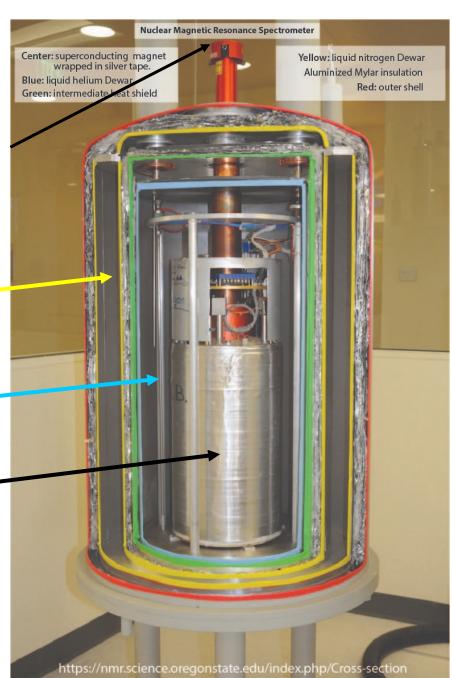
Laboratorio di Chimica Organica 3

Luca Gabrielli

Edificio 207 secondo piano luca.gabrielli@unipd.it

ESPERIMENTO NMR


Vedere video dimostrativo

Qui si mette il tubo col campione, un flusso di aria compressa lo mantiene in posizione

Dewar di N2 liquido

Dewar di He liquido

Magnete superconduttore

Preparazione del Campione

Solvente: $CDCl_3$ (600-700 μ L)

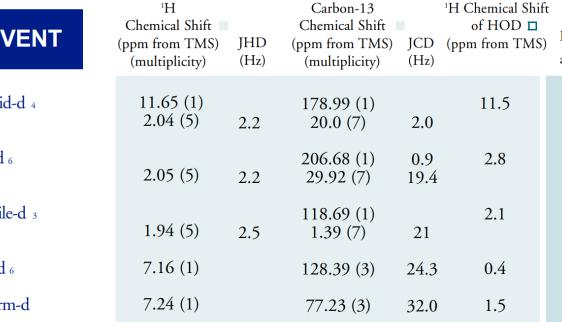
Chloroform-d

**** (0)

99.8 atom % D, contains 0.03 % (v/v) TMS

- Prelevare il solvente deuterato unicamente con pipette pulite.
- Non riutilizzare le pipette
- Non rimettere nella boccetta il solvente in eccesso

NMR Solvent Data Chart


Cambridge Isotope Labs

The 'H spectra of
the residual protons and
¹³ C spectra were
obtained on a Varian
Gemini 200 spectrome-
ter at 295°K. The sam-
ple for the proton and
¹³ C spectra contain a
maximum of 0.05%
and 1.0% TMS (v/v)
respectively. Since deu-
terium has a spin of 1,
triplets arising from
coupling to deuterium
have the intensity ratio
of 1:1:1. 'm' denotes a
broad peak with some
fine structures. It
should be noted that
the chemical shifts, in
particular, can be dep- endent on solute, con-
centration and tempera-
centration and tempera-

Approximate values only, may vary with pH, concentration and temperature.

Melting and boiling points are those of the corresponding unlabeled compound (except for D₂O). These temperature limits can be used as a guide to determine the useful liquid range of the solvents.

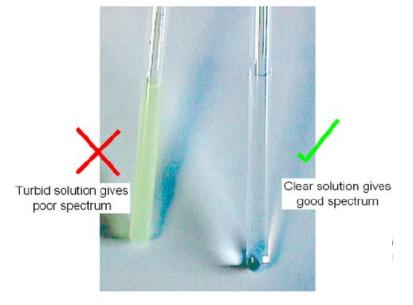
					T UI AIL		11 114	AI IA	n /		
SOLVENT	'H Chemical Shift (ppm from TMS) (multiplicity)	JHD (Hz)	Carbon Chemical (ppm from (multipli								¹F
Acetic Acid-d 4	11.65 (1) 2.04 (5)	2.2	178.99 20.0 (5	SOL	VE	NT			Chen (ppm 1	
Acetone-d 6	2.05 (5)	2.2	206.68 29.92							(mu	
Acetonitrile-d 3	1.94 (5)	2.5	118.69 1.39 (
Benzene-d 6	7.16 (1)		128.39	Ace	tic Ac	id-d	4			11	.6
Chloroform-d	7.24 (1)		77.23	1 100	110 1 10	14 4	-1				.04
Cyclohexane-d ::	1.38 (1)		26.43							2.	
Deuterium Oxide	4.80 (DSS) 4.81 (TSP)		NA	Ace	tone-c	d 6					
N, N-Dimethyl -formamide-d >	8.03 (1) 2.92 (5) 2.75 (5)	1.9 1.9	163.15 34.89 29.76							2.	.05
Dimethyl Sulfoxide-d 6	2.50 (5)	1.9	39.51	Α.		.1 1					
1,4-Dioxane-d »	3.53 (m)		66.66	Ace	tonitri	ıle-a	3				_
Ethanol-d 6	5.29 (1) 3.56 (1) 1.11 (m)		56.96 17.31							1.	.94
Methanol-d 4	4.87 (1) 3.31 (5)	1.7	49.15	Ben	zene-	d 6				7.	.10
Methylene Chloride-d 2	5.32 (3)	1.1	54.00								
Pyridine-d s	8.74 (1) 7.58 (1) 7.22 (1)		150.35 135.91 123.87	Chl	lorofoi	rm-d				7.	.24
Tetrahydrofuran-d ,	3.58 (1) 1.73 (1)		67.57 25.37 (5)	20.2							
Toluene-d s	7.09 (m) 7.00 (1) 6.98 (5) 2.09 (5)	2.3	137.86 (1) 129.24 (3) 128.33 (3) 125.49 (3) 20.4 (7)	23 24 24 19	0.4	0.94	-95	111	2.4	100.19	
Trifluoroacetic Acid-d	11.50 (1)		164.2 (4) 116.6 (4)		11.5	1.50	-15	72		115.03	
Trifluoroethanol-d 3	5.02 (1) 3.88 (4x3)	2(9)	126.3 (4) 61.5 (4X5)	22	5	1.41	-44	75		103.06	

