#### Reazioni di ossidazione e riduzione

#### Riduzioni

$$RCH = CHR$$
  $H_2$   $RCH_2CH_2R$  alchene

$$\begin{array}{c}
O \\
R
\end{array}
\qquad
\begin{array}{c}
H_2NNH_2 \\
HO^-, \Delta
\end{array}
\qquad
\begin{array}{c}
RCH_2R$$
chetone

$$\begin{array}{c}
O \\
R
\end{array}$$

$$\begin{array}{c}
1. \text{ NaBH}_4 \\
\hline
2. \text{ H}_3\text{O}^+
\end{array}$$
RCH<sub>2</sub>OH
aldeide

$$CH_3C = CCH_3 \qquad Na o Li \\ 2-butino \qquad H_3C \qquad H$$

$$C = C$$

$$H \qquad CH_3$$

$$trans-2-butene$$

$$\begin{array}{c|c}
 & \text{NO}_2 \\
\hline
 & \text{Pd/C}
\end{array}$$

#### Ossidazioni

$$\begin{array}{c} \text{Br Br} \\ \text{RCH=CHR} & \xrightarrow{\text{Br}_2} & \text{RCHCHR} \\ \text{alchene} \end{array}$$

$$\begin{array}{ccc}
 & OH \\
 & RCHR \\
 & alcol
\end{array} \qquad \begin{array}{c}
 & H_2CrO_4 \\
 & R
\end{array} \qquad \begin{array}{c}
 & O \\
 & R
\end{array}$$

RCH=CHR 
$$\xrightarrow{1. \text{ OsO}_4}$$
  $\xrightarrow{OH}$   $\xrightarrow{$ 

$$C = C \left( \begin{array}{c} 1. O_3, -78 \, ^{\circ}C \\ \hline 2. \, trattamento \, dell'ozonuro \end{array} \right) C = O + O = C$$

#### Reazioni di ossidazione e riduzione

#### Riduzione

- a) Su C
  - aumentano legami C-H
  - o diminuiscono legami C-O, C-N, C-X (X=alogeno)
- b) Su No S
  - aumentano legami N-H o S-H

#### Ossidazione

- a) Su C
  - diminuiscomno legami C-H
  - o aumentano legami C-O, C-N, C-X (X=alogeno)
- b) Su No S
  - diminuiscono legami N-H o S-H
  - aumentano legami S-O o N-O

In generale può essere vista come un'addizione di  $H_2$ , anche a legami  $\sigma$ .

In generale può essere vista come una sostituzione di legami X-H con X-O, seguita a volte da eliminazione di acqua.

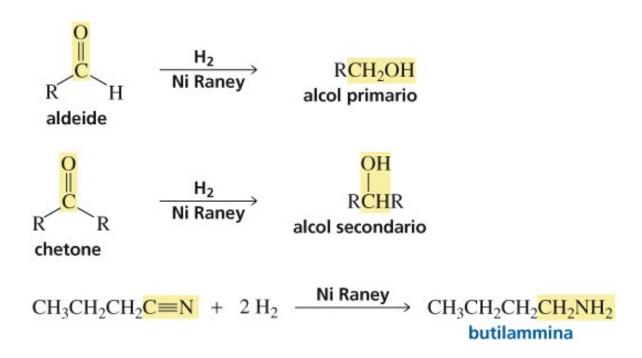
## Addizione di H<sub>2</sub>: idrogenazione catalitica

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}=\text{CH}_2 \\ \text{1-butene} \end{array} + \text{H}_2 \\ \text{1-butene} \end{array} \xrightarrow{\begin{array}{c} \text{Pd/C o PtO}_2 \\ \text{butano} \end{array}} \begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \\ \text{butano} \end{array}$$

$$\text{CH}_3\text{CH}_2\text{CH}_2\text{C}=\text{CH} \\ \text{1-pentino} \end{array} + 2\text{H}_2 \xrightarrow{\begin{array}{c} \text{Pd/C o PtO}_2 \\ \text{di Lindlar} \end{array}} \begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \\ \text{pentano} \end{array}$$

$$\text{P elevata!}$$

$$\text{CH}_3\text{C}=\text{CCH}_3 \\ \text{2-butino} \end{array} + \text{H}_2 \xrightarrow{\begin{array}{c} \text{catalizzatore} \\ \text{di Lindlar} \end{array}} \begin{array}{c} \text{H}_3\text{C} \\ \text{C}=\text{C} \\ \text{H} \\ \text{H} \\ \text{Cis-2-butene} \end{array} \qquad \begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{C}=\text{CO}_3 \\ \text{Pb(OAc)}_2 \end{array}$$

