#### $\alpha$ -alchilazione di enolati

In linea di principio, il carbonio in  $\alpha$  di un enolato (nucleofilo soft) dovrebbe reagire bene con un alogenuro alchilico (elettrofilo soft).

$$\stackrel{\text{base}}{\longleftarrow} \stackrel{\text{co}}{\longleftarrow} \stackrel{$$

Il problema è che mentre l'enolato si forma, convivono nell'ambiente di reazione un nucleofilo (enolato) e un elettrofilo (composto carbonilico). Possono quindi avvenire reazioni di autocondensazione o addirittura polimerizzazione.

Inoltre, quando vengono usate basi non sufficientemente forti, possono formarsi diversi enolati che danno luogo a reazioni di polialchilazione.

#### α-alchilazione di enolati

Gli enolati di litio danno un solo prodotto di alchilazione, il meccanismo è SN2.

#### $\alpha$ -alchilazione di enolati

La reazione funziona bene con acidi (2 equivalenti di base), esteri, ammidi, nitrili e chetoni.

La reazione non funziona con le aldeidi (troppo reattive).

## **Enol-equivalenti**

Le enammine, gli aza-enolati e i silil-enoleteri hanno una struttura elettronica analoga a quella degli enoli.

#### α-alchilazione di enolati


La reazione segue un meccanismo SN2, quindi gli agenti alchilanti migliori sono alogenuri metilici, allilici, benzilici e primari.



La reazione viene condotta a -78 °C. Si aggiunge la base al composto carbonilico, poi l'alogenuro e si lascia salire la temperatura.

#### $\alpha$ -alchilazione delle enammine

L'enammina ha la reattività di un enolo. La successiva idrolisi dell'imminio restituisce il derivato carbonilico.



Nucleofili neutri: poco reattivi

Competizione all'azoto



Alogenuri alchilici molto reattivi (no Me)

T elevate

$$X \longrightarrow X \longrightarrow X$$

#### α-alchilazione delle enammine

Le enammine consentono l'alchilazione delle aldeidi (non si usano basi per formare l'enolo).

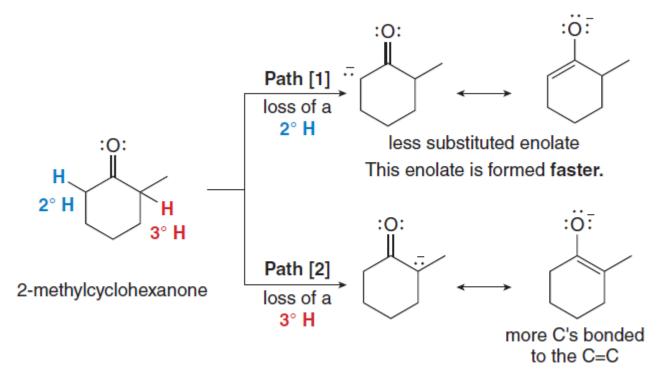
## $\alpha$ -alchilazione delle enammine

La reazione può essere fatta anche con elettrofili «acidi», con cui gli enolati potrebbero comportarsi da basi

#### α-alchilazione dei silil enol eteri

I silil enol eteri reagiscono con alogenuri terziari via meccanismo SN1 (in presenza di acidi di Lewis)

## $\alpha$ -alchilazione degli azaenolati


Gli aza enolati reagiscono molto bene via meccanismo SN2, funzionanano anche con alogenuri primari.

## α-alchilazione dei composti β-dicarbonilici

I composti  $\beta$ -dicarbonilici formano enolati molto facilmente (basi di forza moderata). Se il composto contiene un gruppo estereo, conviene usare come base lo stesso alcolato che forma l'estere.

#### **Enolati stabili**

Per evitare i problemi derivanti dalla coestistenza enolato-carbonile, è possibile convertire completamente il composto carobonilico in enolato o in un suo equivalente.



#### kinetic enolate

protone più accessibile protone più acido prodotto favorito a bassa T

#### thermodynamic enolate

enolato più stabile favorito a T alta e tempi lunghi

more substituted enolate
This enolate is more stable.

## α-alchilazione di enolati

Nel caso di chetoni asimmetrici, possono formarsi due prodotti diversi

2-metilcicloesanone 
$$\begin{array}{c} \text{LDA} \\ \text{CH}_3 \\$$

#### α-alchilazione delle enammine

Nelle enammine asimmetriche, si forma preferenzialmente la meno sostituita

Addizione coniugata di enolati ai composti  $\alpha,\beta$ -insaturi

Il prodotto 1,4 è quello termodinamicamente favorito. La reazione è favorita da **enolati stabili** ( $\beta$ -dicarbonili) e composti  $\alpha$ , $\beta$  insatuturi **ricchi di elettroni**.

Addizione coniugata di enolati ai composti  $\alpha,\beta$ -insaturi

La reazione è favorita da **enolati stabili** ( $\beta$ -dicarbonili) e composti  $\alpha$ , $\beta$  insatuturi **ricchi di elettroni**.

Più è stabile l'enolato, maggiore la

resa di addizione coniugata

Addizione coniugata di enolati ai composti  $\alpha,\beta$ -insaturi

# **Donatori**

#### **Accettori**

CH<sub>2</sub>=CH-

Meno reattivo è il carbonile, maggiore la resa di addizione coniugata

$$O = \begin{pmatrix} CH_3 \\ H \\ O = \begin{pmatrix} H \\ H \end{pmatrix} \end{pmatrix}$$

$$O = \begin{pmatrix} N \\ | | \\ C \\ H \\ O = \begin{pmatrix} H \\ H \\ \end{pmatrix} \end{pmatrix}$$

$$CH_2=CH$$
 $CH_2$ 

CH<sub>2</sub>=CH-CN

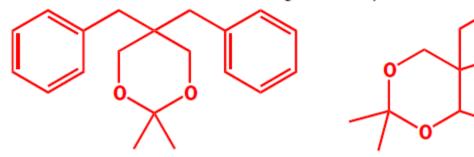
$$CH_2=CH$$
 $H$ 

$$CH_2=CH$$

Addizione coniugata di enolati ai composti  $\alpha,\beta$ -insaturi

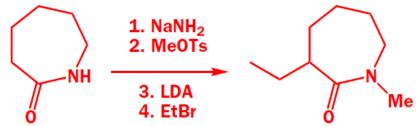
Con enoli stabili la reazione può seguire un meccanismo di catalisi acida

**Tandem addizione coniugata-alchilazione**: l'intermedio dell'addizione coniugata è un enolato, in presenza di un elettrofilo reattivo si può quindi avere alchilazione di un carbonio ingombrato


**Tandem addizione coniugata-alchilazione**: un reagente ottimale è costituito da cuprati, in questo modo è possibile introdurre simultaneamente due gruppi alchilici in posizione 3 e 4.

Il prodotto *trans* è favorito perché l'elettrofilo tende ad attaccare la faccia **meno ingombrata**.

**1.** Suggest how the following compounds might be made by the alkylation of an enol or enolate.




**2.** And how might these compounds be made using alkylation of an enol or enolate as one step in the synthesis?



**3.** And, further, how might these amines by synthesized using alkylation reactions of the enolate style as part of the synthesis?

**13.** Give the structures of the intermediates in the following reaction sequence and mechanisms for the reactions. Comment on the formation of this particular product.



**14.** Suggest how the following products might be made using enol or enolate alkylation as at least one step. Explain your choice of specific enol equivalents.