

Lecture #14
Electronic measurements
Alessandro Pozzebon

- Measurement of time intervals
  - Measurement of periodic signals
  - Measurement of the delay between two signals
  - Phase shift measurement
  - Measurement of the rise and fall times of steep edges
- Measurement of frequencies
  - Characterization of signal generators, voltage-controlled oscillators, etc...
  - Analysis of signal sources associating the information content to frequency
- Measurements of time delay by means of ad-hoc sensors and transducers

• Identification of certain **reference points** on the analysed signal  $\rightarrow$  **Events** 

- Measurement of the period → Events: beginning and ending of the period
- Measurement of the rise time → Events: instants at which the signal reaches conventionally defined amplitude values

Set of circuits which extract the events of interest from the input signals



Crossing of a given amplitude level



Measurement is made by direct comparison with the instrument's internal reference



Generation of time intervals of constant and known duration



**Determination of elapsed time** by counting them



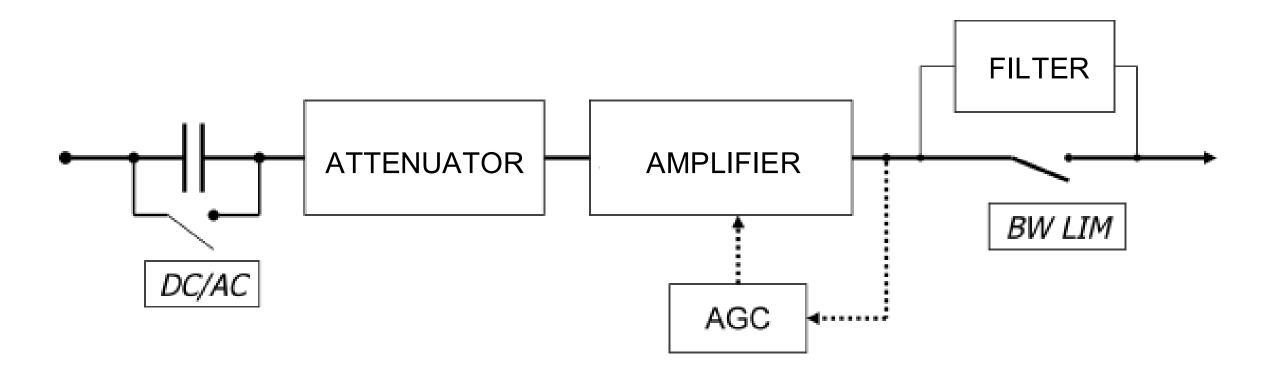


#### Counter





# Main components of a counter


- Input circuits
- Time and frequency reference
- Gate circuit
- Logic circuits and counting elements
- Control circuits
- Visualization tools

- At least two input channels, the use of which can be coordinated
- Each channel has its own independent input circuits

- **Signal conditioning circuit** → Similar to other measurement instruments
  - Amplification
  - Attenuation
  - Impedance matching



Normalization circuits



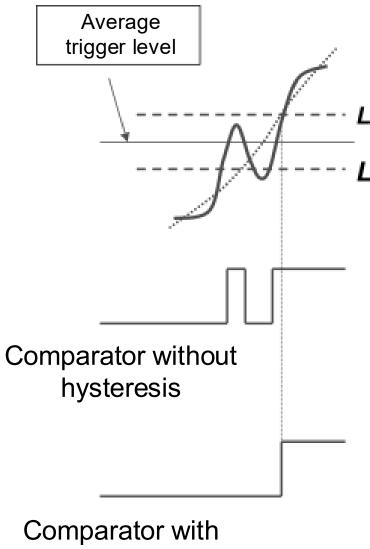
- AC/DC switch (Series capacitor): AC coupling
- Amplifiers and attenuators:
  - Extremely wide bandwidth
  - High gain
  - Stable over time and temperature changes
  - Low noise level
  - Uniformity of behaviour
- Low pass filter (BW LIM): when measuring signals at frequencies significantly lower than the maximum one, it can reduce the effects of broadband noise

