

Measuring distortion in a linear amplifier

Lecture #7
Electronic measurements
Alessandro Pozzebon

Linear Amplifier distortion

• Linear amplifier: electronic circuit that has an output that is proportional to the input while providing additional power to the load

- **Distortion** ⇒ Non linearities within the circuit
 - Alterations in the shape of the signal
 - Changes in its spectral components

- Audio amplifiers ⇒ fidelity of sound reproduction
- Radio-frequency amplifiers ⇒ avoid spectral interference

Total Harmonic Distortion

- **Test signal** ⇒ Pure sinusoid
 - Harmonics: sinewaves at some integer multiples of the original sinewave frequency
 - $V_{RMS(1)}$ RMS value of the test sinewave at the fundamental frequency
 - $V_{RMS(i)}$ RMS value of the i-th harmonic
- Total Harmonic Distortion (THD)

$$THD[\%] = \frac{\sqrt{\sum_{i} V_{RMS(i)}^{2}}}{V_{RMS(1)}}$$

$$THD[dB] = 20log_{10}\left(\sqrt{\sum_{i} V_{RMS(i)}^{2}}\right) - 20log_{10}(V_{RMS(1)})$$
 [dBV]

Total Harmonic Distortion

- Intermodulation ⇒ Pair of sinewaves as test inputs
 - Frequencies f_1 and f_2
 - Components at frequencies f_1 , f_2 , $2f_1$, $2f_2$, $f_1 \pm f_2$, $2f_1 \pm f_2$, $f_1 \pm 2f_2$, etc...

- Clipping ⇒ Output saturation (output amplitude outside range)
- Slew rate: maximum rate of change that the amplifier output can achieve
 - Function of frequency and amplitude

Distortion in a linear amplifier

- Oscilloscope distortion
 - Check for distortion within the measuring instrument
- Device bandwidth evaluation
 - Approximately estimate the frequency band of interest
- Measurement of amplifier harmonic distortion
 - Determine THD
- Analysis of intermodulation distortion
 - Detect the presence of intermodulation effects

Oscilloscope settings

FFT function

• Frequency span (F_{span}) and the centre frequency (F_{centre})

Vertical axis

- Absolute RMS voltage values
- dBV

$$V_{x}[dBV] = 20 \cdot log_{10} \frac{V_{x}[V_{RMS}]}{1[V_{RMS}]}$$

- Reference level: vertical axis middle point on the screen
- Vertical cursors ⇒ direct reading in dBV

Oscilloscope distortion

The oscilloscope is not a spectrum analyzer...

- Distortion measurements:
 - Detecting signal components at different frequencies from the input signal
 - Check for distortion within the measuring instrument itself
 - Non-uniformity of the ADC quantization characteristic
 - Non-linearity in the input channel
- Generator output connected directly to the DSO input
- Test frequency in the same range used for amplifier testing

Spurious-free dynamic range

Oscilloscope distortion

Instrument settings:

- Center frequency: $\cong 5 \cdot f_{Test}$
- Frequency span: $\cong 10 \cdot f_{Test}$
- vertical scale factor: 10 dB/div

Noise floor:

- Signal quantization
- Electrical noise introduced by the input channel stages

Random process whose variance σ_{DSO}^2 is the sum of the variances of the two independent components

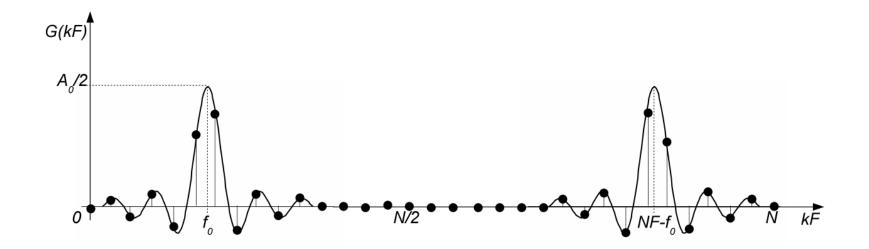
High resolution mode

Device bandwidth evaluation

Measurement steps:

