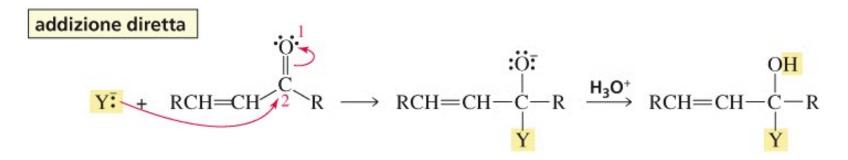
Composti carbonilici α, β insaturi

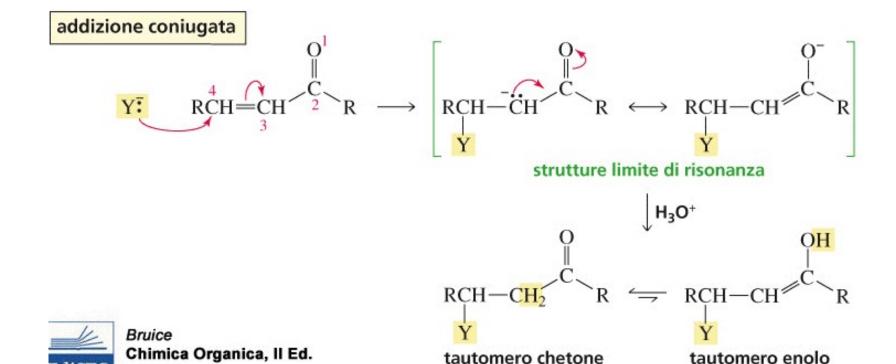
Addizione coniugata

I composti carbonilici α , β instaturi contengono un gruppo vinilico nelle posizioni 2,3 rispetto al carbonio carbonilico

$$\begin{array}{c} : \ddot{o} \\ RCH = \overset{\alpha}{C} \\ \text{un composto carbonilico} \\ \alpha \ , \beta \text{-insaturo} \end{array} \longleftrightarrow \begin{array}{c} : \ddot{o} \\ RCH = \overset{\circ}{C} \\ RCH = \overset{\circ}$$

Il gruppo vinilico ed il gruppo carbonilico si influenzano reciprocamente formando un'unico orbitale molecolare: il carbonile diviene meno elettrofilo, mentre il vinile assume carattere di elettrofilo (al carbonio β).

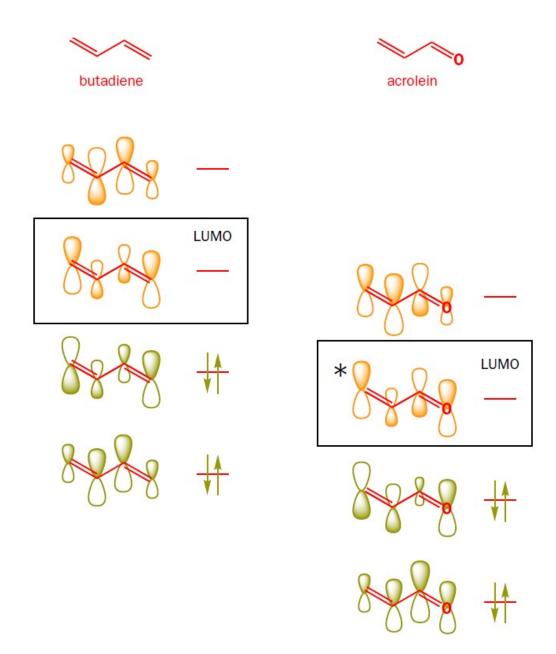

La reattività è determinata dalla stabilità del gruppo carbonilico e dalle caratteristiche del nucleofilo.


Composti carbonilici α , β insaturi

Addizione coniugata

La reazione è influenzata sia dalla struttura del composto α , β insaturo che dalla natura del nucleofilo

Composti carbonilici α, β insaturi



Alcheni vs α,β -insaturi

Nell'addizione coniugata la reattività del gruppo vinilico viene completamente invertita: se il doppio legame è normalmente un nuclofile, diventa un elettrofilo nei composti α,β insaturi.

