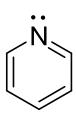
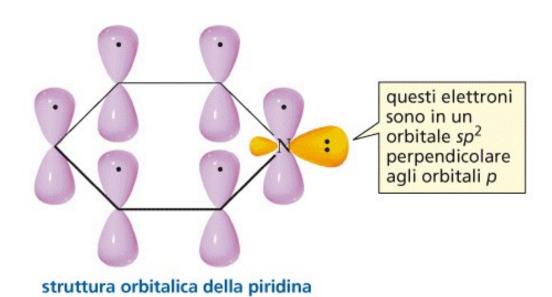
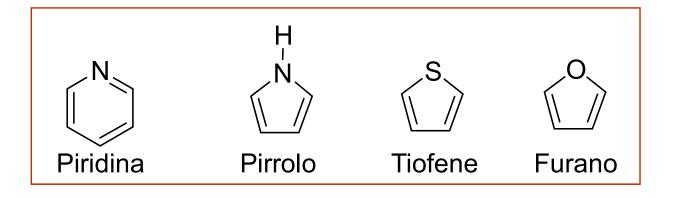
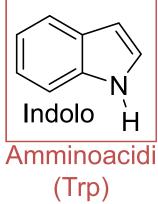
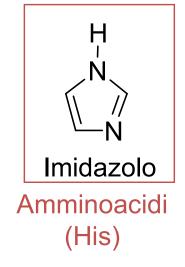

Composti eteroaromatici: quali sono?

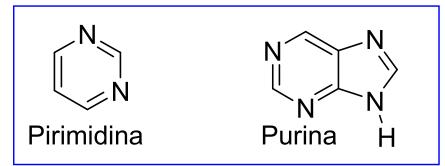



Composti eteroaromatici: quali sono?

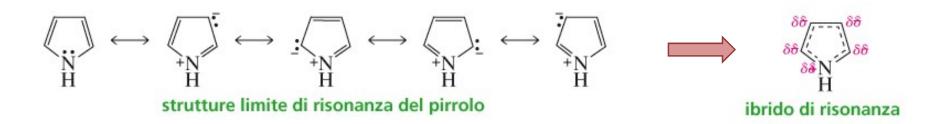


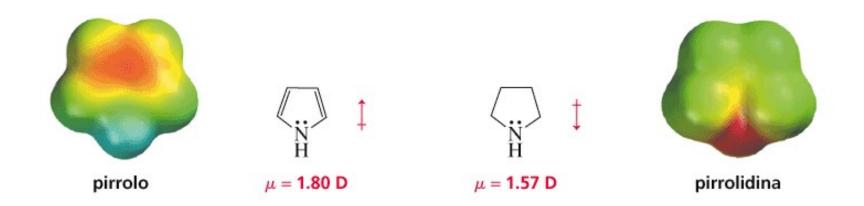

struttura orbitalica del pirrolo





Composti eteroaromatici





Nucleobasi, caffeina

Composti eteroaromatici a 5 atomi

Eterocicli aromatici a 5 atomi: struttura e proprietà

energie relative di delocalizzazione di alcuni composti aromatici

H		
\(\frac{\frac{1}{N}}{N}\)	Pirrolo	89 KJ/mol
0	Furano	66 KJ/mol
s	Tiofene	120 KJ/mol
i N	Piridina	134 KJ/mol

Eterocicli aromatici a 5 atomi: reattività

L'energia di coniugazione è inferiore rispetto al benzene: gli eterocicli aromatici a 5 atomo sono **attivati** verso le sostituzioni.

La sostituzione avviene preferenzialmente in **posizione** α : intermedio arenio di questo cammino di reazione è più stabile.

Eterocicli aromatici a 5 atomi: reattività

$$\left\langle \begin{array}{c} \\ \\ \\ \\ \end{array} \right\rangle$$
 + Br₂ \longrightarrow $\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$ Br + HBr 2-bromofurano

