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Feature statistics, Model specific - Tree-
based methods

* Decision Trees are ‘classical’ solutions to supervised
tasks

« The classification is done by following a tree-structure:

« each interior node is a input variable (and there are
edges to children for each possible value of that
variable)

 eachleafis aclass
« Advantages

 ‘Easily interpretable’
* They require no data normalization
* The outcome computation is almost immediate



Feature statistics, Model specific - Tree-
based methods

« DTs are constructed with top-
down approaches: at each step
of the algorithm is to choose a
variable that ‘best’ splits the |
set of observations (recursive ] —

partitioning) . !

« Many criteria: % ¢ %% .
- entropy and information gain 15 child split_/\_ 2™ child split
- Giniimpurity / Mean TN

e T . 4 v | 4 A |
Decrease in impurity - p— . -

o o

- Variance reduction o




Feature statistics, Model specific - Tree-
based methods

Example: ‘Iris Classification’ dataset, Ronald Fisher il .
(1936) - UCI ML Repository Py S

L = 3 classes problem: classify Setosa, Versicolour
and Virginica iris from data containing sepal and i U . ,
petal width and length —n =150 samples, p = 4 ;';.2'5;::;43:.,., AR g
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Feature statistics, Model specific - Tree-

based methods
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Feature statistics, Model specific - Tree-

base

ethods
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Feature statistics, Model specific - Tree-
based methods

 Also in this case we would like
to provide feature statistics
summary: what are the most
important variables?

« Gini Importance or Mean

Decrease in Impurity (MDI) v v )
calculates each feature - - ° ° e ®°.
importance as the sum over 1 child split _/\_ N 2™ child split

the number of splits that (variable Z) N /N (variableY)
include the feature, - p— -~ ——
proportionally to the number .

of samples it splits



Recap: Gini Index / Entropy / Information Gain

The Gini Index (or Gini Impurity) is a measure of Gini Index and Entropy vs. Class Probabilty

1.0 1 —— Gini Index

how impure or mixed a dataset is.
For a dataset Swith cclasses:

2
2 0.6

C
Gini(S) =1-Y p?
1=1

Im

Ginigyis = "’;f L. Gini(left) + T . Gini(right)

n X i 0.4 0.6
Probability of Class 1

Entropy(S) = — Z p; log, (p;)
i=1

IG(S,A) = Entropy(S) — Z ||i:)|’ - Entropy(S,)
veValues(A)



Recap: Random Forest (RF) @ @ @

. EXAMPLES
A RF is composed by many ‘weak’ et e reen

learners (decision trees): we cleverly
combine DTs reducing overfitting! : P: R‘ : : 'P\

We construct slightly different DTs
(more on this later) and, in
we decide by a majority-voting (we
choose following the ) the final
class. In regression, the final decision is
the average.

This in an ‘ensemble’ approach: we
combine multiple models (often called
base learners or weak learners) to
produce a stronger model.




“\ Recap: How to Build a Random Forest

Let’s assume you want to build a forest o | @ o ©
with 7 trees.

For each tree;

- Sample the dataset with replacement
(bootstrap sample). This procedure is
called Bagging (bootstrap

aggregating).
- Build a decision tree: but at each split,
instead of evaluating all features, pick

a random subset (e.g., V¥p). This
procedure is called Feature Bagging.

The reason for doing this is the correlation of the trees in
an ordinary bootstrap sample: if one or a few features are
very strong predictors for the response variable (target

output), these features will be selected in many of
the 7 trees, causing them to become correlated.




RF: feature importance

Feature importance reflects how useful or
valuable each feature is for making predictions
in a model. For decision trees (and ensembles
like Random Forests), it's typically based on:

& How much each feature decreases impurity
(e.g., Giniindex or entropy) when it’s used to
split the data

nl Intuition

- If a feature is consistently chosen for
important splits (i.e., it helps reduce impurity a
lot), it gets high importance.

- Features that are rarely used or don’t reduce
impurity much get low or zero importance.

Default feature importance (scikit-learn)

eeeeeeeeeeeeeeeeee



RF: feature importance

Feature importance reflects how useful or
valuable each feature is for making predictions
in a model. For decision trees (and ensembles
like Random Forests), it's typically based on:

& How much each feature decreases impurity
(e.g., Giniindex or entropy) when it’s used to
split the data

ul Intuition

- If a feature is consistently chosen for
important splits (i.e., it helps reduce impurity a
lot), it gets high importance.

- Features that are rarely used or don’t reduce
impurity much get low or zero importance.

