Secondo appello

Calcolo delle probabilità

10/02/2025

Teoria

Definizioni.

Dato uno spazio di probabilità (Ω, \mathcal{H}, P) una sotto- σ -algebra $\mathcal{G} \subseteq \mathcal{H}$ e una variabile aleatoria X in L^1 . Definire la speranza condizionale $\mathbb{E}[X|\mathcal{G}]$.

Teoremi. (Con le notazioni della definizione)

- (a) Date X e Y v.a. in L^1 . Dimostrare che se $Y \ge X$ q.c. allora $\mathbb{E}[Y|\mathcal{G}] \ge \mathbb{E}[X|\mathcal{G}]$ q.c.
- (b) (Proprietà torre) Dimostrare che se $\mathcal{F} \subseteq \mathcal{G} \subseteq \mathcal{H}$ allora $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{F}] = \mathbb{E}[\mathbb{E}[X|\mathcal{F}]|\mathcal{G}] = \mathbb{E}[X|\mathcal{F}]$
- (c) Dimostrare che se W e T sono entrambe speranze condizionali di X dato \mathcal{G} allora sono quasi certamente uguali.

Esercizi

Esercizio 1.

Costruire un esempio di martingala $(M_n)_{n\in\mathbb{N}}$ tale che per ogni $n\geq 1$ vale $P(M_n = 0) = \frac{1}{n}$

Esercizio 2. (10 punti)

Siano $\{X_n\}_{n\in\mathbb{N}},\ X,\ \{Y_n\}_{n\in\mathbb{N}}$ e Y variabili aleatorie reali su uno spazio di probabilità (Ω, \mathcal{H}, P) . Siano:

$$\mathcal{F} := \sigma\{(X_n)_{n \in \mathbb{N}}, X\}$$
 e $\mathcal{G} := \sigma\{(Y_n)_{n \in \mathbb{N}}, Y\}$

Supponiamo che le σ -algebre \mathcal{F} e \mathcal{G} siano indipendenti e definiamo:

$$T := X \cdot Y$$
 $T_n := X_n \cdot Y_n$ $\forall n \in \mathbb{N}$

- Dimostrare o trovare un controesempio: (a) Se $X_n \xrightarrow[n \to \infty]{q.c.} X$ e $Y_n \xrightarrow[n \to \infty]{q.c.} Y$ allora $T_n \xrightarrow[n \to \infty]{q.c.} T$.
- (b) Cosa seccederebbe nel quesito (a) se le variabili X e Y fossero invece a valori in $\overline{\mathbb{R}}$ (con la convenzione $\infty \cdot 0 = 0$)? Trovare un controesempio.
- (c) Se $X_n \xrightarrow[n \to \infty]{L^1} X$ e $Y_n \xrightarrow[n \to \infty]{L^1} Y$ allora $T_n \xrightarrow[n \to \infty]{L^1} T$.
- (d) Cosa seccederebbe se nel quesito (c) rimuovessimo l'ipotesi $\mathcal F$ e $\mathcal G$ sono indipendenti. Trovare un controesempio.

(e*) Se
$$X_n \xrightarrow[n \to \infty]{Prob} X$$
 e $Y_n \xrightarrow[n \to \infty]{Prob} Y$ allora $T_n \xrightarrow[n \to \infty]{Prob} T$.

Esercizio 3.

Sia $(X_n)_{n\in\mathbb{N}}$ una successioni di varibili aleatorie i.i.d. con distribuzione $X_n \sim Unif(-7,7)$. Siano inoltre per ogni $n \in \mathbb{N}$

$$T_n := \frac{X_1 + X_2 + \ldots + X_{n^2}}{n}$$
 $W_n := \frac{X_1 + X_2 + \ldots + X_{n^2}}{n^2}$

- (a) Calcolare $\mathbb{E}[X_n]$, $VAR[X_n]$, $\mathbb{E}[T_n]$, $VAR[T_n]$, $\mathbb{E}[W_n]$ e $VAR[W_n]$,
- (b) Le successioni di v.a. $(T_n)_{n\in\mathbb{N}}$ e $(W_n)_{n\in\mathbb{N}}$ sono martingale? (Giustificare la risposta.)
- (c) Cosa si può dire della convergenza di T_n per n che tende all'infinito?
- (d) Cosa si può dire della convergenza di W_n per n che tende all'infinito?