Cambridge Isotope Laboratories, Inc.

50 Frontage Road, Andover, MA 01810-5413 USA PH: 978.749.8000 PH: 800.322.1174 (USA) PH: 800.643.7239 (CANADA) FAX: 978.749.2768

E-MAIL: cilsales@isotope.com (DOMESTIC)
E-MAIL: intlsales@isotope.com (INTERNATIONAL)
URL: http://www.isotope.com

https://www.isotope.com/use rfiles/files/assetLibrary/NMR_ solvents_data_chart_&_stora ge.pdf


Preparazione del Campione

Solvente: $CDCl_3$ (600-700 μ L)

Solidi: 10-20 mg, due punte di spatola

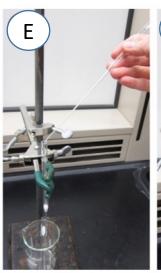
Liquidi: una goccia

La soluzione deve essere limpida

Altezza 5 cm 0.6-0.7 mL 31P 1D 19F 1D 11B 1D

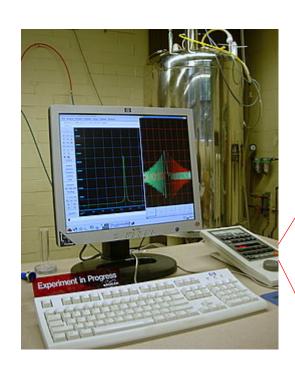
mM

Microfiltrazione !!!!

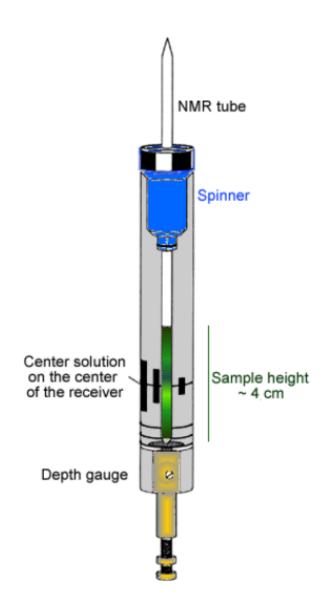

Microanidrificazione in pipetta



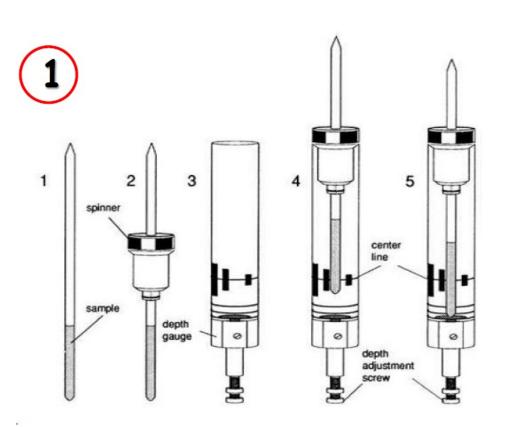
Preparazione del Campione


Scrive nella parte superiore con pennarello il codice del campione,
Oppure utilizza un pezzettino di carta (che dopo devi togliere!!!)