It is a ’global’ approach:

provide us with info on the
whole model structure

Default feature importance (scikit-learn)
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RF: feature importance - Derivation

Let’s consider the Gini impurity, and we have a decision tree:
1. Atevery split, the algorithm calculates how much that split reduces impurity:

AGini = Gini(parent) — (nlef L. Gini(left) + Tright Gz’ni(right))
’np np
2. The contribution of a feature is the sum of all impurity decreases where that
feature was used to split:

. Ny O Where:
I'mportance(feature) = Z — AGini . is the number of

nodes using feature
. , samples at the parent
3. InaRandom Forest, we average this importance over all the treesinthe ' 54e

forest. nror is the total
4. (Optional) the img Raw Importance number of samples
Normalized Importance =

> Raw Importances



On the wine dataset

Feature Importances from Random Forest (Wine Dataset)

color_intensity
proline
flavanoids
0d280/0d315_of diluted_wines
alcohol

hue
total_phenols
alcalinity_of ash
malic_acid
proanthocyanins
magnesium

ash

nonflavanoid_phenols

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Importance



Feature statistics, Model specific - Tree-
based methods (Optional)

Even though RF consists of a collection of Decision Trees (which are
recognized as interpretable models), its interpretation isn’t as trivial as it

may seem

The most widely used feature importance measure in this context is again
the Mean Decrease Impurity (MDI): think about averaging MDI of the

individual Decision Trees
REMARK A\ ]

Problem: MDI measure suffers from so-called
“feature selection bias’, i.e. it may erroneously
assign high MDI values to features that are not
highly correlated to the output




Feature statistics, Model specific - Tree-
based methods (Optlonal)

I’e'

M3 Solution: “A Debiased MDI Feature Importance

ReMARK g\ Bists of a collection of Decision Trees (which are

t as trivial as it

Measure for Random Forests”, by Li et al.

Th

Jjcontext is again

the Mean Decrease Impurity (MDI): think about averaging MDI of the

individual Decision Trees

REMARK A\ ]

\,
(

Problem: MDI measure suffers from so-called

“feature selection bias’, i.e. it may erroneously
assign high MDI values to features that are not
highly correlated to the output



https://arxiv.org/pdf/1906.10845.pdf
https://arxiv.org/pdf/1906.10845.pdf

Feature statistics, Model specific - Tree-
based methods (Optional)

So, we have a robust model-specific method to compute feature
importance for RF... are we done?

Not really... in several applications we may need to detect high-order
interactions between features!



Feature statistics, Model specific - Tree-
based methods (Optional)

So, we have a robust model-specific method to compute feature
importance for RF... are we done”?

Not really... in several applications we may need to detect high-order
interactions between features!

REMARK A\ ]
Solution: “/terative Random Forests to discover
predictive and stable high-order interactions”, by
Basu et al. (THIS IS A ‘NEW’ INTERPRETABLE-
ORIENTED MODEL)



https://arxiv.org/pdf/1706.08457.pdf
https://arxiv.org/pdf/1706.08457.pdf
https://arxiv.org/pdf/1706.08457.pdf
https://arxiv.org/pdf/1706.08457.pdf

Feature statistics, Model specific - Tree-
based methods (Optional)

For other ensemble tree-based methods, similar approaches can be used.

The are other approaches, for example:

Boruta implements a different feature selection algorithm. It randomly
permutes variables like Permutation Importance (next slides) does, but
performs on all variables at the same time and concatenates the shuffled
features with the original ones. The concatenated result is used to fit the

model.

Miron B. Kursa, Witold R. Rudnicki (2010). Feature Selection with the Boruta Package.

Journal of Statistical Software, 36(11) , p. 1-13.



https://www.jstatsoft.org/article/view/v036i11
https://www.jstatsoft.org/article/view/v036i11

Taxonomy: model-agnostic vs model-
specific

4 . )
Portability of the
interpretability

algorithm?
In principle, it can It is tailored for a
be applied to all ML specific ML model
I
% models y % Y

MODEL-AGNOSTIC MODEL-SPECIFIC



Feature statistics, Model-agnostic -
Permutation Importance

Permutation Importance

Idea: evaluate performance degradation after all values of a specific feature
have been shuffled (over all data points)

e post-hoc or intrinsic?
e model-agnostic or model-specific?
e global orlocal?