Suggerimenti

Esercizio 1. Provare con $M_n := X_1 + \ldots + X_n$, $(X_n)_{n \in \mathbb{N}}$ v. a. indipendenti con $P(X_n \in \{-2^n, 0, 2^n\}) = 1$.

Esercizio 2.

- (a) E' sufficiente la definizione.
- (b) La tesi non è vera nemmeno nel caso deterministico quindi basta prendere un controesempio a_n e b_n del caso deterministico e porre $X_n = a_n$ e $Y_n = b_n$.
- (c) $\mathbb{E}[|X_n Y_n XY|] = \mathbb{E}[|X_n Y_n X_n Y + X_n Y XY|].$
- (e) La convergenza in probabilità è metrizzabile (è indotta dalla distanza $d(X,Y) = \mathbb{E}[(X-Y) \land 1]$) quindi è possibile applicare il principio di convergenza per sottosottosuccessioni.

Esercizio 3.

- (a) $\mathbb{E}[X_n] = \mathbb{E}[T_n] = \mathbb{E}[W_n] = 0,$ $Var[X_n] = \frac{49}{3}, \ Var[T_n] = \frac{49}{3}, \ Var[W_n] = \frac{49}{3n^2},$
- (b) Dimostrare che non sono martingale.
- (c) Dimostrare che converge in distribuzione ad una Normale, questo può bastare. Si potrebbe anche dimostrare che non converge in probabilità con la legge 0-1 di Kolmogorov ma è molto più complesso.
- (d) Utilizzare la legge dei grandi numeri in maniera opportuna e poi la limitatezza $|W_n| < 7$.

Soluzioni

Esercizio 1.

Esempio 1.

Proviamo con una martingala additiva. Siano $(X_n)_{n\in\mathbb{N}}$ variabili aleatorie indipendenti e in L^1 e per ogni $n\geq 1$ poniamo

$$M_n := X_1 + \ldots + X_n$$

Supponiamo che le variabili aleatorie X_n abbiano valori in $\{-2^n, 0, +2^n\}$ cosi da avere $M_n = 0$ se e solo $X_1 = X_2 = \ldots = X_n = 0$. Vogliamo che le X_n siano a media nulla quindi $P(X_n = -2^n) = P(X_n = 2^n)$ resta solo da determinare quando vale $P(X_n = 0)$, tale scelta va fatto in maniera tale da avere $P(M_n = 0) = \frac{1}{n}$. Il primo caso (n = 1) è facile e si $P(X_1 = 0) = 1$. Poi per induzione:

$$P(M_N = 0) = P(X_1 = 0, ..., X_n = 0) = P(X_1 = 0, ..., X_n - 1 = 0)P(X_n = 0) =$$

= $P(M_{n-1} = 0)P(X_n = 0)$

da cui si ottiene

$$\frac{1}{n} = \frac{1}{n-1}P(X_n = 0) \qquad \Longrightarrow \qquad P(X_n = 0) = \frac{n-1}{n}$$

In conclusione una soluzione è data da $(X_n)_{n\in\mathbb{N}}$ indipendenti,

$$M_n := X_1 + \ldots + X_n$$

 $X_1 = 0$ quasi certamente e per n > 1

$$P(X_n = -2^n) = P(X_n = 2^n) = \frac{1}{2n}$$
 $P(X_n = 0) = \frac{n-1}{n}$

Esempio 2.

