

Organometallic compounds of group 14

Organotin (silicon, lead) compounds

High electronegativity, complete electronic configuration

Si: strong, covalent Si-C bond, small central atom: stable compounds, monomeric, poor electrophiles.

Sn: essentially covalent Sn-C bond, low polarity, not very strong. Sn in SnR_4 is not electrophilic; mixed derivatives might instead be electrophilic.

Pb: weaker, more polar Pb-C bond, larger central atom: less stable compounds, more electrophilic, unstable towards reductive elimination to Pb(II), particularly in RPbX_3 .

Organometallic compounds of group 14

Organotin (silicon, lead) compounds

Organosilicon compounds find their main application in the manufacture of silicones, organically modified silicas (Ormosils) and as reagents in organic synthesis (protective groups, reducing agents, cross-coupling).

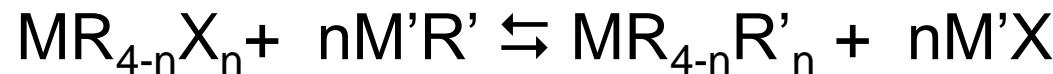
Organotin compounds have widespread applications in polymer chemistry (PVC stabilizers), in organic synthesis (Stille cross-coupling), and as biocides (fungicides, algicides...).

Organolead compounds have been extensively applied as anti-knock agents in petrols (production up to 10^6 t/year, 20% of Pb world production), but are toxic and unstable.

Synthetic methods: ER_4

Direct synthesis (industrial):

Need for high T (200 °C) and a catalyst (Cu). Product mixtures are obtained, with the diorganoderivative as prevailing one.


Three quarters of Pb are recovered unreacted in this process...

Anodic oxidation (on Pb anodes) of Grignard reagents

Synthetic methods: ER_4

Metathesis:

Partial substitution difficult, but no formation of «ate» complexes.

Stable heteroleptic compounds accessible.

The general instability of PbX_4 is a limitation.

Peculiar case with PbMe_4 (analogy with TI).

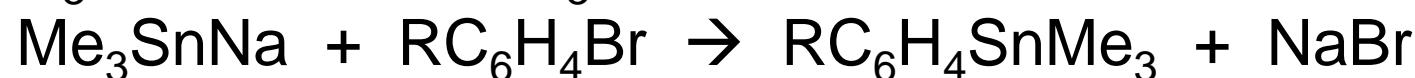
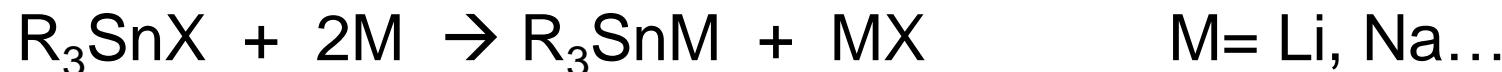
Generally: $\text{PbX}_2 + 2\text{RM} \rightleftharpoons 2\text{MX} + [\text{PbR}_2]$

$3[\text{PbR}_2] \rightarrow \text{Pb} + \text{Pb}_2\text{R}_6$ “diplumbane”

$2\text{Pb}_2\text{R}_6 \rightarrow 3\text{PbR}_4 + \text{Pb}$ upon CONTROLLED heating

Synthetic methods: ER_4

Hydrometallation:

With Sn, the reaction is often radicalic (weak Sn-H bond, AIBN can be employed as initiator); *cis* stereoselectivity might be lost...

With **Si**, the reaction is not radicalic but it generally needs a (metal) catalysts (usually a Pt compound), which also imparts regio- and stereoselectivity.

With **Pb** the reaction can be either radicalic or concerted.

Nucleophilic attack of triorganostannyl anions (Sn):

Synthetic methods: $MR_{4-n}X_n$ (M= Sn, Pb)

Electrophilic substitution on R:

Reactions under stoichiometric control for Sn (the number of R/X substitutions depends on the stoichiometric ratio of the reagents)

Reaction mechanism not fully understood: concerted reaction (potentially solvent-assisted) or radical mechanism (single electron transfer, SET).

