

1911 Premio Nobel per la Fisica

1897 Scoperta dell'elettrone (Nobel 1906) **1912** Con F. W. Aston separazione e scoperta degli isotopi Ne²⁰ e Ne²².

1899 Costruisce uno strumento con campi

magnetici ed elettrici perpendicolari capace di separare i cationi secondo il loro rapporto

Norman Ramsey Jr.

1950-60 Sviluppo di trappole ioniche

carica/massa (Q/m)

1989 Premio Nobel per la Fisica

Raymond Davis Jr.

soft laser desorption (SLD) **2002** Premio Nobel per la Fisica per

l'applicazione di ESI e SLD alla ionizzazione di macromolecole (proteine)

1960-70 Sviluppo di electrospray ionization (ESI)

Che cos'è la spettrometria di massa?

La spettrometria di massa è una tecnica analitica che fornisce il/i rapporto/i massa su carica (m/z) della molecola oggetto dell'analisi o dei frammenti di tale molecola. Da questi si possono ricavare:

- peso molecolare
- formula molecolare
- struttura molecolare

Altre applicazioni della spettrometria di massa includono:

- Proteomica
- Metabolomica
- Sviluppo di farmaci
- Controlli alimentari
- Scienze forensi
- Caratterizzazione di prodotti naturali
- Studi di reazioni ione-molecola
- Analisi di complessi inorganici
- Caratterizzazione di polimeri
- ...

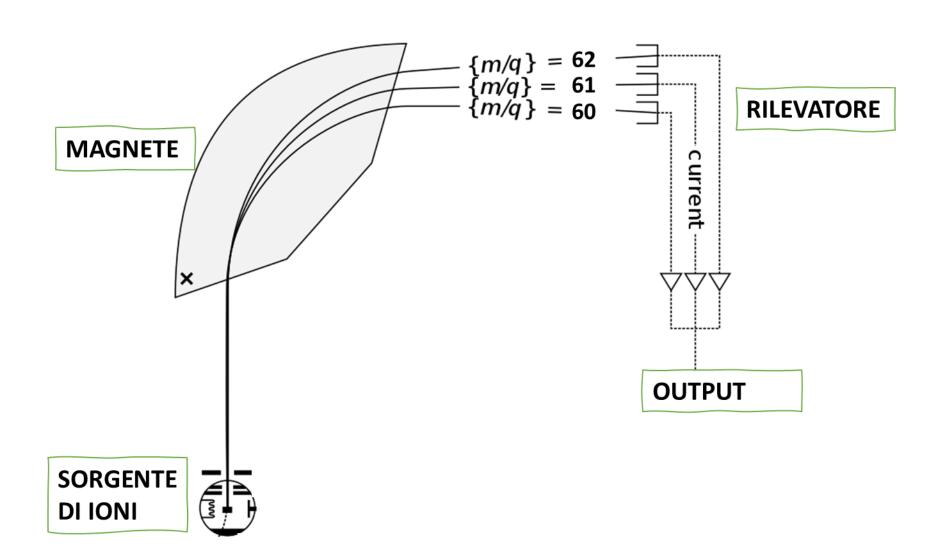
Uno spettrometria di massa separa gli ioni secondo il loro rapporto massa su carica (m/z).

Legge di Lorentz

Una Particella di carica puntiforme q che si muove a velocità \mathbf{v} in un campo elettrico \mathbf{E} e in un campo magnetico \mathbf{B} è soggetta ad una forza elettromagnetica \mathbf{F} data dalla legge di Lorentz

$$\mathbf{F} = q (\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Seconda legge di Newton


Valida per particelle che si muovono a velocità inferiori di c

$$F = m a$$

$$(m/q)a = E + vxB$$
 $(m/z)a = E + vxB$

Dove z = q/e con e=carica elementare (protone o elettrone).

m/z viene informalmente detto rapporto massa/carica

Che cos'è la spettrometria di massa?

Il primo stadio di un'analisi di spettrometria di massa è la ionizzazione della molecola di interesse (M).