• Shaping circuit: provides a signal that retains the time information of the input signal while being different in form  $\rightarrow$  Comparator with hysteresis



- Trigger: there is a switching edge any time the input signal reaches a threshold voltage
- The information concerning the events of interest is associated with the switching of a signal

- Maximum frequency of the counter → switching speed of the trigger
- The most important condition to be fulfilled in this case is the permanence

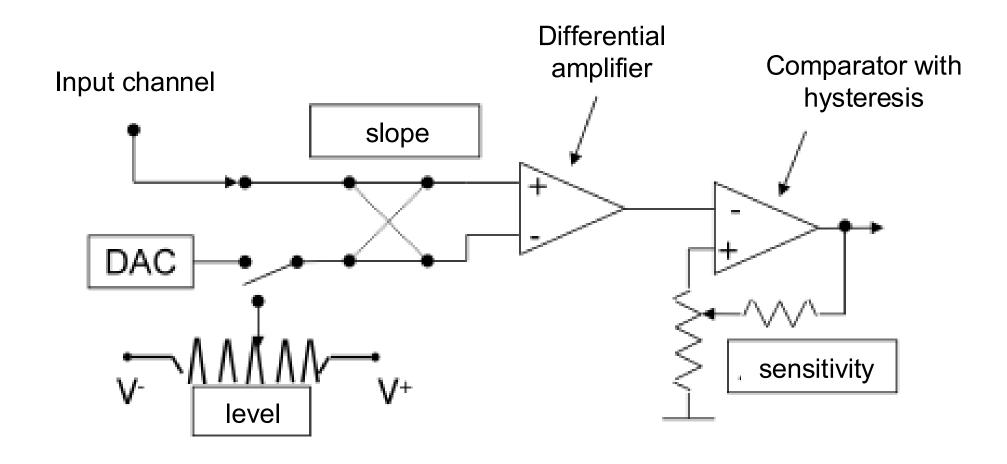

- Rise time measurements: the ability to precisely establish the threshold level also becomes important  $\rightarrow$  The set level needs to be verified from the outside
- Counters often have an output on which the DC voltage of the trigger level is present

Comparator without hysteresis → Impact of noise → Spurious switching



Introduction of a hysteresis into the input-output characteristic of the comparator






hysteresis

- The peak-to-peak amplitude of the input signal must be greater than the amplitude of the hysteresis band
- Command adjusting hysteresis → Sensitivity command
- **Sensitivity**: rms value of a sinusoidal signal whose peak-to-peak amplitude is equal to the difference between the two thresholds:

sensitivity = 
$$\frac{L^+ - L^-}{2 \cdot \sqrt{2}}$$

#### Signal shaping circuit



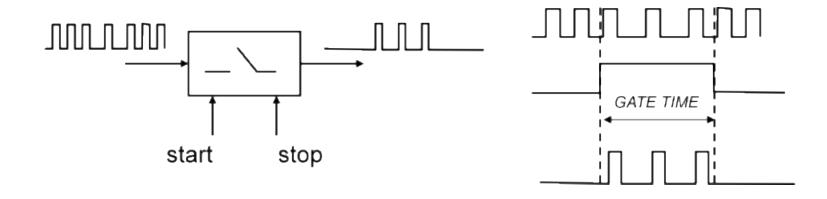


#### Frequency reference and time base

- Time base: sets the fundamental limits of accuracy
- Quartz cristal resonant element: oscillation frequency  $F_R$  between 1 and 10 MHz
- Minimization of temperature influence (oven oscillators)
- Avoiding loading effects → Buffer (impedance separator)
- Sinusoid → Converted in a square wave