2-bromo-5-metilpirrolo

$$H_3C$$
 S
 CH_3 + Br_2 \longrightarrow H_3C
 S
 CH_3 + HBr

3-bromo-2,5-dimetiltiofene

Eterocicli aromatici a 5 atomi: reattività

$$+ CH_{3} CI \xrightarrow{1. AlCl_{3}} CH_{3} + HCI$$

$$= CH_{3} CI \xrightarrow{1. SnCl_{4}} CI \xrightarrow{2. H_{2}O} CH_{3} + HCI$$

$$= CH_{3} CI \xrightarrow{1. SnCl_{4}} CI \xrightarrow{2. H_{2}O} CH_{3} + HCI$$

$$= CH_{3} CI \xrightarrow{1. BF_{3}} CI \xrightarrow{2. acetilfurano} CH_{3} + HCI$$

$$= CH_{3} CI \xrightarrow{1. BF_{3}} CH_{3} + HCI$$

$$= CH_{3} CI \xrightarrow{1. BF_{3}} CH_{3} + CH_{3} CH_{3} + CH_{3} CH_{3}$$

$$= CH_{3} CI \xrightarrow{1. BF_{3}} CH_{3} + CH_{3} CH_{3} + CH_{3} CH_{3}$$

$$= CH_{3} CI CH_{3} + CH_{3} CH_{3} + CH_{3} CH_{3} CH_{3}$$

Pirrolo: reattività

Il pirrolo è molto più reattivo del benzene. Non si possono usare acidi forti o acidi di Lewis.

Furano: proprietà e reattività

Il furano è molto più reattivo del benzene. Non si possono usare acidi forti o acidi di Lewis. Si osservano facilmente prodotti di addizione

Tiofene: proprietà e reattività

Il tiofene è molto più del benzene. Più stabile agli acidi di pirrolo e furano ma polimerizza con acidi fortissimi e AICl₃.

$$\begin{array}{c|c} S & CH_3CO_2NO_2 \\ \hline \end{array} & \begin{array}{c} S & SO_3 \\ \end{array} & \begin{array}{c} S & SO_3 \\ \hline \end{array} & \begin{array}{c} S & SO_3 \\ \end{array} & \begin{array}{c} S$$

$$\begin{array}{c|c} S & (CH_3CO)_2O \\ \hline & SnCl_4 \end{array} \begin{array}{c} S \\ \hline \end{array} \begin{array}{c} COCH_3 \end{array}$$

Pirrolo: proprietà e reattività

Il doppietto elettronico non condiviso fa parte del sistema aromatico: il pirrolo è base debolissima ed il sito di protonazione è il carbonio α

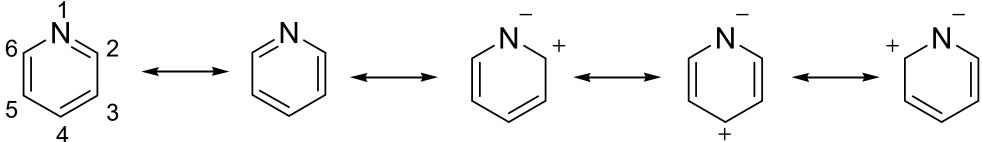
L'azoto sp² è più elettronegativo e l'anione è stabilizzato per risonanza: il pirrolo è un acido debolissimo.

Pirrolo: proprietà e reattività

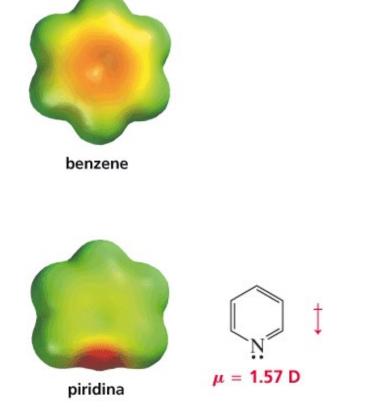
Porfine

- Trasporto ossigeno
- Fotosintesi
- Ossidazione (citocromi)
- Decomposizione H₂O₂ (catalasi)

Porfirine

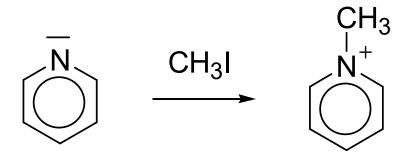

- Catalizzatori di reazioni di ossidazione
- Recettori supramolecolari
- Coloranti e fluorofori


Politiofeni: polimeri coniugati


$$\stackrel{\mathsf{S}}{\longrightarrow} \stackrel{\mathsf{e}^{-}}{\longrightarrow} \stackrel{\mathsf{S}}{\longrightarrow} \stackrel{\mathsf{S}}\longrightarrow \stackrel{\mathsf{S}}{\longrightarrow} \stackrel{\mathsf{S}}{\longrightarrow} \stackrel{\mathsf{S}}{\longrightarrow} \stackrel{\mathsf{S}}{\longrightarrow} \stackrel{\mathsf{S}}{\longrightarrow} \stackrel{\mathsf{S}}{\longrightarrow} \stackrel{\mathsf{S}}{\longrightarrow} \stackrel{\mathsf{S}}$$

- Organic Light Emitting Diodes (OLED)
- Plastic Solar Cells
- Organic Field Effect Transistors

Piridina: struttura e proprietà



$$sp^2$$
 H^+
ione piridinio
 $pK_a = 5.16$
 $+ H^+$
 H^+
 H^+
ione piperidinio
 $pK_a = 11.12$

Il doppietto non condiviso si trova su un orbitale sp², inoltre la solvatazione del piridinio è poco efficiente: la piridina è una base debole in acqua, ma non in solventi organici!.

