that, since f € L'(R), according to RL Lemma, f(f) —> 0as |£] — +o0.
In particular we get easily that ¢ = ¢’ = 0. The conclusion is

E20, =1(e7d+e79),

~ 1
Fe = = 2¢7 gl + 1)
§<0. =g (éef —ef)

iii) We can easily reduce the two integrals to suitable Fourier integrals
~ 1 .
_ T X gy
e T
Indeed: in the first case we have

o 1 1 1~ 1
o dr==| — == -
L 122 ™ QJR d+x22 @72 0= 17

ix —ix
—e

2i

+00 . 1 +00 ix +0o0 —ix 1 1 7
fo (1543?)2 dx =5 ( (1-ix2)2 dx + Jo (1e+x2)2 dx) =2 IR I7x2)2¢ " dx

About the second, recalling that sinx = ¢ , we have

19.2. Inverse Fourier Transform

We can look at FT as a transformation that applies f € L' into f If the domain of this transformation
is clear (L), not the same can be said for its co-domain. For instance, according to Riemann-Lebesgue’s
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Lemma 18.1.2, we know that f € € (R) and f(+00) = 0, so we can say that
TILYR) — Go(R) =: {g € B(R) : g(+o0) =0}

Notice that the bound (18.1.1) tells that this mapping is continuous. Inversion theorem implies also
injectivity:

Proposition 19.2.1

The FT is injective, that is

Proor. If f = g then, by linearity f g = 0. Now, since f — g € L' and, trivially, f g=0¢€elLl,
according to the inversion formula,

(f—8)x) = %f;—\\g(—x) = %6(—)6) =0, ae.

We may wonder if the FT is also surjective, that is, a bijection from L' to @y. Unfortunately, this is
false. This fact makes the inversion problem non trivial: given a function g = g(¢), determine (if any) a

Fourier original of g, that is a function f such that f = g. A partial answer to this problem is provided
by the following

Corollary 19.2.2

Let g € L'(R) be such that g € L(R). Then, there exists a unique Fourier original for g,

f(x) = =—g(—x), a.e.x eR.

Now, setting f(x) := 5-g(—#)(x), recalling the properties of FT, we have fle) = iﬂ?(—f) = g(&).

The ”inverse” of FT is the operation
o 1 ixé
= = — dé.
g(x) 2ﬂ8 J 4

Basically, this is again the FT again. This might leads to think that “perhaps” FT is a bijection on L!.
This is false! As we know, rect; € L' but rect; (¢) = m ¢ L'. In fact, the image of L' FT is difficult
to be characterized. So, what we can say is that FT is a bljectlon on a subspace of L',

{feL': felL'.
Unfortunately, since f cannot be computed explicitly, it is hard to characterize condition f, f e L.

Nonetheless, noticed that, for f € S(R) = L'(R) we have also f € §(R) < L!(R), we can say that the
FT is a bijection on the Schwarz space S (R).
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19.3. Exercises

Exercise 19.3.1 (). Let

sin x
&)= v ey
Compute the FT of f.
Exercise 19.3.2 (). Leta,b > 0, a # b, and set
1

8a,b(§) = . §ER,

(€% +a?)(¢? + %)
i) Show that g, has a Fourier original in L' and compute it. (hint: split the fraction and recall
that e=UEl(&) = . ..).

ii) Show that tg(1) has a Fourier original in L' and find it in term of the original f of g. Justify
carefully your answer.

Exercise 19.3.3 (x*). Let
Ecosé —siné
g(¢) = e
i) Isge L'? Isg € L'? Justify carefully.
ii) Discuss the problem of determining a Fourier original for g and determine it (if any).

Exercise 19.3.4 (x*+). Let

, & #0.

8(§)=T§4,§€R

Show that f admits an L' Fourier original and determine it. (hint: (€* + 1) = (&2 + /26 + 1)(£% —
V26 +1))
Exercise 19.3.5 (xx+). Let g(&) = %
1) Show that g has a Fourier original f.
ii) Compute IR xf(x) dx and f'(0).
Exercise 19.3.6 (+%). Let f € L'(R) be such that ff(f) e LY(R).
i) Deduce that f is a.e. continuous. (hint: check that f e LY(R)...).

