Analitical and Stochastic Mathematical Methods for Engineering (ASMME)

(AY 2025/26 course presentation)

Paolo Guiotto

OBJECTIVES

General Objective: Provide a solid foundation in the tools and methods of Analysis and Probability, essential for advanced applications such as Partial Differential Equations, Approximation Methods, and Stochastic Analysis.

OBJECTIVES

General Objective: Provide a solid foundation in the tools and methods of Analysis and Probability, essential for advanced applications such as Partial Differential Equations, Approximation Methods, and Stochastic Analysis.

Strategic Objectives

• to bring learners with different backgrounds (Engineering, Physics, Mathematics) to the same level of knowledge and skills

OBJECTIVES

General Objective: Provide a solid foundation in the tools and methods of Analysis and Probability, essential for advanced applications such as Partial Differential Equations, Approximation Methods, and Stochastic Analysis.

Strategic Objectives

- to bring learners with different backgrounds (Engineering, Physics, Mathematics) to the same level of knowledge and skills
- to offer an integrated approach combining analytical and probabilistic methods

Typical PDE A[u] = f Workflow

• Abstract problem: find u such that A[u] = f with $f \in Y$ (known) $u \in X$ (unknown).

Iconic examples:

- $\Delta u = f$ (Laplace)
- $\partial_t u = \Delta u + f$ (heat equation)
- $\partial_{tt}u = \Delta u + f$ (wave equation)
- $i\partial_t u = \Delta u + f$ (Schrödinger)

Typical PDE A[u] = f Workflow

• Abstract problem: find u such that A[u] = f with $f \in Y$ (known) $u \in X$ (unknown).

Iconic examples:

- $\Delta u = f$ (Laplace)
- $\partial_t u = \Delta u + f$ (heat equation)
- $\partial_{tt}u = \Delta u + f$ (wave equation)
- $i\partial_t u = \Delta u + f$ (Schrödinger)
- Approximations: choose $V_n \subset X$, seek $u_n \in V_n$ with

$$A[u_n] = f_n \qquad (f_n \to f \text{ in } Y).$$

Typical PDE A[u] = f Workflow

• Abstract problem: find u such that A[u] = f with $f \in Y$ (known) $u \in X$ (unknown).

Iconic examples:

- $\Delta u = f$ (Laplace)
- $\partial_t u = \Delta u + f$ (heat equation)
- $\partial_{tt}u = \Delta u + f$ (wave equation)
- $i\partial_t u = \Delta u + f$ (Schrödinger)
- Approximations: choose $V_n \subset X$, seek $u_n \in V_n$ with

$$A[u_n] = f_n \qquad (f_n \to f \text{ in } Y).$$

· Convergence:

$$u_n \to u \text{ in } X$$

Typical PDE A[u] = f Workflow

• Abstract problem: find u such that A[u] = f with $f \in Y$ (known) $u \in X$ (unknown).

Iconic examples:

- $\Delta u = f$ (Laplace)
- $\partial_t u = \Delta u + f$ (heat equation)
- $\partial_{tt}u = \Delta u + f$ (wave equation)
- $i\partial_t u = \Delta u + f$ (Schrödinger)
- Approximations: choose $V_n \subset X$, seek $u_n \in V_n$ with

$$A[u_n] = f_n \qquad (f_n \to f \text{ in } Y).$$

· Convergence:

$$u_n \to u \text{ in } X$$

· Limit passage:

$$A[u_n] \to A[u] \text{ in } Y$$
 \Rightarrow $A[u] = f$

Analysis

- · PDEs
- infinite dimensional optimization (Calculus of Variations)
- · Numerical Methods

Analysis

- PDEs
- infinite dimensional optimization (Calculus of Variations)
- · Numerical Methods

demand for studying convergence/approximation in (good) spaces of functions (doing Analysis in infinite dimensional spaces)

Analysis

- PDEs
- infinite dimensional optimization (Calculus of Variations)
- · Numerical Methods

demand for studying convergence/approximation in (good) spaces of functions (doing Analysis in infinite dimensional spaces)