- Power up the amplifier and select, a sinusoidal waveform from the signal generator
- Send the signal in parallel to the amplifier and to one of the oscilloscope inputs
- Connect the amplifier output to another of the oscilloscope inputs
- Adjust the amplitude of the input signal to avoid any distortion at the output
- Determine the reference points:
 - At the **centre frequency** the amplifier gain is maximum, and the output sinewave is in opposition to the input
 - At the -3 dB cut-off frequencies, both lower and upper, the output sinewave amplitude is approximately 30% smaller than at the centre frequency

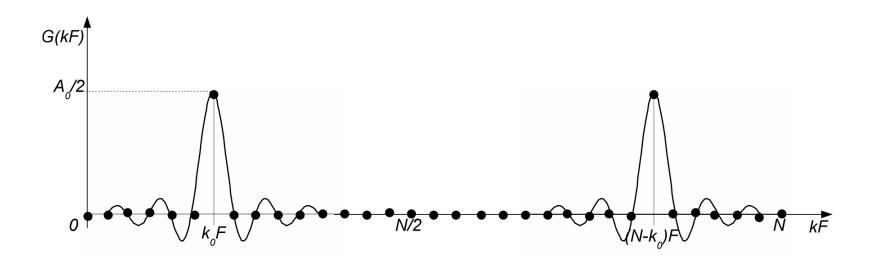
Measurement of amplifier harmonic distortion


- Measurement of THD: Analysis of the amplifier output to measure the RMS values of the fundamental and harmonic components
- Reading of $V_{RMS} \Rightarrow$ Positioning a vertical cursor on the corresponding spectral peak top
- RMS V conversion $\Rightarrow V_{RMS}[V] = 10^{\frac{V_{RMS}[dBV]}{20}}$
- Use of a spectral window with low value of Scalloping Loss

Fourier analysis

DFT-based sinewave spectrum

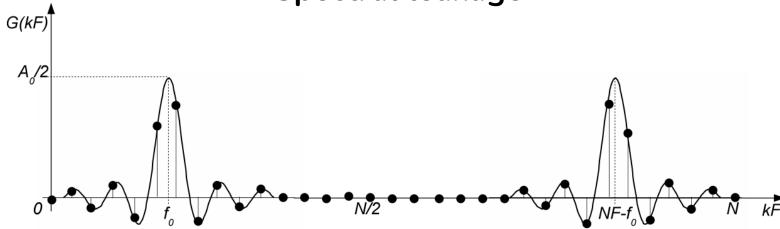
$$x(nT_s) = A_0 sin(2\pi f_0 nT_s + \phi_0), n_0 \le n \le n_0 + N - 1$$


$$X_{DFT}(kF) = \frac{A}{2j}e^{j\phi_0} \cdot \frac{\widetilde{W}_R(kF - f_0)}{NT_S} - \frac{A}{2j}e^{-j\phi_0} \cdot \frac{\widetilde{W}_R(kF + f_0)}{NT_S}$$

Fourier analysis

• When the observation interval $T_W = NT_S$ corresponds exactly to an integer number of sinewave periods, there is one index $k = k_0$ for which:

$$NT_S = k_0 \cdot \frac{1}{f_0}$$
 that means $f_0 = \frac{k_0}{NT_S} = k_0 F$


Spectral leakage

• In general, frequency f_0 is not an integer multiple of the frequency step F, therefore no index k meets the previous condition. However, there will be one index k_0 that yields k_0 F as the closest estimate of frequency f_0

$$\delta = \frac{f_0 - k_0 F}{F}$$
, with: $|\delta| \le \frac{1}{2}$

Spectral leakage

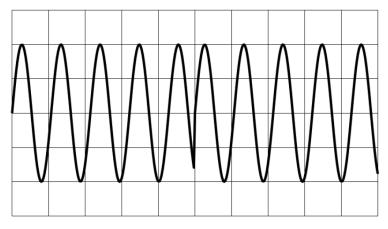
Scalloping Loss

 When a sinusoid is measured and the spectrum trace is displayed on an oscilloscope screen, the frequency can be determined by positioning a horizontal cursor to coincide with the spectral peak