This method outputs so-called “feature importance” for each feature: a scalar
number, the greater the value the more important the corresponding feature



Feature statistics, Model-agnostic -
Permutation Importance

Permutation Importance

Idea: evaluate performance degradation after all values of a specific feature
have been shuffled (over all data points)

e post-hoc
e model-agnostic (even though it was initially introduced for Random Forests)

e global

This method outputs so-called “feature importance” for each feature: a scalar
number, the greater the value the more important the corresponding feature



Feature statistics, Model-agnostic -
Permutation Importance

Permutation Importance

Procedure

1. Train a model and get predictions
(“original predictions”)

X1 | X2 | ground original pred with pred with
truth pred shuffled x; | shuffled x,

34 |75 0 1

2.7 | 7.7 1 1

35 | 6.9 1 1

15 | 6.3 0 0

1.8

6.4




Feature statistics, Model-agnostic -
Permutation Importance

Permutation Importance

Procedure

1. Train a model and get predictions
(“original predictions”)

2. evaluate performance (e.g.
classification accuracy)

X1 | X2 | ground original pred with pred with
truth pred shuffled x; | shuffled x,
34 |75 0 1
2.7 | 7.7 1 1
35 | 6.9 1 1
15 | 6.3 0 0
1.8 | 6.4 1 1
ERROR: 20%




Feature statistics, Model-agnostic -
Permutation Importance

Permutation Importance

Procedure

1. Train a model and get predictions
(“original predictions”)

2. evaluate performance (e.g.
classification accuracy)

3. select a specific feature and...

X7 | X2 | ground original pred with pred with
truth pred shuffled x; | shuffled x,
3.4 |75 0 1
2.7 | 7.7 1 1
3.5 | 6.9 1 1
15 | 6.3 0 0
18 | 6.4 1 1
ERROR: 20%




Feature statistics, Model-agnostic -
Permutation Importance

Permutation Importance

Procedure

1. Train a model and get predictions
(“original predictions”)

2. evaluate performance (e.g.
classification accuracy)

3. select a specific feature and... shuffle
the values over all data points

X7 | X2 | ground original pred with pred with
truth pred shuffled x; | shuffled x,
27 |75 0 1
34 |77 1 1
15 | 6.9 1 1
1.8 | 6.3 0 0
35 |64 1 1
ERROR: 20%




Feature statistics, Model-agnostic -
Permutation Importance

Permutation Importance

Procedure

1. Train a model and get predictions
(“original predictions”)

2. evaluate performance (e.g.
classification accuracy)

3. select a specific feature and... shuffle
the values over all data points

4. get predictions for these new
(artificially created) data points and
evaluate performance

X7 | X2 | ground original pred with pred with
truth pred shuffled x; | shuffled x,
27 |75 0 1 1
34 |77 1 1 1
15 | 6.9 1 1 0
1.8 | 6.3 0 0 0
35 |64 1 1 1
ERROR: 20% 40%




Feature statistics, Model-agnostic -
Permutation Importance

Permutation Importance

Procedure

1. Train a model and get predictions
(“original predictions”)

2. evaluate performance (e.g.
classification accuracy)

3. select a specific feature and... shuffle
the values over all data points

4. get predictions for these new
(artificially created) data points and
evaluate performance

Repeat points 3 and 4 for all features

X1 | X2 | ground original pred with | pred with
truth pred shuffled x; | shuffled x,

3.4 | 6.9 0 1 1 1

27 |6.3 1 1 1 0

35 |75 1 1 0 1

15 | 6.4 0 0 0 1

1.8 | 7.7 1 1 1 0

ERROR: 20% 40% 80%




Feature statistics, Model-agnostic -
Permutation Importance

Permutation Importance

Evaluation

Notice that when we shuffled
feature x,, the performance got
significantly worse (80% error) than
when we shuffled feature x,(40%
error)

—— X,is more important than x,

ground original pred with pred with
truth pred shuffled x4 | shuffled x,
0 1 1 1
1 1 1 0
1 1 0 1
0 0 0 1
1 1 1 0
ERROR: 20% 40% 80%




Feature statistics, Model-agnostic -
Permutation Importance

Permutation Importance

Note that by shuffling the values assumed by a specific feature, we break
the underlying relation between that feature and the true output

— if suchrelationis strong (i.e. if that feature is actually
important to predict the output), the shuffling will dramatically decrease
the performance



Feature statistics, Model-agnostic -
Permutation Importance

Disadvantages:

e since we needto repeat the procedure for all the features, it may be
computationally costly with high-dimensional data (i.e. high number of
features); and since shuffling is random, we may even want to do it
multiple times, making the procedure even more costly

e we shuffle one feature at a time, so we are not taking into
consideration the correlations between features; this may lead to new
(artificially created) data points which are improbable in practice



Feature statistics, Model-agnostic -
Permutation Importance

Disadvantages:

e since we needto repeat the procedure for all the features, it may be
computationally costly with high-dimensional data (i.e. high number of
features); and since shuffling is random, we may even want to do it
multiple times, making the procedure even more costly

e we shuffle one feature at a time, so we are not taking into
consideration the correlations between features; this may lead to new
(artificially created) data points which are improbable in practice

Let’s see it with a practical

example...




Feature statistics, Model-agnostic -
Permutation Importance

Example (I will not be ‘ethical’ or “fair’ in the following...)