Pulire la parte esterna del tubo con un fazzoletto morbido



Bsms keyboard


Computer with Bruker topspin software (gratuito per studenti e docenti da bruker.com)

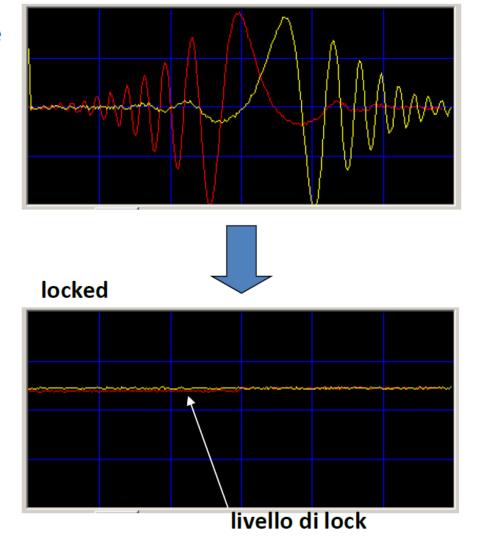
Inserimento del Campione

Il tubo **con lo spinner** va posato sul flusso d'aria creato sopra il probe del magnete

3 Azionare di nuovo «LIFT»

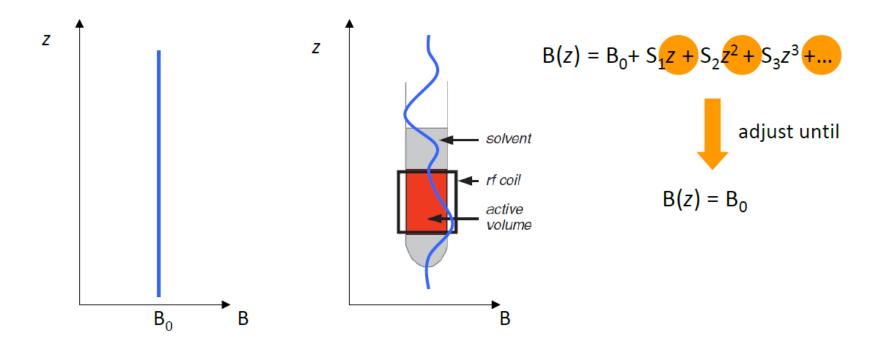
Lock

unlocked


Lo spettrometro NMR possiede un canale permanentemente sintonizzato sulle frequenze di risonanza del deuterio (²H)

Lo strumento cerca questa frequenza in base al solvente che indichiamo

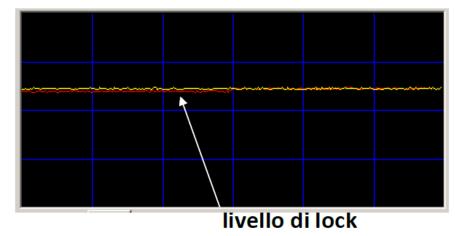
«lock» + indicare solvente


Il segnale generato dal ²H può essere utilizzato per:

- monitorare eventuali drift di campo
- *shimmare* il campione

Shimming

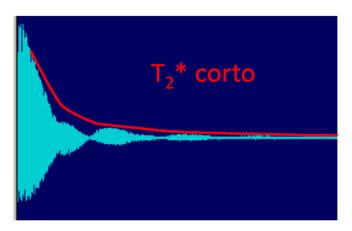
 Dopo aver "agganciato" il segnale lock, è necessario omogeneizzare il campo B_o (renderlo uniforme lungo tutto il campione)

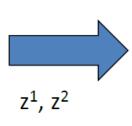


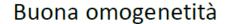
By changing the current in the shim coils, one can empirically match the values S_1 , S_2 , S_3 ... in such way as to cancel their effect on the field B.

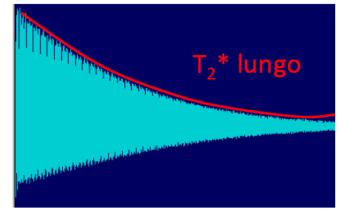
Shimming

- Dopo aver "agganciato" il segnale lock, si agisce sugli shim coils z1 e z2 (raramente z3 e z4) in modo interattivo in modo da..
- ... far salire il livello di lock il più possibile

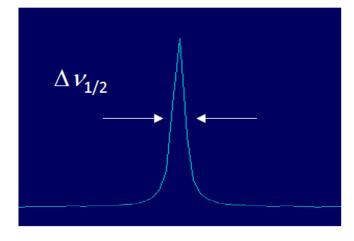

Disponibile file di shimmatura

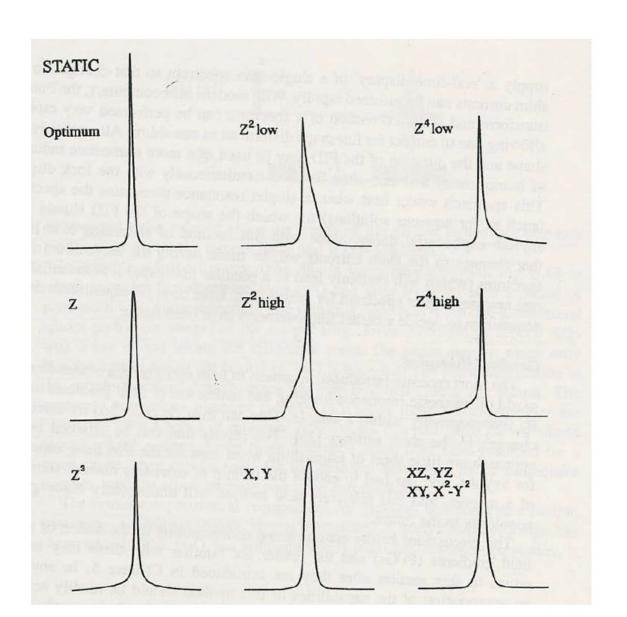



 L'innalzamento del livello di lock indica che il segnale del deuterio aumenta di intensità ed è correlabile ad un miglioramento di omogeneità di B₀


