

DSO built-in measurement functions

Lecture #4
Electronic measurements
Alessandro Pozzebon

Measurement algorithms

Digital Signal Processing (DSP)

Waveform measurement functions

- True RMS voltmeter
- Frequency meter
- Peak voltmeter

Numerical indications provided by different measuring instruments

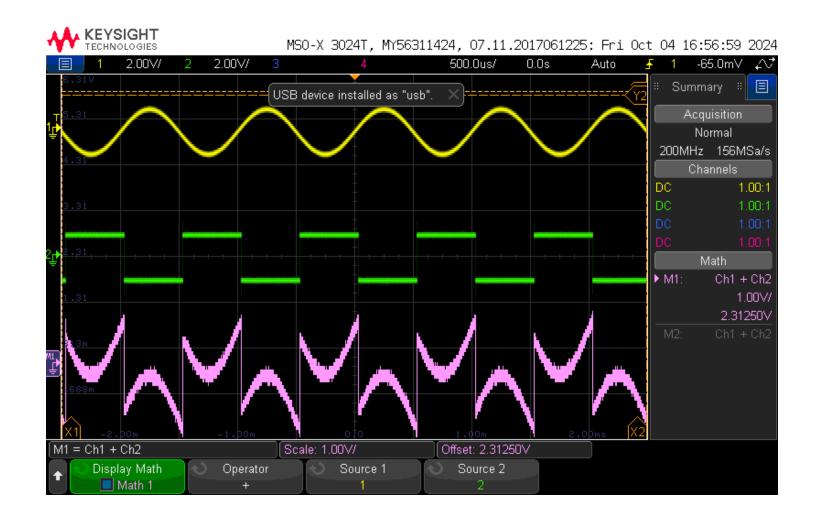
Common measurement algorithms

Common measurement functions

- Minimum value
- Maximum value
- RMS value
- Average value
- Peak-to-peak amplitude
- Rise time
- Frequency and period
- Phase shift
- Mathematical operations
- Etc...