—
—_

i) (+) Show that f has weak derivative g(x) := i f (—x).
Exercise 19.3.7 (xx). Fora > 0, let f,(x) := xQJr;aQ Use the FT to compute f, * fp for a,b > 0.
Exercise 19.3.8 (x:x+). Solve the equation

J fle—y)lePldy =72 xer,
R

in the unknown f € L*(R).
Exercise 19.3.9 (xx). Let fo(x) := e~ 1 1o (x).
i) Compute the FT of f,.

ii) Let g(¢) := ﬁ Is g € 6o? If yes, discuss the problem of determining a Fourier original
for g.






LECTURE 20

L2 Fourier Transform

Apparently, FT can be defined only for L' functions. The resulting operation has important features
but also a number of limitations. The major of these is, perhaps, the fact that we cannot clearly characterize
when inversion formula holds. In this Lecture we show that FT can be defined on L?(R). This (new)
transform has a big pro: it is a bijection and, even more, an isometry, on L?(R). In particular, inversion
formula holds for every L? function. There is, of course, something to pay, and this is with the definition
of the Transform, for which we do not dispose a formula, unless the function is also in L', and in this
case the L? transform coincides with the L' definition.

20.1. Duality lemma

Differently from the case when the measure of the domain is finite, there is no inclusion between two
different L? spaces. For instance:

o f(x) = 5. f € L*(R) but f ¢ L'(R);
o f(x) = m feLY(R)but f ¢ L2(R).

Thus, it is not evident how can we define f for f € L%(R) when f ¢ L'(R). Nonetheless, the following
Lemma suggests that FT should have some remarkable property with the geometry of L?:

Lemma 20.1.1: duality Lemma

Let f,g € L'(R). Then

(20.1.1) fe=| fs.

ProoF. First notice that both members of identity (20.1.1) are well defined: f,g € L'(R) implies
f.g€ L®, so fg, fg € L'. The proof of(20.1.1) is just an easy computation:

FE@) dv = | fOx) (| gOe™™ dy ) ax "EM | g(y) (| fx)e™™ dx ) dy
R R R R R

~

- jRg@)f(y) dy.

Apparently, the duality formula (20.1.1) can be interpreted as

&) ={fr8).

143
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However, this is not correct for two good reasons. First, in general none of f, g, f, g € L?, so the scalar
product does not make any sense. Second, f and g are C valued functions. Thus the natural L? structure
for this case should have hermitian product

Gw=| sz

To cope these two objections, we consider now the L' FT restricted to Schwartz class S(R) = LY(R) n
L%(R) with respect to hermitian product. It holds:

Proposition 20.1.2

Let (-, -) the standard hermitian product of L?(R). Then

~ 1
(20,12 (F.®) = 51,0, Vg€ S(R).
In particular,
~ 1
(20.1.3) I1fl2 = gllsz, VfeSR).

Now,
E5=LAWw%ww=Laﬁw”@=§ea

Therefore, since inversion formula holds for Schwartz functions,
S 2 1_ 1_
g(x) = g(=x) = 5—8(=(=x)) = 5—g(x),

thus q q
For=5 [ 18- 309
The (20.1.3) follows taking f = g in previous identity.

20.2. Plancherel Theorem

We already know that FT maps &'(R) into itself. The proposition 20.1.2 says that if we look at §'(R)
as a subspace of L2(R), then
~: 8(R) c L}(R) — L*(R)

preserves length of vectors and angles modulo a scaling factor. This is the key for the

Theorem 20.2.1: Plancherel

There exists a unique extension of FT to L?(R). This extension, called Fourier-Plancherel
Transform (FPT),
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i) coincides with usual L' FT for f € L' n L?;

i) fulfils
~ 1
(20.2.1) (f,8) = 5=(f-8), Vf,g € L*(R).
and the Parseval identity,
~ 1
20.2.2 = ——|fl2> Yf € L}(R).
(20.2.2) 112 \/ﬂﬂf\!z felL*(R)
iii) fulfils inversion formula:
a.e. 1 ﬁ
(20.2.3) flx) = o f(—x), Vf € L% (R).
iv) is a bijection on L2(R) with inverse
sz 1 =
@) = = 7(=»)

ProoF. We start proving the existence of the transform. Let f € L?: by density, there exists (f,) = &

such that f;, 2y f. Consider ( fn) c & < L2. We claim that this is a Cauchy sequence. Indeed,

~ ~ — (20.1.3) 1
||fn7me2 = anfme2 = 2_an7me2
Fis
Since (f;) is L? convergent, (f;,) is a Cauchy sequence, hence also ( ﬁl) it is. We define
~ L2 ~
FEim f,.