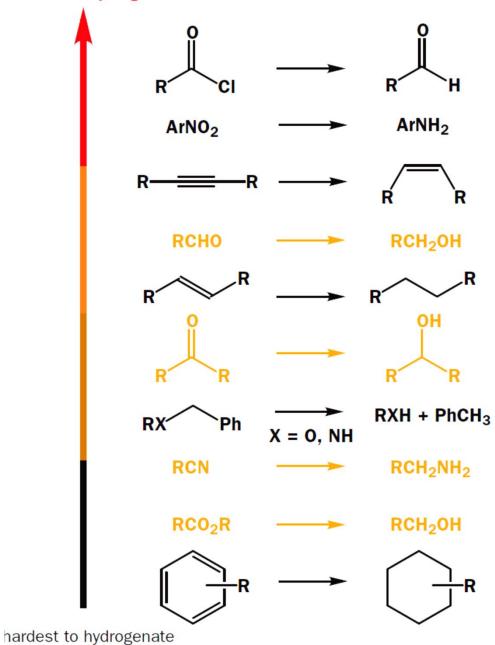

## Addizione di H<sub>2</sub>: idrogenazione catalitica

Pd/C è un riducende blando per reazioni facili (carbonili, immine, legami labili)

Generalmente la riduzione con  $H_2$  preferisce i legami  $\pi$  C=C ai legami C=O, soprattutto se si usa Pd/C o PtO<sub>2</sub>. PtO<sub>2</sub> si usa per reazioni a pressione elevata, genera Pt *in situ*.

## Addizione di H<sub>2</sub>: idrogenazione catalitica

Aldeidi, chetoni e nitrili preferiscono la rezione con Ni Raney. Si tratta di una lega di alluminio e nichel trattata con NaOH. Nella reazione si ossida e scioglie Al e si forma H<sub>2</sub>, che si adsorbe sul Ni residuo, divenuto una polvere finissima. Il Ni Raney contiene quindi già H<sub>2</sub>.




## Idrogenolisi

Alcuni legami  $\sigma$  labili possono essere rotti per addizione di  $H_2$ .

