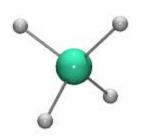
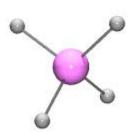

- Reduction of a carbonyl group
- Use of NaBH₄ vs LiAlH₄

Use of NaBH₄ vs LiAlH₄

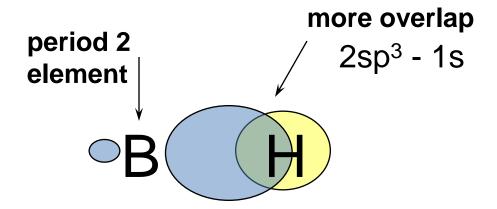

Different reactivity

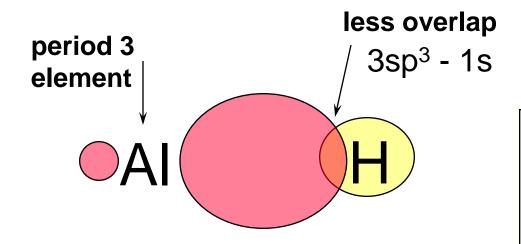
$$Na^{+}\begin{bmatrix} H \\ | \\ H \stackrel{M}{\longrightarrow} H \end{bmatrix}$$


NaBH₄ - Sodium Borohydride

LiAlH₄ - Lithium Aluminum Hydride or LAH

LAH is a more powerful hydride reducing agent (greater ΔEN). It will reduce some functional groups that NaBH₄ cannot.




- CATION
- Atom bearing the hydride

Different reactivity

NaBH₄

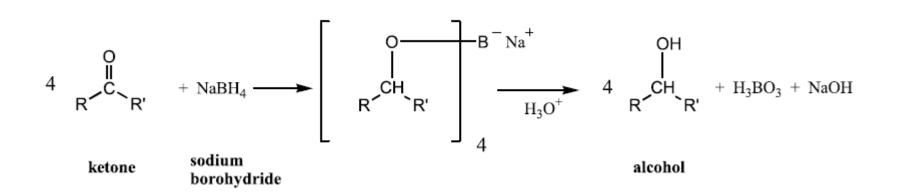
meno reattivo

LiAIH₄

più reattivo

Reagent	Preferred Solvents	Functions Reduced	Reaction Work-up
Sodium Borohydride NaBH ₄	ethanol; aqueous ethanol 15% NaOH; diglyme avoid strong acids	aldehydes to 1º-alcohols ketones to 2º-alcohols inert to most other functions	1) simple neutralization2) extraction of product
Lithium Aluminum Hydride LiAlH ₄	ether; THF avoid alcohols and amines avoid halogenated compounds avoid strong acids	aldehydes to 1º-alcohols ketones to 2º-alcohols carboxylic acids to 1º-alcohols esters to alcohols epoxides to alcohols nitriles & amides to amines halides & tosylates to alkanes most functions react	careful addition of water remove aluminum salts extraction of product

α , β -unsaturate	d keton	ies				
1) RCH=CHCOR'	+	NaBH ₄ (aq. alcohol)	>	RCH=CHCH(OH)R'	+	RCH ₂ -CH ₂ CH(OH)R'
				1,2-addition product		1,4-addition product
2) RCH=CHCOR'	+	NaBH ₄ & CeCl ₃ -15º	>	RCH=CHCH(OH)R' 1,2-addition product		

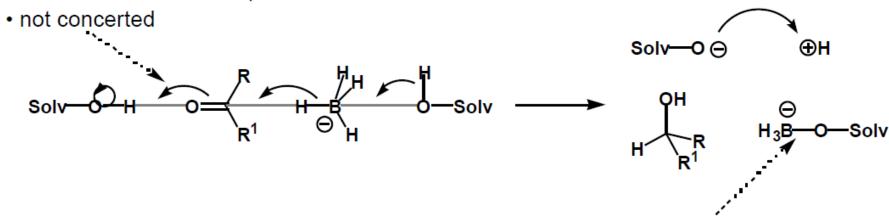

LiOH +
$$AI(OH)_3$$
 + $4H_2$ + heat

Solventi usati: etere etilico, THF anidro.

NaBH₄ reagisce con H₂O o alcoli molto lentamente

$$NaOH + B(OH)_3 + H_2$$

H₂O o alcoli possono essere usati come solvente



H. C. Brown

Nobel Prize in Chemistry in 1979

Meccanismo

In NaBH₄ reactions cation is not important but solvent can be

multiple reductions occur
alkoxide makes hydride less reactive

Cloruro di metilene	◈ ×	Nocivo se ingerito o inalato, anche al contatto con la pelle. Provoca irritazioni nella pelle e occhi. Possibilità di effetti cancerogeni
Benzofenone	*	Provoca irritazione cutanea, grave irritazione oculare, può irritare le vie respiratorie. Nocivo per gli organismi acquatici
Sodio boroidruro		Tossico a contatto con la pelle e per ingestione. Provoca ustioni cutanee e gravi lesioni oculari. A contatto con l'acqua libera gas estremamente infiammabili (idrogeno). È incompatibile anche con sostanze ossidanti, acidi o metalli chimicamente attivi come palladio o rutenio.
Metanolo		Tossico a contatto con la pelle, per ingestione e per inalazione. Provoca danni al cuore e fegato, può provocare cecità. Altamente infiammabile. Provoca danni agli organi
Acido cloridrico	<u>•</u> •••••••••••••••••••••••••••••••••••	L'acido cloridrico commerciale (37%) provoca gravi ustioni e gravi lesioni oculari. Le soluzioni diluite sono meno pericolose ma comunque provocano ancora irritazioni cutanee e oculari. Irrita le vie respiratorie.
Benzidrolo	*	Irritante per gli occhi, le vie respiratorie e la pelle

	Esperienza n. 4: Riduzione del benzofenone
25	Il sodio boro idruro deve essere aggiunto a freddo perché
	1) La resa della reazione diminuisce con l'aumentare della temperatura
	2) A caldo si sviluppa H ₂ che è tossico
	3) Si sviluppa H ₂ che, a caldo, può incendiarsi
26	Durante l'aggiunta di NaBH₄ cosa non si deve assolutamente fare:
	1) Agitare la miscela di reazione
	2) Tenere la cappa accesa al massimo della sua portata
	3) Lasciare vicino alla beuta di reazione un mantello riscaldante acceso

TECNICHE UTILIZZATE

- il sodio boro idruro è un reagente potenzialmente infiammabile
- reazione condotta a 0°C in PALLONE
- WORK-UP con acido cloridrico al 10% produce H₂
- Filtrazione sotto vuoto del prodotto
- valutare se è necessario anidrificare il campione per analisi (microanidrificazione)

Tubo a cloruro di calcio