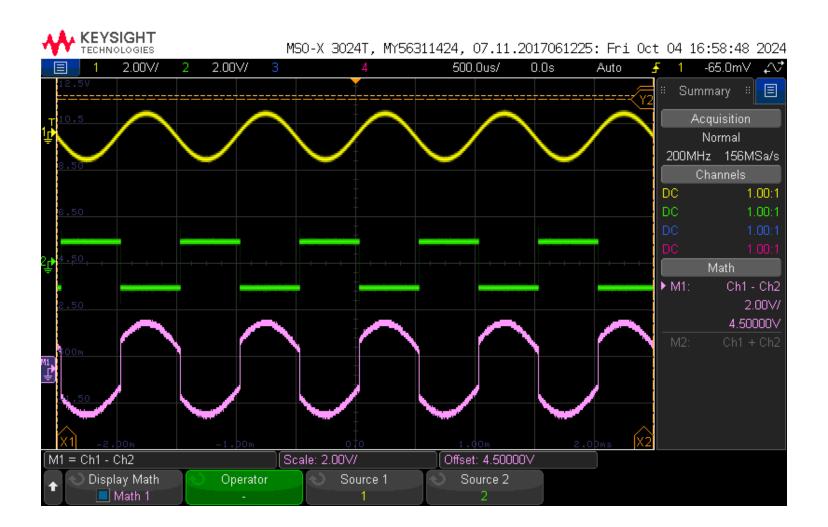
Mathematical functions

Sum



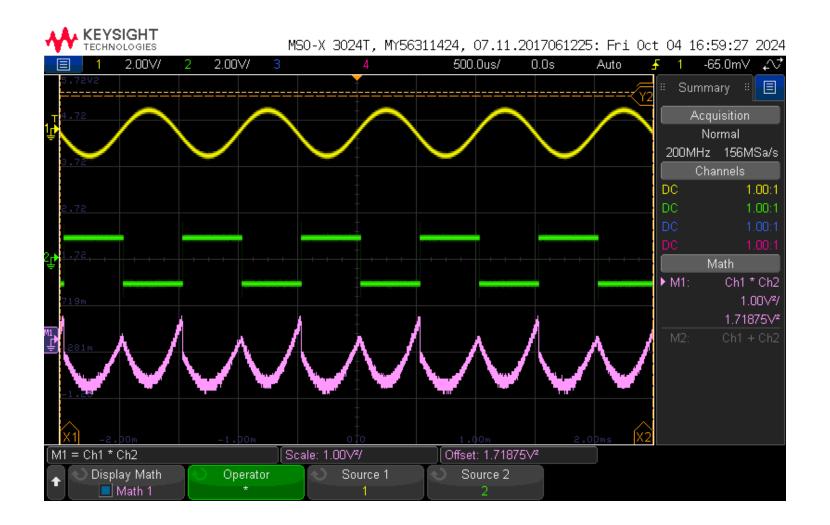
Mathematical functions

Difference



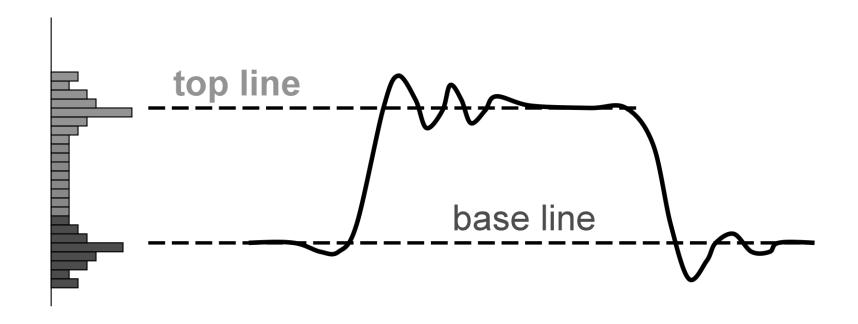
Mathematical functions

Product



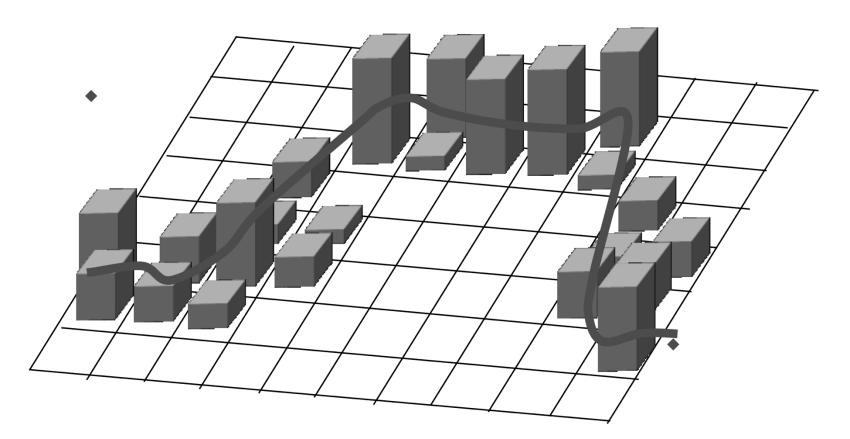
Statistics-based-measurement

- Amplitude distribution of the measured signal
 - Statistical sample of signal amplitude values
 - Signal probability density function



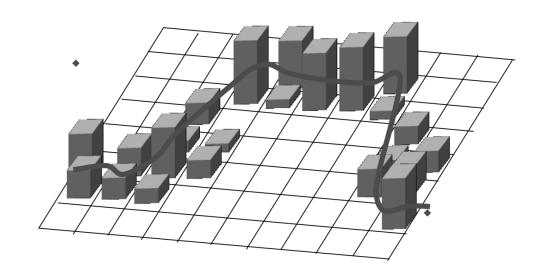
Statistics-based-measurement

- Amplitude distribution of the measured signal
 - More consecutive traces
 - Two-dimensional statistical sample



Statistics-based-measurement

- The display memory is a matrix of cells
- Each memory cell can be associated to a counter
- Different colours: discrete probability level associated to different colours
- Trace brightness



Root-mean-square value

Periodic waveform RMS (effective) value

$$X_{RMS} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} x^2(t) dt}$$

• **Digital RMS estimation** (on a finite sequence of N sample values $x(nT_S)$)

$$\widehat{X}_{RMS} = \sqrt{\frac{1}{N}} \sum_{n=n_0}^{n_0+N-1} x^2(nT_S)$$

Root-mean-square value

• RMS value of the AC component $(x_{(AC)}(nT_S)) = x(nT_S) - X_M)$

$$\hat{X}_{RMS} = \sqrt{\frac{1}{N} \sum_{n=n_0}^{n_0+N-1} x_{(AC)}^2 (nT_S)} = \sqrt{\frac{1}{N} \sum_{n=n_0}^{n_0+N-1} [x(nT_S) - X_M]^2}$$

- $\frac{nT_S}{T}$ ratio between the sampling interval and the signal period:
 - $\frac{nT_S}{T}$ integer $\to x(nT_S)$ periodic \to EXACT ESTIMATE
 - $\frac{nT_S}{T}$ rational $\rightarrow \frac{T_S}{T} = \frac{M}{P} \rightarrow PT_S = MT$
 - $\frac{nT_S}{T}$ irrational $\to x(nT_S)$ not periodic \to MOST REALISTIC CASE

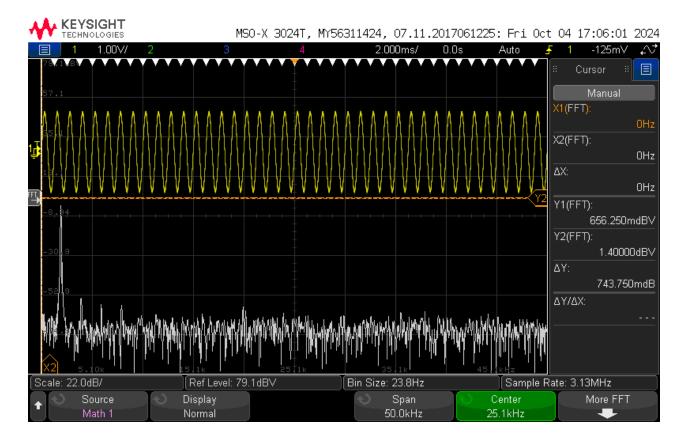
Root-mean-square value

- Two versions of the algorithm
- 1.
 - Preliminary stage: estimate of the signal period
 - $N \text{ samples} \rightarrow N_P \text{ samples}. N_P < N : (N_P 1)T_S \le T \le (N_P + 1)T_S$
 - Time resolution T_S
 - Quasi-coherent sampling