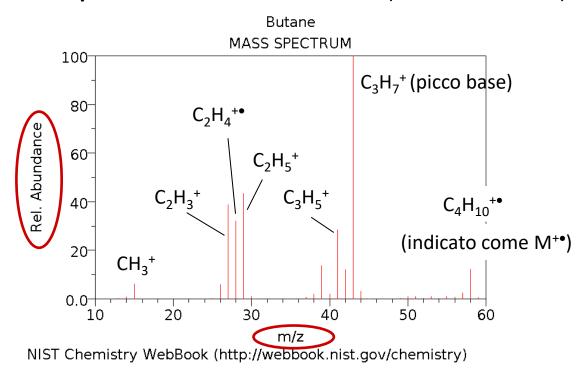
La ionizzazione può avvenire in diversi modi, ad esempio tramite ionizzazione elettronica (o meglio per «urto elettronico»):

$$M^{+\bullet} + 2e^{-}$$
 $M + e^{-}$
 $+ e^{-}$
 $+ e^{-}$
 $+ 2e^{-}$
 $+ 2$

M⁺ Ione molecolare: è un radicale catione ed ha un numero dispari d elettroni

R⁺, I^{+•} Frammenti ionici primari: possono a loro volta frammentare

R* Radicale distaccatosi nella frammentazione


A cosa serve ottenere ioni di *m/z* noti da una molecola?

Gli ioni danno informazioni sulla natura e la struttura della molecola da cui derivano. Se z = 1, m/z corrisponde alle masse della molecola e dei suoi frammenti. In generale:

- lo ione a m/z maggiore può essere lo ione molecolare → si può ricavare il peso della molecola in esame
- picchi a m/z minori della massa della molecola corrispondono a 'pezzi' della molecola → si può ricostruire la struttura della molecola a partire dai suoi frammenti
- la differenza di m/z tra i picchi corrisponde anch'essa a 'pezzi' della molecola

Gli ioni (compresi lo ione molecolare e gli ioni radicali) vengono separati in base al loro rapporto m/z e rivelati in proporzione alla loro abbondanza.

Si ottiene lo **spettro di massa** della molecola (es butano C4H10):

Picco base: per definizione è il segnale più abbondante dello spettro, a cui viene attribuita un'abbondanza relativa del 100%

La definizione di massa

Quando si fanno calcoli stechiometrici, ci si riferisce alla massa molecolare media, calcolata sommando i pesi atomici che si possono leggere su una tavola periodica.

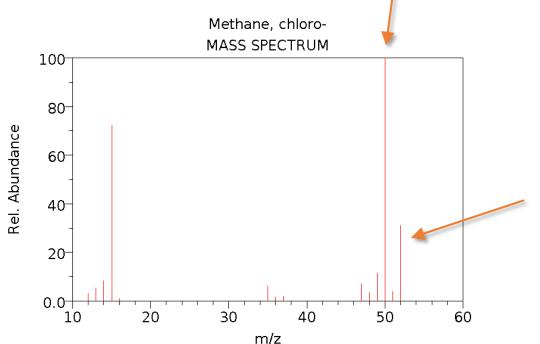
Il peso atomico di un elemento riportato sulla tavola periodica è la media pesata delle masse atomiche dei diversi isotopi di quell'elemento.

Consideriamo ad esempio il cloro:

Nella spettrometria di massa generalmente si usa la **massa monoisotopica**, che per un atomo corrisponde alla massa dell'isotopo più abbondante, per una molecola alla somma delle masse degli isotopi <u>più</u> abbondanti di ognuno degli elementi costituiscono la molecola.

La massa monoisotopica può essere arrotondata al valore intero più vicino (massa nominale) o non essere arrotondata (massa esatta).