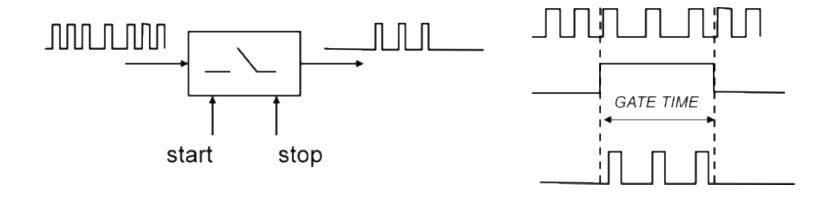
- Factors of uncertainty:
  - Fluctuations in the supply voltage
  - Short-term variations
  - Variations over time




 $10^{-6}$ 

- Enables the counting of events:
  - Taken from the input signal
  - Provided, at constant intervals, by the internal reference
- Start signal: opening of the gate
- Stop signal: closing of the gate




- Time interval  $T_{ON} \rightarrow$  Gate time
- Two inputs:
  - One for the signal to be sent to the counter
  - One for the command signal

#### Gate circuit



- The **rising edge** of the command signal enables the passage through the gate of the pulses to be counted
- The subsequent falling edge terminates the time interval during which the gate is enabled
- AND logic gate

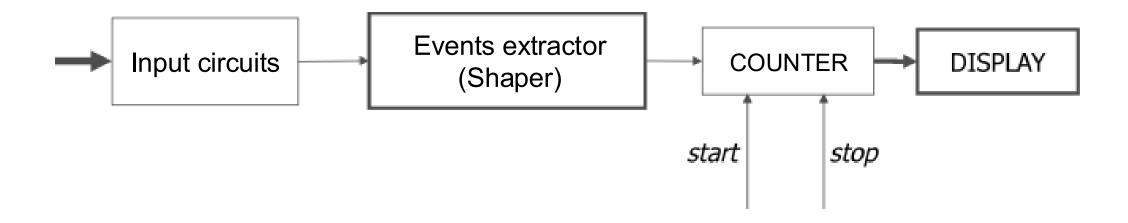
#### Gate circuit



- The gate places limits on the maximum frequency at which the counter can be used
- In order not to cause counting errors when the signal has a frequency F, the switching times of the gate must be less than 1/(2F)
- **Response time** to Start and Stop commands as short as possible and equal for both commands

#### **Counting circuits**

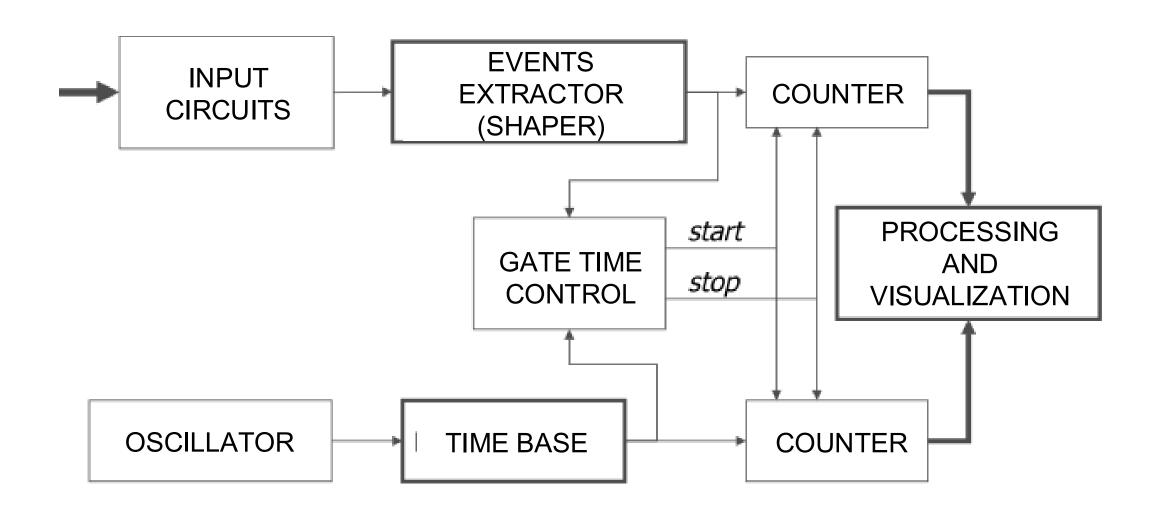
- This block counts the events between the Start and Stop signals
- Binary counter → Simple structure → High speeds
- Impulses counting
- Initialization command to be sent to the counter → Block reset
- Limits on the frequency of the input signal