 Spaces of regular functions are complicate (not easy to pass to the limit regularity properties)

Analysis

- PDEs
- infinite dimensional optimization (Calculus of Variations)
- · Numerical Methods

demand for studying convergence/approximation in (good) spaces of functions (doing Analysis in infinite dimensional spaces)

- Spaces of regular functions are complicate (not easy to pass to the limit regularity properties)
- Good choice: spaces of integrable functions with a good definition of integral

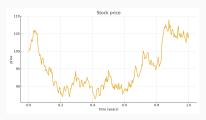
Analysis

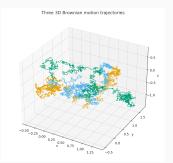
- PDEs
- infinite dimensional optimization (Calculus of Variations)
- Numerical Methods

demand for studying convergence/approximation in (good) spaces of functions (doing Analysis in infinite dimensional spaces)

- Spaces of regular functions are complicate (not easy to pass to the limit regularity properties)
- Good choice: spaces of integrable functions with a good definition of integral

⇒ need of measure and integral theory (Lebesgue 1904)





Path space

- $\Omega := C([0, \infty), \mathbb{R}^d)$
- Events: subsets of Ω (an event is a set of paths)

Path space

- $\Omega := \mathcal{C}([0,\infty),\mathbb{R}^d)$
- Events: subsets of Ω (an event is a set of paths)

Brownian motion (BM) in \mathbb{R}^d : a stochastic process $(W_t)_{t\geq 0}$ with

- Coordinate process: $W_t(\omega) := \omega(t), t \ge 0$
- $W_{\sharp} \in \Omega$ (continuous paths)
- $W_0 = 0$ (starts in the origin)
- · Independent, gaussian increments: $B_t B_s \sim \mathcal{N}(0, (t-s)I_d)$ for $0 \le s < t$.
- BM restarts anew from W_S (Markov property)

Path space

- $\Omega := C([0, \infty), \mathbb{R}^d)$
- Events: subsets of Ω (an event is a set of paths)

Brownian motion (BM) in \mathbb{R}^d : a stochastic process $(W_t)_{t\geq 0}$ with

- Coordinate process: $W_t(\omega) := \omega(t), t \ge 0$
- $W_{\sharp} \in \Omega$ (continuous paths)
- $W_0 = 0$ (starts in the origin)
- Independent, gaussian increments: $B_t B_s \sim \mathcal{N}(0, (t-s)I_d)$ for $0 \le s < t$.
- BM restarts anew from W_s (Markov property)

Wiener measure \mathbb{W} : probability measure on Ω such that the coordinate process B_t is BM.

Path space

- $\Omega := C([0, \infty), \mathbb{R}^d)$
- Events: subsets of Ω (an event is a set of paths)

Brownian motion (BM) in \mathbb{R}^d : a stochastic process $(W_t)_{t\geq 0}$ with

- Coordinate process: $W_t(\omega) := \omega(t), t \ge 0$
- $W_{\sharp} \in \Omega$ (continuous paths)
- $W_0 = 0$ (starts in the origin)
- Independent, gaussian increments: $B_t B_s \sim \mathcal{N}(0, (t-s)I_d)$ for $0 \le s < t$.
- BM restarts anew from W_s (Markov property)

Wiener measure \mathbb{W} : probability measure on Ω such that the coordinate process B_t is BM.