Calcolo della massa media e della massa monoisotopica nominale ed esatta di CH₃Cl


Massa media = $12.011 + (3 \times 1.00794) + 35.453$

= 50.4878 Da (oppure u)

Massa monoisotopica esatta = $12.000000 + (3 \times 1.007825) + 34.968852$

= 49.992327 u

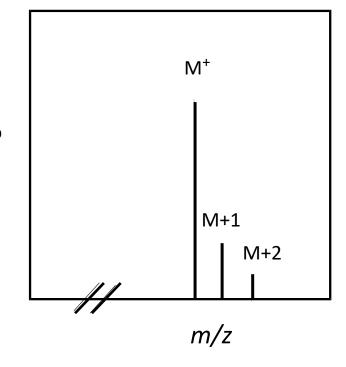
Massa monoisotopica nominale = 50 u

1 Dalton = 1/12 massa di 12 C

= 1g/mol

 $= 1.660540 \times 10^{-27} \text{ kg}$

Con uno spettrometro di massa si vedrà il segnale corrispondente a $CH_3^{35}Cl$ (m/ 50), ma anche il segnale corrispondente a $CH_3^{37}Cl$ (m/z 52):


Gli isotopi vengono distinti sperimentalmente!

Intensità degli ioni

Picchi isotopici

Se osserviamo attentamente la zona dello ione molecolare scopriamo che oltre al segnale di M^+ vi sono altri segnali a valori di m/z più elevati.

Di solito si vedono due segnali a valori di m/z = M + 1 e M + 2 (cioè di una e due unità di massa superiori al segnale dello ione molecolare).

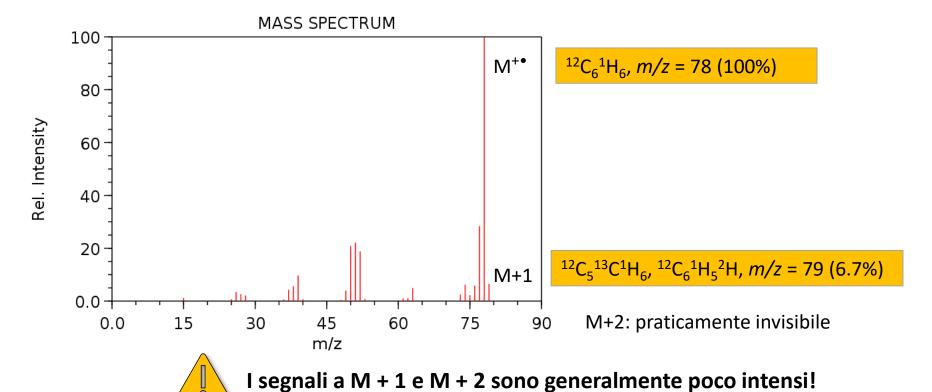
Gli ioni M + 1 e M + 2 non sono dovuti a frammenti, ma alla *composizione isotopica* degli elementi di cui è costituita la sostanza.

L'intensità relativa di M + 1 e M + 2 rispetto a M⁺ non dipende dalle condizioni nelle quali è stato registrato lo spettro di massa, ma solo dalla composizione elementare della sostanza in esame

Composizione isotopica degli elementi comuni

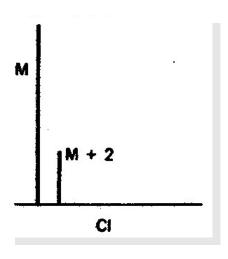
Elemento	Isotopi (% relativa all'isotopo più	Massa
	abbondante)	esatta
Н	¹H (≈100) 1.007	
	² H (0.016)	2.01410
С	¹² C (=98.9)	12.000
		standard
	¹³ C (1.08)	13.0034
N	¹⁴ N (≈100)	14.0031
	¹⁵ N (0.38)	15.0001
0	¹⁶ O (≈100)	15.9949
	¹⁷ O (0.04)	16.9991
	¹⁸ O (0.2)	17.9992

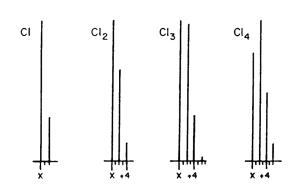
- Per H, C, N, O l'isotopo più leggero
 è molto più abbondante
- L'abbondanza relativa dei segnali isotopici a M + 1 e M + 2 è molto bassa