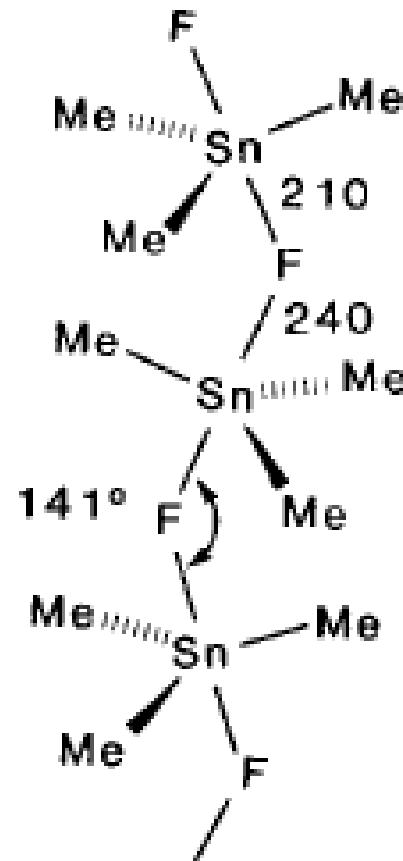
The reaction with PbR_4 is NOT under stoichiometric control: formation of product mixtures. Single products sometimes isolable by selective precipitation but unstable even in the solid state (radical exchange)!

Synthetic methods: $\text{SnR}_{4-n}\text{X}_n$

The Kocheshkov reaction:

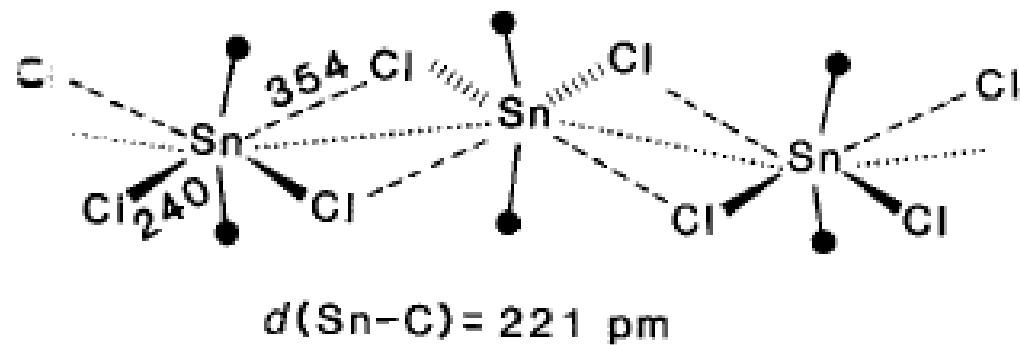
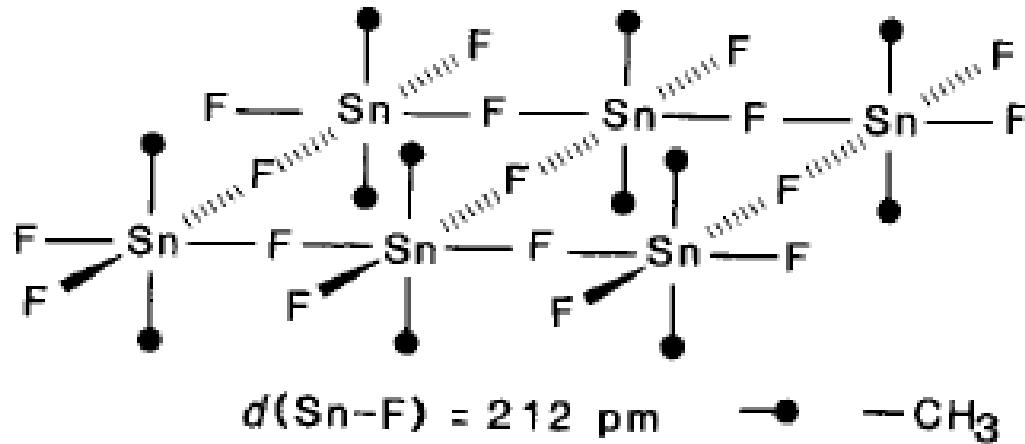
Reaction under stoichiometric control. The mechanism consists in a series of electrophilic substitutions at the C atom bound to Sn (concerted mechanism) in which the relative rates depend on the reactivity of the reagents under consideration (the electrophilicity of $\text{SnR}_{4-n}\text{X}_n$ decreases with decreasing n...).