We trained a ML model to predict the probability of a heart attack based
on the following features:

favourite football team

emotional state

weight

systolic blood pressure

diastolic blood pressure



Feature statistics, Model-agnostic -
Permutation Importance

Example (I will not be ‘ethical’ or “fair’ in the following...)

We trained a ML model to predict the probability of a heart attack based
on the following features:

e favourite football team

e emotional state . \

e weight :

e systolic blood pressure lVVe aptply Perm;’gat]lont

e diastolic blood pressure mpaortance on the Teature
“favourite football team?”...




Feature statistics, Model-agnostic -
Permutatlon Importance

FAVOURITE EMOTIONAL WEIGHT SYSTOLIC DIASTOLIC P(HEART ATTACK)
TEAM STATE BLOOD BLOOD
PRESSURE PRESSURE

Gian s Neutral 75 17 78 0.35
Antonio JJ

Mattia Excited 70 130 83 0.23

Marco Sad 92 105 72 0.70
AN

Felice Very happy 67 112 80 0.63




Feature statistics, Model-agnostic -
Permutatlon Importance

FAVOURITE EMOTIONAL WEIGHT SYSTOLIC DIASTOLIC P(HEART ATTACK)
TEAM STATE BLOOD BLOOD
PRESSURE PRESSURE
Gian —r Neutral 75 17 78 0.35
Antonio
Mattia Excited 83 0.23
Marco 72 0.70
Felice Very happy 80 0.63




Feature statistics, Model-agnostic -
Permutatlon Importance

FAVOURITE EMOTIONAL WEIGHT SYSTOLIC DIASTOLIC P(HEART ATTACK)
TEAM STATE BLOOD BLOOD
PRESSURE PRESSURE

A(‘?clan' ﬂiﬁ Neutral 75 17 78 0.35

ntonio

Mattia JUVENTUS Excited 70 130 83 0.23

Marco Sad 92 105 72 0.70

Felice Very happy 67 112 80 0.63




Feature statistics, Model-agnostic -
Permutatlon Importance

FAVOURITE EMOTIONAL WEIGHT SYSTOLIC DIASTOLIC P(HEART ATTACK)
TEAM STATE BLOOD BLOOD
PRESSURE PRESSURE
Neutral 70 117 78 0.35
Mattia ﬁj Excited 75 130 83 0.23
Marco Sad 92 105 72 0.70
Felice Very happy 67 112 80 0.63




Feature statistics, Model-agnostic -
Permutatlon Importance

FAVOURITE EMOTIONAL WEIGHT SYSTOLIC DIASTOLIC P(HEART ATTACK)
TEAM STATE BLOOD BLOOD
PRESSURE PRESSURE
Neutral 70 117 78 0.35
Mattia ﬁﬁ Excited 75 0.23
Marco Sad 92 0.70
Felice @ Very happy 67 0.63




Types of interpretations so far...

workingdayWORKING DAY 4

windspeed 4

weathersitRAIN/SNOW/STORM A

weathersitMISTY

temp

seasonWINTER 4

seasonSUMMER 4

seasonFALL 4

hum 4

holidayHOLIDAY

days_since_2011 4

-2000

-1000

Weight estimate

1000

days_since_2011 4

temp 4

season 4

windspeed 4

hum 4

20

40
importance

60

80

ground original pred with pred with
truth pred shuffled x_ shuffled x,

0 1 1 1

1 1 1 0

1 1 0 1

0 0 0 1

1 1 1 0

ERROR: 20% 40% 80%




LEINRVAEVE V£ )dle]al, Model-agnostic

- PDPs

Partial Dependence Plots

Idea: show the marginal effect a feature (or pair of features) has on the
prediction

e post-hoc
e model-agnostic
e global

As the name suggests, this method outputs a plot: a curve in the case of a
single feature or a surface in the case of a pair of features (usually
displayed as a heat map)



Feature Visualization, Model-agnostic -
PDPs

Partial Dependence Plots f o (zs) = By, {f(:vs,wc /f zg,zc)dP(z¢)

partial selected feature(s) other
function feature(s)

The partial function is a function of the feature(s) we are interested in for
the analysis (“selected feature(s)’)



Feature Visualization, Model-agnostic -

PDPs

Partial Dependence Plots

0.4 4

o
w

Example (single feature)
(from Molnar)

Prediction (“cancer probability’) as
a function of the selected feature

(ccAge»)

Predicted cancer probability
o

%

0.0+



https://christophm.github.io/interpretable-ml-book/pdp.html

Feature Visualization, Model-agnostic
- PDPs

Partial Dependence Plots

.y.hat
0.16

Example (pair of features)
(from Molnar)