This definition is independent of any particular approximating sequence (f,). Indeed, if (g,) < &,

gn L—2>f, then
~ — 1 1
Ifn = 8nllz = fn = gnllz = o fo = gullz — o—|.f = fl2 =0,

that is lim,, fn L lim,, g,. With this the existence is shown. It remains to verify properties i) to iv).

i) Let f € L' n L?. We temporarily denote by f the L' FT, and by f the "new” L? FPT. The claim is

~ ~ 1 2

f = fae. Let (f,) © & be such that f, LK f. This is possible according to the mollification theorem.
~ 2 ~ ~ ~

Therefore, on one side, f, EEN f, so, modulo a subsequence, f, &R f. On the other side, by RL Lemma

bound | f, — fleo < |fu — f|1, so, in particular, f, LY, f. therefore f, <% f. Butthen f = f a.e.

ii) Both isometry (20.2.1) and Parseval (20.2.2) identities follows from the definition of FPT. For instance:

if f,g e L?and f L limy, f,, 8 L lim,, g,,, with (f,), (gn) © &, then, by the continuity of the inner
product,

~ ~ 1 1
<f7 g> A <fn, gn> = §<fn’gn> - %<f7 g>'

iii) Let f € L2 and f L lim,, f, with (fn) © &. Notice that, since FT applies & into itself, ( fn) c &, thus
according to the definition of FPT,

) XD
7= lim f,
n
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Since inversion formula holds on Schwartz functions in strong form £, (x) = 27 f,,(—x), we have

FE tmonfu(-9) £ 2nf(-4). — Fl0) S xf(-).

from which conclusion follows.
V) exercise.

Here is a genuine example of FPT.

Example 20.2.2: ()
Let sinc(x) := S2X Then sinc € L*\L' and

— 1
sinc(¢§) = 3 1[_2,9)(x).

In particular, this example shows that, differently from L' FT, the FPT of f is not necessarily a
continuous function.

Proor. First, sinc € L2. Indeed,

J |sinc x|? dx = J
R R

Function ( ) is continuous in x = 0 and it is also bounded by % at +00. Therefore it is integrable on
R, that is sinc € L? and the L? FT can be computed. Notice, however, that since sinc ¢ L', the L' FT of
sinc is not defined. Now, recalling that

. 2
Sl x

dx.

sin x
X

rect; (£) = 2 sinc(¢),
applying both sides the L? FT and recalling the inversion formula

1/\
— j——

1 1 1
sinc(¢) = §rect1 (é) = §rect1(—x) = érectl(x) = 51[,2’2] (x).

In the previous example, the FPT has been computed through a lucky trick. In general, for f € L2, there
is no integral representation for FPT. The most closest to be a formula is provided by the

Proposition 20.2.3

Let f € L?(R). Then

2 R 9
(20.2.4) f©E lim J F(x)e "% dx.
—-R

We leave the proof of formula (20.2.4) to exercises. In any case, this formula has been handled with care:
indeed, the limit is in L? sense, and as we know, it is not necessarily a point wise limit. We might have
infact that r.h.s. of (20.2.4) is never convergent!
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20.3. Properties of FPT

FPT fulfills basically the same properties of FT. In particular, we have same formulas for FPT of
derivative, derivative of FPT, FPT of a convolution. Of course, statements have to be adapted to the L2
setup and proofs have to be redone from scratch because L' proofs rely on the integral representation of
FT. We will leave most of the proofs for the exercises.