Connections:

$$\begin{cases} u(t,x) = \frac{1}{2}\Delta u(t,x), \text{ (heat equation)} \\ u(0,x) = f(x), \end{cases} \implies u(t,x) = \mathbb{E}_{\mathbb{W}}[f(x+B_t)]$$

Probability

- Brownian Motion (Bachelier 1900, Wiener 1910)
- · Continuos Probability
- · Stochastic Calculus and Differential Equations (Ito 1944)

Probability

- · Brownian Motion (Bachelier 1900, Wiener 1910)
- · Continuos Probability
- Stochastic Calculus and Differential Equations (Ito 1944)

demand for definition of a general Probability Theory on arbitrary sample space

Probability

- · Brownian Motion (Bachelier 1900, Wiener 1910)
- · Continuos Probability
- Stochastic Calculus and Differential Equations (Ito 1944)

demand for definition of a general Probability Theory on arbitrary sample space

⇒ need of measure and integral theory (Kolmogorov 1930)

Probability

- · Brownian Motion (Bachelier 1900, Wiener 1910)
- · Continuos Probability
- Stochastic Calculus and Differential Equations (Ito 1944)

demand for definition of a general Probability Theory on arbitrary sample space

⇒ need of measure and integral theory (Kolmogorov 1930)

In fact, modern Probability arose as a branch of Measure Theory

Table of contents (Analysis)

Abstract Measures and Integrals

Table of contents (Analysis)

- Abstract Measures and Integrals
- \cdot Normed spaces, Banach spaces, Space of functions

Table of contents (Analysis)

- Abstract Measures and Integrals
- \cdot Normed spaces, Banach spaces, Space of functions
- Hilbert spaces

Table of contents (Analysis)

- Abstract Measures and Integrals
- Normed spaces, Banach spaces, Space of functions
- · Hilbert spaces
- Fourier Analysis: Fourier Series and Fourier Transform

Table of contents (Analysis)

- Abstract Measures and Integrals
- Normed spaces, Banach spaces, Space of functions
- Hilbert spaces
- · Fourier Analysis: Fourier Series and Fourier Transform

Table of contents (Probability)

Probability spaces, random variables

Table of contents (Analysis)

- Abstract Measures and Integrals
- Normed spaces, Banach spaces, Space of functions
- Hilbert spaces
- · Fourier Analysis: Fourier Series and Fourier Transform

Table of contents (Probability)

- · Probability spaces, random variables
- · Independence and Conditioning

Table of contents (Analysis)

- Abstract Measures and Integrals
- Normed spaces, Banach spaces, Space of functions
- · Hilbert spaces
- · Fourier Analysis: Fourier Series and Fourier Transform

Table of contents (Probability)

- Probability spaces, random variables
- · Independence and Conditioning
- · Limits of random variables

Table of contents (Analysis)

- Abstract Measures and Integrals
- Normed spaces, Banach spaces, Space of functions
- · Hilbert spaces
- · Fourier Analysis: Fourier Series and Fourier Transform

Table of contents (Probability)

- · Probability spaces, random variables
- · Independence and Conditioning
- · Limits of random variables
- · Brownian Motion and Wiener measure

Analysis	Probability

Analysis	Probability
Measure space (X, \mathcal{F}, μ)	Probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Analysis	Probability
Measure space (X, \mathcal{F}, μ)	Probability space $(\Omega, \mathscr{F}, \mathbb{P})$
Integral	Expectation
$\int_X f d\mu$	$\mathbb{E}[X] \equiv \int_{\Omega} X d\mathbb{P}$

Analysis	Probability
Measure space (X, \mathcal{F}, μ)	Probability space $(\Omega, \mathscr{F}, \mathbb{P})$
Integral	Expectation
$\int_X f d\mu$	$\mathbb{E}[X] \equiv \int_{\Omega} X d\mathbb{P}$
L ^p norm	<i>p</i> –moment
$ f _p := \left(\int_X f ^p \ d\mu\right)^{1/p} \ (1 \le p < +\infty)$	$\mathbb{E}[X ^p] \equiv \int_{\Omega} X ^p \ d\mathbb{P}$

