

Università di Padova, Facoltà di Scienze Statistiche
Laurea Magistrale in Scienze Statistiche
Corso: **Teorie e modelli demografici**

The life table and single decrement process

Maria Letizia Tanturri

Dipartimento di Scienze Statistiche
tanturri@stat.unipd.it

Lezione 8

Riferimenti

- Preston et al. (2001), ch. 3

Life Table

- A statistical model for measuring the mortality (or any other type of “exit”) experiences of a population, controlling for age distributions

Why is it so important?

- The life table is the most important device used in demography.
- It is only one way to summarize a cohort mortality experience (but simple!).
- It allows to calculate life expectancy at birth (or a certain age x), one of the most used indicators

Un'idea intuitiva della speranza alla vita alla nascita

- Ined

<http://www.ined.fr/fr/tout-savoir-population/videos/animation-mesurer-esperance-vie/>

Types of Life Tables

- Current/Period vs. Generation/Cohort
- Complete vs. Abridged
- Single vs. Multiple Decrement
- (Increment/Decrement Tables)

Università di Padova, Facoltà di Scienze Statistiche
Laurea Magistrale in Scienze Statistiche
Corso: **Teorie e modelli demografici**

Demographic probabilities

Lezione 8

Period & Cohort Rates & Probabilities

$${}_nM_x^{\text{Cohort } C} = \frac{\text{Deaths to Cohort C between ages } x \text{ and } x+n}{\text{Person-years lived by Cohort C between ages } x \text{ and } x+n}$$

$${}_nM_x^{\text{Year } t} = \frac{\text{Deaths between ages } x \text{ and } x+n \text{ in Year } t}{\text{Person-years lived between ages } x \text{ and } x+n \text{ in Year } t}$$

$${}_nq_x^{\text{Cohort } C} = \frac{\text{Deaths to Cohort C between ages } x \text{ and } x+n}{\text{Number of persons in Cohort C who reached their } x^{\text{th}} \text{ birthday}}$$

Università di Padova, Facoltà di Scienze Statistiche
Laurea Magistrale in Scienze Statistiche
Corso: **Teorie e modelli demografici**

The life tables

Lezione 8

The Life Table

- One of the most important demographic techniques
- Describes the dying out of a cohort
- Age or more generally “duration” is the most important dimension along which a life table is organized

The Life Table

- Contains a number of columns
 - Age (age groups),
 - Numbers of deaths in each age group
 - Probability of dying in each age group
 - Number of survivors to the beginning of each age group
 - Number of person years lived in each age group
 - Average additional years to live for those who survive to beginning of each age group, etc.

Life Table Columns: I_x

I_x

- Number left alive at age x

Life Table Columns: $n d_x$

$$n d_x = l_x - l_{x+n}$$

- Number dying between ages x and $x+n$

Life Table Columns: nq_x

$$nq_x = \frac{d_x}{l_x}$$

- Probability of dying between ages x and $x+n$

Life Table Columns: ${}_n p_x$

$${}_n p_x = \frac{I_{x+n}}{I_x} = \frac{I_x - {}_n d_x}{I_x} = 1 - {}_n q_x$$

- Probability of surviving from ages x to $x+n$

Life Table Columns: ${}_nL_x$

$${}_nL_x = n \cdot l_{x+n} + {}_n a_x \cdot {}_n d_x$$

- Person-years lived between ages x and x+n

Life Table Columns: T_x

$$T_x = \sum_{a=x}^{\infty} n L_a$$

- Person-years lived at ages older than x
- (=Serie retrocumulata degli anni vissuti)

Life Table Columns: e_x

$$e_x^0 = \frac{T_x}{l_x}$$

- Expectation of life at age x ; **average additional years of life that someone who survives to age x can expect to live**

Life Table Columns: ${}_n m_x$

$${}_n m_x = \frac{{}_n d_x}{{}_n L_x}$$

- Death rate in the cohort between ages x and $x+n$

Life Table Columns: $n a_x$

$$n a_x$$

- Average number of years lived in the age interval by those dying in the age interval

Note

- Some functions refers to a single exact age:
 - l_x
 - T_x
 - e_{0x}

- Other functions refers to age intervals, that begin with exact age x and extend for n years:
 - ndx
 - npx
 - nqx
 - nmx
 - nax

Esercitazione

- Come costruire una tavola di mortalità per una coorte
- (es.Lifetable1_preston_esercizio_Preston_p39)

Example: age at death and life line of an hypothetical cohort of births (10). Date of birth: January 1800



Table 3.1: Life table for hypothetical cohort of 10 births shown in figure 3.1

Exact age	Number left alive at age x	Number dying between ages x and $x + n$	Probability of dying between ages x and $x + n$	Probability of surviving from age x to age $x + n$	Person-years lived between ages x and $x + n$	Person-years lived above age x	Expectation of life at age x	Death rate in the cohort between ages x and $x + n$	Average person-years lived in the interval by those dying in the interval
x	l_x	$n d_x$	$n q_x$	$n p_x$	$n L_x$	$T_x = \sum_{a=x}^{\infty} n L_a$	$e_x^0 = T_x / l_x$	$n m_x$	$n a_x$
0	10	1	1/10	9/10	9 + .07 = 9.07	436.79 + 9.07 = 445.86	445.86 10 = 44.586	1 9.07	.07
1	9	1	1/9	8/9	8 · 4 + .22 = 32.22	404.57 + 32.22 = 436.79	436.79 9 = 48.532	1 32.22	.22
5	8	0	0	1	8 · 5 = 40	364.57 + 40 = 404.57	404.57 8 = 50.571	0	—
10	8	1	1/8	7/8	7 · 10 + 6.41 = 76.41	288.16 + 76.41 = 364.57	364.57 8 = 45.571	1 76.41	6.41
20	7	1	1/7	6/7	6 · 10 + 2.12 = 62.12	226.04 + 62.12 = 288.16	288.16 7 = 41.166	1 62.12	2.12
30	6	0	0	1	6 · 10 = 60	166.04 + 60 = 226.04	226.04 6 = 37.673	0	—
40	6	0	0	1	6 · 10 = 60	106.04 + 60 = 166.04	166.04 6 = 27.673	0	—
50	6	1	1/6	5/6	5 · 10 + 9.60 = 59.60	46.44 + 59.60 = 106.04	106.04 6 = 17.673	1 59.60	9.60
60	5	2	2/5	3/5	3 · 10 + 6.96 = 36.96	9.48 + 36.96 = 46.44	46.44 5 = 9.288	2 36.96	(2.91 + 4.05)/2 = 6.96/2 = 3.48
70	3	3	3/3	0	9.48	9.48	9.48 3 = 3.16	3 9.48	(1.55 + 1.14 + 6.79)/3 = 9.48/3 = 3.16
80	0	0	—	—	—	—	—	—	—