- 2.
 - N samples regardless of the signal features
 - Asynchronous sampling

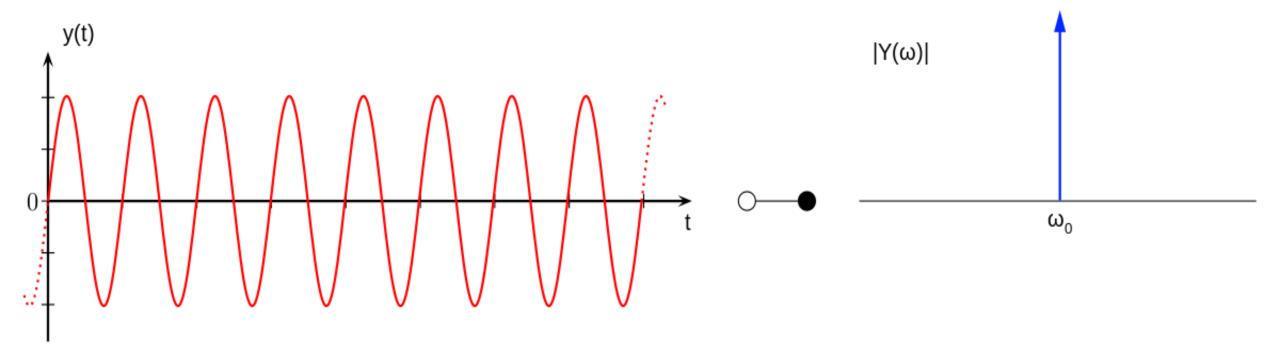
Fourier analysis function

- Convert a sequence of samples acquired from a signal into information about its frequency spectrum
- Fast Fourier Transform (FFT)



Fourier Transform

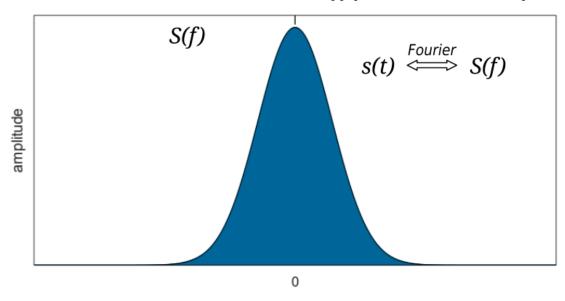
$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$



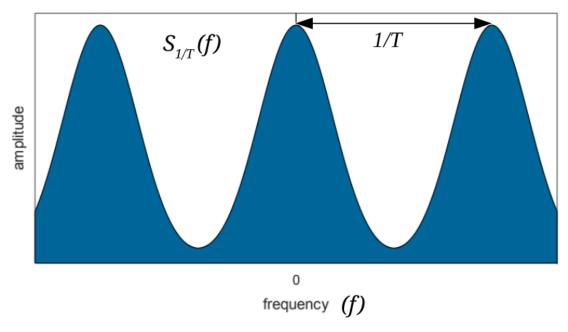
Sampled signal transform

$$\widehat{X}(t) = X(t) \cdot \sum_{n=1}^{N} \delta(t - T_n)$$

Fourier transform of a function s(t) (which is not shown)



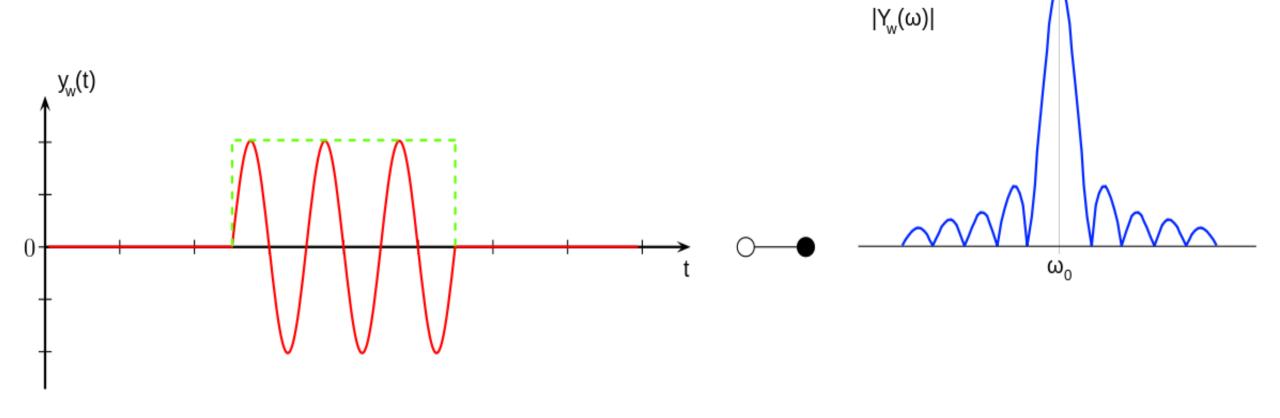
Transform of periodically sampled s(t) aka "Discrete-time Fourier transform"