Analysis	Probability
Measure space (X, \mathcal{F}, μ)	Probability space $(\Omega, \mathscr{F}, \mathbb{P})$
Integral	Expectation
$\int_X f d\mu$	$\mathbb{E}[X] \equiv \int_{\Omega} X d\mathbb{P}$
L ^p norm	<i>p</i> –moment
$ f _p := \left(\int_X f ^p \ d\mu\right)^{1/p} \ (1 \le p < +\infty)$	$\mathbb{E}[X ^p] \equiv \int_{\Omega} X ^p \ d\mathbb{P}$
L ¹ convergence	convergence in mean
$ f_n - f _1 = \int_X f_n - f \ d\mu \longrightarrow 0$	$\mathbb{E}[X_n - X] \equiv \int_{\Omega} X_n - X \ d\mathbb{P} \longrightarrow 0$

Analysis	Probability
Measure space (X, \mathcal{F}, μ)	Probability space $(\Omega, \mathscr{F}, \mathbb{P})$
Integral	Expectation
$\int_X f d\mu$	$\mathbb{E}[X] \equiv \int_{\Omega} X d\mathbb{P}$
L ^p norm	<i>p</i> -moment
$ f _p := \left(\int_X f ^p \ d\mu\right)^{1/p} \ (1 \leqslant p < +\infty)$	$\mathbb{E}[X ^p] \equiv \int_{\Omega} X ^p \ d\mathbb{P}$
L ¹ convergence	convergence in mean
$ f_n - f _1 = \int_X f_n - f \ d\mu \longrightarrow 0$	$\mathbb{E}[X_n - X] \equiv \int_{\Omega} X_n - X \ d\mathbb{P} \longrightarrow 0$
L ² convergence	convergence in quadratic mean
$ f_n - f _2^2 = \int_X f_n - f ^2 d\mu \longrightarrow 0$	$\mathbb{E}[X_n - X ^2] \equiv \int_{\Omega} X_n - X ^2 \ d\mathbb{P} \longrightarrow 0$

CONTENTS

Some interconnections

Analysis	Probability
Measure space (X, \mathcal{F}, μ)	Probability space $(\Omega,\mathscr{F},\mathbb{P})$
Integral	Expectation
$\int_X f d\mu$	$\mathbb{E}[X] \equiv \int_{\Omega} X d\mathbb{P}$
L ^p norm	<i>p</i> –moment
$ f _p := \left(\int_X f ^p \ d\mu\right)^{1/p} \ (1 \leqslant p < +\infty)$	$\mathbb{E}[X ^p] \equiv \int_{\Omega} X ^p \ d\mathbb{P}$
L ¹ convergence	convergence in mean
$ f_n - f _1 = \int_X f_n - f \ d\mu \longrightarrow 0$	$\mathbb{E}[X_n-X] \equiv \int_{\Omega} X_n-X \ d\mathbb{P} \longrightarrow 0$
L ² convergence	convergence in quadratic mean
$ f_n - f _2^2 = \int_X f_n - f ^2 d\mu \longrightarrow 0$	$\mathbb{E}[X_n - X ^2] \equiv \int_{\Omega} X_n - X ^2 \ d\mathbb{P} \longrightarrow 0$
Fourier Transform	Characteristich function
$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-i\xi x} dx$	$\phi_X(\xi) := \mathbb{E}[e^{i\xi X}] \equiv \int_{\Omega} e^{i\xi X} d\mathbb{P}$

CONTENTS

Some interconnections

Analysis	Probability
Measure space (X, \mathcal{F}, μ)	Probability space $(\Omega, \mathscr{F}, \mathbb{P})$
Integral	Expectation
$\int_X f d\mu$	$\mathbb{E}[X] \equiv \int_{\Omega} X d\mathbb{P}$
L ^p norm	<i>p</i> –moment
$ f _p := \left(\int_X f ^p \ d\mu\right)^{1/p} \ (1 \leqslant p < +\infty)$	$\mathbb{E}[X ^p] \equiv \int_{\Omega} X ^p \ d\mathbb{P}$
L ¹ convergence	convergence in mean
$ f_n - f _1 = \int_X f_n - f \ d\mu \longrightarrow 0$	$\mathbb{E}[X_n-X] \equiv \int_{\Omega} X_n-X \ d\mathbb{P} \longrightarrow 0$
L ² convergence	convergence in quadratic mean
$ f_n - f _2^2 = \int_X f_n - f ^2 d\mu \longrightarrow 0$	$\mathbb{E}[X_n - X ^2] \equiv \int_{\Omega} X_n - X ^2 \ d\mathbb{P} \longrightarrow 0$
Fourier Transform	Characteristich function
$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-i\xi x} dx$	$\phi_X(\xi) := \mathbb{E}[e^{i\xi X}] \equiv \int_{\Omega} e^{i\xi X} d\mathbb{P}$
Orthogonal Projection $\Pi_U f$	Conditional Expectation $\mathbb{E}[X \mid \mathscr{F}]$