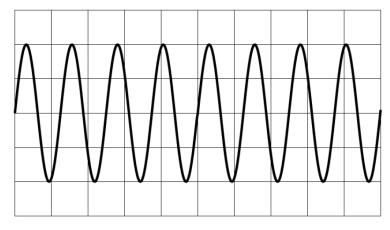
• Deviation of this estimate from f_0 is due to **frequency granularity** and the **minimum cursor step** along the frequency axis is $\Delta_f = F$, worst-case deviation is $\Delta_f / 2 = F / 2$

Scalloping Loss

 Placing a vertical cursor over the peak in the displayed trace will yield a direct reading of RMS amplitude

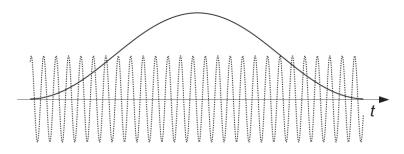


- When $\delta = 0$, the amplitude estimate is correct since $W_{R(DFT)}(0) = 1$
- For $0 < |\delta| \le \frac{1}{2} \Rightarrow W_{R(DFT)}(\delta) < 1$, scalloping loss
- Worst case scalloping loss (WCSL) when $\delta = \frac{1}{2}$


Frequency resolution

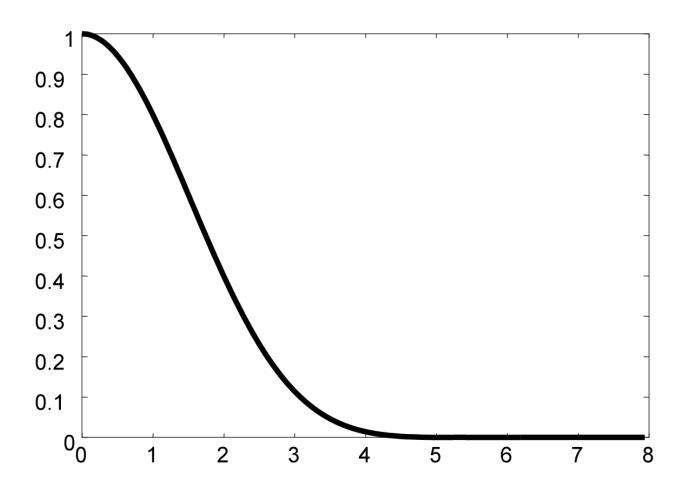
- When a signal is composed of several sinusoidal components, its DFT spectrum has multiple peaks
- If the displayed peak positions are close, interference may occur due to spectral leakage
- Frequency resolution: minimum separation at which two equal amplitude sinusoidal components create distinct peaks in the spectrum trace (normalized -6 dB bandwidth)
- With sinewaves of different amplitudes ⇒ Masking
 - Normalized main lobe width
 - Attenuation of the largest side lobe with respect to the main lobe
 - Side lobe fall-off with frequency

Window functions



(a) $T_W \neq PT \rightarrow \text{truncation}$

(b) $T_W = PT \rightarrow \text{no leakage}$


Hanning Window

Window functions

Hanning Window

Università degli Studi di Padova Windows parameters

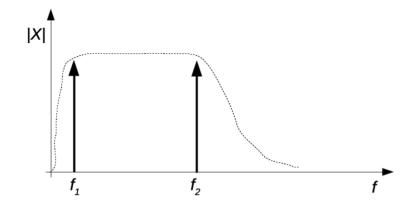
Window	WCSL [dB]	$\begin{array}{c} \text{minimum} \\ \text{side lobe} \\ \text{attenuation} \\ [\text{dB}] \end{array}$	main lobe width [bin]	$2 \cdot B_{-6dB}$ [bin]	ENBW [bin]
uniform	3.92	13	2	1.21	1
Hann (Hanning)	1.42	32	4	2	1.5
Blackman-Harris	1.13	71	6	2.27	1.71
flat-top	< 0.01	93	10	4.58	3.77