Truncated-signal Fourier Transform

$$x(t) \cdot rect\left(\frac{t}{T}\right) = X(f) * Tsinc(Tf)$$

• If $x(t) = \sin 2\pi f_0 t \rightarrow \text{Amplitude modulation}$



Discrete Fourier Transform

• $x[n] = x(nT_s)$ with $n_0 \le n \le n_0 + N - 1$

$$X_{DFT}[k] = \frac{1}{N} \sum_{n=n_0}^{n_0+N-1} x[n]e^{-j2\pi \frac{kn}{N}}$$

• $X_{DFT}[k]$ is **periodic** with period N

$$X_{DFT}[kF] = \frac{1}{NT_S} \sum_{n=n_0}^{n_0+N-1} T_S x(nT_S) e^{-j2\pi \frac{k}{NT_S} nT_S}$$

where $F = 1/NT_s$

- Frequency values are quantized
- Frequency granularity $F = 1/T_w$ where $T_W = NT_s$ signal observation interval

Discrete Time Fourier Transform

$$\tilde{X}(f) = \sum_{n=-\infty}^{+\infty} T_S \cdot x(nT_S) e^{-j2\pi f nT_S}$$

- Unlimited sample sequence $x(nT_s)$
- Frequency-continuous
- TRUNCATION (finite-length samples sequency):

$$x_W(nT_S) = x(nT_S) \cdot w_R(nT_S)$$

$$w_R(nT_S) = \begin{cases} 1 & for & n_0 \le n \le n_0 + N - 1 \\ & 0 & elsewhere \end{cases} \rightarrow \textbf{Window} \text{ function}$$

DTFT vs DFT

- DFT: time-discrete, limited sequence, frequency-discrete
- DTFT: time-discrete, unlimited sequence, frequency-continuous

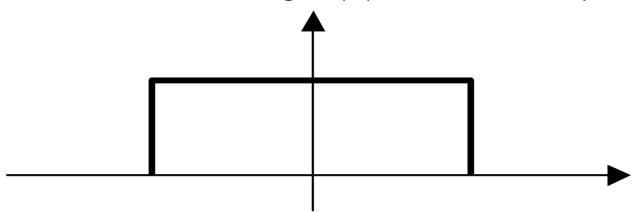
$$X_{DFT}(kF) = \frac{1}{NT_S} \left[\widetilde{X}(f) * \widetilde{W}_R(f) \right]_{f=kF}$$

$$X_{DFT}(kF) = \frac{1}{NT_S} \tilde{X}_W(f) \Big|_{f=kF}$$

- TRUNCATION (Convolution in frequency)
- QUANTIZATION of frequency

Uniform Window

• Rectangular window \rightarrow Same weight (1) to all the samples



$$\widetilde{W}_{R}(f) = \sum_{n=0}^{N-1} T_{S} e^{-j2\pi f n T_{S}} = T_{S} \frac{\sin \pi f N T_{S}}{\sin \frac{\pi}{N} f N T_{S}} e^{-j\frac{2\pi}{N} f N T_{S} \left(n_{0} + \frac{N-1}{2}\right)}$$

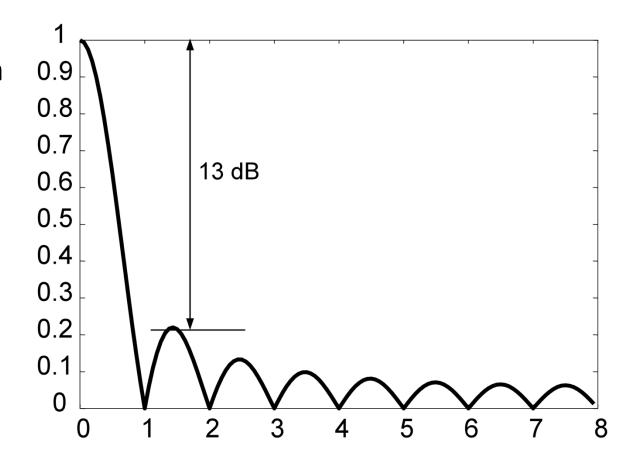
Normalized frequency $\lambda = fNT_S$

$$\widetilde{W}_{R}(\lambda) = \frac{\sin \pi \lambda}{N \sin \frac{\pi}{N} \lambda} e^{-j\frac{2\pi}{N} \lambda \left(n_{0} + \frac{N-1}{2}\right)}$$