PREREQUISITES

From Analysis:

- · Differential and Integral Calculus in one and several variables
- · Convergence of a Numerical Series.

PREREQUISITES

From Analysis:

- · Differential and Integral Calculus in one and several variables
- · Convergence of a Numerical Series.

From Probability:

· Basic discrete probability

GENERAL SKILLS AND COMPETENCES

GENERAL SKILLS AND COMPETENCES

• Understand and analyze hypothetical-deductive arguments, and adapt them to formulate new statements and proofs.

GENERAL SKILLS AND COMPETENCES

- Understand and analyze hypothetical-deductive arguments, and adapt them to formulate new statements and proofs.
- Identify appropriate mathematical tools and methods for solving problems, and apply them correctly.

GENERAL SKILLS AND COMPETENCES

- Understand and analyze hypothetical-deductive arguments, and adapt them to formulate new statements and proofs.
- Identify appropriate mathematical tools and methods for solving problems, and apply them correctly.

GENERAL SKILLS AND COMPETENCES

- Understand and analyze hypothetical-deductive arguments, and adapt them to formulate new statements and proofs.
- Identify appropriate mathematical tools and methods for solving problems, and apply them correctly.

SPECIFIC SKILLS AND COMPETENCES

 computing or estimating values of measures and probabilities or integrals/expected values

GENERAL SKILLS AND COMPETENCES

- Understand and analyze hypothetical-deductive arguments, and adapt them to formulate new statements and proofs.
- Identify appropriate mathematical tools and methods for solving problems, and apply them correctly.

- computing or estimating values of measures and probabilities or integrals/expected values
- analyze convergence problems (for sequences of vectors in normed spaces, or sequences of random variables in probability spaces)

GENERAL SKILLS AND COMPETENCES

- Understand and analyze hypothetical-deductive arguments, and adapt them to formulate new statements and proofs.
- Identify appropriate mathematical tools and methods for solving problems, and apply them correctly.

- computing or estimating values of measures and probabilities or integrals/expected values
- analyze convergence problems (for sequences of vectors in normed spaces, or sequences of random variables in probability spaces)
- work with orthogonal projections and conditional expectations.

GENERAL SKILLS AND COMPETENCES

- Understand and analyze hypothetical-deductive arguments, and adapt them to formulate new statements and proofs.
- Identify appropriate mathematical tools and methods for solving problems, and apply them correctly.

- computing or estimating values of measures and probabilities or integrals/expected values
- analyze convergence problems (for sequences of vectors in normed spaces, or sequences of random variables in probability spaces)
- work with orthogonal projections and conditional expectations.
- use Fourier methods in analytical contexts (e.g., solving differential or integral equations) and in probabilistic contexts (e.g., characterizing distributions of random variables or analyzing weak convergence).

GENERAL SKILLS AND COMPETENCES

- Understand and analyze hypothetical-deductive arguments, and adapt them to formulate new statements and proofs.
- Identify appropriate mathematical tools and methods for solving problems, and apply them correctly.