Influenza dello Shimming sul FID

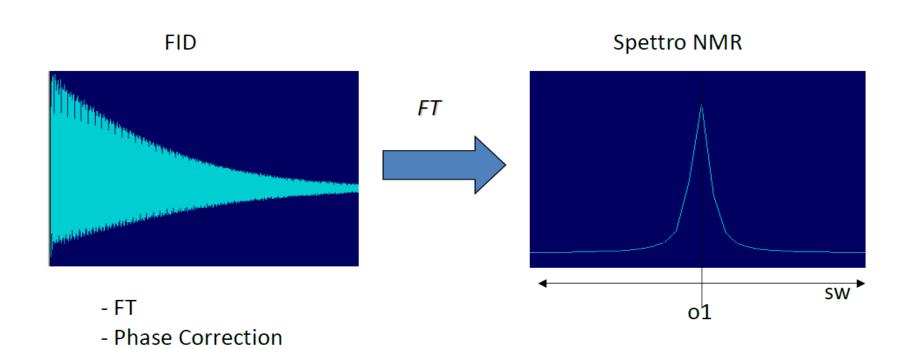
Scarsa omogeneità





$$\Delta v_{1/2} = 1/(\pi T_2^*)$$

Influenza dello Shimming sul segnale

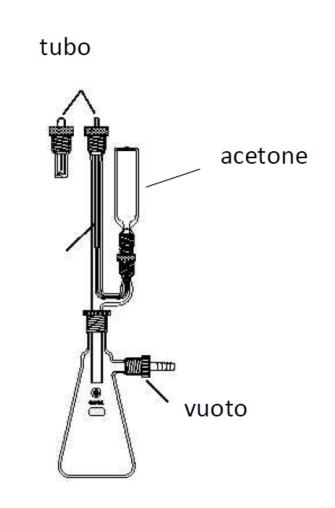

Acquisizione

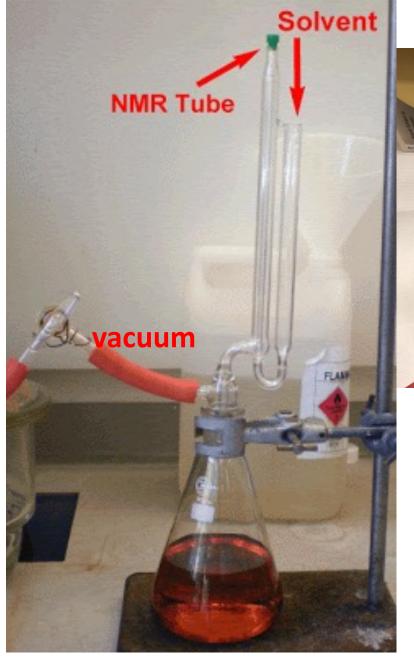
Parametri

PULPROG	PULse PROGram (experiment)	zg	
TD	Number of time domain samples (number of points used to define FID)	FIXED	
AQ	Acquisition time, TD/(2SW)	FIXED	
P1	Pulse width	FIXED	
SWH	Sweep width in Hz (spectral width)		
sw	Sweep width in ppm	10-15ppm	Depends on sample
o1	Transmitter center in Hz (Center of the spectrum in Hz)		
olp	Center of the spectrum in ppm		Depends on SW
D1	Relaxation delay, time between two consecutive scans	1-3	Type of protons
RG	Receiver autogain-depends on concentration		RGA
NS	Number of scans	8-128	Depends on rg

Elaborazione del FID

SI PUO' ESEGUIRE COL PROGRAMMA MESTRE-C


- Baseline Correction

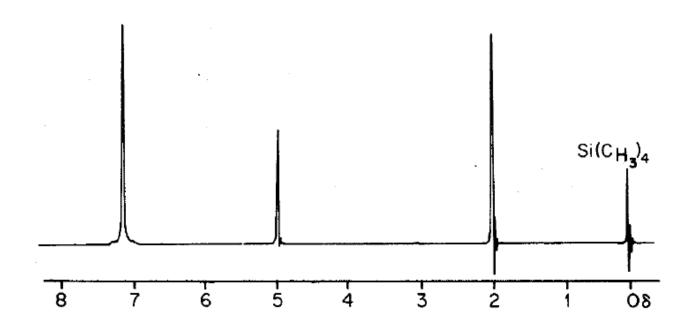

- Integration

- Peak Peaking

Pulizia dei tubi da 5mm

- Inserire il tubo rovesciato (con tappo!!) senza sigillare
- riempire di acetone il recipiente
- aprire il vuoto
- sigillare premendo il tappo
- asciugare

II. Sources of contamination.


Solvents from a general use bottle can easily become contaminated. Deuterated solvents pick up easily water and grease used on glassware is usually detected close to 0 ppm.