0.12

0.08

Num.of.pregnancies

Prediction (“cancer probability’) as
a function of the selected features
(“Age” and “Number of
pregnancies’)

0.04



https://christophm.github.io/interpretable-ml-book/pdp.html

Feature Visualization, Model-agnostic
- PDPs

Partial Dependence Plots
Disadvantages:

e assumption of independent features, as in Permutation Importance
(strong assumption!)

e Partial Dependence Plots show only average effects



Feature Visualization, Model-agnostic -
PDPs (Optional)

Partial Dependence Plots

REMARK A\ ]

r Variant; Accumulated

, . Local Effects (ALE)
Disadvantages: /  plots

e assumption of independent features, as in Permutation Importance
(strong assumption!)

e Partial Dependence Plots show only average effects


https://arxiv.org/pdf/1612.08468.pdf
https://arxiv.org/pdf/1612.08468.pdf
https://arxiv.org/pdf/1612.08468.pdf

Feature Visualization, Model-agnostic -
PDPs (Optional)

Partial Dependence Plots

REMARK A\ ]

r Variant; Accumulated

, . Local Effects (ALE)
Disadvantages: /  plots

e assumption of independent features, as in Permutation Importance
(strong assumption!)

e Partial Dependence Plots show only average eff4 REMARK A\ ]

\ Variant: Individual
Conditional

Expectation (ICE) plots |



https://arxiv.org/pdf/1612.08468.pdf
https://arxiv.org/pdf/1612.08468.pdf
https://arxiv.org/pdf/1612.08468.pdf
https://arxiv.org/pdf/1309.6392.pdf
https://arxiv.org/pdf/1309.6392.pdf
https://arxiv.org/pdf/1309.6392.pdf

Local, Model-agnostic — LIME

Local Surrogate Models: LIME (Local Interpretable Model-
agnostic Explanations)

Idea: train a local interpretable surrogate model to explain _
individual predictions Only for theoretic
part of the exam!

e post-hoc
e model-agnostic
e |ocal

Let’s assume we have a black-box model (e.g. a Deep Neural
Network) and a new (single) data point x

GOAL: get the corresponding prediction y,.q and an explanation



https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf

Local, Model-agnostic - LIME

Local Surrogate Models: LIME N B

The prediction y,..4 can be obtained, as usual, by feeding the black-box
model with the input x and looking at his output

The explanation can be obtained through the LIME method, which is based
on a local approximation of the black-box model by means of a simpler,
interpretable model (so-called “/ocal surrogate mode’’)


https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf

Local, Model-agnostic - LIME

Local Surrogate Models: LIME y

LIME procedure:

1. obtain new artificial data points xa, x®, ... by applying small
perturbations to x

2. get the corresponding predictions y2,eq , YPpred, - made
by the black-box model

3. train aninterpretable model (say, a Decision Tree) in ee®e
supervised settings on pairs (X, Y25red ), (X, YPpred ), - (in
other words, we are asking the interpretable model to
learn the predictions made by the black-box model);
each artificial point is weighted according to its proximity e ,
to the original point e = artificial points

4. exploit the interpretable nature of the local surrogate
model (the Decision Tree, in this example) to see “what e = original point
happens” in a neighborhood of the original point x

v



https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf

Local, Model-agnostic - LIME

Local Surrogate Models: LIME y

LIMElorocedl[ REMARK A\ ]

1. obtain ne )
oerturbat] Challenge: how to properly define the

2. getthecqd  nejghborhood

by the bla -
3. train aninterpretable model (say, a Decision Tree) in ee®e
supervised settings on pairs (X2, y25req ), (X2, YPpred ), - (in e
other words, we are asking the interpretable model to >
learn the predictions made by the black-box model);
each artificial point is weighted according to its proximity . ,
to the original point e = artificial points
4. exploit the interpretable nature of the local surrogate o .
model (the Decision Tree, in this example) to see “what e = original point

happens” in a neighborhood of the original point x


https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf

Local, Model-agnostic - LIME

Local Surrogate Models: LIME y

LIMElorocedl[ REMARK A\ ]

1. obtain ne )
oerturbat] Challenge: how to properly define the

2. getthecqd  nejghborhood

by the bla -~
3. trainan mterpretable model (say, a Decision Tree) in ee®e
supery Y% pred) (X®, Yy pred) (in ®e°
other REMARK A mterpretable model to >
learnt S =1 \
each

tothe| Problem (Optional): Alvarez-Melis et al. have shown

4. reri(g('j%'l‘ that LIME explanations are not always stable (very

happe| Close points may have very different explanations)

\ J



https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf
https://arxiv.org/pdf/1806.08049.pdf

SHAP (Optional)

SHapley Additive exPlanations

Model-agnostic
Post-hoc

Based on the concept of Shapley value from cooperative game theory

Can be used at both global and local scale

IDEA: the prediction produced by a ML model can be explained by treating it as the
"payout" that has to be distributed across the features, which act as "players" in a
coalition

Lundberg, S., & Lee, S. . (2017). A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874.