Alcheni vs α, β -insaturi

Le formule di risonanza, come abbiamo visto, suggeriscono che nei composti α , β -instaturi il C in posizione β può essere un elettrofilo.

Quali sono le ragioni reali. La coniugazione crea orbitali HOMO e LUMO con differenza di energia minore rispetto ad un alchene.

La presenza dell'atomo di ossigeno (elettronegativo), abbassa l'energia complessiva degli orbitali.

Il LUMO dei composti α , β insaturi ha un'energia sufficientemente bassa per reagire con nucleofili, e il coefficiente più grande è sul C in posizione β (il secondo più grande è sul C carbonilico)

Addizione 1,4 vs addizione 1,2

Il prodotto della reazione è controllato da 3 fattori:

- 1. Le condizioni di reazione
- 2. La natura del derivato carbonilico α,β -insaturo
- 3. Il tipo di nucleofilo

Per analizzare in dettaglio questi fattori dobbiamo partire da due punti:

- Il prodotto 1,4 è più stabile perchè si preserva il doppio legame C=O che è più stabile (369 KJ/mol) del doppio legame C=C (280 KJ/mol)
- Il carbonio carbonilico viene attaccato più velocemente perchè possiede una carica parziale positiva maggiore.

Addizione 1,4 vs addizione 1,2

$$RCH = CH - C - R'$$

$$RCH = CH - C - R'$$

$$RCH = CH - C - R'$$

$$Addizione \ diretta$$

$$RCHCH_{2} - R'$$

$$RCHCH_{2} - R'$$

$$RCHCH_{2} - R'$$

$$Nu$$

$$Addizione \ coniugata$$

Se l'addizione diretta è irreversibile, si accumulerà il prodotto che si forma più velocemente. La reazione è sotto **controllo cinetico**.

Addizione 1,4 vs addizione 1,2

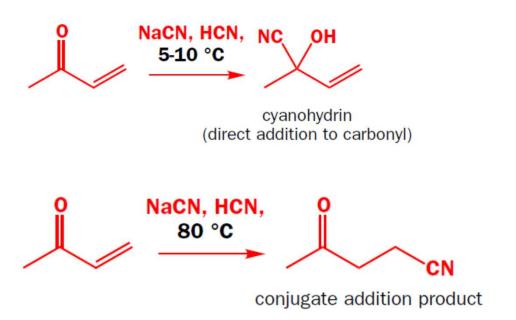
$$RCH = CH - C - R'$$

$$RCH = CH - C - R'$$

$$Addizione diretta$$

$$RCHCH_{2} - R'$$

$$RCHCH_{3} - R'$$


$$RCHCH_{4} - R'$$

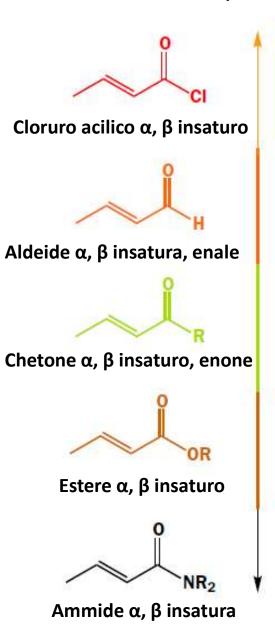
$$RCHCH_{4} - R'$$

$$RCHCH_{5} -$$

Se l'addizione diretta è reversibile, può accumularsi il prodotto più stabile (addizione 1,4). La reazione è sotto **controllo termodinamico**.

Effetto della temperatura

A bassa temperatura, la reazione 1,2 è irreversibile: si forma il prodotto 1,2 perchè il carbonio carbonilico reagisce più velocemente.


A temperatura elevata, la reazione 1,2 diventa reversibile: il prodotto 1,2 si forma più velocemente ma dissocia, mentre il prodotto 1,4 che pur si forma poù lentamente, accumula fino a diventare l'unico prodotto.