Useful references for identifying impurities:

- (a) J Org Chem **1997**, 62, 7512-7515, "NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities".
- (b) Organometallics **2010**, 29 (9), 2176-2179 "NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist"

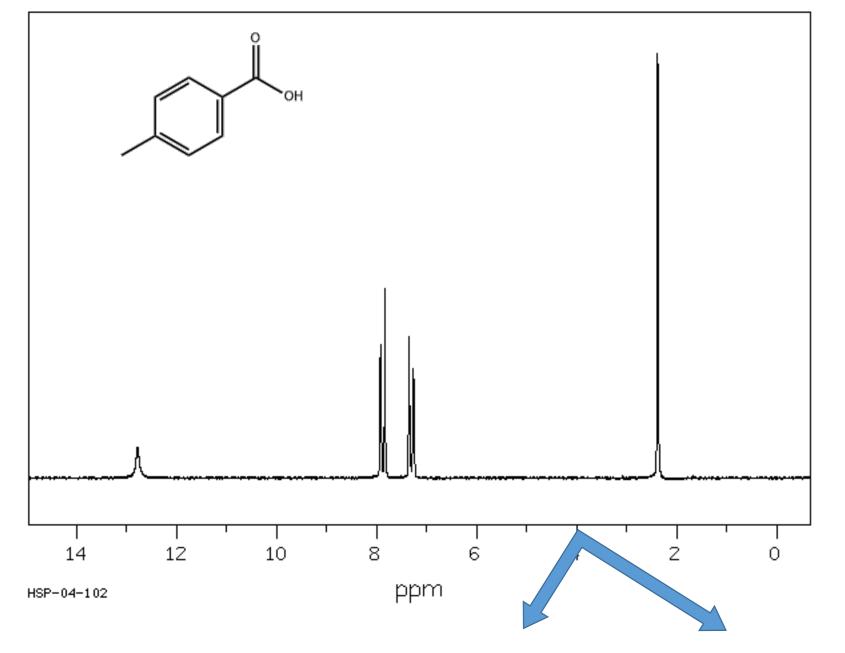
In uno strumento che opera in onda continua il trasmettitore di RF varia la frequenza in modo continuo nel corso della scansione.

Quando la frequenza corrisponde a quella di precessione dei nuclei presenti nella molecola questi vanno in risonanza, dando luogo ad un segnale che viene registrato dallo strumento per produrre lo spettro NMR

Procedura analoga alla spettroscopia UV o IR

L'NMR a onda continua (Continuous Wave NMR) è un metodo di spettroscopia Risonanza Magnetica Nucleare (NMR) in cui un campo magnetico statico viene mantenuto costante e una singola frequenza di radiofrequenza (RF) viene variata o un campo magnetico statico viene variato mentre la frequenza RF è costante. La risonanza si verifica quando l'energia della radiazione RF corrisponde alla differenza di energia tra gli stati di spin dei nuclei, risultando in un assorbimento del segnale e la registrazione di uno spettro che mostra la frequenza o il campo magnetico al momento della risonanza.

Come funziona


- **1.Campo Magnetico e Spin Nucleare:** I nuclei degli atomi (come i protoni dell'idrogeno) si comportano come piccoli magneti. Quando immersi in un forte campo magnetico, questi nuclei si allineano in due stati di spin: uno parallelo al campo e uno antiparallelo.
- **2.Stimolazione RF:** Le due condizioni di spin hanno differenze di energia. Per osservare la risonanza, si utilizza una radiazione elettromagnetica di frequenza specifica, o radiofrequenza (RF).

3. Due Modi Operativi:

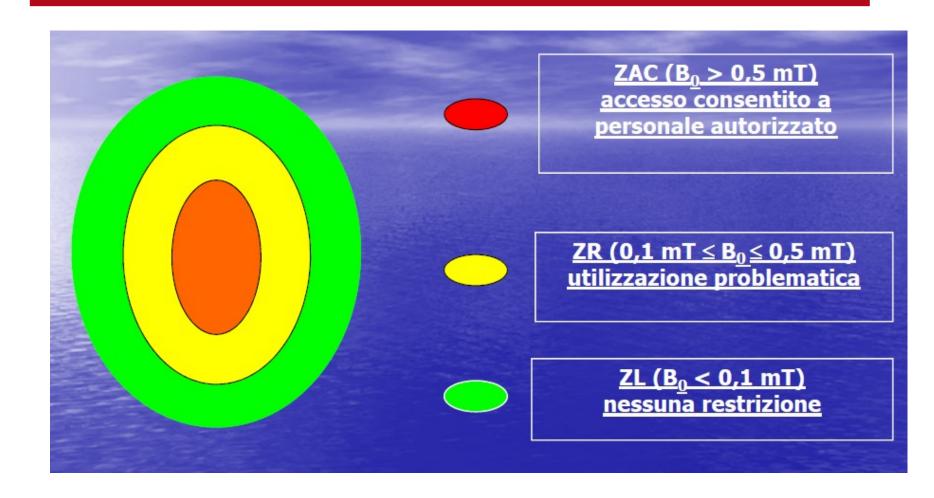
- 1. Scansione di Frequenza: Si applica un campo magnetico statico costante al campione, mantenendo un impulso a frequenza costante. La frequenza dell'impulso RF viene quindi gradualmente variata fino a quando l'energia dell'impulso non corrisponde esattamente alla differenza di energia tra i due stati di spin nucleare. A questo punto, i nuclei assorbono energia (risonanza) e viene registrato un segnale.
- **2. Scansione di Campo Magnetico:** In alternativa, si può mantenere un campo RF costante e variare lentamente l'intensità del campo magnetico, sempre fino a quando non si raggiunge la condizione di risonanza.