#### Control circuits

- They select the mode and type of the measurement:
  - Periodic, intermittent, continuous
  - Period, frequency, etc...
- They control the opening and closing of the gate
- They also control the displaying of the result and the resetting of the counter in the instrument
- They also enable the **transfer** of the obtained count to an auxiliary memory register to allow the display of the result

- Devices for the **visual presentation** of the numerical result of the measurement:
  - LEDs
  - Liquid Crystal
  - 7-segment displays
- 3 to 8 decimal digits
- Resolution obtainable with a given instrument varies according to the type of measurement and the way in which the instrument itself is set up

#### **Events counting**


- The input signal is transformed into a succession of pulses to be sent to the counting block
- Signals of Start and Stop can be supplied either manually via the front panel of the instrument, or by means of external signal generators
- The output is a number



#### Reciprocal counting

- Two distinct counters:
  - One used to count the events associated with the external signal
  - One counting the pulses coming from the internal time reference
- The gates of the two counters are controlled in a coordinated manner by a single circuit:
  - Same gate time  $T_{ON}$
- In this instrument, the operator, in addition to selecting the type of measurement desired, only sets the measurement time  $T_{\it ON}$ 
  - The most suitable measurement mode is chosen by the instrument itself based on the characteristics of the input signal

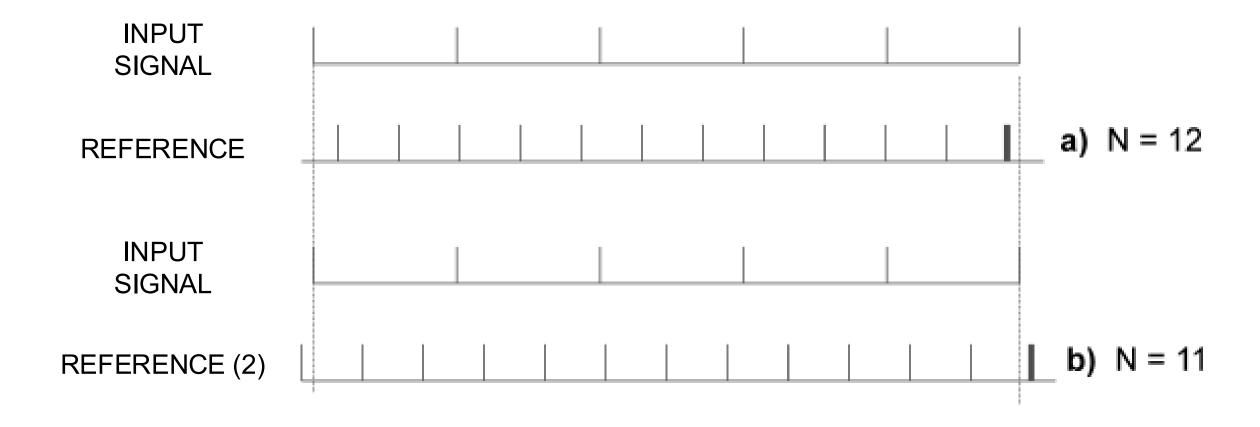
# Reciprocal counting



## Reciprocal counting

- Selection of the type of measurement
- Selection of the gate time  $T_{ON}$
- **Time counter** → Time base
- Events counter → Input signal
- If  $F_X < F_R \rightarrow \text{Time meter}$
- If  $F_X > F_R \rightarrow$  Frequency meter

#### Measurement with internal time reference


- Internal time reference  $\rightarrow$  Periodic signal of period  $T_R$
- How many time units, of duration  $T_R$ , the unknown interval corresponds to
- Start and stop commands, determining the gate time are derived from the input signal