Effetto della struttura del substrato

Il gruppo funzionale legato al carbonio carbonilico influenza sua carica parziale: gruppi elettonattrattori favoriscono la reazione 1,2, gruppi elettron donatori la rallentano.

Se la reazione 1,2 è una sostituzione, spesso è irreversibile.

Prevale addizione 1,2

Prevale addizione 1,4

Effetto della struttura del substrato

 $CH_2 = CH$

Anche l'ingombro sterico influenza la reazione, ma non in modo predominante.

$$CH_{2}=CH$$

$$CH_{2}=CH$$

$$CH_{3}=CH$$

$$CH_{2}=CH$$

$$CH_{3}=CH$$

$$CH_{2}=CH$$

$$CH_{3}=CH$$

$$CH_{2}=CH$$

$$CH_{3}=CH$$

$$CH_{2}=CH$$

$$CH_{3}=CH$$

$$CH_{2}=CH$$

$$CH_{3}=CH$$

$$CH_{3}=CH$$

$$CH_{4}=CH$$

$$CH_{5}=CH$$

$$CH_{2}=CH$$

$$CH_{5}=CH$$

$$CH_{$$

$$CH_2CH_2$$

51%

Addizione 1,4 favorita

Effetti sterici ed elettronici

Effetti sterici

ed elettronici

Addizione 1,2 favorita

Effetto della natura del nucleofilo

La reattività dei nucleofili dipende da diversi fattori (basicità, carica, polarizzabilità). **Nucleofili molto basici** (organometallici, idruri) tendono a dare reazioni irreversibili: preferenza per **addizione 1,2**.

Una classificazione empirica utile a prevedere la reattività è la classificazione hard-soft.

Alcune reazioni nucleofiliche sono controllate dall'attrazione elettrostatica (specie hard), altre dagli effetti orbitalici (specie soft).

La classificazione è empirica, ma correla piuttosto bene con la polarizzabilità:

Hard nucleophiles F-, OH-, RO-, SO ₄ -, CI-,	Borderline N ₃ , CN ⁻	Soft nucleophiles I ⁻ , RS ⁻ , RSe ⁻ , S ²⁻
H ₂ O, ROH, ROR', RCOR',	RNH ₂ , RR'NH,	RSH, RSR', R ₃ P
NH ₃ , RMgBr, RLi	Br ⁻	alkenes, aromatic rings

Il gruppo carbonilico è un elettrofilo hard: reagisce meglio con nucleofili hard. Il carbonio vinilico è un elettrofilo soft: reagisce meglio con nucleofili soft.

Effetto della natura del nucleofilo

Il gruppo carbonicloco è un elettrofilo hard: regisce meglio con nucleofili hard. Il carbonio vinilico è un elettrofilo soft: reagisce meglio con nucleofili soft.

Nucleofilo hard: addizione 1,2

$$\begin{array}{c}
O \\
+ CH_3SH \longrightarrow
\end{array}$$

$$\begin{array}{c}
O \\
SCH_3$$

Nucleofilo soft addizione 1,4

Effetto della natura del nucleofilo

Anche la reattività dei composti organimetallici può essere controllata con la classificazione hard-soft. Infatti composti organometallici di rame (cuprati) si comportano come nucleofili soft.

Addizione 1,4 vs addizione 1,2 Riassunto

Favorisce addizione 1,4	Favorisce addizione 1,2	
Controllo termodinamico: temperatura elevata, tempi di reazione lunghi	Controllo cinetico: basse temperature, tempi di reazione brevi	
Gruppi C=O non reattivi come esteri e ammidi	Gruppi C=O reattivi come aldeidi e acil cloruri	
Carboni in β non ingombrati	Carboni in β ingombrati	
Carbonio carbonilico ingombrato (chetoni)	Carbonio carbonilico non ingombrato (aldeidi)	
Nucleofili debolmente basici	Nucleofili molto basici	
Nucleofili "soft"	Nucleofili "hard"	