20.3.1. Duality Lemma. Duality lemma extends to L? in a quite simple and natural way:

Lemma 20.3.1

Let f,g € L?*(R). Then
8= fe
R R
Proor. We have
a = = - 1,22 L7 onz f.g f
[ ra=] 2= B =8 - 5P R0 = g F2mg (-0 - Fp = | Fe
R R R

20.3.2. Derivative of FPT. Respect to FT properties, for the FPT we need to start from the transform
of derivative. We have the

Proposition 20.3.2

Assume f,xf € L?>(R). Then
(203.1) 0 £(€) = =it f (©).

Proor. The first remark is that, since f,xf € L2, it follows f € L!. Indeed,

Lin= [ o+ ir 2 ([ a5 @) - (La+mrere ) (P

Thus, f € L' n L? and f makes sense as FT too. Now, to prove (20.3.1), we have to verify that

~

~ &
7 — Fo) =j0 W (n) dn.

To this aim, notice that, by duality,

& P S
j ey f Lo, 70F = —ij Trove) (1) £ (x) dx.
0 R R
Now,

——— —_— —

€
58 58 (‘;: Sll’l(—x) 2 £x
I1o,e1(x) = L[—g/2,£/21(8 — €/2)(x) = e™" 2 rects jp(x) = e 2x2§ -

—igE X
= —é S —
X 2’

£
EJC
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. . [ EX _iéx .
and, recalling of Euler formula, sin % = 2% (e’ 2 —e 2 ), we obtain

thus

20.3.3. FPT of the derivative. We can now show the FPT of the derivative formula:

Proposition 20.3.3

Assume f, 0 f € L%(R). Then

Proor. Since §(R) is dense in L?, we have that
Ocf =ibf, = (@:f.8) = (itf.8). Vg e S(R).
Now, by duality,
Gf.e = [ ief(w® de = | o) v =~ [ fads
We now aim to integrate by parts. First notice that
f(b)? - fla f 8ef2(x dx—f 2f0.f d.

Being f,0,f € L2, by Cauchy-Schwarz inequality we have f0,f € L', thus, letting ¢ —> —o0 and
b — +00 we get that 3f(£0), and since f € L2, necessarily f(+00) = 0. Therefore, recalling also that

?e S,
~ x +00
[ 7ozt ax = 108 - |t g v = - [ s ax
R x_—oo R
Therefore,
Gfgy =+ j 0§ = | B75 =G oo
R R

as desired.

20.3.4. FPT of convolution. Also for the convolution, the FPT converts convolution product into
an algebraic product.

Proposition 20.3.4

Let f € L'(R) and g € L*(R). Then
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Proor. By Young inequality f g € L?, thus its FPT is well defined. Let (g,,) = & such that g,, Z. g

and consider f * g,,. According to Young inequality (f * g,) = L?. We claim that f * g, AN f = g. This
follows by Young inequality:

If*g—f*gnl2a=If*(g—gnlz<I|flllg —gnllz — 0.
Thus,

—_— L2 —_—
f#gn— fxg.
Now, since (g,) = & < L' we have also that

f*gn=fgn
We claim that this converges in L2 to f g. Indeed,

o B N RL ~
178 — f&nl2 = |F(8 —&n)ll2 < [fllg — &nll2 — 0.

In conclusion,

~ L2 Al — 2 —
fe8— fen=F*gn — [ =g

20.4. Exercises

Exercise 20.4.1 (x). Compute the FPT of f(x) :== 7.
Exercise 20.4.2 (+#). Let f(x) := .
i) Is f e L(R)? Is f € L*(R)? R .
ii) Show that at least one of FT or FPT of f exists and determine f (hint: XLH = % =
5.

iii) Show that f can have sense only in one of FT or FPT.
Exercise 20.4.3 (+++). Show that if f € L>(R) then

R
(20.4.1) G J F()e € dy.
R—+0 R
Use this to compute the FPT of
f(x) := sinc(ax).
Exercise 20.4.4 («x). Let a,b > 0. Check that the integral
+9 sin(at) sin(bt
J sin(a )2s1n( ) it
t
—00
is well defined and use the FPT to compute its value.