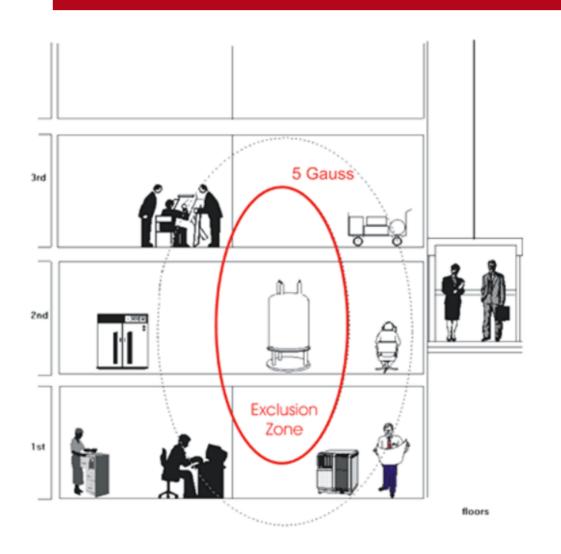
Perché è stato sostituito dagli strumenti moderni

Gli spettrometri NMR a onda continua sono stati gli strumenti di prima generazione. I moderni strumenti NMR a trasformata di Fourier (FT-NMR) utilizzano un approccio più efficiente. Invece di variare lentamente un parametro, gli strumenti FT-NMR irradiano il campione con un breve impulso di energia RF che contiene un'ampia gamma di frequenze. Questo eccita tutti i nuclei contemporaneamente, producendo un segnale chiamato decadimento a induzione libera (FID). Questo segnale viene poi elaborato matematicamente attraverso una trasformata di Fourier per produrre uno spettro completo, fornendo molte più informazioni in modo più rapido e completo.

¹H NMR (400 MHz, CDCl₃) δ 12.8 (bs, 1H), 7.94 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 2.36 (s, 3H).

SICUREZZA


Sarete voi a usare personalmente lo strumento


Fonti di pericolo

- campo magnetico B0
- Liquidi criogenici

Classificazione delle zone di rischio

Classificazione delle zone di rischio

ZAC ($B_0 > 0.5 \text{ mT}$)
accesso consentito a
personale autorizzato

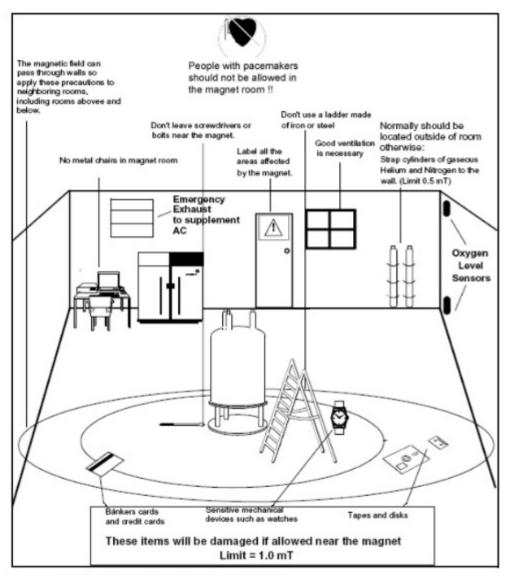
ZR (0,1 mT \leq B₀ \leq 0,5 mT) utilizzazione problematica

 $ZL (B_0 < 0.1 mT)$ nessuna restrizione

Zona ad acceso controllato (ZAC)

La porta d'accesso al laboratorio NMR è tenuta chiusa e dotata di cartelloni che indicano i rischio e il divieto d'accesso a personale non autorizzato

La zona ZAC è all'interno della sala NMR, è delimitata da barriere fisiche e accessibile soltanto a personale autorizzato


Zona ad acceso controllato (ZAC)

- A questa zona si accede per inserire il campione e fare le operazioni di tuning
- La maggior parte degli strumenti moderni prevedono un tuning remoto e l'utilizzo di autocampionatori

Zona di rispetto (ZR)