Our contribution: AcME (Optional)

Accelerated Model Explanations (AcME)

Loosely inspired by SHAP (but does not
compute Shapley values!)

Focused on the minimization of the
computational cost

Simplified visualization (human-
centered approach)

Tested on tabular data (for now)
https://www.sciencedirect.com/scienc

e/article/abs/pii/S0957417422021339

AcME Global Importance : regre!

ssion

AMCO

ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

24 :,_"--;‘,;;_1_1}”“;,-”;&“ :
comseme smamqsooen 500 svsesce oo smoe s quantle o mespiiindn e .
.......——:............. .o n,rﬁ.’?'#ﬁa‘#a‘ s
oo » ”-.-1-...-. omee o ‘*
-
: +
i {
&
! |
i |
standardizi eeeeee
(a) ACME (b) KernelSHAP
Number of samples | Elapsed Time (in seconds)
AcME complete 0.36
KernelSHAP | 5 357.23
KernelSHAP 10 425.61
KernelSHAP | 20 875.85
KernelSHAP | 100 1855.65

Table 2: [Boston Housing Dataset| Elapsed time for SHAP with different dataset sampled.



Model-specific methods for
DNNSs

Deep Neural Networks (DNNs) are arguably the hardest ML models to be interpreted
by human beings

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

_n —.

SRS, 5N 5;2»:"* output layer

= DX Kok ‘ = X ‘-.,: z
7 SR S 2 s
A = Sy N — N
e SRR OERRe
z SR SMERSCS
3 5 - Za i o Za
- 2 ; # ‘ﬂ- ’/
LA —
2o T 3
N\ N\~
-;'_:;—--— / '_?:_ ~ '\ \f" T <

U Y

Despite their amazing performance on a wide variety of applications (e.g. Computer
Vision, Natural Language Processing, ...), interpretation of DNNs and produced
outputs is still an open research problem

In this lecture we just give a brief overview of the research works in this field and refer the curious readers to the
work of Gilpin et al. for further details and analyses



https://arxiv.org/pdf/1806.00069.pdf

Model-specific methods for
DNNSs

As described in Gilpin et al., interpretability methods for DNNs can be
roughly divided into three main categories:

e methods focused on the explanation of the processing of the data by a
DNNs

e methods focused on the explanation of the representations generated
within the DNNs

e methods focused on the design of architectures that facilitate
interpretations of the network’s behavior



https://arxiv.org/pdf/1806.00069.pdf

Model-specific methods for

DNNs

Explanation of the processing

Saliency maps:

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

African elephant, Loxodonta africana

06

0.5

04



Model-specific methods for
DNNs (Optional)

Explanation of the processing

Some examples:

e surrogate models specifically tailored for DNNs (such as

DeepRED, ANN-DT)
e saliency mapping (such as DeepLIFT, Grad-CAM)

From “Grad-CAM: Visuval Explanations
from Deep Networks via Gradient-

Kl .
:ﬁ |

(a) Original Image (f) ResNet Grad-CAM *Cat’ (DResNet Grad-CAM ‘Dog”  pased L ocalization”, Selvaraju et al.



https://kizi.vse.cz/wp-content/uploads/seminar/866/Loza_IW19Prague.pdf
https://ieeexplore.ieee.org/document/809084
https://arxiv.org/pdf/1704.02685.pdf
https://arxiv.org/pdf/1610.02391.pdf
https://arxiv.org/pdf/1610.02391.pdf
https://arxiv.org/pdf/1610.02391.pdf
https://arxiv.org/pdf/1610.02391.pdf

Model-specific methods for
DNNs (Optional)

Explanation of the representations

Some examples:
hidden layer 1 hidden layer 2 hidden layer 3

e role of layers - example Razavian et al. input layer !

e role of individual units, both units or filters — N AN
(like in CNN) - example Network ST ey
dissection) e et

e role of other representation vectors - s
example Concept Activation Vectors - A /»u

output layer

1



https://ieeexplore.ieee.org/abstract/document/6910029
https://arxiv.org/pdf/1704.05796.pdf
https://arxiv.org/pdf/1704.05796.pdf
https://arxiv.org/pdf/1711.11279.pdf

Model-specific methods for
DNNs (Optional)

Explanation-producing systems

Some examples:

e attention networks (such as
Xiao et al.)
e Self-Explaining Neural

concept encoder h( <Lwy, ) .