Exercise 20.4.5 (+%). Let g(&) := |f|++1

i) Isg € L'? Is g € L?? Has g a Fourier original in L' ? And in L?? Justify your answers.
ii) If g has a Fourier original f, compute

[L1rerpa
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Exercise 20.4.6 (+x+). Let f € L?>(R) and

k+1 ) N
fex) :=J o€ () de.

k

i) Check that the fy are well defined and fi € L*(R) for every k € Z.
i) Check that

P
f= Z Nz
k=—00
Exercise 20.4.7 (x++). By using FT, compute the convolution f, * f, of two Cauchy distributions where

falx) = ﬁ Use this to compute

Vnp
lim\/ﬁj fix fix--- % f1 dx.
n Jna ————

n—times

Exercise 20.4.8 (+x%). Let f € L?(R) with weak derivative f € L>(R). Prove the Heisenberg inequality

~o I
sl > L2,
(hint: || f|3 = JR |f|? dx = J(x)’|f|2 dx = ... Justify with care) Can you determine when equality

holds?
Exercise 20.4.9 (+++). Let T : §(R) — S'(R) be defined as
Tf:=f, feSR).

Look at T as an operator on functions.
i) Prove that 74 = I (here T* =T o T o T o 7).
ii) Prove that all possible A € C such that Tf = Af for some f € S(R), f # 0are 1 = +1, +i.
iii) Determine f such thatTf = f.
iv) Usethe multiplication-derivation duality T'(0x f) = —i27T f to determine f suchthatT f = Af
forA = —1, +i.



LECTURE 21

Applications to Integro-Differential Equations

FT is a versatile tool that can be exploited to solve different problems. Among other features, FT
properties of derivatives and convolution play an important role to solve certain equations. In fact, FT
converts derivatives into multiplication by polynomials and convolution products into algebraic products.
As a consequence, certain differential or integral or combined integro-differential equations can be
converted into algebraic equations. The idea is that, given an equation

&lu] =0,
in the unknown u = u(x), we apply FT (or FPT) to both sides, obtaining an algebraic equation for ,
Flu] = 0.

The idea is that this equation is easier than the original one, leading to a solution . At this point, to get

u we need to invert FT (or FPT) to compute #. In this Lecture we illustrate this method and ideas on a
number of significant cases.

21.1. An ODE
We start with an example for which we do not need FT.
ExampLE 21.1.1. Determine all u € L* with u',u” € L' solutions of the equation
" x|

u —u=e ", xek.

Prookr. Since u,u’,u” € &' and also eI € L, we can apply FT to the equation: we get

—_— 2

W —n=ell, e u—i= e
Since u”(£) = (i&)2i = —£2i(£), we obtain the equation
2
2 ~
— D= ——.
(& + i =775
Here you may appreciate how an ODE has become an algebraic equation. We can solve this obtaining
2

21.1.1 U= ———=.
G ey

Thus: ifu € L' with u’,u” € L' is a solution of the ODE, then ii is given by previous formula. Now, to go back to
u we need to solve the inversion problem (21.1.1). Since we are here in L' context (the argument for L? solutions
would be easier), we may notice that g := —@ € L' and clearly also g/, g"” € L', so g € L'. Thus, equation
(21.1.1) has a unique solution

u(x) (=x).

= Eg
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Instead of proceeding in the calculation of g we may observe that

2 \? [\ ———
(1 +§2) - (e—m) = o=l = ¢—IH x g~ 1l

1 1
u(w) = —zew e () = 2 JR eIl gy

SO,

Computing the convolution

0 +00
J e~ g1 gy = J e~ dy +J e~ gy,
R —0 0

If x > 0, previous integrals are
0 (x— (x— _ +0O  _(y_ —
:J‘iwe (X y)e.deJ,—J‘(;e ()C y)e Ydy+jx e (y x)e ydy
=e " IEOO e dy +e ¥ ISC dy + e* I:OO e 2 dy
—Xx _ —2x _
=S txe ¥ e = e (1 +x),

while, as x < 0,

ffoo e~ (x=Y)e¥ dy + f}? e Ye¥ dy + f(;roo e~ =Xy gy
=e ¥ ffoo e dy + e~ L? dy + e* IOHO e 2 dy

= % — xe* +ex% =e*(1 —x),

thus u(x) = —2e= (1 + [x|).