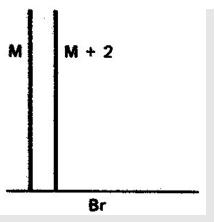

Eccezioni: Cl e Br

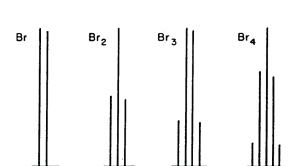
Isotopo	% relativa	Massa esatta
³⁵ Cl	100	34.969
³⁷ Cl	32.5	36.966
⁷⁹ Br	100	78.918
⁸¹ Br	98	80.916

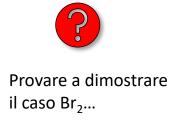
Composizione isotopica delle molecole


La presenza di isotopi diversi per ogni elemento si riflette anche sulle molecole. Questo fatto determina la presenza degli ioni M+1 e M+2 nello spettro di massa. Si può dimostrare che il rapporto tra le percentuali delle intensità del picco M e del picco M+1 dà il numero di atomi di C.


Benzene (mw = 78.11 g/mol)




Composizione isotopica delle molecole


Nel caso in cui nella molecola siano presenti un atomo di Cl o uno di Br i segnali degli ioni M+2 sono molto più intensi (rispettivamente circa il 33% e il 100% di M^+)

Picchi isotopici e formula molecolare

L'intensità relativa (rispetto a quella dello ione molecolare) dei segnali degli ioni M + 1 e M + 2 permette di determinare la formula molecolare di una molecola M.

Tale intensità dipende infatti dalla composizione isotopica dei singoli elementi di cui è costituita la molecola.

L'intensità relativa degli ioni M + 1 e M + 2 (rispetto allo ione molecolare M) può ovviamente essere calcolata se si conosce la formula molecolare utilizzando i valori di abbondanza relativa. Così **ogni atomo di C contribuirà all'1% circa di M + 1, mentre ogni atomo di N lo 0.38% e così via**.

In generale, trascurando il contributo dovuto alla presenza contemporanea di due isotopi più pesanti, si ha che:

Picchi isotopici e formula molecolare

Le intensità relative degli ioni M + 1 e M + 2 sono tabulate (o accessibili via software) per una serie di formule brute in funzione della massa nominale dello ione molecolare.

m/z: 78.05 (100.0%), 79.05 (6.5%)

Dallo spettro di massa è possibile ricavare le intensità relative (rispetto a M⁺
•) degli ioni M + 1 e M + 2 e poi la formula molecolare della sostanza incognita.

In uno spettro di massa le intensità relative dei segnali sono riferite al picco base, che non necessariamente (anzi, quasi mai) è lo ione molecolare. In questo caso bisogna normalizzare le % di M + 1 e M + 2 a quella di M⁺

Chemical Formula: C₂₁H₂₆F₃NO₂ Exact Mass: 381.1916 Molecular Weight: 381.4392

m/z: 381.1916 (100.0%), 382.1949 (22.7%), 383.1983 (2.5%) Elemental Analysis: C, 66.13; H, 6.87; F, 14.94; N, 3.67; O, 8.39 NH₂

Chemical Formula: C₂₂H₄₀NO₂P Exact Mass: 381.2797 Molecular Weight: 381.5408

m/z: 381.2797 (100.0%), 382.2830 (23.8%), 383.2864 (2.7%) Elemental Analysis: C, 69.26; H, 10.57; N, 3.67; O, 8.39; P, 8.12

Esempio

Un composto incognito ha M^+ a m/z = 100. Spettro di massa: m/z 48 (100%, picco base); m/z 100 (50%, M^+); m/z 101 (3.4%, M^+ 1); m/z 102 (0.2%, M^+ 2). Trovare la formula molecolare.