Reaction unsuitable for Pb due to the instability of PbX_4 .



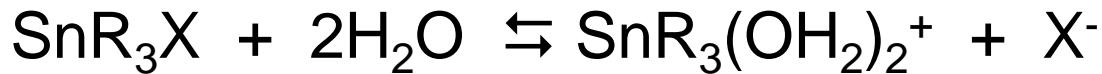
The stability of inorganic Sn(II) compounds and of RSnX_3 is exploited here.

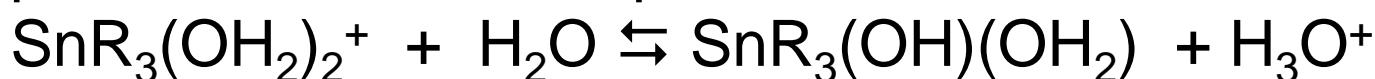
Structure and aggregation of $\text{SnR}_{4-n}\text{X}_n$



Tin organohalides are soluble in several solvents and exhibit well defined melting points, except when $\text{X} = \text{F}$, in which case they are insoluble and decompose before melting. These compounds display polymeric structures in which F forms asymmetric bridges; consequently, Sn in these compounds behaves as a Lewis acid.

Other monohalides or pseudohalides form similar structures, which are however much less stable.

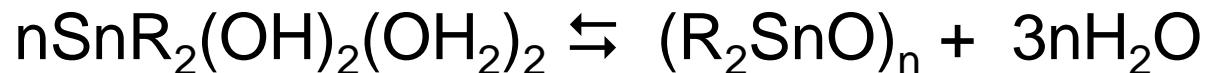
Structure and aggregation of $\text{SnR}_{4-n}\text{X}_n$


With tin diorganodihalides, more stable structures are formed (higher electrophilicity of Sn \rightarrow hexacoordination)


Solution behaviour of $\text{SnR}_{4-n}\text{X}_n$

In noncoordinating solvents, the fluorides are insoluble, whereas the other halides dissolve. Sn remains electrophilic and promptly coordinates Lewis bases maintaining the coordination geometry that it exhibits in the solid.

In water, the Sn-X bond is hydrolysed (it is NOT a simple ionic dissociation):



These aquocations are acids, monoprotic when Sn is pentacoordinated, diprotic when Sn is hexacoordinated:

Solution behaviour of $\text{SnR}_{4-n}\text{X}_n$

If the aquocations are neutralised with NaOH , the corresponding hydroxides are obtained, which spontaneously condense losing water and forming the oxides (stannoxyanes):

Such dehydration can be reversed by adding acid.

The corresponding reactions with organosilicon halides does NOT produce the cationic aquocomplexes but the hydroxides, which are unstable and undergo irreversible condensation to (poly)siloxanes (silicones).

Organometal hydrides

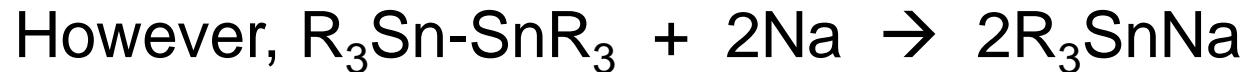
Binary tin(IV) or lead(IV) hydrides are unstable and tend to decompose to the elements. However, di- or triorganometal hydrides decompose only at high T. They are prepared from the corresponding halides via metathesis:

The same reaction can be employed also to prepare organosilicon hydrides.

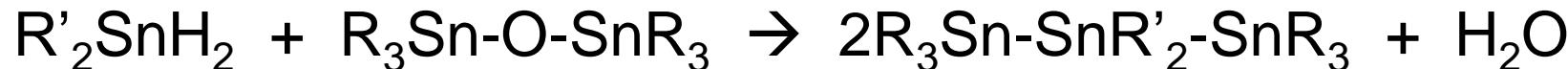
These organohydrides are employed as reagents in hydrometallation reactions or as mild reducing agents:

Interestingly, the Sn-H can break homolytically (under light or in the presence of radical initiators) or heterolytically (in the dark or in the presence of metal catalysts).

