Problem sheet 2: Measure theory

Exercise 1.

Let μ be a Radon measure on \mathbb{R}^n . We define the support of μ as

supp
$$\mu = \mathbb{R}^n \setminus N$$
 where $N = \bigcup \{A \subseteq \mathbb{R}^n, A \text{ open set}, \mu(A) = 0\}.$

Prove that $\bar{x} \in \text{supp } \mu \text{ iff } \int_{\mathbb{R}^n} f(x) d\mu(x) > 0 \text{ for all } f \in C_c(\mathbb{R}^n, [0, 1]) \text{ with } f(\bar{x}) > 0.$

Exercise 2. Let $A_i \subseteq \mathbb{R}^n$ with $dim_{\mathcal{H}}A_i = c_i$. Show that $dim_{\mathcal{H}}(\cup_i A_i) = \sup_i c_i$.

Deduce that if $c_i < n$, and $\sup_i c_i = n$, then $A = \bigcup_i A_i$ satisfies $\dim_{\mathcal{H}}(A) = n$ and |A| = 0.

Exercise 3. Let $f: \mathbb{R}^n \to \mathbb{R}^k$ be a Lipschitz function (that is $|f(x) - f(y)| \le L|x - y|$ for all $x, y \in \mathbb{R}^n$). Show that for all s > 0 and all $A \subseteq \mathbb{R}^n$, there holds

$$\mathcal{H}^s(f(A)) \le C^s \mathcal{H}^s(A)$$

where C is the Lipschitz constant of f $(C = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|})$