Normalizzare le % di M+1 e M+2, fatta pari a 100% quella di M+:

%M+1 normalizzata = %M+1/%M+ = **6.8%**

%M+2 normalizzata = %M+2/%M+ = 0.4%

Alla massa nominale 100 corrispondono i seguenti casi tabulati:

Formula	% M+1	% M+2	Formula	% M+1	% M+2
C ₄ H ₈ N ₂ O	5.25	0.31	$C_5H_{12}N_2$	6.36	0.17
C ₅ H ₈ O ₂	5.61	0.53	C ₆ H ₁₂ O	6.72	0.39

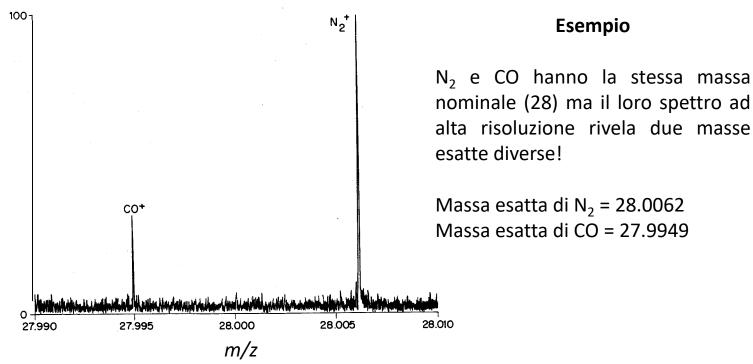
I valori di % sperimentali più vicini sono per $C_6H_{12}O$, che è quindi la formula molecolare del composto incognito

Ione molecolare e formula molecolare

L'osservazione del picco M⁺, in assenza di altre informazioni, <u>non</u> porta necessariamente ad una formula molecolare univoca:

Es.: se M =
$$100 \rightarrow C_6H_{12}O$$
 oppure $C_5H_{12}N_2$?

- MS a **bassa risoluzione** → permette di misurare le masse intere degli ioni (*masse nominali*). Utile per l'analisi dei picchi isotopici.
- MS ad **alta risoluzione** → permette di misurare le masse degli ioni fino alla quarta cifra decimale (e di conoscere quindi la massa esatta). Nell' esempio sopra si ha che le masse esatte* sono:


$$C_6H_{12}O = 100.088815 \text{ u}$$
 $C_5H_{12}N_2 = 100.100048 \text{ u}$

^{*}calcolate in modo tale che ogni atomo della specie sia l'isotopo più abbondante di quell'elemento.

Spettrometria di massa ad alta risoluzione

Uno spettrometro di massa ad alta risoluzione può quindi determinare la massa esatta della molecola e da questa è possibile ricavare la formula molecolare.

Infatti, a parità di massa nominale, molecole che abbiano una composizione elementare diversa (e quindi diversa formula molecolare) avranno massa esatta diversa.

Massa esatta: ione molecolare ad alta risoluzione

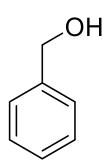
TABELLA 2.2 Masse esatte degli isotopi

Elemento	Peso atomico	Nuclide	Massa
Idrogeno	1.00794	¹H	1.00783
,		$D(^{2}H)$	2.01410
Carbonio	12.01115	¹² C	12.00000 (std)
		¹³ C	13.00336
Azoto	14.0067	¹⁴ N	14.0031
		¹⁵ N	15.0001
Ossigeno	15.9994	¹⁶ O	15.9949
•		$^{17}\mathbf{O}$	16.9991
		^{18}O	17.9992
Fluoro	18.9984	$^{19}\mathbf{F}$	18.9984
Silicio	28.0855	²⁸ Si	27.9769
		²⁹ Si	28.9765
		³⁰ Si	29.9738
Fosforo	30.9738	$^{31}\mathbf{P}$	30.9738
Zolfo	32.066	³² S	31.9721
		³² S	32.9715
		³⁴ S	33.9679
Cloro	35.4527	³⁵ Cl	34.9689
		³⁵ Cl	36.9659
Bromo	79.9094	⁷⁹ Br	78.9183
		81 Br	80.9163
Iodio	126.9045	127 I	126.9045

^{*}Le masse esatte degli isotopi <u>non sono numeri interi</u> anche se il riferimento è costituito da ¹²C, perché parte della massa delle particelle nucleari viene consumata per l'energia di legame nucleare.

La massa dei nuclidi non è un numero intero

Una formula molecolare <u>univoca</u> può essere determinata da un'unica misura di massa ad elevata risoluzione



La **massa esatta** è la somma delle masse esatte del nuclide <u>più abbondante</u>.

