PROBLEM SHEET 5: FUNCTIONS OF BOUNDED VARIATION

Exercise 1. Let $u \in BV(\mathbb{R}^n)$ with compact support. Let μ_i be the signed valued Radon measure associated to $\frac{\partial}{\partial x_i} T_u$. Show that $\mu_i(\mathbb{R}^n) = 0$ (for every i).

Exercise 2 (Subaddictivity of the perimeter).

Let $\Omega \subseteq \mathbb{R}^n$ be an open set and E, F measurable sets with $\operatorname{Per}(E, \Omega), \operatorname{Per}(F, \Omega) < +\infty$. Show that

$$\operatorname{Per}(E \cup F, \Omega) + \operatorname{Per}(E \cap F, \Omega) \le \operatorname{Per}(E, \Omega) + \operatorname{Per}(F, \Omega).$$

Hint: Proceed by smooth approximation. Let $f, g \in C^{\infty}(\Omega) \cap W^{1,1}(\Omega)$ with $0 \le f, g, \le 1$ and check (pointwise) that

$$|\nabla(f+g-fg)| + |\nabla(fg)| \le |\nabla f| + |\nabla g|.$$

Exercise 3 (Isoperimetric problem with confinement). Let m > 0 and $g : \mathbb{R}^n \to \mathbb{R}$ be a positive continuous function with $\lim_{|x| \to +\infty} g(x) = +\infty$. Show that the energy

$$\mathcal{F}(E) = \text{Per}(E) + \int_{E} g(x)dx$$

admits a minimizer among sets $E \subseteq \mathbb{R}^n$ of finite perimeter such that |E| = m.

Hint:use the Kolmogorov criterium for compactness in $L^1(\mathbb{R}^n)$

Exercise 4 (Plateau type problem). Let $F \subset \mathbb{R}^n$ be a set of finite perimeter. Let U be a open bounded set of class C^1 . Show that there exists a solution to the minimization problem

$$\inf\{\operatorname{Per}(G), \mid G \subseteq \mathbb{R}^n, \text{measurable}, G \setminus U = F \setminus U\}.$$