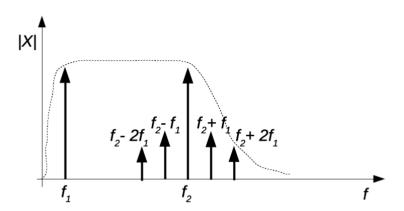
Measurement of amplifier harmonic distortion

Measurement steps

- Select a sinusoidal waveform shape on the signal generator. Frequency should be set to a value within the amplifier bandwidth, close to the lowfrequency cut-off
- Connect the generator output to the amplifier input and to one of the oscilloscope input channels
- Connect the amplifier output to another oscilloscope input channel
- Check that waveform amplitude does not produce distortion at the amplifier output
- Activate the oscilloscope spectral analysis function, employing the highresolution acquisition mode
- Set up frequency span and centre frequency so that each sinusoidal component of the signal can be singled out

Measurement of amplifier harmonic distortion

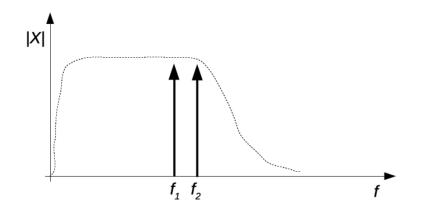

 Repeat the measurements for a few different input signal amplitudes and frequencies

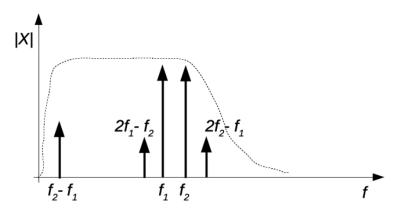

- Operations to be carried out:
 - Measure the amplitude and frequency of the largest visible spectral component
 - Measure the amplitude and frequency of the most significant harmonic components
 - Compute THD

Analysis of intermodulation distortion

• Sum of **two sinewaves** at different frequencies ⇒ No clipping

- First method: test signal is the sum of a low-frequency and a high-frequency sinewave
 - f_1 slightly greater than the low-frequency cut-off
 - f_2 slightly less than the high-frequency cut-off

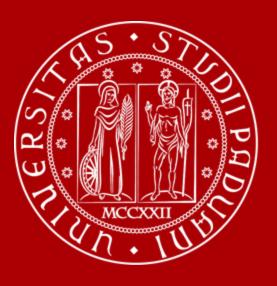



Analysis of intermodulation distortion

- First method: settings for the signal generator
 - Using the **Waveform** functional key, select a sinusoidal shape and input the settings for the low-frequency (f_1) component
 - From the Modulation menu, select the item Type, the modulation mode
 Sum
 - Set configuration parameters for the modulation waveform to a sinusoidal **Shape** and select the frequency (f_2) and amplitude, using respectively menu items **Sum Freq** and **Sum Ampl**
 - Activate modulation (Modulate On)
- Intermodulation components can be found at frequencies: $f_2 \pm k f_1$, with k integer
- Spectral analysis setting: centre frequency f_2 with frequency span $10 \cdot f_2$

Analysis of intermodulation distortion

- Second method: test signal is the sum of two equal-amplitude sinewaves at two close and comparatively high frequencies
 - The largest intermodulation component will be found in this case at the low frequency $f_d=f_2-f_1$
 - Same generator settings: f_1 and f_2 close to the high-frequency cut-off


DEGLI STUDI Interharmonic distortion

First method:

$$D_1 = \sqrt{\frac{V_{f_2 - 2f_1}^2 + V_{f_2 - f_1}^2 + V_{f_2 + f_1}^2 + V_{f_2 + 2f_1}^2 + \cdots}{V_2^2}}$$

Second method:

$$D_2 = \frac{V_d}{\sqrt{V_1^2 + V_2^2}}$$

UNIVERSITÀ DEGLI STUDI DI PADOVA