Organotin hydrides



Homolytic scission of the Sn-H bond can be also employed in radicalic hydrostannolysis reactions of organic halides (formal reduction to hydrocarbon):


Organotin compounds with Sn-Sn bonds

The tendency to catenation decreases along group 14, since the strength of the element-element bond decreases (C-C 258 kJ/mol; Sn-Sn 151 kJ/mol), but is present also in organometallic derivatives. Stable compounds are formed when all Sn atoms in the chain are substituted by organic groups (or by H).

It is imperative to work with stoichiometric quantities of Na!

Alternative: reaction between hydrides and oxides:

Group 14 organometals with M-M bonds

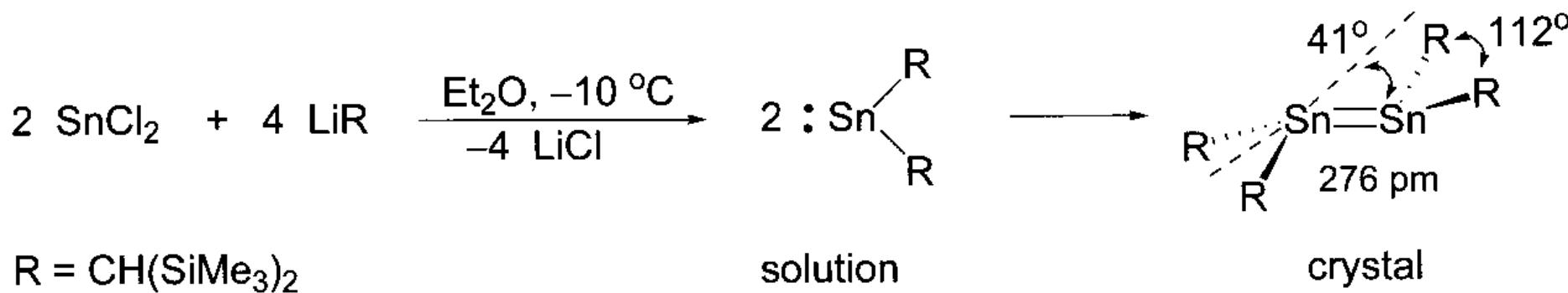
Compounds with Sn-Sn bonds are easily oxidised by O₂, and are a practical source of radicals:

Stannyl radicals are pyramidal, and depending on the substituents can be also very stable! Chiral stannyls, RR'R''Sn-, can be transferred retaining their configuration.

Organolead compounds are only known to form dimers, which have a tendency to disproportionate:

Evidence: reaction with electrophiles (Pb(II) is attacked!):

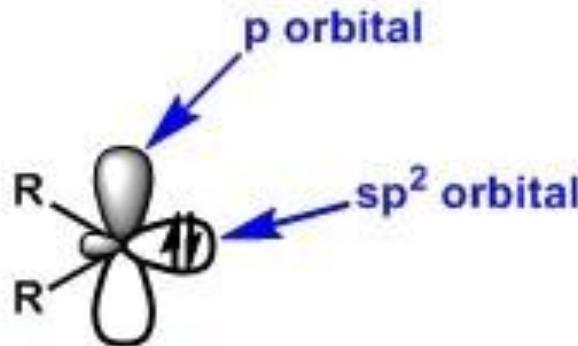
Divalent organotin compounds

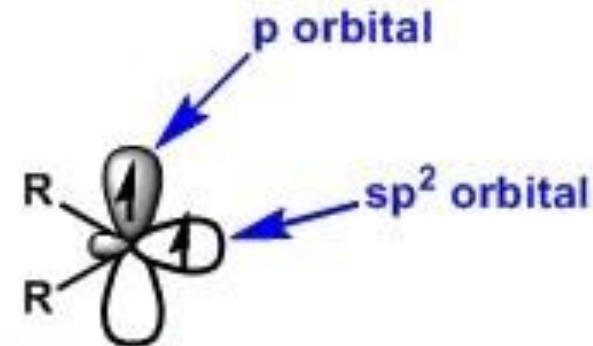

Stannylenes are not stable and usually oligomerize to cyclic compounds, the most stable of which is the six-membered ring. Sn hybridization remains sp^3 .