# Riduzione di alcheni: idrogenazione catalitica (Pd/C)

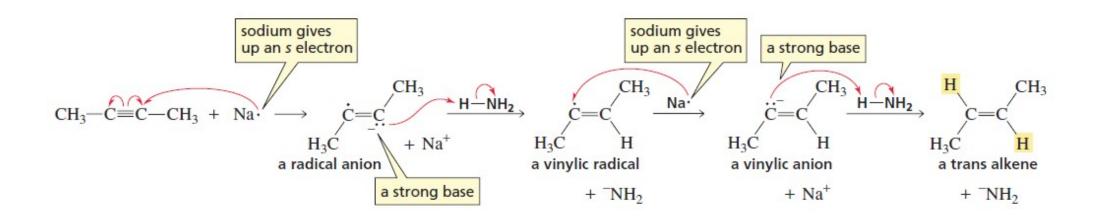


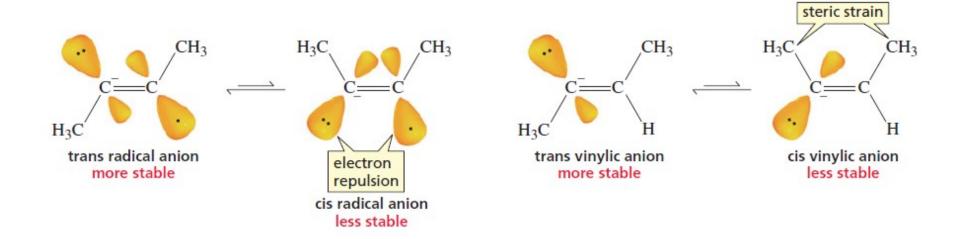


# Idrogenazione catalitica

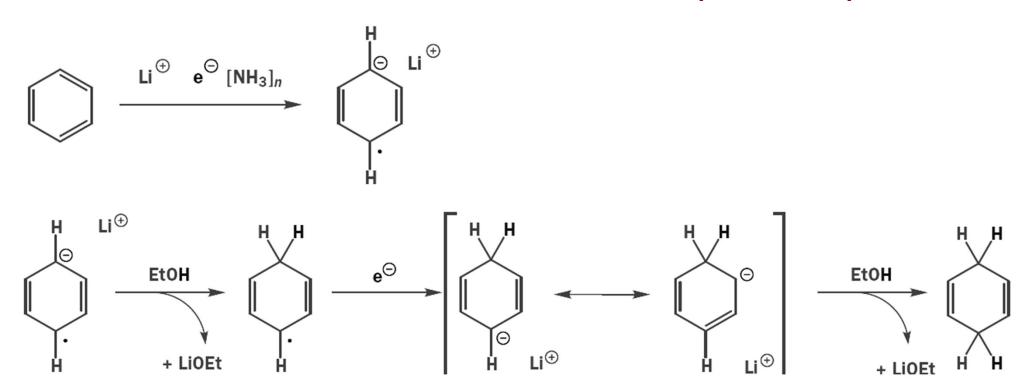
| <b>Substrate</b><br>benzyl amine or ether | <b>Usual choice of metal</b><br>Pd  |
|-------------------------------------------|-------------------------------------|
| alkene                                    | Pd, Pt, or Ni                       |
| aromatic ring                             | Pt or Rh, or Ni under high pressure |
| Carbonyl                                  | Ni                                  |

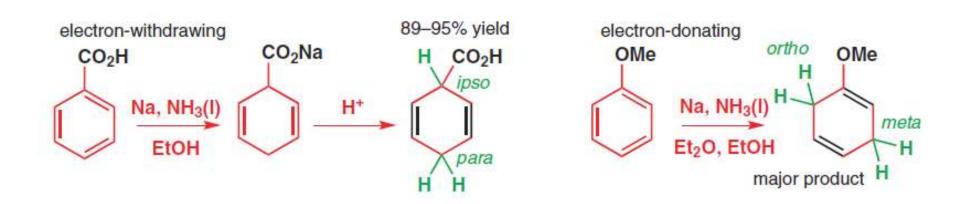
#### Riduzioni con metalli disciolti


Li 
$$\bigoplus_{\text{blue solution}} \text{Fast}$$
  $\bigoplus_{\text{blue solution}} \text{NH}_{3} \bigoplus_{\text{colourless solution}} \text{NH}_{2} \bigoplus_{\text{colourless solution}} \text{H}_{2}$ 


L'ammoniaca solvata bene l'elettrone libero, mentra la reazione per formare azide e idrogeno è lenta: la soluzione di elettroni solvatati (blu) può essere usata per ridurre benzene e alchini.