The conclusion of this argument is: if u,u’,u” € L' is a solution of the ODE then, necessarily, u(x) =
—3e=*I(1 + |x[). This, however, does not prove yet that such u is a solution: we should now verify that u has
really first and second derivatives a.e. (easy) and this will close the argument. O

21.2. Convolution Equations

Convolution property (18.4.1) can be useful to solve certain integral equations that arises in application,
where the integral part has convolution form.

ExampLE 21.2.1. Determine for which values of real parameter A the equation
u(x) = /IJ e lu(y) dy + eI,
R

in the unknown u € L' has a unique solution and, in that case, find it.

Proor. The equation can be rewritten as
u=ne 1wy 4 o lHL
By applying to both members the FT we obtain

—

= /le/—mﬁ—l— e/—m, PN (1 —/le/_-m) 0= et

<)

Now, recall that by (17.1.4)

— 2

el (¢) = e
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therefore
() = ——— 2
u = = .
l-Afm 1+ (1-2)+¢

Let’s look at this . If 1 — 21 = 0, thatis 1 = %

2

&

and this function cannot be the FT of an u € L' (& is not continuous). The same happens if 1 — 21 < 0: in this
case we could write

0=

(1—=210) +&%= (V21 —1)(£++22-1),

hence
2

(6 —V2A—=1)(é +221—1)

n=

By this easily we deduce u ¢ L'.
The conclusion of these remarks is that a solution u € L' is possible only if 1 — 21 > 0, thatis 1 < % In this
case

~ 2 (17.1.4) 1 2¢/1—21 1 T2
[ R = e
(1—2) + &2 VIZ20(V1=22)2+&  J1-21
that is
L viaan
u(x) = ———e - o
&)= =%

21.3. Heat Equation

The classical equation describing the heat diffusion on an infinite volume is the PDE

Oru(t,x) = ”725xxu(t,x), t >0, xeR,
21.3.1)
u(0,x) = p(x), x e R,

Here u = u(t, x) represents the temperature at time 7 > 0 on each point x of an infinite and homogeneous
rod with initial temperature ¢. By a suitable use of FT we can easily determine a formula for the solution
u. To this aim we introduce the x—FT defined as

V(6 €) = u(t.D)(€) = JRu(z,x)e—ffx dx, £ € R,

Of course we should do some assumption like u(z,#) € L! to define this. Assuming also J;u(t,1) € L'
we may write,

ou(t, 1) (&) = jR Quut,y)e € dy = 4, ij,y)eify dy = o,u(t,8)(€) = o (1, ).

Here, the switching between derivation and integration requires some assumption. Let us skip this for
the moment, we proceed as if everything can be computed. According to properties of the FT

Ot (1,8)(€) = (—i&)?u(t,8)(€) = —€2v(1. ).
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So, in term of v the heat equation becomes

0_2
ov(t, &) = —752v(z, &), 1=0, £eR.

Moreover,

v(0,6) = u(0,8)(£) = #(£),
thus, to find v we have to solve the Cauchy problem
ov(t,€) = —ZE2(1,€), 120, E€R.
(21.3.2)
v(0,£) = @(¢), §ER.

For ¢ fixed, this is a simple Cauchy problem for an first order linear equation. This can be easily solved
leading to

v(1.€) = §E)e 1TE 120, £e R,
Now recalling the Fourier transform of the Gaussian

u2
2021

e_%a_2t§2 _ e

\/ﬁ(f),

we have

—

W D(E) = v(t.e) = ﬁm)e‘zﬁr T (go . e‘zfzz)@),

that gives, finally,

2 _ (x—y)?

1 _ & 1 G=y)®
= — o2t = — o2t
(21.3.3) u(t,x) o, ((p xe 2 ) (x) oo, JR p(y)e 2 dy,t >0, xeR.

Some remarks on this solution. First: it is not difficult to show that if ¢ € L', u € €*(]0, +0[xR)
and u is a solution of heat equation. This fact can be checked by direct verification, that is computing
0ru and Oy u (through derivation under integral sign) and checking that ¢,u = %26xxu for every t > 0
and x € R. (this is a technical but nice exercise that the reader is invited to do) Second: the u given
by formula (21.3.3) is not defined at + = 0. This poses a problem: in what sense u verifies the initial

condition u(0,x) = ¢(x)? We may provide the following justification. Since
1 2

T 30% —-
27T0-2l€ 2 . 61/ /o212

is an approximate unit,

1
u(t, ) = ¢ *0y ) /57 L tl0,ifpe L'(R).