, \ , ot o , *am
relevance parametnizer §( - ; wy) W aggregator g( - ; W)
A
)
:

Networks (Alvarez-Melis et al.) TS -% @R ee cxplaion
-~ @b @b
-7 {(h@)i b))},

From “ Towards Robust Interpretability
with Self-Explaining Neural Networks”,
Alvarez-Melis et al.



https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Xiao_The_Application_of_2015_CVPR_paper.pdf
https://arxiv.org/pdf/1806.07538.pdf
https://arxiv.org/pdf/1806.07538.pdf
https://arxiv.org/pdf/1806.07538.pdf
https://arxiv.org/pdf/1806.07538.pdf

Evaluation of model
interpretability

Just like the assessment of a ML model performance, the evaluation of

interpretability is among the most delicate procedures in the overall
pipeline

[ EVALUATION ]

A

[ PERFORMANCE ] [ INTERPRETABILITY ]
e areperformance YES e assessment of
i t desiderat
;ﬁgﬁ?remen ) < NO — WHY? " meosdeelrje?)uqqinq

e extract new
knowledge



- REMARK: High performances help
Eva | U at 10N Of M Od € | interpretability: if the model is not
. 1 accurate, insights and added
I nte rp reta b I | Ity knowledge may not be accurate as

welll

Just like the assessment of a ML model performance, the evaluation of
interpretability is among the most delicate procedures in the overall
pipeline

[ EVALUATION ]

A

[ PERFORMANCE ] [ INTERPRETABILITY ]
e are performance e assessment of
requirements desiderata
met? e model debugging

e extract new
knowledge



Evaluation of model
interpretability

Evaluation of model performance

Luckily, we can rely on established metrics, which are easy and inexpensive to
compute:

» Classification problems
* Qverall classification accuracy (balanced datasets)
* Per-class classification accuracy (unbalanced datasets)
* Precision, Recall and F1-score (binary classification)

* Regression problems
* Mean Squared Error (MSE)
* Mean Absolute Error (MAE)
* R2score



Evaluation of model
interpretability

Evaluation of model interpretability
No well-established and recognized metrics

First concrete effort to organize ideas about interpretability evaluation
procedures can be found In " Towards a rigorous science of interpretable

machine learning' (Doshi-Velez et al.)

Three levels:

* Application level evaluation
e Human level evaluation
 Functional level evaluation


https://arxiv.org/pdf/1702.08608.pdf
https://arxiv.org/pdf/1702.08608.pdf

Evaluation of model
interpretability

Evaluation of model interpretability — Application level

Real humans: model's interpretability is assessed through experiments
involving domain experts

Real task: model's interpretability is assessed w.r.t. the task the modelis
supposed to solve

Example: ML model trained to detect fractures from X-ray images

(adapted from Molnar)
—— Radiologists are asked to assess the quality of explanations



https://christophm.github.io/interpretable-ml-book/evaluation-of-interpretability.html

Evaluation of model
interpretability
| REMARK A]

\,
( N

Evalua
This is the more direct way to evaluate

interpretability because it reflects exactly

deployment conditions eriments

Real hi
involvil__

Real task: model's interpretability is assessed w.r.t. the task the model is
supposed to solve

J

Example: ML model trained to detect fractures from X-ray images

(adapted from Molnar)
—— Radiologists are asked to assess the quality of explanations



https://christophm.github.io/interpretable-ml-book/evaluation-of-interpretability.html

Evaluation of model
interpretability
| REMARK A]

This is the more direct way to evaluate
interpretability because it reflects exactly
deployment conditions

\,
e

Evalua

rimnents

Real hi
involvil__

Realtd remark A }retability is assessed w.r.t. the task the modelis
sUppoy

J

Problem: it's difficult to recruit radiologists... and
Examyg their expertise may be costly! ges

(adapted from Molnar)
—— Radiologists are asked to assess the quality of explanations



https://christophm.github.io/interpretable-ml-book/evaluation-of-interpretability.html

Evaluation of model
interpretability

Evaluation of model interpretability —- Human level

Real humans: model's interpretability is assessed through experiments
involving non-experts

Simplified task: model's interpretability is assessed w.r.t. a simplified version of
the task the model is supposed to solve

Example: ML model trained to detect fractures from X-ray images

(adapted from Molnar)
—— Non-radiologists are asked to rank different types of explanations



https://christophm.github.io/interpretable-ml-book/evaluation-of-interpretability.html

Evaluation of model
interpretability

REMARK A\ ]
Evalu{~ )
Advantages:
* recruitment process is way easier
Realhl . experiments are cheaper jents
involv
Simpli —— we can afford a larger number of ed version of
thetal experiments, so that results on the interpretability

evaluation are statistically more significant

J

\,
Example: ML model trained to detect fractures from X-ray imag

(adapted from Molnar)
—  Non-radiologists are asked to rank different types of explanations

es


https://christophm.github.io/interpretable-ml-book/evaluation-of-interpretability.html

Evaluation of model
interpretability

Evaluation of model interpretability — Functional level

No humans: model's interpretability is assessed without involving humans

Proxy task: model's interpretability is assessed by relying on a quantifiable
measure recognized to be related to interpretability (e.g. sparsity, depth
in tree-based models,...)