Li, 
$$NH_3(I)$$
EtOH,  $Et_2O$ 

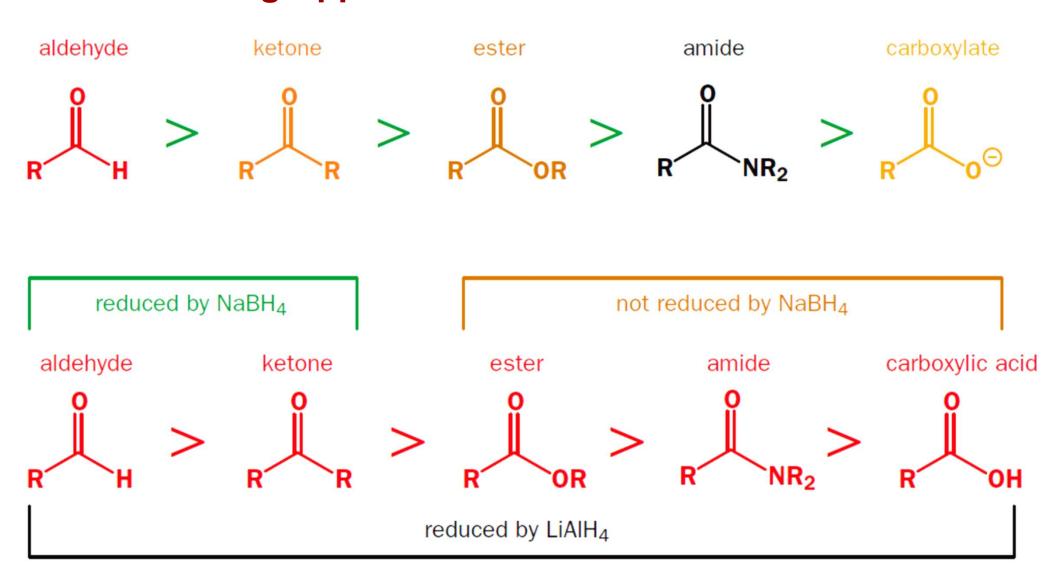

Na,  $NH_3$ 
80–90% yield


## Meccanismo della riduzione con metalli (alchini):





## Meccanismo della riduzione con metalli (benzene):

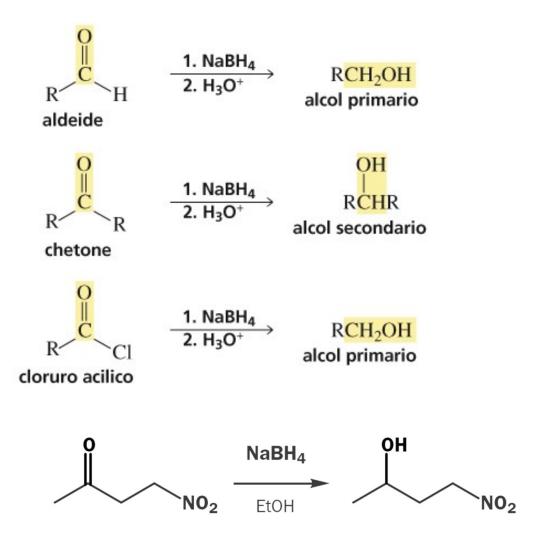





## Riduzione di composti carbonilici con idruri

Una riduzione con idruri è una reazione di addizione/sostituzione acilica in cui il nucleofilo è formalmente lo ione idruro. Il fato della reazione è controllato dalla presenza o meno di buoni gruppi uscenti e dalla reattività del riducente.

## Reattività del gruppo carbonile verso i nucleofili




L'idruro di alluminio è un riducente molto più reattivo dell'idruro di boro: **principio di** reattività/selettività.

### Sodio cianoboroidruro

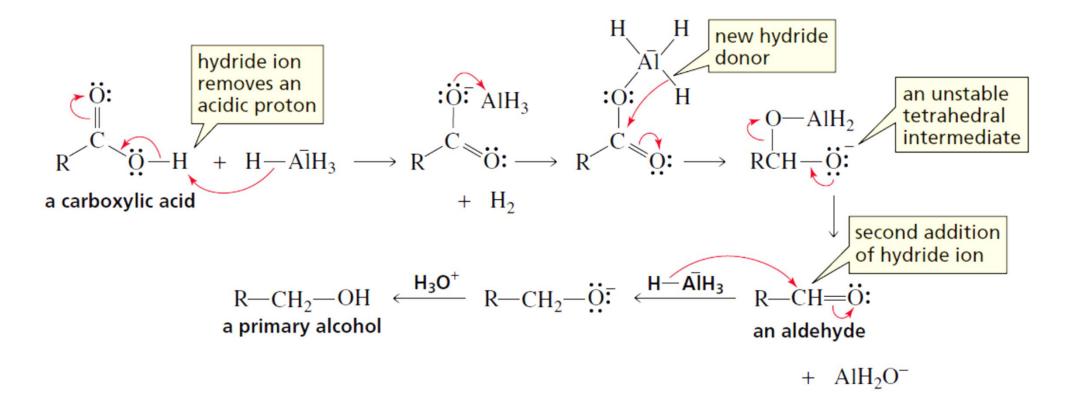
- Il gruppo CN riduce la reattività dell'idruro, che riesce a ridurre solo composti carbonilici molto reattivi.
- Non serve formare l'immina prima di aggiungere il riducente
- Un'alternativa meno tossica il **sodio triacetossiboridruro**.

## Sodio boroidruro



- Riduce aldeidi e chetoni ma non derivati carbossilici, ad eccezione degli alogenuri.
- Funziona in solventi protici (H<sub>2</sub>O, CH<sub>3</sub>OH)
- E' facile da moneggiare

## Litio boroidruro


$$MeO_2C$$
 $CO_2H$ 
 $EtOH$ 
 $HO$ 
 $H$ 
 $H$ 
 $H$ 
 $CO_2H$ 

Il Li<sup>+</sup> è un acido di Lewis più forte del Na<sup>+</sup>: coordinandosi all'ossigeno carbonilico facilita l'attacco del nucleofilo.

#### Litio alluminioidruro

Nel caso delle ammidi, l'alluminio trasforma l'ossigeno dell'intermedio tetraedrico in un buon gruppo uscente, consentendone l'eliminazione.