Uniform Window

Amplitude spectrum

$$\left|\widetilde{W}_{R(DFT)}(\lambda)\right|$$

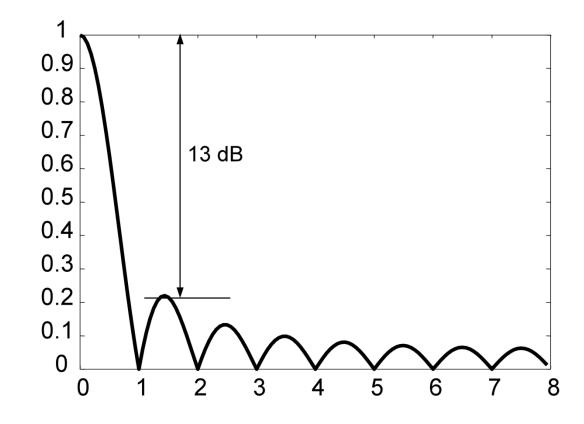


DTFT magnitude, normalized with respect to NT_S , for a uniform window with N=16

Uniform Window

- $w_R(nT_S)$ real-valued \rightarrow Hermitian symmetry
- Only $0 \le \lambda \le N/2$ values need to be presented

- Main lobe: height 1 and width 2
- Several side lobes: decreasing magnitude, width equal to 1

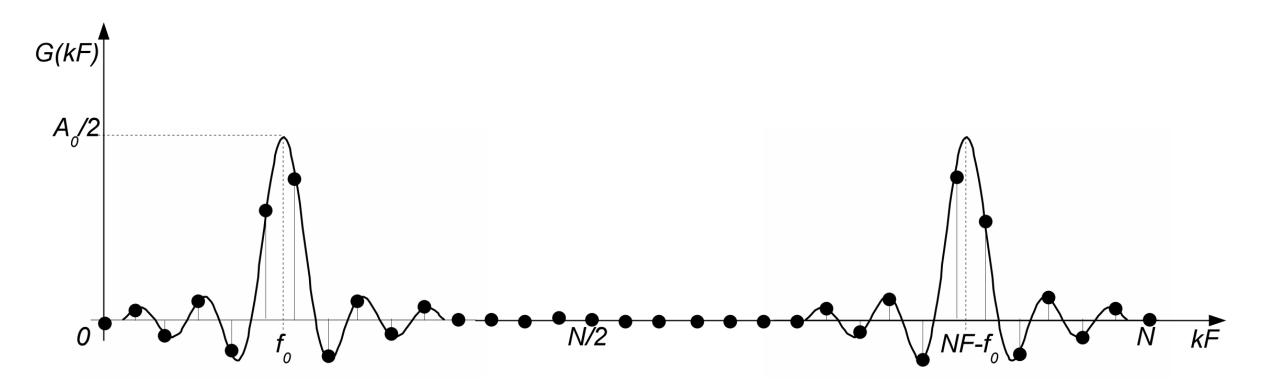


Sampled sinewave values

$$x(nT_S) = A_0 \sin(2\pi f_0 nT_S + \phi_0), \quad n = n_0, ..., n_0 + N - 1$$

Fourier coefficients

$$\begin{split} X_{DFT}(kF) &= \frac{A_0}{2j} e^{j\phi_0} \cdot \frac{\tilde{W}_R(kF - f_0)}{NT_S} - \frac{A_0}{2j} e^{-j\phi_0} \cdot \frac{\tilde{W}_R(kF + f_0)}{NT_S} = \\ &= \frac{A_0}{2j} e^{j\phi_0} \cdot W_{R(DFT)}(k - \lambda_0) - \frac{A_0}{2j} e^{j-\phi_0} \cdot W_{R(DFT)}(k + \lambda_0) \end{split}$$
 with $k = 0, ..., N-1$ and $\lambda_0 = f_0 NT_0$



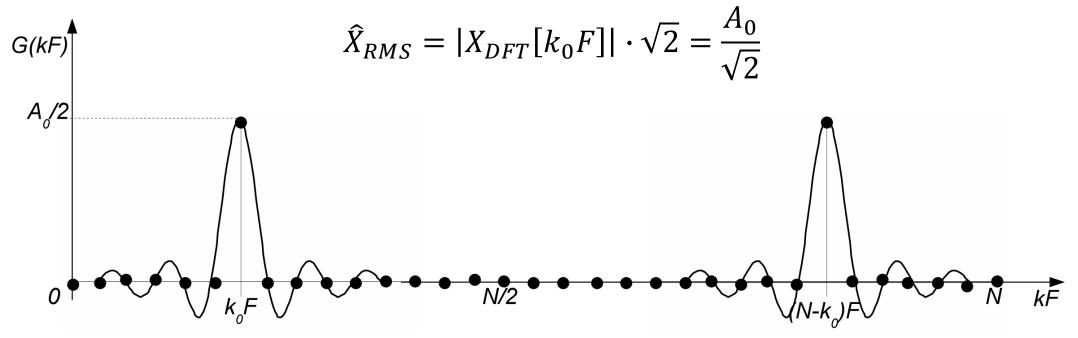
- Two $\frac{\sin x}{x}$
- Coefficients with $k \ge N/2$ not displayed \rightarrow Spectrum image components