Example: if a Decision Tree is being used, we assess its interpretability
through the analysis of its depth (shallow trees are more interpretable

than deep ones)




Evaluation of model

interpretability
REMARK A\ ]

Advantage: the evaluation is straightforward

(since it doesn't require human experiments) and .
No hul |ess subjective ing humans

Proxy task TIMOUETS TMETPretaonty 1S assessea oy rerymg oo quantifiable

measure recognized to be related to interpretability (e.g. sparsity, depth
in tree-based models,...)

\,
7

Evalu:

Example: if a Decision Tree is being used, we assess its interpretability
through the analysis of its depth (shallow trees are more interpretable

than deep ones)




Evaluation of model

interpretability
REMARK A\ ]

Advantage: the evaluation is straightforward

(since it doesn't require human experiments) and .
No hul |ess subjective ing humans

Proxy task TIMOUETS TMETPretaonty 1S assessea oy rerymg oo quantifiable

measure recopd ed to interpretability (e.g. sparsity, depth
in tree-based| REMARK A
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\,
7

Evalu:

. Challenge: which proxies to use! Not all ML
Example:ifall models offer useful quantities for the purpose of

through the a| . i :
than deep ond interpretability evaluation )




An example of Proxy Task Choice

Anomaly detection is an
unsupervised task that aims at g@
identifying data points that are

‘different’ from the majority 83 83
£ T %

There are tree-based approaches 83
for anomaly/outlier detection that %

are quite powerful and widely

adopted



An example of Proxy Task Choice

Isolation Forest is based on Isolating an inlier
recursive partitioning



https://ieeexplore.ieee.org/abstract/document/4781136/

An example of Proxy Task Choice

Isolation Forest is based on
recursive partitioning
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https://ieeexplore.ieee.org/abstract/document/4781136/

An example of Proxy Task Choice AMCO

ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

We derived a method to make
Isolation Forest interpretable .

(DIFFI): similarly to MDI in — =My mms  mm G
Random Forest, but based on e == e o=
unsupervised principles

Feature ranking glass dataset class 7 outliers - Local DIFFI

-

e

0.6

DIFFI provides both global and
local feature rankings

Normalized count
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M. Carletti, M. Terzi, G.A. Susto.
Interpretable Anomaly Detection with Tt ond g gtk stk gth mth
DIFFI: Depth-based Feature
Importance for the Isolation Forest
https://arxiv.org/abs/2007.11117
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https://arxiv.org/abs/2007.11117

An example of Proxy Task Choice AMCO

ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

We derived a method to make

Feature ranking glass dataset class 7 outliers - Local DIFFI

|solati ' ~

(DIFFIl How do we evaluate the feature ranking? We D« .
Randd 4ot have a ground truth

unsup( |

0.8

DIFFI provides both global and
local feature rankings

M. Carletti, M. Terzi, G.A. Susto.
Interpretable Anomaly Detection with
DIFFI: Depth-based Feature
Importance for the Isolation Forest
https://arxiv.org/abs/2007.11117
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https://arxiv.org/abs/2007.11117

An example of Proxy Task Choice

Proxy task: feature selection
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Evaluation of model
interpretability

Open research problem: make the three levels of evaluation inform each
other

Questions to be addressed:

« [functional — application] what proxies for what applications?
« [application —— human] which are the factors that should be
considered for the simplified task, in order to maintain the essence of

the original one?
« [human —— functional]which are the important factorsto

consider for proxies, in order to provide good explanations?



Want to try things on your own? Python-
based answer...

- LASSO https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

- MDI for Random Forest https://scikit-
learn.org/stable/auto_examples/ensemble/plot_forest _importances.html

- Permutation Importance https://scikit-
learn.org/stable/modules/permutation_importance.html

- LIME https://qithub.com/marcotcr/lime

- SHAP https://github.com/slundberg/shap

- Available notebook on the class page!

Bonus:

- DIFFI https://github.com/mattiacarletti/DIFF]
- ACME https://github.com/dandolodavid/ACME



https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/modules/permutation_importance.html
https://scikit-learn.org/stable/modules/permutation_importance.html
https://github.com/marcotcr/lime
https://github.com/slundberg/shap
https://github.com/mattiacarletti/DIFFI
https://github.com/dandolodavid/ACME
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Thank you!

Gian Antonio Susto