Thus (21.3.3) fulfils the initial condition in a “weak form”. Last remark: formula (21.3.3) makes sense
for o € LP, 1 < p < +o0. In particular, ¢ € L makes sense. This is apparently conflicting with the
argument that led to (21.3.3), because at certain point we needed ¢ and, in general, there is no ¢ for a
¢ € L'. However, formula (21.3.3) makes sense. As pointed out in the first remark, it is not difficult to
check that (also in case ¢ € L®), u € €*(]0, +o0[xR) and it solves the heat equation. In other words,
formula (21.3.3), derived through FT, goes much beyond the original problem setup.
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21.4. The Black-Sholes Equation

The Black—Sholes equation is a PDE describing the behavior of the value of a financial derivative
written over a risky asset whose price is stochastic. We do not enter in the derivation of the equation, we
will limit to a qualitative description of the model.

The Black—Sholes model describes a simple market model where two assets are available:

o arisk free asset, called bank bond, delivering a deterministic instantaneous return rate r, that is

dB(t)

B(1) = rdt.

e arisky asset, called stock, delivering a stochastic instantaneous return

a;ST(tt)) = A dt + gaussian r.v. mean 0 and variance o2 dt.
The uncertainty delivered by S makes uncertain any investment on it. In other words, while B(T) is
deterministic, S(7') is a random variable. It is therefore natural to look to forms of protection against
financial risks ensuring a final payment F(S(7T')). This payment should be delivered by the issuer to the
owner of such a contract at time 7. The contract is written at time ¢ = 0 (initial time), when the owner
pays a sum to the issuer to receive such a right. A major question is: how much should one pay for that
contract?

Before Black and Sholes, such price was determined on the base of historical data. Black and Sholes
discovered that the price should be based on a rational mechanism. They introduce V = V(z, x), price of
the contract starting at time ¢ knowing that the value of the underlie is x, namely S(7) = x, and expiring
at time 7 delivering F(S(T)). They assume a simple financial principle: market is arbitrage free, that is
there’re no financial assets delivering certain profit or certain loss. By this it follows that, for example,
V(T,x) = F(x). Indeed, if V(T,x) < F(x), that is if the value of a contract written at time T when
S(T) = x paying F(S(T)) = F(x) at time T itself is less than F(x), then the buyer has a money machine:
they pay V (T, x) to receive F(x) realizing a risk free profit F(x) — V(T,x). Similarly, V(T,x) > F(x) is
impossible.

By similar arguments, Black and Sholes derived a condition on V(z,x) at any time ¢t < T. They
proved that V must fulfil the following PDE,

(21.4.1) o,V (t,x) + %a%?axxV(z,x) +rxd, V(t,x) —rV(t,x) = 0.

This, together with above mentioned condition V (7', x) = F(x) leads to the following problem:

OV (t,x) + 30220 V(t,x) + rxdyV(t,x) —rV(t,x) =0, 0<t<T, x>0,
(21.4.2)
V(T,x) = F(x), x=0.

The problem (21.4.2) is apparently similar to the (21.3.1). However, it is not evident how to use the FT
being the spatial domain x asymmetric. Setting y = log x, thatis x = ¢” and

u(t,y):=V(te),
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easily we have

oru(t,y) + $020yyu(t,y) + royu(t,y) —ru(t,y) =0, 0<t<T, yeR,
(21.4.3)
u(T,y) = F(e”), y€eR.

We can now use the FT to solve this problem. Let

v(t,€) = u(t,-)(€).

Then
OV + %UQ(—if)% +r(—ié)v —rv =0,
or
Oy = (%0252 +iré + r) V.

This is an ordinary differential equation in v(z, £) (¢ fixed). The final condition on u(T, y) becomes

—

v(T, &) = u(T,)(&) = F(eh)(£).