Sia $M_1 = 1$ q.c. siano $(X_n)_{n \geq 2}$ indipendenti con $P(X_n = 0) = \frac{n-1}{n}$ e $P(X_n = 1) = P(X_n = -1) = \frac{1}{2n}$ cosicché $\mathbb{E}[X_n] = 0$. Sia $\mathcal{F}_n := \sigma(M_1, X_2, \dots, X_n)$. Definiamo infine

$$M_{n+1} := M_n + X_{n+1} \mathbb{1}_{M_n \neq 0}$$

Si verifica facilemtne che $(M_n)_{n\in\mathbb{N}}$ è un processo adattato ed in L^1 Inoltre

$$\mathbb{E}[M_{n+1} - M_n | \mathcal{F}_n] = \mathbb{E}[X_{n+1} \mathbb{1}_{M_n \neq 0} | \mathcal{F}_n] = \mathbb{1}_{M_n \neq 0} \mathbb{E}[X_{n+1} | \mathcal{F}_n] = \mathbb{1}_{M_n \neq 0} \mathbb{E}[X_{n+1}] = 0$$

inoltre $M_n = 0$ se e solo se $X_2 = 0, \dots, X_n = 0$

$$P(M_n = 0) = P(X_2 = 0, \dots, X_n = 0) = \frac{1}{2} \cdot \frac{1}{2} \cdot \dots \cdot \frac{n-1}{n} = \frac{1}{n}$$

Esercizio 2.

(a) Per quasi ogni $\omega \in \Omega$ si ha $\lim_{n \to \infty} X_n(\omega) = X(\omega)$ e $\lim_{n \to \infty} Y_n(\omega) = Y(\omega)$.

Dunque $\lim_{n\to\infty} T_n(\omega) = \lim_{n\to\infty} X_n \cdot Y_n(\omega) = Y(\omega) \cdot X)(\omega) = T(\omega)$ (b) Siano per ogni n: $X_n = \frac{1}{n}$ e $Y_n = n$. Banalmente convergono rispettivamente a X = 0 e $Y = +\infty$ mentre si ha $T_n = 1$ per ogni n e T = 0.

IPOTESI:
$$\mathbb{E}[|X_n - X|] \xrightarrow[n \to \infty]{} 0$$
 $\mathbb{E}[|Y_n - Y|] \xrightarrow[n \to \infty]{} 0$
TESI: $\mathbb{E}[|T_n - T|] \xrightarrow[n \to \infty]{} 0$

quindi

$$\mathbb{E}[|T_n - T|] = \mathbb{E}[|X_n Y_n - XY|] = \mathbb{E}[|X_n Y_n - X_n Y + X_n Y - XY|]$$

$$\leq \mathbb{E}[|X_n (Y_n - Y)| + |Y(X_n - X)|]$$

$$\leq \mathbb{E}[|X_n|] \cdot \mathbb{E}[|(Y_n - Y)|] + \mathbb{E}[|Y|] \cdot \mathbb{E}[|(X_n - X)|]$$

vale
$$\mathbb{E}[|X_n|] \xrightarrow[n \to \infty]{} \mathbb{E}[|X|] < \infty, \quad \mathbb{E}[|Y_n - Y|] \xrightarrow[n \to \infty]{} 0, \quad \mathbb{E}[|Y|] < \infty$$
 $\mathbb{E}[|X_n - X|] \xrightarrow[n \to \infty]{} 0$
quindi $\mathbb{E}[|T_n - T|] \xrightarrow[n \to \infty]{} 0$

(d) Se rimoviamo l'ipotesi indipendenza allora le variabili T_n potrebbero non essere più in L^1 per costruire un controesempio basta trovare una v.a. in L^1 che non sia in L^2 e porre $X_n = Y_n$. Per esempio supponiamo che tutte le variaibli aleatorie X_n e Y_n siano uguali assolutamente continue con densità $F_X(x) = \frac{2}{x^3} \mathbb{1}_{(1,\infty)}(x)$ allora

$$\int_{-\infty}^{\infty} f_X(x) \ dx = 1$$

$$\mathbb{E}[X_n] = \int_{-\infty}^{\infty} x f_X(x) \ dx = 2$$

$$\mathbb{E}[T_n] = \mathbb{E}[X_n Y_n] = \mathbb{E}[X_N^2] = \int_{-\infty}^{\infty} x^2 f_X(x) \ dx = +\infty$$

(e) Sappiamo che la convergenza in probabilità è metrizzabile (è indotta dalla distanza $d(X,Y) = \mathbb{E}[(X-Y) \wedge 1]$) quindi possiamo applicare il principio di convergenza per sottosottosuccessioni. Inoltre sappiamo che da ogni successione che converge in probabilità possiamo estrarre una sottosuccessione che converge quasi certamente.

