Secodo appello di

Calcolo delle probabilità

Laurea Triennale in Matematica 21/02/2020

N. MATRICOLA.....

Esercizio 1.

Siano $\{X_n\}_{n\geq 1}$ e $\{Y_n\}_{n\geq 1}$ due famiglie di variabili aleatorie congiuntamente indipendenti su uno spazio di probabilità (Ω, \mathcal{H}, P) . Supponiamo che per ogni $\omega \in \Omega$ e per ogni n si abbia $Y_n(\omega) > 0$ e $X_n(\omega) \in \{-n, +n\}$ ed inoltre:

$$P(X_n = -n) = P(X_n = n) = \frac{1}{2}$$
 $Y_n \sim Esp(1)$

Siano infine:

$$S_n := X_1 \cdot Y_1 + \ldots + X_n \cdot Y_n \qquad \forall n \ge 1$$

$$\mathcal{F}_n := \sigma(S_1, \ldots, S_n) \qquad \forall n \ge 1$$

$$\tau_1 := \inf\{n \ge 10 : |S_n| > 10\} \qquad \tau_2 := \inf\{n \ge 9 : |S_{n+1}| > 10\}$$

- (a) Dimostrare che per ogni $n \geq 1$ le variabili aleatorie X_n e Y_n sono \mathcal{F}_n misurabili.
- (b) Il processo stocastico $\{S_n\}_{n\geq 1}$ è una martingala, una supermartingala o una sottomartingala rispetto alla filtrazione $\{\mathcal{F}_n\}_{n\geq 1}$?
- (c) Dimostrare che τ_1 e τ_2 sono due v.a. quasi certamente finite.
- (d) La v.a. τ_1 è un tempo di arresto?.
- (e*) Cosa si può dire di $\mathbb{E}[S_{\tau_1}]$?

Esercizio 2.

Siano $\{X_n\}_{n\geq 1}$ e $\{Y_n\}_{n\geq 1}$ due famiglie di variabili aleatorie congiuntamente indipendenti su uno spazio di probabilità (Ω, \mathcal{H}, P) , con distribuzioni

$$P\left(X_n = -\frac{1}{n}\right) = P\left(X_n = \frac{1}{n}\right) = \frac{1}{2}$$
 $Y_n \sim Esp(n)$

Infine per ogni n sia $S_n = X_1 + \ldots + S_n$

- (a) Calcolare la media e la varianza di S_n .
- (b) Dimostrare che la successione $\{S_n\}_{n\geq 1}$ è di cauchy rispetto alla norma L^2 .
- (c) $\{S_n\}_{n\geq 1}$ è una famiglia di variabili aleatorie tight?
- (d) Cosa si può dire della convergenza quasi certa di $\{S_n\}_{n\geq 1}$?

Esercizio 3.

Costruire, se esiste, un esempio di martingala $\{X_n\}_{n\in\mathbb{N}}$ tale che per ogni $n\geq 1$ si abbia

$$P\left(X_n = \frac{1}{n}\right) = \frac{1}{n}$$

Esercizio 4.

Siano $\{X_n\}_{n\geq 1}$ variabili aleatorie con distribuzioni

$$X_n \sim Geom\left(\frac{1}{n}\right)$$

sia inoltre per ogni \boldsymbol{n}

$$T_n := \frac{X_n}{n}$$

- (a) Calcolare la funzione caratteristica di T_n .
- (b) Dimostrare che $\{T_n\}_{n\geq 1}$ converge in disribuzione ad una v.a. esponenziale?

Esercizio 5.

Sia $\{X_n\}_{n\in\mathbb{N}}$ una successione di variabili aleatorie indipendenti ed identicamente distribuite, assolutamente continue con funzione di densità:

$$f(x) = \begin{cases} e^{1-x} & x > 1\\ 0 & x \le 1 \end{cases}$$

Consideriamo inoltre per ogni $n \in \mathbb{N}$ le seguenti variabili:

$$Y_n := \frac{X_n}{n}$$

$$T_n := \min\{X_1, \dots, X_n\}$$

$$W_n := \max\{X_1, \dots, X_n\}$$

$$Z_n := \frac{W_n}{n}$$

- (a) Studiare la convergenza in distribuzione, in probabilità, quasi certa ed in L^p di $\{Y_n\}_{n\in\mathbb{N}}$.
- (b) Studiare la convergenza in distribuzione, in probabilità, quasi certa ed in L^p di $\{T_n\}_{n\in\mathbb{N}}$.
- (c) Dimostrare che $\lim_{n\to\infty}W_n=+\infty$ quasi certamente.
- (d) Studiare la convergenza in distribuzione di $\{Z_n\}_{n\in\mathbb{N}}$.

Esercizio 6.

Sia $\{X_{i,j}\}_{i,j\in\mathbb{N}}$ una famiglia di variabili aleatorie indipendenti ed identicamente distribuite, con $P(X_{i,j} \in \mathbb{N}) = 1$ e $\mathbb{E}[X_{i,j}] = a \in (0,\infty)$. Sia infine $\{Z_n\}_{n\in\mathbb{N}}$ il seguente processo definito per induzione

$$Z_0 = 1 Z_n = \sum_{j=1}^{Z_{n-1}} X_{n,j} \forall n \ge 1$$

(La somma $\sum_{j=1}^0$ è vuota e quindi nulla. $\sum_{j=1}^{Z_{n-1}} X_{n,j} = \sum_{j\geq 1} X_{n,j} \mathbf{1}_{j\leq Z_{n-1}}$) (a) Calcolare $E[Z_n]$

(b) Dire (in funzione di a) se $\{Z_n\}_{n\in\mathbb{N}}$ è una martingala una sottomartingala o una submartingala