Master Degree in Computer Engineering

Natural Language Processing Final Exam

July 10th, 2025

- 1. [2 points] Introduce the general problem of ambiguity for natural language processing. Provide examples of ambiguity at several layers of linguistic descriptions, such as morphology, syntax, lexical semantics, etc.
- 2. [6 points] An English corpus T has been tokenized based on white spaces. The resulting dictionary and word frequencies are reported in the following table

word	hot	hottest	host	shot	shortest
freq	17	9	7	11	5

Apply the byte-pair encoding (BPE) algorithm to derive subword tokens for T, using the character '_' to mark the end of each word. Report and comment each of the first eleven iterations (merge operations) in a run of the algorithm, including the frequency updates.

- 3. [6 points] In the context of N-gram techniques for statistical language modeling, answer the following questions.
 - (a) Introduce the general idea underlying backoff techniques. Define and explain the so-called stupid backoff.
 - (b) Define the technique of simple linear interpolation, and discuss possible strategies for the choice of the interpolation values.
- 4. [2 points] Introduce and discuss the basic ideas underlying concatenative morphology and template morphology, and provide some examples.

(see next page)

- 5. [3 points] In the context of large language models, introduce the relationships known as scaling laws. Discuss how these laws can be practically used to improve pre-training strategies.
- 6. [5 points] Consider the projective dependency tree consisting of the following unlabeled dependency relations

head	w_3	w_1	(ROOT)	w_3	w_7	w_5	w_3	w_7
dependent	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8

Answer the following questions.

- (a) Draw a graphical representation of the dependency tree above, with arcs directed from the head to the dependent.
- (b) Apply to the above tree the oracle presented in syntactic parsing lecture, to construct a sequence of training instances for the arc-standard parser.
- 7. [7 points] In the course lectures we have presented two deep learning models that derive an attention distribution by computing a vector of so-called bilinear products. Describe the main idea of bilinear attention and the two applications in which we have exploited it, and report the equations of the two models.
- 8. [2 points] Discuss some of the good practices in prompt engineering we have presented in the LLM's lectures, and provide some examples.