Periodic signal → one event every period

- If start corresponds to one of these events and the Stop to the one immediately following  $\rightarrow T_{ON} = T_x$
- If the Stop is given at a distance of M periods  $\to T_{ON} = MT_x$  $T_{ON} = MT_x = N_x \cdot T_R$

#### Measurement with internal time reference

Uncertainty in the counting equal to the resolution of the counter, equal to ±1 units of its least significant digit



#### Measurement with internal time reference

$$MT_{x} = (N_{x} \pm 1) \cdot T_{R}$$

$$T_{x} = \frac{N_{x}}{M} T_{R} \pm \frac{T_{R}}{M}$$

$$F_{x} = \frac{1}{T_{x}} = \frac{M}{N_{x}} F_{R} \pm \frac{M}{N_{x}^{2}} F_{R}$$

- As M increases, the resolution improves
- As M increases, the time required for the measurement also increases
- Resolution:

$$\frac{\Delta_{\mathcal{X}}}{T_{\mathcal{X}}} = \frac{T_R}{MT_{\mathcal{X}}} = \frac{T_R}{T_{ON}} = \frac{1}{N_{\mathcal{X}}}$$

## Measurement with internal frequency reference

- $F_x$  number of periods per time unit time interval
- The shaping circuit obtains an event at each period of the input signal and the instrument counts the number of events that occur in the known time interval  $T_{ON}$
- $T_{ON} = K \cdot T_R = (N_x \pm 1)T_x$

$$F_{\chi} = \frac{N_{\chi}}{K} F_R \pm \frac{F_R}{K}$$

$$T_{\chi} = \frac{1}{F_{\chi}} = \frac{K}{N_{\chi}} T_R \pm \frac{K}{N_{\chi}^2} T_R$$

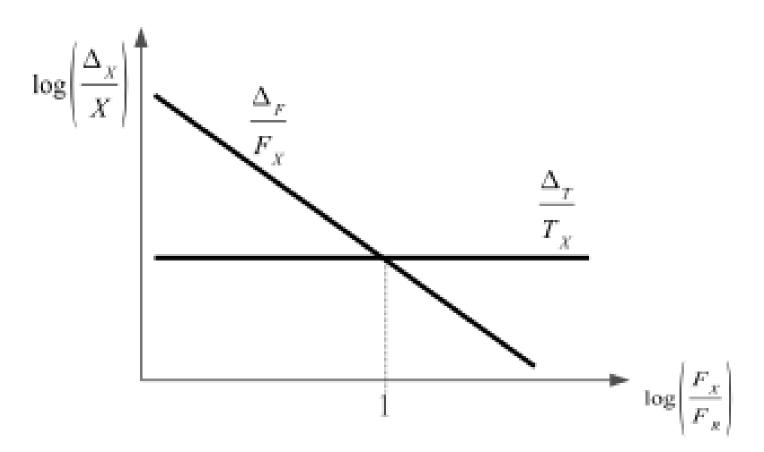
$$\Delta_F = \frac{F_R}{K} = \frac{1}{KT_R}$$