• T_W corresponds to an in integer number of periods

$$NT_S = k_0 \cdot \frac{1}{f_0} \Rightarrow f_0 = \frac{k_0}{NT_S} = k_0 F$$

$$|X_{DFT}(k_0 F)| = \frac{A_0}{2}$$

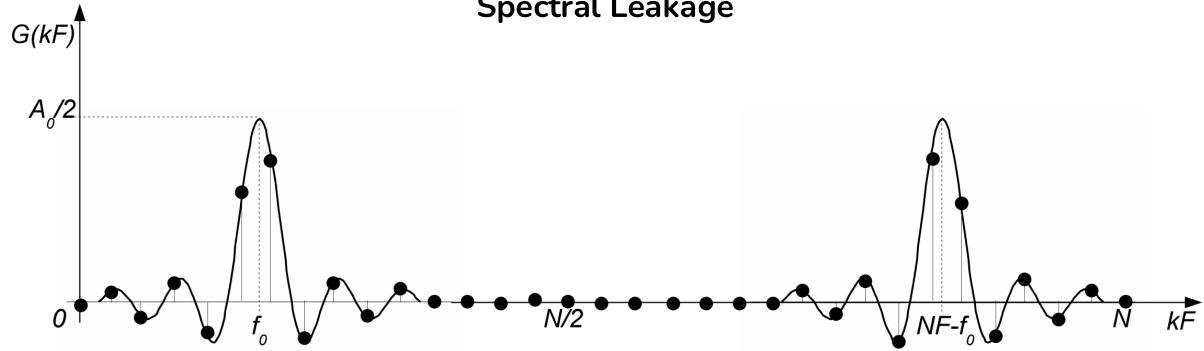
 $|X_{DFT}[kF]| = 0$ for all other values of k



- f_0 is not an integer multiple of F
- There will be an index k_0 so that k_0F is the closest estimate of f_0

$$\delta = \frac{f_0 - kF}{F}$$
 with $|\delta| \le \frac{1}{2}$

Spectral Leakage



DEGLI STUDI Spectral Leakage

$$\hat{X}_{RMS} = |X_{DFT}[k_0 F]| \cdot \sqrt{2} = \frac{A_0}{\sqrt{2}} W_{R(DFT)}(\delta)$$

$$f_0 = k_0 F \text{ where } k_0 = \arg\left[\max_{0 \le k \le N/2} |X_{DFT}(kF)|\right]$$

- Worst case frequency deviation $\frac{\Delta_F}{2} = \frac{F}{2}$
- Amplitude accuracy depends on $W_{R(DFT)}(\delta)$
- For $0 \le |\delta| \le \frac{1}{2} \Rightarrow W_{R(DFT)}(\delta) < 1 \Rightarrow \hat{X}_{RMS} < \frac{A_0}{\sqrt{2}}$

Scalloping Loss

• For $|\delta| = \frac{1}{2} \Rightarrow$ Worst Case Scalloping Loss (WCSL)

Frequency Resolution

- Signal composed of multiple sinusoidal components
- Multiple peaks
- Close peaks ⇒ Interference due to spectral leakage

Peak detection

Peak measurement

Peak detection ⇒ recognize the presence of distinct components

Frequency Resolution

Minimum separation at which two equal amplitude sinusoidal components create distinct peaks in the spectrum trace

Frequency Resolution

• Two sinewaves of equal amplitude A at frequencies f_1 and f_2

$$|X_{DFT}[kF]| = \frac{A}{2} \left[e^{j\phi_1} \cdot W_{R(DFT)}(k - \lambda_1) + e^{j\phi_2} \cdot W_{R(DFT)}(k + \lambda_2) \right]$$

• Two distinct peaks if $|X_{DFT}[kF]| < \frac{A}{2}$ at $f = \frac{f_1 + f_2}{2}$

$$\left| W_{R(DFT)} \left(\frac{\lambda_2 - \lambda_1}{2} \right) \right| \cdot \left| e^{j\phi_1} + e^{j\phi_2} \right| < 1$$

$$\left|W_{R(DFT)}\left(\frac{\lambda_2-\lambda_1}{2}\right)\right| < \frac{1}{2} \text{ where } \frac{1}{2} \to -6 \text{ dB}$$

Normalized 6 dB Bandwidth $\rightarrow 2 \cdot B_{-6dB}$

$$|f_2 - f_1| > \frac{2 \cdot B_{-6dB}}{NT_S} = 2 \cdot B_{-6dB} \cdot F$$

Sinewaves of different amplitude

Masking (hidden smaller components)

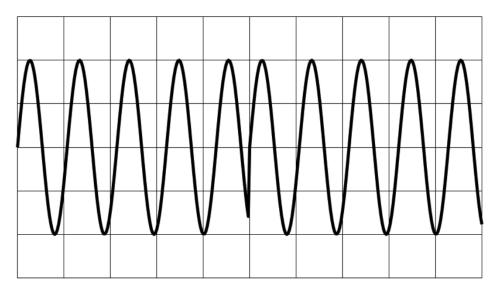
- Information about the shape of the window
 - Normalized main lobe width
 - Attenuation of the largest side lobe with respect to the main one
 - Side lobe fall-off with frequency

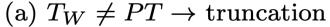
Window Functions

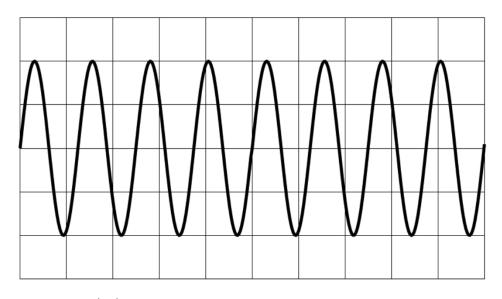
- Uniform window: poor behaviour with regards to both spectral interference and scalloping loss
- Different types of windows:
 - flat main lobe to minimize scalloping loss;
 - very low, or fast-decaying side lobes to reduce interference.