If R is a sterically bulky group, monomeric stannylenes can however be isolated (sp^2 hybridization, singlet)!

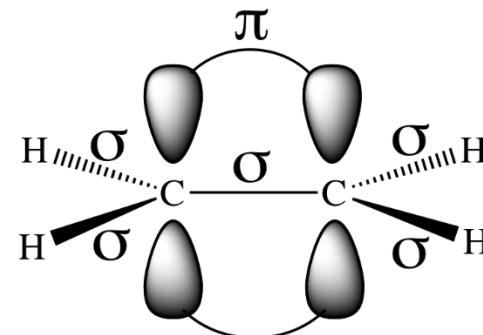
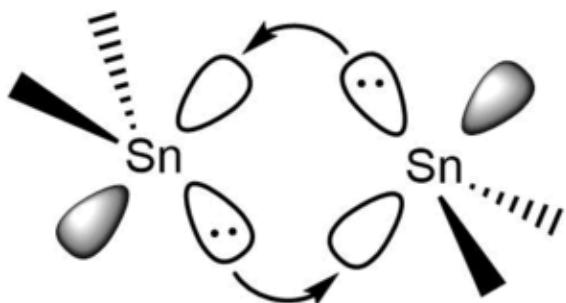
In the solid state, «multiple» Sn-Sn bonds are formed between stannylene units; their structure is however very peculiar (weak interaction between filled sp^2 and empty p orbitals on the Sn atoms).

Stannylenes are Lewis bases (electron doublet in the sp^2 orbital) and form very stable adducts with Lewis acids such as BF_3 : the empty p orbital on Sn becomes saturated by electron donation from the filled p orbitals of F.


Divalent organometal compounds of group 14


Divalent organolead compounds (plumblylenes) can be analogously prepared, but they tend to disproportionate instead of oligomerizing. They can be isolated and characterized (sp^2 hybridization, singlet) only if R is a bulky group (ad es. $-\text{CH}(\text{SiMe}_3)_2$).

Plumblylenes, like stannylenes, are associated in the solid state and are Lewis bases, forming very stable adducts with Lewis acids such as BF_3 .



Divalent organometal compounds of group 14

sp^2 orbital contains
2 paired electrons

sp^2 and p orbital each
contain 1 electron


Carbenes can exist both in singlet and triplet states. Descending in the series silylenes, germynes, stannylenes and plumbynes the stability of the singlet state **increases**.

Synthetic applications

Organoelement compounds of group 14 are poor nucleophiles...

- Addition of allyltin compounds to carbonyl compounds (mechanism analogous to the corresponding reaction with B):
$$R'_3Sn-CH_2-CH=CRR' + R''_2C=O \rightarrow R'_3Sn-O-CR'_2-CRR'-CH=CH_2$$

- Cross-coupling: Stille (Sn) reaction/Hayashi (Si) reaction:

Migratory attitude: alkynyl > vinyl > aryl > allyl, benzyl > alkyl.

Problem with Si: strong Si-C bond, metathesis difficult. Addition of promoters (fluoride) necessary.

Problem with Sn: triorganotin halides are toxic. It is possible to use $RSnX_3$, but the reactivity is lower.

Other applications of organotin compounds

- PVC stabilizers

Main application of organotin compounds (60% of industrial production). Compounds of type R_2SnX_2 (X = long-chain thiolate) do: 1) suppress the development of HCl from dehydrochlorination of chloroallylic sites in the PVC chains during thermal curing of the polymer (substitution of Cl with X); 2) inhibit the thermal degradation of the polymer (formation of stable Sn radical species);

- Biocides (antifungi, antialgae etc.)

Compounds of type R_3SnX . Very efficient and economical, the final decomposition product is innocuous SnO_2 . However, they also liberate cations R_3Sn^+ , which are toxic, particularly when R = short alkyl chain. Alternatives are currently sought after.