Piridina: reazioni all'atomo di azoto

Formazione di sali di ammonio quaternari

$$\begin{array}{c}
O \\
C \\
C \\
C \\
C
\end{array}$$

$$\begin{array}{c}
O \\
C \\
N
\end{array}$$

$$\begin{array}{c}
O \\
C \\
O \\
N
\end{array}$$

$$\begin{array}{c}
O \\
C \\
O \\
N
\end{array}$$

$$\begin{array}{c}
O \\
C \\
O \\
N
\end{array}$$

Formazione (reversibile) di N-ossidi

Piridina: reazioni all'anello aromatico

La presenza dell'atomo di azoto destabilizza l'intermedio carbocatione arenio: la piridina è disattivata verso le sostituzioni e subisce la sostituzione preferenzialmente in posizione 3,5.

Molte reazioni di sostituzione avvengono in condizioni acide: la specie reagente non è la piridina ma il **catione piridino** (ancora più disattivato)

reattività relative verso la sostituzione elettrofila aromatica

Piridina: reazione SE_{Ar}

Piridina: reazioni SE_{Ar}

La reazione di Friedl-Craft non avviene sulla piridina

Piridina: reazioni SE_{Ar}

La piridina N-ossido è più attiva rispetto alla piridina (non rispetto al benzene). La sostituzione avviene preferenzialmente in posizione 2,4,6.

Piridina: reazioni SNAr

Br
$$NH_2$$
 $+ NH_2$ A $+ Br$ OCH_3 $+ CI$ NH_2 $+ CI$ NH_2 $+ CI$ NH_2 $+ CI$ $+ CH_3$ $+ CI$ $+ CH_3$ $+ CI$ $+ CI$

Piridina: altre reazioni

$$\begin{array}{c|c}
 & NBS \\
\hline
 & \Delta/perossido
\end{array}$$

$$\begin{array}{c|c}
 & CHCH_3 \\
\hline
 & Br
\end{array}$$

$$\begin{array}{c|c}
CH_3 & \text{Na}_2\text{Cr}_2\text{O}_7 \\
 & \text{H}_2\text{SO}_4
\end{array}$$

$$\begin{array}{c}
 & \text{COOH} \\
 & \text{H}
\end{array}$$

2-amminopiridina

NaNO₂, HCI
$$0 \, {}^{\circ}C$$

NaNO₂, HCI
 $0 \, {}^{\circ}C$

H₂O

OH

H₂O

OH

H₂O

OH

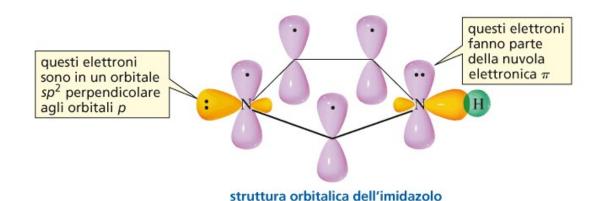
A-idrossipiridina
forma enolica

Y-piridone

4-idrossipiridina
forma enolica

7-piridone

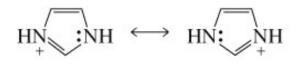
forma enolica


forma chetonica

Piridina: altre reazioni

$$\begin{array}{c} CH_3 \\ \hline \\ N \end{array} \begin{array}{c} \hline \\ N \end{array} \begin{array}{c} CH_2 \\ \hline \\ N \end{array} \begin{array}{c} CH_2 \\$$

Imidazolo: altre reazioni


strutture limite di risonanza dell'imidazolo

Imidazolo: altre reazioni

$$HN$$
: NH \Longrightarrow $:N$: NH $+$ H^+ \Longrightarrow $:N$: N : N : $+$ H^+
 $pK_a = 6.8$
 $pK_a = 14.5$

imidazolo protonato

ibrido di risonanza

anione imidazolo

ibrido di risonanza