- Evitare postazioni fisse
- Evitare macchinari che possano interferire col funzionamento dello spettrometro

Figure 2.1. General Overview of Safety

Rischio per liquidi criogenici

Liquidi criogenici

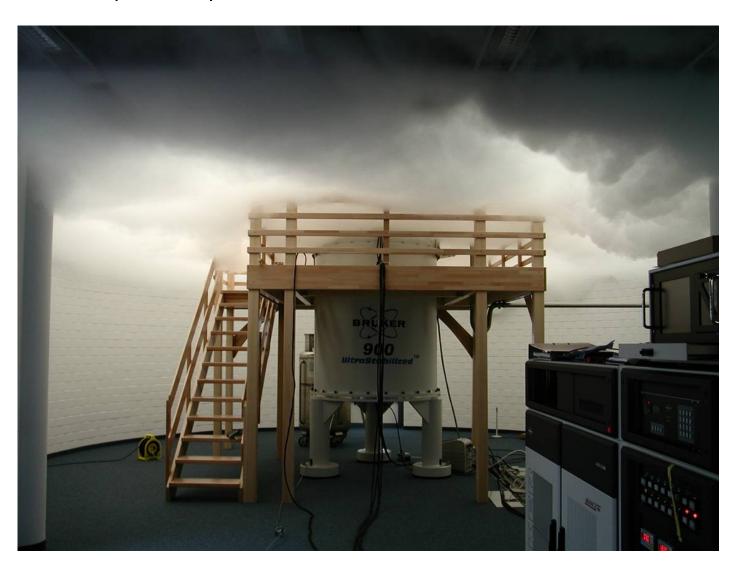
He liquido

Temperatura -269 °C

Inodore, non infiammabile, no tossico

Lesioni da freddo

Sulla pelle provoca lesioni simili a bruciature


Soffocamento

QUENCH

QUENCH

Evaporazione improvvisa di tutto il liquido criogenico dovuta a un aumento della temperatura o alla perdita del vuoto

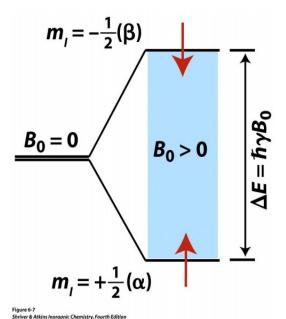
http://www.youtube.com/watch?v=nBVHnZ8tru0

QUENCH

Evaporazione improvvisa di tutto il liquido criogenico dovuta a un aumento della temperatura o alla perdita del vuoto

Pericolo di soffocamento

Ci sono strumenti di misura della concentrazione di ossigeno nella sala NMR


L'evaporazione porta anche ad un aumento della pressione atmosferica interna che può rendere più difficile l'apertura della porta

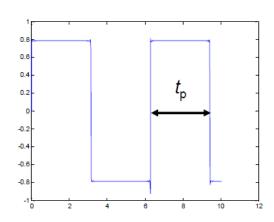
PRINCIPIO DELLA SPETTROSCOPIA NMR

1. In presenza di un campo magnetico esterno B₀ i due stati di spin hanno una energia diversa.

$$\Delta E = \gamma \hbar B_0$$

$$\nu = \frac{\gamma}{2\pi} B_0$$

2006 by D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller, and F. A. Armstrong

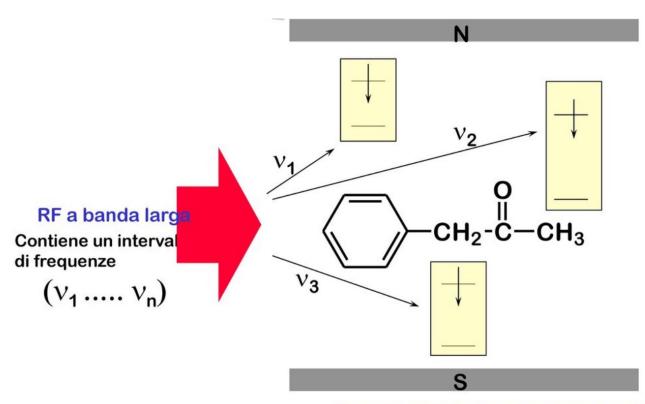

2. Un strumento NMR utilizza la transizione tra stati di spin per avere un segnale. Le transizioni avvengono nel range delle radiofrequenze

3. Irradiando il campione a una frequenza esattamente uguale alla frequenza di Larmor di un nucleo specifico, avviene uno assorbimento di energia che da luogo a una transizione di spin

