acido α-amminocarbossilico amminoacido

Tabella 23.2 I più comuni amminoacidi naturali. Gli amminoacidi sono rappresentati nella forma predominante a pH fisiologico (7.3).					
	Formula	Nome	Abbreviazioni		Abbondanza relativa media nelle proteine
Amminoacidi con catena laterale alifatica	O 	Glicina	Gly	G	7.5%
	CH_3-CH CH_3	Alanina	Ala	A	9.0%
	CH ₃ CH — CH — C — O — C — C — C — C — C — C — C — C	Valina*	Val	V	6.9%
	CH ₃ CHCH ₂ —CH CH ₃ +NH ₃	Leucina*	Leu	L	7.5%
	CH ₃ CH ₂ CH - CH - CH - CH ₃ CH ₂ CH - CH ₃ + NH ₃	Isoleucina*	Ile	I	4.6%
Amminoacidi con un gruppo idrossilico	HOCH ₂ —CH O- NH ₃	Serina	Ser	S	7.1%
	CH ₃ CH — CH CO- OH +NH ₃	Treonina*	Thr	Т	6.0%
Amminoacidi contenenti zolfo	$\begin{array}{c} O \\ \parallel \\ C \\ -CH \\ -NH_3 \end{array}$	Cisteina	Cys	С	2.8%
					(Continua)

Tabella 23.2 Con	ntinuazione 				
	Formula	Nome	Abbreviazioni		Abbondanza relativa media nelle proteine
	CH ₃ SCH ₂ CH ₂ -CH ₂ CC O ⁻	Metionina*	Met	М	1.7%
Amminoacidi acidi	O O O O O O O O O O O O O O O O O O O	Aspartato (acido aspartico)	Asp	D	5.5%
	O C CH ₂ CH ₂ - CH C O + NH ₃	Glutammato (acido glutammico)	Glu	Е	6.2%
Ammidi di amminoacidi acidi	H ₂ N CH ₂ - CH CO-	Asparagina	Asn	N	4.4%
	H ₂ N CH ₂ CH ₂ - CH CO-	Glutammina	Gln	Q	3.9%
Amminoacidi basici	H ₃ NCH ₂ CH ₂ CH ₂ CH ₂ C-CH NH ₃	Lisina*	Lys	K	7.0%
	H ₂ N C NHCH ₂ CH ₂	Arginina*	Arg	R	4.7%
Amminoacidi con un anello benzenico	O-CH ₂ -CH ₂ -CH ₂ -CO-	Fenilalanina*	Phe	F	3.5%
	HO—CH ₂ —CH *NH ₃	Tirosina	Tyr	Y	3.5% (Continua)

Tabella 23.2 Continuaz	ione				
	Formula	Nome	Abbreviazioni		Abbondanza relativa media nelle proteine
Amminoacidi con un eterociclo	N C O-	Prolina	Pro	Р	4.6%
	CH ₂ -CH CO-	Istidina*	His	Н	2.1%
	CH ₂ —CH C O-	Triptofano*	Trp	W	1.1%
* Amminoacidi essenziali					

$$R-CH \xrightarrow{C} OH \Longrightarrow R-CH \xrightarrow{C} O^{-} \Longrightarrow R-CH \xrightarrow{C} O^{-}$$

$$\uparrow NH_{3} + H^{+} \qquad NH_{2} + H^{+}$$

$$pH = 0 \qquad zwitterione \qquad pH = 11$$

$$pH = 7$$

Individuare gli α-amminoacidi

MECCANISMO DELLA REAZIONE DI UN AMMINOACIDO CON LA NINIDRINA PER DARE UN COMPOSTO COLORATO

prodotto di colore violetto

α-amminoacidi: sintesi

$$\begin{array}{c} O \\ \parallel \\ RCH_{2} \\ \text{acido} \\ \text{carbossilico} \end{array} \xrightarrow{\begin{array}{c} \textbf{1. Br_{2}, PBr_{3}} \\ \textbf{2. H_{2}O} \end{array}} \begin{array}{c} O \\ \parallel \\ RCH \\ \text{Br} \end{array} \xrightarrow{\begin{array}{c} \textbf{0. Br_{2}, PBr_{3}} \\ \textbf{0. Br_{2}O} \end{array}} \begin{array}{c} O \\ \parallel \\ \textbf{0. Br_{2}O} \\ \textbf{0. Br_{2}O} \end{array} \xrightarrow{\begin{array}{c} \textbf{0. Br_{2}O} \\ \textbf{0. Br_{2}O} \end{array}} \begin{array}{c} O \\ \parallel \\ \textbf{0. Br_{2}O} \\ \textbf{0. Br_{2}O} \end{array} \xrightarrow{\begin{array}{c} \textbf{0. Br_{2}O} \\ \textbf{0. Br_{2}O} \end{array}} \begin{array}{c} O \\ \parallel \\ \textbf{0. Br_{2}O} \\ \textbf{0. Br_{2}O} \end{array} \xrightarrow{\begin{array}{c} \textbf{0. Br_{2}O} \\ \textbf{0. Br_{2}O} \end{array}} \begin{array}{c} O \\ \parallel \\ \textbf{0. Br_{2}O} \\ \textbf{0. Br_{2}O} \end{array}$$

La reazione da buone rese perché il prodotto è piuttosto ingombrato

$$\begin{array}{c|c}
C & & \text{1. eccesso di NH}_3, \\
R & & \\
C & \\
OH & & \\
\hline
C & \\
C & \\$$

α-amminoacidi: sintesi

estere
$$\alpha$$
-bromomalonico ftalimmide di potassio estere N -ftalimmidomalonico $CH_3CH_2\ddot{O}$:

 $COOH$

acido ftalico amminoacido CH_3CH_2OH
 $COOH$
 $COOH$

α-amminoacidi: sintesi

estere acetammidomalonico

α-amminoacidi: sintesi di Strecker

α-amminoacidi: riduzione enantioselettiva

AcNH OH Chiral catalyst AcNH
$$\alpha$$
 OH achiral alkene new stereogenic center.

new stereogenic center on the α carbon

With proper choice of catalyst, the naturally occurring S isomer is formed.

$$\begin{array}{cccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

chiral hydrogenation catalyst

α-amminoacidi: risoluzione

$$\begin{array}{c} O \\ H_2NCH \\ D-amminoacido \\ L-amminoacido \\ L-amminoacido \\ M-acetil-L-amminoacido \\ M-a$$

Cristallizzazione con controione chirale (α-metilbenzilammina)

α-amminoacidi uniti con legami ammidici tripeptide

$$H_3\overset{\uparrow}{N} \underbrace{ O \atop O^-} \longrightarrow H_2\overset{O}{N} \underbrace{ PG \atop O}$$

$$(CH_3)_3CO \qquad NHCH_2 \qquad O \qquad CH_3)_3CO \qquad NHCH_2 \qquad CO_2 \qquad H^+ \qquad H^+$$

deprotection

Benzyl chloroformate (Cbz-Cl, Z-Cl)

Sintesi peptidica automatizzata in fase solida di Merrifield di un tripeptide

$$(CH_3)_3CO \qquad NHCH \qquad O \\ CH_3)_3CO \qquad NHCH \qquad O \\ CH_3 \qquad CH_3 \qquad CH_3 \qquad CH_2 \qquad CH_3 \qquad CH$$

$$(CH_3)_3CO \longrightarrow NHCH \longrightarrow NHCH \longrightarrow O-CH_2 \longrightarrow CF_3COOH CH_2CI_2$$

$$CH_3 \longrightarrow CCH_2 \longrightarrow CCH_2$$

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$