## Study of the resolution

- Internal period reference vs internal frequency reference
- Time reference

$$\frac{\Delta_{x}}{T_{x}} = \frac{T_{R}}{MT_{x}} = \frac{T_{R}}{T_{ON}}$$

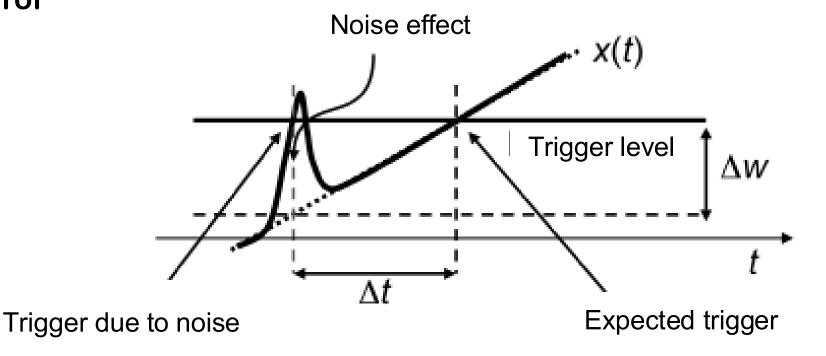
Frequency reference


$$\frac{\Delta_F}{F_X} = \frac{F_R}{KF_X} = \frac{1}{F_X} \cdot \frac{1}{T_{ON}}$$

• Time reference: no dependance on  $F_{\chi}$ 

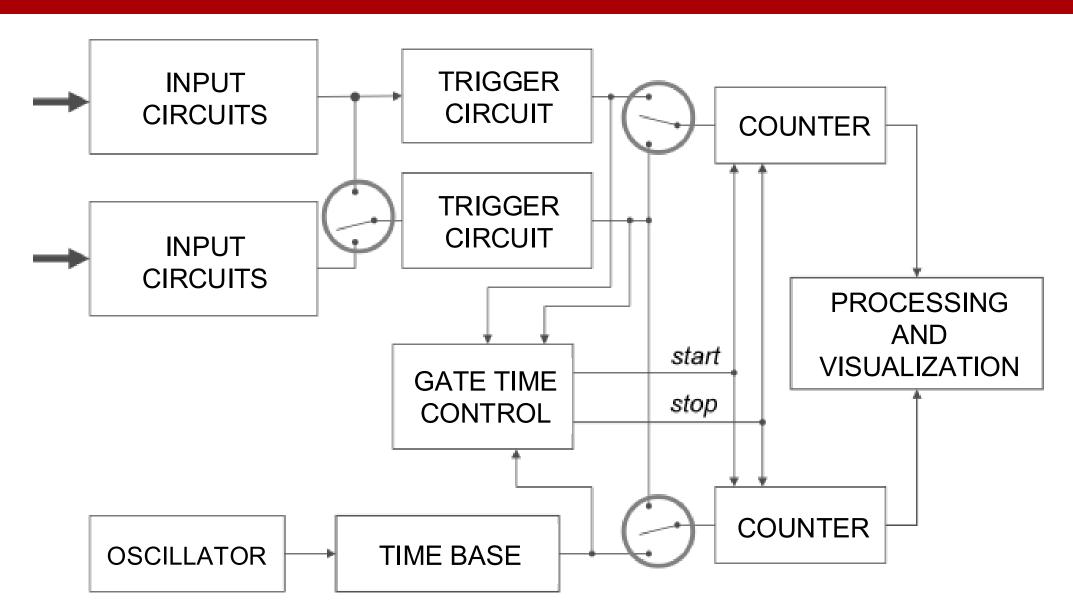
# Study of the resolution

Equal gate time


$$\frac{\Delta_{\mathcal{X}}}{T_{\mathcal{X}}} \le \frac{\Delta_{F}}{F_{X}} \Longrightarrow \frac{T_{R}}{T_{ON}} \le \frac{1}{F_{\mathcal{X}}} \cdot \frac{1}{T_{ON}} \Longrightarrow F_{\mathcal{X}} \le F_{S}$$

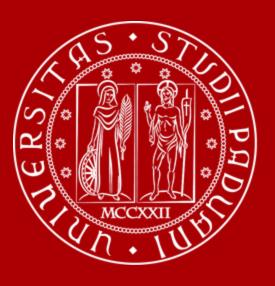





#### Sources of uncertainty

- Resolution (Start and Stop signals synchronization)
- Time base stability
  - Long use
  - Influence quantities
- Trigger error






# Reciprocal counter with two input channels



## Reciprocal counter with two input channels

- Measurement of the ratio of two frequencies
- Measurement of the duration of a time interval
- Measurement of the average duration of a time interval



# UNIVERSITÀ DEGLI STUDI DI PADOVA