#### Riduzione di acidi carbossilici



## **Borano**

## Riduzione di acidi

$$HO_2C$$
 $CO_2Me$ 
 $BH_3$ 
 $CO_2Me$ 
 $BH_3$ 
 $OH$ 
 $OH$ 

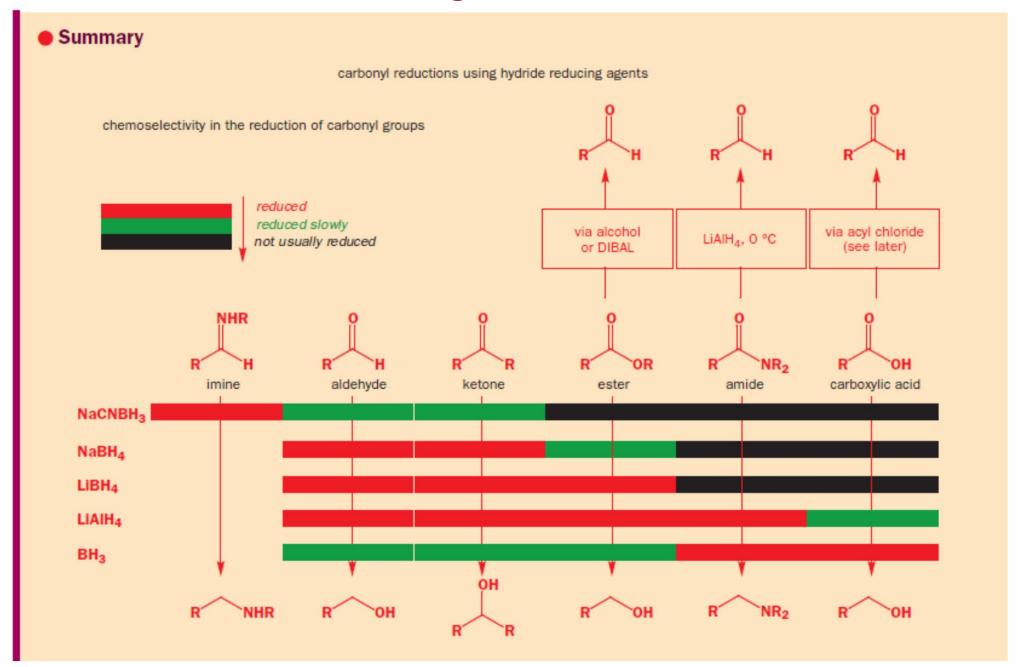
Il borano riduce selettivamente gruppi acidi (COOH) persino rispetto a carbonili ed esteri

#### Come fermare la riduzione di esteri e ammidi al primo stadio?

L'aldeide che si forme nella riduzione di esteri e ammidi è molto più reattiva del prodotto da cui deriva: viene subito ridotta ad alcol.

Può essere conveniente ridurre l'estere ad alcol e poi ossidarlo ad aldeide

## Come fermare la riduzione di esteri e ammidi al primo stadio?


DIBAL hexane, 
$$-70 \, ^{\circ}\text{C}$$
 hexane stable at  $-70 \, ^{\circ}\text{C}$  hexane stable at  $-70 \, ^{\circ}\text{C}$  hexane stable at  $-70 \, ^{\circ}\text{C}$  hexane  $-70 \, ^{\circ}\text{C}$  hexane  $-70 \, ^{\circ}\text{C}$  88% yield (R =  $n\text{-C}_{11}\text{H}_{23}$ )

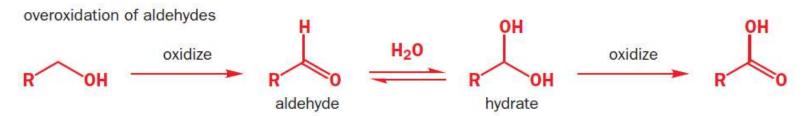
Il metallo stabilizza la carica dell'anione alcolato impedendo l'uscita del gruppo uscente

## Come fermare la riduzione di esteri e ammidi al primo stadio?

$$\begin{array}{c|c} & & & \\ \hline \\ NMe_2 & \hline \\ THF, \ 0 \ ^{\circ}C \end{array} \end{array} \begin{array}{c} Li^{\bigoplus} \ ^{\bigodot}O \\ \hline \\ H \\ NMe_2 \end{array} \begin{array}{c} H_3O^{\bigoplus} \\ \hline \\ H \end{array}$$

