Quaderno didattico (Esperienze 1, 2, 3)

- 1. Titolo
- 2. Schema di reazione (strutture di reagenti e prodotti)
- 3. Tabella con dati sui reagenti e prodotto

Nome	Quantità	Peso	Quantità	Equivalenti	Densità	Punto di	Indicatori
	(g o ml)	molecolare	(mmoli)	(equiv)	(g/mL)	ebollizione/fusione	HeP
		(g/mol)					
Reagente							
1							
Reagente							
2							
Prodotto							

4. Procedura sperimentale

Descrivere la procedura inserendo dettagli utili (temperatura di reazione, cambio di colore osservato, formazione di precipitato, utilizzo di ambiente anidro, riportare copia delle tlc e l'eluente utilizzato, etc...) ma minimizzando dettagli inutili o scontati (ho pesato, ho misurato in un cilindro, ho lavato la vetreria, ho acceso la cappa, etc...).

Ad es: "Reagente 1 (1 g, 0,22 mmol, 1 equiv) è stato sciolto in metanolo (10 mL). La soluzione è stata poi raffreddata a 0°C tramite bagno di ghiaccio e il reagente 2 (0,2 mL, 0.44 mmol, 2 equiv) è stato aggiunto gocciolandolo sotto agitazione. Dopo 10 minuti il bagno di ghiaccio è stato rimosso e l'andamento della reazione è stato seguito tramite TLC (8:2 PE: EtOAc). Dopo 1 ora si forma un precipitato bianco e dopo 2 ore la reazione ha raggiunto completezza. La miscela viene filtrata e il solido ottenuto viene purificato tramite colonna cromatografica (9:1 PE: EtOAc, colonna 20 x 3 cm). Si evaporano le frazioni 7-18 e si ottiene il prodotto X come un solido cristallino bianco (0.9 g, 78% di resa)"

5. Caratterizzazioni

Caratterizzazione (NMR, IR, GC in tabelle e riportando copia dello spettro)

NMR (solvente, frequenza spettrometro) – assegnare i segnali per quanto possibile

segnale	δ (ppm)	molteplicità	J (Hz)	integrale	gruppo
1.	8,45	s:singoletto	1.8	0.9 (1)	СН
(ordine ppm)	(2 decimali)	d:doppietto	(1 decimale)		
		t:tripletto			
		q:quartetto			
		m:multipletto			

IR (KBr, FT-IR) solo le bande diagnostiche

picco	v (cm)	intensità	tipo	legame
1.	1653	s: strong	stretch,	C=O
(ordine numero	(0 decimali)	m: medium	bend in plane	
d'onda)		w: weak	bend out of plane	

GC-MS (colonna, programma di temperature) ione molecolare, pico base, frammenti riconoscibili

picco	Tempo di ritenzione (min)	Massa osservata
1.	6,47	Tutti i frammenti
(ordine tempo di ritenzione)		

Procedura sperimentale (Esperienze 4, 6)

- 1. Titolo
- 2. Schema di reazione
- 3. Tabella

Nome	Quantità (g o ml)	Peso molecolare (g/mol)	Quantità (mmoli)	Equivalenti (equiv)	Densità (g/mL)	Indicatori H e P
Reagente						
1						
Reagente						
2						
Solvente						
Prodotto						

La procedura si scrive in modo simile a quella del quaderno (leggermente più condensata), ma non si riportano copie di tlc, o quante tlc sono state fatte.

Le caratterizzazioni si scrivono in **forma condensata** subito sotto la procedura sperimentale (nell'ordine NMR, IR, MS)

A questo punto si riportano copie degli spettri e infine copie delle tlc

Qui un esempio:

2.1.4 Synthesis of A

Compound **3** (100 mg, 0.305 mmol, 1 equiv) was mixed with the phosphine oxide **9** (99 mg, 0.610 mmol, 2 equiv), CuI (58 mg, 0.305 mmol, 1 equiv) and Na_2CO_3 (65 mg, 0.610 mmol, 2 equiv) in 3 ml of degassed toluene (N_2 bubbling, 15 min) and stirred overnight in the dark at 110 °C under inert atmosphere. The rection mixture was extracted with brine/EtOAc (4x) dried over Na_2SO_4 and the solvent evaporated. The crude product was purified through column chromatography (EtOAc), yielding pure **A** (60 mg, 48% yield).

¹**H-NMR** (500 MHz, chloroform-d) δ 9.95 (s, 1H), 7.57 (d, J = 12.49 Hz, 1H), 7.33 (d, J = 3.75 Hz, 1H), 4.81 (s, 2H), 4.02 (dd, J = 5.64, 1.77 Hz, 2H), 2.39 – 2.01 (m, 4H), 1.81 (m, J = 6.01 Hz, 1H), 1.72 – 1.17 (m, 17H), 1.09 – 0.58 (m, 1H).

¹³C-NMR (126 MHz, chloroform-*d*) δ 190.29 (d, J = 2.4 Hz), 146.85 (d, J = 2.62 Hz), 142.24 (d, J = 12.1 Hz), 127.81 (d, J = 53.70 Hz), 127.46 (d, J = 21.1 Hz), 120.29 (d, J = 7.5 Hz), 116.69 (d, J = 10.2 Hz), 71.01, 39.41, 30.64, 29.71, 29.16, 29.10, 24.16, 24.04, 23.89, 23.86, 23.01, 14.07, 13.64, 11.19.

³¹**P-NMR** (202 MHz, methanol- d_4) δ 50.19.

HRMS(ES+): Calculated for C₂₃H₄₁NO₃P 410.2824 a.m.u.; found 410.2698

IR (umax, KBr): 3375, 2980, 1689, 1505, 1341, 1383, 1250, 1164

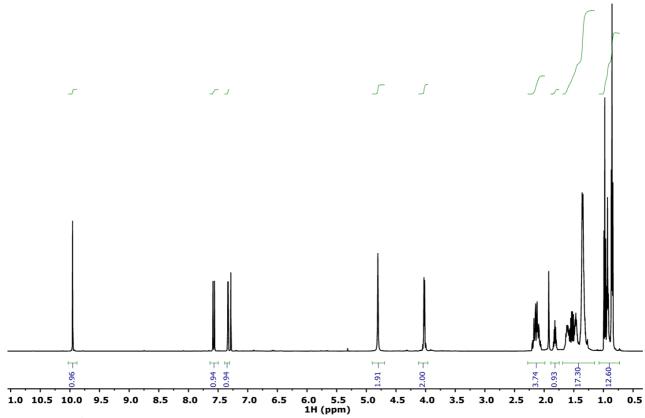


Figure S2.7. ¹H-NMR spectrum (500 MHz, chloroform-*d*) of **A**.