- computing or estimating values of measures and probabilities or integrals/expected values
- analyze convergence problems (for sequences of vectors in normed spaces, or sequences of random variables in probability spaces)
- work with orthogonal projections and conditional expectations.
- use Fourier methods in analytical contexts (e.g., solving differential or integral equations) and in probabilistic contexts (e.g., characterizing distributions of random variables or analyzing weak convergence).
- operating with Wiener measure and carrying out calculations involving Brownian motion

EXAM

PURPOSE OF THE EXAM: to assess the degree to which the expected goals have been achieved, considering both

- consistency (how many objectives?)
- · and the quality (how well?).

PURPOSE OF THE EXAM: to assess the degree to which the expected goals have been achieved, considering both

- consistency (how many objectives?)
- · and the quality (how well?).

The assessment process is divided into two levels:

- · the mandatory final written exam
- the optional in-course assessment.

The written exam is based on

- · problem-solving
- writing statements and (if required) doing proofs of fundamental results of the theory.

The written exam is based on

- problem-solving
- writing statements and (if required) doing proofs of fundamental results of the theory.

The evaluation focuses on

the correctness and relevance of the applied methods

The written exam is based on

- problem-solving
- writing statements and (if required) doing proofs of fundamental results of the theory.

The evaluation focuses on

- the **correctness** and **relevance** of the applied methods
- the ability to carry out a complex argument rigorously

The written exam is based on

- problem-solving
- writing statements and (if required) doing proofs of fundamental results of the theory.

The evaluation focuses on

- the **correctness** and **relevance** of the applied methods
- the ability to carry out a complex argument rigorously
- the ability to adapt known ideas and methods to obtain new proofs

The written exam is based on

- · problem-solving
- writing statements and (if required) doing proofs of fundamental results of the theory.

The evaluation focuses on

- the correctness and relevance of the applied methods
- the ability to carry out a complex argument rigorously
- the ability to adapt known ideas and methods to obtain new proofs

Important!

computational precision is secondary

The written exam is based on

- problem-solving
- writing statements and (if required) doing proofs of fundamental results of the theory.

The evaluation focuses on

- the correctness and relevance of the applied methods
- the ability to carry out a complex argument rigorously
- $\boldsymbol{\cdot}$ the $\boldsymbol{ability}$ to \boldsymbol{adapt} known ideas and methods to obtain new proofs

Important!

- computational precision is secondary
- · partial solutions are evaluated

Along the course, students are given a series of homework assignments. For each homework, students participate as

• **problem solver**: solve the assignment within the deadline and upload pdf on platform (Moodle)

Along the course, students are given a series of homework assignments. For each homework, students participate as

- problem solver: solve the assignment within the deadline and upload pdf on platform (Moodle)
- peer reviewer: assess the solution of another student HW.

Along the course, students are given a series of homework assignments. For each homework, students participate as

- **problem solver**: solve the assignment within the deadline and upload pdf on platform (Moodle)
- · peer reviewer: assess the solution of another student HW.

Each participant(s) (individual or group) is assessed on their peer-review activity.

Along the course, students are given a series of homework assignments. For each homework, students participate as

- problem solver: solve the assignment within the deadline and upload pdf on platform (Moodle)
- peer reviewer: assess the solution of another student HW.

Each participant(s) (individual or group) is assessed on their peer-review activity.

At the end of the course, every participant in the optional in-course assessment receives an overall evaluation, which is added as a bonus to the average score of the mandatory final exam.

EXAM RULES

1. Exam Structure and Scheduling:

- two separate parts (Analysis and Probability).
- 4 calls per each part (Jan*, Feb, Jun/Jul, Sept)
- the two parts are scheduled on different dates
- each part can be taken in any order and on any of the available dates.

2. Passing Criteria:

- minimum of 16/30 in each part (Analysis and Probability)
- overall rounded average of at least 18/30

Participation in at least 75% of the optional in-course assessment activity earns a bonus of +15% on the rounded overall average.

- 3. **Retakes:** Each part can be retaken (in case, any previous score for that part is forfeited).
- 4. **Exam Validation:** if eligible, register on the official validation list in Uniweb
- 5. **Oral Exam:** in exceptional circumstances, where further assessment is deemed necessary, an oral integration exam may be requested.