Il **peso molecolare** invece si basa sui <u>pesi atomici</u>, che sono mediati sui pesi di tutti gli isotopi naturali di un certo elemento.

Esempio: alcol benzilico

Formula molecolare: C₇H₈O

Peso molecolare: 108.14 (7×12.011 + 8×1.008 + 15.999) g/mol

È il peso "medio" di una mole di molecole di alcol benzilico contenenti tutti gli isotopi *nella percentuale presente in natura*

Massa esatta: 108.0575 (7×12.0000 + 8×1.0078 + 15.9949)

Si riferisce <u>esclusivamente</u> ad una particolare molecola di alcol benzilico avente la composizione isotopica ¹²C₇ ¹H₈ ¹⁶O

Per il calcolo della formula molecolare dalla massa esatta vedi il sito http://www.chemcalc.org/

Massa esatta dallo spettro HR-MS

Se si ha a disposizione uno spettrometro HR-MS si può determinare la massa esatta della molecola, e da questa ricavare la formula molecolare tramite tabelle (integrate nel software dello spettrometro).

Alcuni esempi corrispondenti ad una massa unitaria 212

	massa esatta
$C_9H_{12}N_2O_4$	212.0797
$C_9H_{14}N_3O_3$	212.1036
$C_9H_{16}N_4O_2$	212.1275
$C_{10}H_{14}NO_4$	212.0923
$C_{10}H_{16}N_2O_3$	212.1162
$C_{11}H_{16}O_4$	212.1049
$C_{11}H_{24}N_4$	212.2003
$C_{12}H_{26}N_3$	212.2129
$C_{15}H_{32}$	212.2505
$C_{16}H_{20}$	212.1566

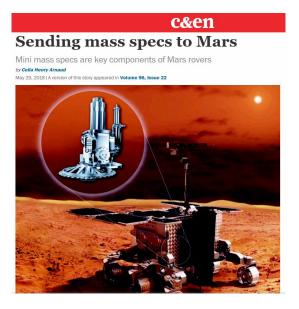
Per le misure si utilizza uno standard interno. Non ci interessano più le intensità relative di M + 1 e M + 2 ma esclusivamente M⁺. Di conseguenza nel calcolare le masse esatte <u>si considerano esclusivamente gli isotopi più abbondanti</u>, che sono anche quelli che hanno massa inferiore.

Prodotti farmaceutici

Table 1. List of Compounds with Corresponding Neutral Masses That May Be in a Given Sample

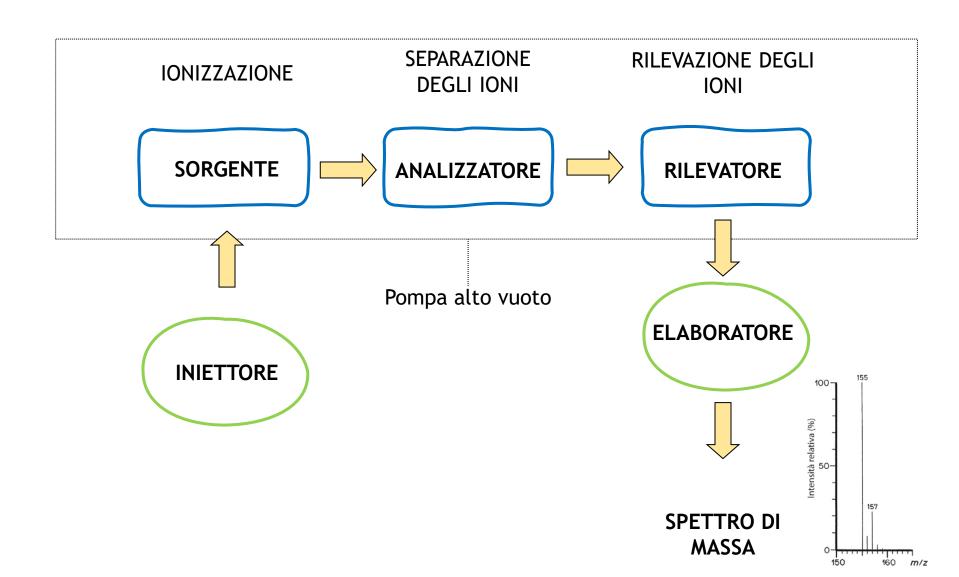
Compound	Neut. mass	Compound	Neut. mass	Compound	Neut. mass
Acetaminophen	151.06333	Diphenhydramine	255.16231	Paroxetine	329.14272
Albuterol	239.15214	Duloxetine	297.11873	Ranitidine	314.14126
Aspirin	180.04226	Enalaprilat	348.16852	Sertraline	305.07380
Buproprion	239.10769	Erythromycin	573.51210	Simvastatil	418.27192
Caffeine	194.08038	Fluoxetine	309.13405	Sulfachloropyridazine	284.01347
Carbamazepine	236.09496	Fluvoxamine	318.15551	Sulfadimethoxine	310.07358
Cimetidine	252.11572	Furosemide	330.00772	Sulfamethazine	278.08375
Clofibric acid	214.03967	Gemifrozil	250.15698	Sulfamethizole	270.02452
Citalopram	324.16379	HCTZ	296.96447	Sulfamethoxazole	253.05211
Codeine	299.15215	Ketoprofen	254.09429	Thiabendazole	201.03607
Cotinine	176.09496	Miconazole	413.98602	Triclocarban	313.97805
Dehydronifedipine	344.10084	Naproxen	230.09429	Triclosan	287.95116
Diclofenac	295.01668	Norfluoxetine	295.11840	Trimethoprim	274.14298
Diltiazem	414.16133	Norsertraline	293.05000	Venlafaxine	267.12593
		1,7-dimethylx anthine	180.06473	Warfarin	308.10486