Sia $(T_{n_k})_{k\in\mathbb{N}}$ una sottosuccessione di $(T_n)_{n\in\mathbb{N}}$. Poiché X_{n_k} e Y_{n_k} convergono in probabilità è possibile trovare una sottosuccessione (comune) n_{k_i} tale che $X_{n_{k_i}}$ e $Y_{n_{k_i}}$ convergano quasi certamente. Per il quesito (a) allora $T_{n_{k_i}}$ converge quasi certamente a T, quindi converge anche in probabilità e per il principio di convergenza per sottosottosuccessioni anche $(T_n)_{n\in\mathbb{N}}$ converge in probabilità a T.

Esercizio 2.

(b) Sia $(\mathcal{F}_n)_{n\in\mathbb{N}}$ la filtrazione naturale. Dimostrare che:

$$\mathbb{E}[T_{n+1} - T_n | \mathcal{F}_n] = -\frac{X_1 + \dots + X_{n^2}}{n(n+1)}$$

$$\mathbb{E}[W_{n+1} - W_n | \mathcal{F}_n] = \frac{1 - 2n}{n^2(n+1)^2} \cdot (X_1 + \dots + X_{n^2})$$

(c) Considerare la successione in $k \in \mathbb{N}$

$$Y_k = \frac{X_1 + \ldots + X_k}{\sqrt{k}}$$

cosicché $(T_n)_{n\in\mathbb{N}}$ è sottosuccesione di $(Y_k)_{k\in\mathbb{N}}$, ovvero $T_n=Y_{k_n}$ con $k_n=n^2$. Per il teorema del limite centrale Y_k converge in distribuizione ad una v.a. normale di media zero e varianza $\frac{49}{3}$. Dunque anche per la sottosuccessione $(T_n)_{n\in\mathbb{N}}$ vale

$$T_n \xrightarrow[n \to \infty]{distr.} T$$

$$con T \sim N\left(0, \frac{49}{3}\right).$$

(c*) Inoltre si può dimostrare che per ogni sottosuccessione di indici n_j e per ogni \bar{j} vale:

$$\begin{split} \limsup_{j \to \infty} T_{n_j} &= \limsup_{j \to \infty} T_{n_j} = \limsup_{j \to \infty} \frac{X_1 + \ldots + X_{n_j^2}}{n_j} \\ &= \limsup_{j \to \infty} \frac{X_1 + \ldots + X_{n_j^2}}{n_j} + \frac{X_{n_j^2 + 1} + \ldots + X_{n_j^2}}{n_j} \\ &= \limsup_{j \to \infty} \quad 0 \quad + \frac{X_{n_j^2 + 1} + \ldots + X_{n_j^2}}{n_j} \end{split}$$

la variabile alearia $\overline{T}:=\limsup_{j\to\infty}T_{n_j}$ è una v.a. di tipo coda, per la legge 0-1 di Kolmogorov è banale (quasi certamente constante). Quindi le sottossuccessioni di $(T_n)_{n\in\mathbb{N}}$ non possono convergere quasi certamente ad una v.a. $T\sim N\left(0,\frac{49}{3}\right)$. In conclusione $(T_n)_{n\in\mathbb{N}}$ non converge in probabilità, quasi certamente ed in L^p .

(d) Considerare la successione in $k \in \mathbb{N}$

$$Z_k = \frac{X_1 + \ldots + X_k}{k}$$

cosicché $(W_n)_{n\in\mathbb{N}}$ è sottosuccesione di $(Z_k)_{k\in\mathbb{N}}$, ovvero $W_n=Z_{k_n}$ con $k_n=n^2$. Per la legge forte dei grandi numeri $(Z_k)_{k\in\mathbb{N}}$ converge quasi certamente a zero quindi anche $(W_n)_{n\in\mathbb{N}}$ che è una sottosuccessione converge quasi certamente a zero. $|W_n| \leq 7$, $(W_n)_{n\in\mathbb{N}}$ è dominata da 7 e quindi per ottenere la convergenza in L^p basta applicare il teorema di convergenza dominata alla definizione di convergenza in L^p . $\mathbb{E}[(W_n-0)^p] \to \mathbb{E}[0-0]=0$.