Requirements in contrast

Windowing effect







(b) $T_W = PT \rightarrow \text{no leakage}$

- Discontinuity of the the segment edges
- Window function \rightarrow **weight samples** according to their position in the segment

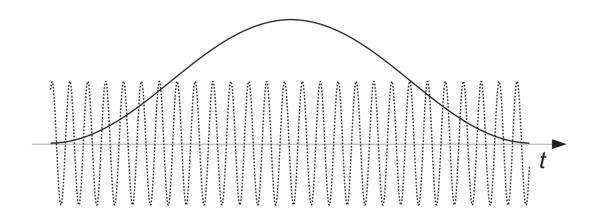
Hanning Window

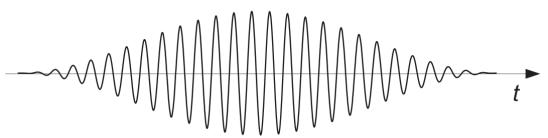
Most windows are defined by a mathematical expression like this:

$$w(nT_S) = \sum_{m=0}^{M} a_m (-1)^m \cos\left(2\pi m \frac{n}{N}\right) \quad n = 0, ..., N-1$$

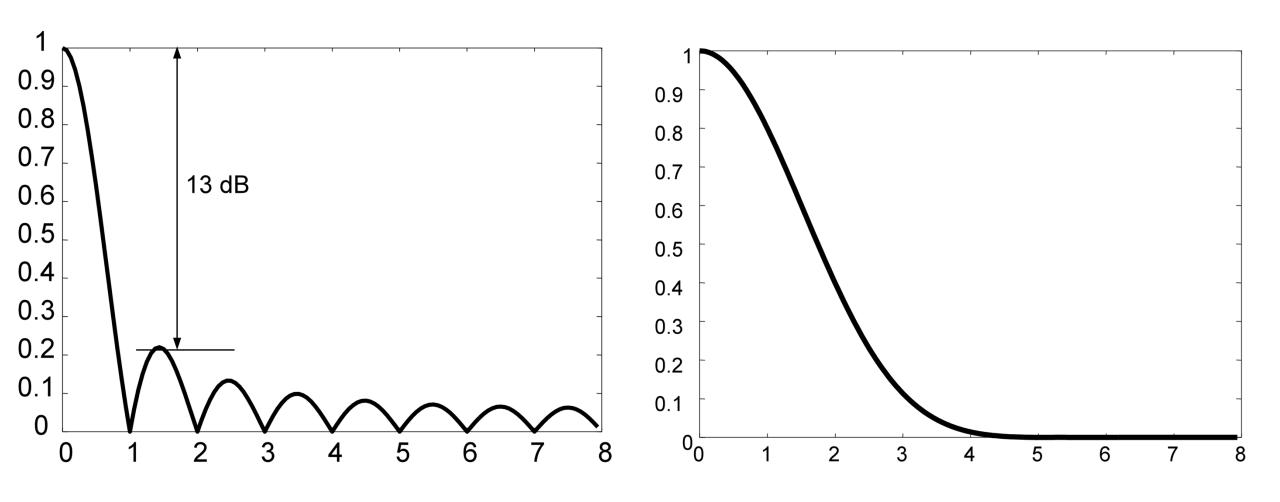
Hanning window

$$w(nT_S) = \frac{1}{2} - \frac{1}{2}\cos\left(2\pi\frac{n}{N}\right)$$
 $n = 0, ..., N - 1$





Uniform vs Hanning Window

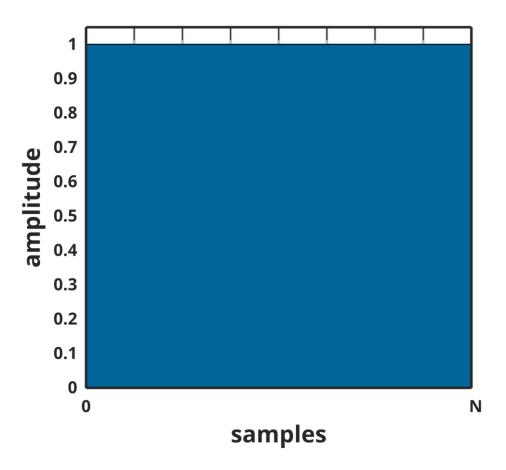


Window Functions

Window	WCSL [dB]	$\begin{array}{c} \text{minimum} \\ \text{side lobe} \\ \text{attenuation} \\ [\text{dB}] \end{array}$	main lobe width [bin]	$2 \cdot B_{-6dB}$ [bin]	ENBW [bin]
uniform	3.92	13	2	1.21	1
$\operatorname{Hann}\left(Hanning\right)$	1.42	32	4	2	1.5
Blackman-Harris	1.13	71	6	2.27	1.71
flat-top	< 0.01	93	10	4.58	3.77

