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General Objective: Provide a solid foundation in the tools and methods of
Analysis and Probability, essential for advanced applications such as Partial
Differential Equations, Approximation Methods, and Stochastic Analysis.

Strategic Objectives

- to bring learners with different backgrounds (Engineering, Physics,
Mathematics) to the same level of knowledge and skills

- to offer an integrated approach combining analytical and probabilistic
methods
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Typical PDE A[u] = f Workflow

- Abstract problem: find u such that with f e Y (known) u € X

(unknown).
Iconic examples:
- Au = f(Laplace)
- dtu = Au +f (heat equation)
- OrtU = Au + f (wave equation)
- i0:u = Au +f (Schrodinger)
- Approximations: choose Vj C X, seek un € Vp with

Alupl =fn| (fn—=finY).

- Convergence:

Up — uinX

- Limit passage:

]A[un] = Alu] in Y\ = ]A[u]:f, 2
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Analysis

- PDEs

- infinite dimensional optimization (Calculus of Variations)

- Numerical Methods

demand for studying convergence/approximation in (good) spaces of
functions (doing Analysis in infinite dimensional spaces)

- Spaces of regular functions are complicate (not easy to pass to the limit
regularity properties)

- Good choice: spaces of integrable functions with a good definition of
integral

= need of measure and integral theory (Lebesgue 1904)
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Path space

- Q= C([0, ), RY)
- Events: subsets of Q (an event is a set of paths)

Brownian motion (BM) in R%: a stochastic process (Wy)¢so with

- Coordinate process: Wi(w) := w(t), t > 0

- WyeQ (continuous paths)

- Wg = 0 (starts in the origin)

- Independent, gaussian increments: By —Bs ~ N (0, (t—s)ly) for0 < s < t.
- BM restarts anew from Ws (Markov property)

Wiener measure W: probability measure on Q such that the coordinate
process Bt is BM.

Connections :

{ u(t,x) = 1Au(t, x), (heat equation)

4(0..) = FX). u(t,x) = Ew[f(x + By)]
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MOTIVATIONS

Probability

- Brownian Motion (Bachelier 1900, Wiener 1910)
- Continuos Probability
- Stochastic Calculus and Differential Equations (Ito 1944)

demand for definition of a general Probability Theory on arbitrary sample
space

= need of measure and integral theory (Kolmogorov 1930)

In fact, modern Probability arose as a branch of Measure Theory
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Table of contents (Analysis)

- Abstract Measures and Integrals
- Normed spaces, Banach spaces, Space of functions
- Hilbert spaces

- Fourier Analysis: Fourier Series and Fourier Transform
Table of contents (Probability)

- Probability spaces, random variables
- Independence and Conditioning
- Limits of random variables

- Brownian Motion and Wiener measure
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Some interconnections

Analysis Probability
Measure space (X, #, u) Probability space (Q, #,P)
Integral Expectation
[y f du E[X] = [ X dP
LP norm p—moment
Ifllp = (JX ljk c/u)vp (1< p < +0) E[1XIP] = [, IXIP dP
L7 convergence convergence in mean
||fn—ﬂ|1:IX|fn—ﬂ du— 0 EHXH_X']E‘[Q'XH_XI dP — 0
L2 convergence convergence in quadratic mean
fn = A3 = [xfn =f> dg — 0 | B[Xn =XP’] = [o Xn = X|* dP — 0
Fourier Transform Characteristich function
f&) = [ fooe™ €% dx ox(&) = B[] = [, e/*X dp
Orthogonal Projection IIyf Conditional Expectation E[X | #]
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From Analysis:

- Differential and Integral Calculus in one and several variables

- Convergence of a Numerical Series.
From Probability:

- Basic discrete probability
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EXPECTED GOALS

GENERAL SKILLS AND COMPETENCES

- Understand and analyze hypothetical-deductive arguments, and adapt
them to formulate new statements and proofs.

- Identify appropriate mathematical tools and methods for solving
problems, and apply them correctly.

SPECIFIC SKILLS AND COMPETENCES

- computing or estimating values of measures and probabilities or
integrals/expected values

- analyze convergence problems (for sequences of vectors in normed
spaces, or sequences of random variables in probability spaces)

- work with orthogonal projections and conditional expectations.

- use Fourier methods in analytical contexts (e.g., solving differential or
integral equations) and in probabilistic contexts (e.g, characterizing
distributions of random variables or analyzing weak convergence).

- operating with Wiener measure and carrying out calculations involving
Brownian motion.
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EXAM

PURPOSE OF THE EXAM: to assess the degree to which the expected goals
have been achieved, considering both

- consistency (how many objectives?)

- and the quality (how well?).
The assessment process is divided into two levels:

- the mandatory final written exam

- the optional in-course assessment.
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FINAL WRITTEN EXAM (MANDATORY)

The written exam is based on

- problem-solving

- writing statements and (if required) doing proofs of fundamental
results of the theory.

The evaluation focuses on

- the correctness and relevance of the applied methods
- the ability to carry out a complex argument rigorously

- the ability to adapt known ideas and methods to obtain new proofs

Important!

- computational precision is secondary

- partial solutions are evaluated
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IN-COURSE ASSESSMENT (OPTIONAL)

Along the course, students are given a series of homework assignments. For
each homework, students participate as

- problem solver: solve the assignment within the deadline and upload
pdf on platform (Moodle)

- peer reviewer: assess the solution of another student HW.

Each participant(s) (individual or group) is assessed on their peer-review
activity.

At the end of the course, every participant in the optional in-course
assessment receives an overall evaluation, which is added as a bonus to the
average score of the mandatory final exam.



EXAM RULES

1. Exam Structure and Scheduling:
- two separate parts (Analysis and Probability).
- 4 calls per each part (Jan*, Feb, Jun/Jul, Sept)
- the two parts are scheduled on different dates
- each part can be taken in any order and on any of the available
dates.
2. Passing Criteria:
- minimum of 16/30 in each part (Analysis and Probability)
- overall rounded average of at least 18/30
Participation in at least 75% of the optional in-course assessment
activity earns a bonus of +15% on the rounded overall average.
3. Retakes: Each part can be retaken (in case, any previous score for that
part is forfeited).
4. Exam Validation: if eligible, register on the official validation list in
Uniweb
5. Oral Exam: in exceptional circumstances, where further assessment is

deemed necessary, an oral integration exam may be requested. "