NMR A IMPULSI / A TRASFORMATA DI FOURIER

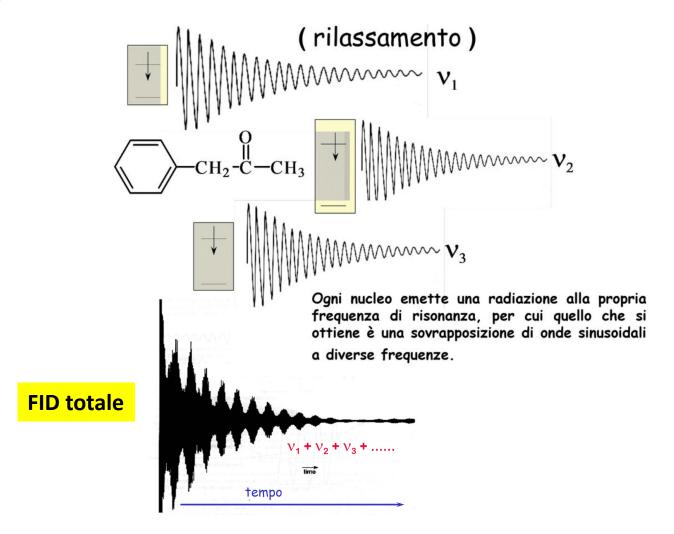
Tutti i nuclei di una specie vengono eccitati inviando contemporaneamente tutte le radiofrequenze entro l'intervallo di interesse (IMPULSO di radiofrequenze). Ad esempio, per fare eccitare contemporaneamente tutti i protoni di una molecola si inviando simultaneamente tutte le radiofrequenze entro l'intervallo in cui risuonano i protoni. Una volta eccitati cessa la radiazione di radiofrequenze e si va a misurare l'emissione di energia in funzione del tempo.

Come ottengo questo impulso?

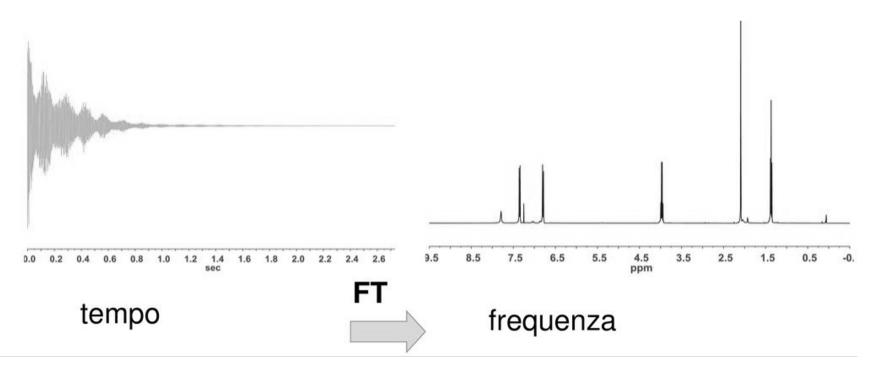


Per il principio di indeterminazione, un impulso di radiazione elettromagnetica della durata di 1 ms ha una indeterminazione sulla frequenza di ca. 1000 Hz! L'impulso contiene tutte le frequenze centrate su una frequenza portante (v_0) tra v_0 - 500 Hz e v_0 + 500 Hz, ed ha una larghezza di 1000 Hz

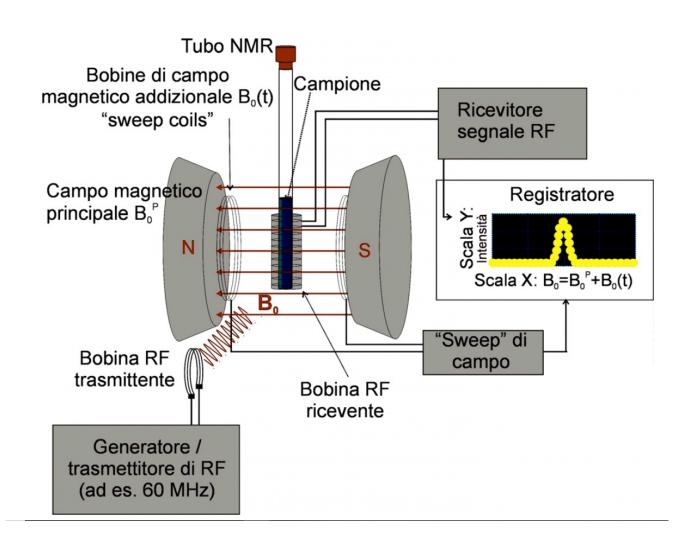
Lo strumento NMR invia impulsi di radiofrequenze per tempi nel ordine dei microsecondi


IMPULSO DI RADIOFREQUENZE

- 1. Il campione viene posto in un campo magnetico B₀
- 2. Invio di impulso di radiofrequenze


Con un singolo impulso sono eccitati simultaneamente tutti i protoni

3. I nuclei riemettono l'energia assorbita producendo un segnale oscillante che decade nel tempo e che ha una frequenza uguale alla frequenza di Larmor (FID, Free Induction Decay)



TRASFORMATA DI FOURIER (FT)

4. Il FID è registrato ed è convertito in un segnale nel dominio delle frequenze tramite operazioni matematiche, la trasformata di Fourier

Con uno strumento FT è possibile acquisire un gran numero di FID in pochi secondi e sommarli → grande aumento della sensibilità