Uniform window

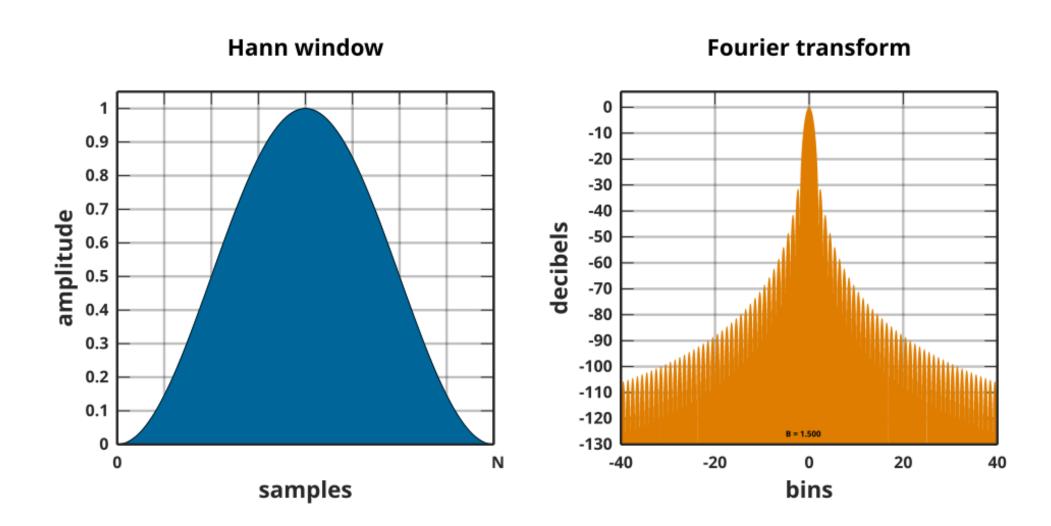
Rectangular window



Fourier transform

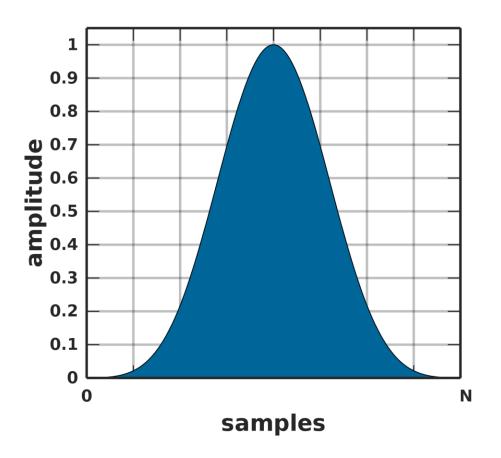


Hann window

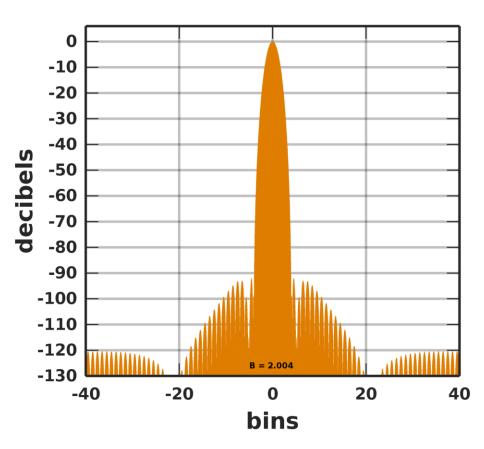


Blackman-Harris window

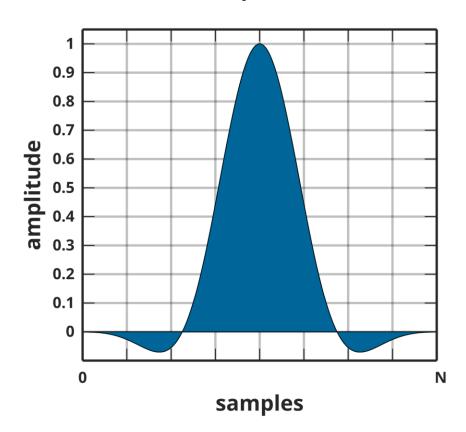
Blackman-Harris window



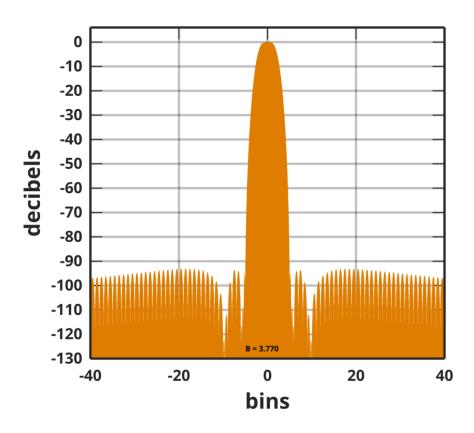
Fourier transform

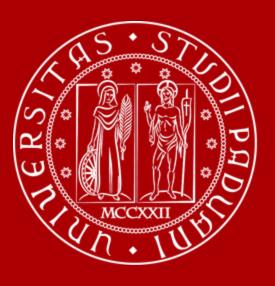


Flat-top window



Fourier transform





UNIVERSITÀ DEGLI STUDI DI PADOVA