Lo spettrometro di massa

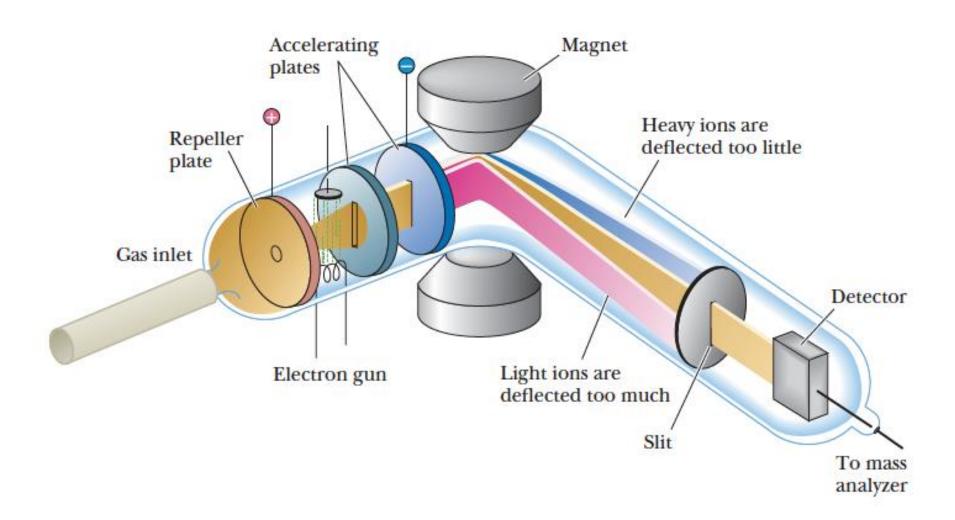

Lo spettrometro di massa è uno strumento che trasforma le molecole in ioni e ne determina successivamente la massa o, più correttamente, il rapporto massa su carica (m/z). Possono essere strumenti anche molto piccoli! (trasportabili)

Elementi costitutivi di uno spettrometro di massa sono:

- un sistema di ionizzazione
- un sistema di differenziazione degli ioni in base al valore di m/z
- un sistema di rilevamento degli ioni


I metodi di ionizzazione più comuni sono:

- Impatto (urto) elettronico (EI)
- Chimico (CI)
- Elettrospray (ESI)



Schema a blocchi di uno spettrometro di massa

Diagramma schematico di uno spettrometro di massa a ionizzazione elettronica (EI-MS)