Therefore
V(I, é;) _ e(%0'2§2+ir§+r)(t7T)v(T’g) _ e_r(T_t)e_ir(T_t)fe_%O—Q(T_t)§2F/(—e\ﬁ) (f)

We can now return to y. First recall that

e —_

2
e T IS S =
20%(T —t)
thuse -
710-2(7"71‘)52 /\ﬁ N 1 72’172_ ﬂ
e 2 F(ef) = —————e¢ 20°VT—1 % F(ef).
2n02(T — 1)

Moreover, the multiplication by e " (T=)¢ in the FT means a translation in the variable of —r(T — 7) in
its original. Putting together these facts,

e
u(t,y) = e T e BT 4 F(ef) (3 — (T 1)

2no2(T—t)
o
— e r(T-1) y—r(T—t)—5) _e 20°(T—1)
¢ "[R F (e ) 2no2(T—t) d?].
Returning to V we finally obtain
7]2
3020
V(t,x) = u(t,]ogx) = e—r(T—t) J F(elogx—r(T—t)—n) € dn
R 202(T —t)
(214.4)
Z2
= ——1 — e 7(T-1) J F ( —r(T—r)+(m/ﬁ)z) ¢y
z: e xe 7
( o T—t) R \/ﬂ



21.5. EXERCISES

This is the famous Black formula, still used to price contracts. For instance, the call option is a contract
with payoff function F(x) = max{K,x}. The price atz = 0 if S(0) = x is

157
Z2
-5
V(0,x) = erTJ max {xe*rTJr(‘Tﬁ)z,K} ¢ dz
(0.5) R V2
1 _log K4 _z2 _z2
_ efrT J"' = ogx'i‘a—ﬁKe ) dz+ +00 xefrT+0'\/TZe 2 dz
-0 V2 (r\lﬁ log §+§ﬁ V2
1 K r Z2
1 K — VTl —5VT 7
=e T KD ( log — + Lﬁ) ~|—xe_rTJ ! e—oVTzE - dz
O'ﬁ X o —® V2r
K 2 _, 1 K
—e T (Kd)( log—+£ﬁ>+xe(2 )TCI><— log — — —
oT x o
where we denoted by

the distribution function of the standard gaussian.

21.5. Exercises
Exercise 21.5.1. Solve the following equation in the unknown u € L'

J u(x —y)e Pldy = 2¢7 ¥ — g=21x,
R

M”(.x) _ 1

Exercise 21.5.2 (x). Solve the following equation in the unknown u € L*(R) such that u',u" € L' (R):
2

f e Plu(x — y) dy = e Plsgn(x). (%)
R

Exercise 21.5.3 (*). Solve the following equation in two cases: i) u € L*(R), ii) u € L*(R):

j w(y)u(x — y) dy + u(x) = —
R

1 4a2
Exercise 21.5.4. Consider the Cauchy problem for the wave equation on an infinite interval

Ot (t,x) = c20x,u(t,x), t =0, x € R,
u(0,x) = p(x), x eR,

ou(0,x) =y (x), x e R.
Setting v(t,&) := u(t, 1) (), determine v(t,&). Deduce D’Alembert formula

u(t.) = 3 (ple 1) +plx— 1) + 3

x+t
5| wa

—t
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Exercise 21.5.5. Find the solution of the following problem
Oxxu(t,x) = Opxu(t,x), xeR, t>0,

u(0,x) = e X, x € R.

Exercise 21.5.6. Find the solution of the following problem

Oru(t,x) + toxu(t,x) =0, xeR, >0,

u(0,x) = f(x), x €R.
Exercise 21.5.7. Find the solution of the following problem

Oru(t,x) = e "0xxu(t,x), xeR, >0,

u(0,x) = e Xl xeR.
Exercise 21.5.8. Find the solution of the following problem

Orrut(£,X) + Oxxxxtt(t,x) =0, x€R, >0,

u(0,x) = rectl, xR,

ut(oax) = 09 X € R
Exercise 21.5.9. The model of heat diffusion with convection is described by the Cauchy problem
Opptt = 20yt + koyu, t>0, xeR,

u(0,x) = f(x), xeR.

Find the evolution of the temperature in the case ¢ = 1, k = % and initial temperature f(x) = e,