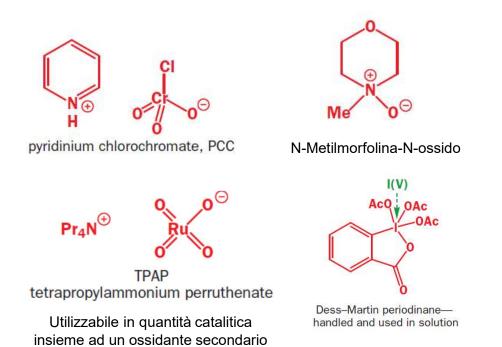
# Sommario delle razioni degli idruri




# Ossidazioni

| Agenti ossidanti<br>selettivi per i doppi legami C=C | Agenti ossidanti selettivi per alcoli e composti carbonilici      |
|------------------------------------------------------|-------------------------------------------------------------------|
| Peracidi (RCO <sub>3</sub> H)                        | Derivati del Cr(VI)                                               |
| Osmio tetrossido (OsO <sub>4</sub> )                 | Derivati del Mn(VII)                                              |
| Ozono (O <sub>3</sub> )                              | Composti organici con alogeni, N o S ad alto stato di ossidazione |

## Reazioni di ossidazione: alcoli ad acidi e chetoni


Reagenti a base di Cr(VII) e Mn(VII) ossidano alcoli secondari a chetoni e alcoli primari a acidi (attraverso le aldeidi).

#### Reazioni di ossidazione: alcoli ad aldeidi



Dal momento che il meccanismo di ossidazione prevede la formazione di un estere cromico (o del manganese), in teoria l'aldeide non dovrebbe essere ossidata, quella che reagisce è la forma idrata. Evitando l'acqua o usando ossidanti più deboli ci si può fermare allo stadio di aldeide

#### Ossidanti per alcoli primari



#### Ossidanti per aldeidi

- Reagente di Tollens: Ag<sub>2</sub>O, NH<sub>3</sub>
- Peracidi (ossidazione di Bayer-Villiger)

Ossidazione di Swern: DMSO, ossalicloruro, trietilammina

### Reazioni di ossidazione: alcoli ad aldeidi e chetoni

Scissione ossidativa

$$\begin{array}{c|c}
CH_3 \\
OH \\
OH
\end{array}$$

$$\begin{array}{c|c}
HIO_4 \\
O\end{array}$$

$$\begin{array}{c}
O \\
O\end{array}$$

$$\begin{array}{c}
O \\
O\end{array}$$

La reazione, applicata a derivati del cicloesano, fornisce composti 1,6 dicarbonilici

#### Reazioni di ossidazione: alcheni

Trattando gli alcheni con peracidi si ottiene la formazione di un epossido che poi si idrolizza formando un diolo. La stereochimica dell'addizione è **trans**.

Trattando gli alcheni con  $OsO_4$  o  $MnO_4$  si ottiene la formazione di un estere ciclico che poi si idrolizza formando un diolo. La stereochimica dell'addizione è **cis**.

RCH=CHR 
$$\xrightarrow{1. \text{ OsO}_4}$$
  $\xrightarrow{OH}$   $\xrightarrow{OH}$   $\xrightarrow{OH}$   $\xrightarrow{OH}$   $\xrightarrow{OH}$   $\xrightarrow{CH}$   $\xrightarrow{CH}$   $\xrightarrow{CHR}$  diolo vicinale

#### MECCANISMO DI FORMAZIONE DEI DIOLI CIS

La reazione può essere condotta con OsO<sub>4</sub> (tossico, buone rese), con MnO<sub>4</sub><sup>-</sup> in condizioni basiche e T bassa, o con OsO<sub>4</sub> catalitico e N-metilmorfolina-N-ossido

#### Reazioni di ossidazione: alcheni

Trattando gli alcheni con ozono, si forma un'ozonuro, che decompone in condizioni riducenti o ossidative formando chetoni, aldeidi o acidi carbossilici. La reazione può essere anche effettuata con MnO<sub>4</sub>- ad alta T.

#### MECCANISMO DI FORMAZIONE DELL'OZONURO

$$\begin{array}{c} \text{condizioni} \\ \text{riducenti} \\ \\ \text{R'} \\ \text{O} \\ \text{O} \\ \text{R''} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{H} \\ \text{ozonuro} \\ \\ \text{H}_2\text{O}_2 \\ \\ \text{C} \\ \text{EO} \\ \text{C} \\ \text{C} \\ \text{O} \\ \text{C} \\ \text{C$$