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Before explainability, let’s talk about
Machine Learning (ML)

DEVELOPERS
- ML used to develop new technologies

USERS (for example in the medical domain)

- ML used for handling multiple information
collected during experiments and for extracting
new knowledge

It doesn’t matter in which team you are in, if you are
dealing with Machine Learning then you probably
should be interested in explainability




Privacy-

Let’s start with:

* Introduction to interpretability Trustabe

 Motivation

« Examples -

° DISCUSSIOH Resp:rllsible rat:::al? }_4 Explii\rlaable . ::Izrh;::ablem
« Key concepts F. Lecue et al. On Explainable Al: From Theory to

Motivation, Industrial Applications and Coding

* Definitions . Practices, AAAI2023
» Desiderata of ML models and relationship https://xaitutorial2023.qithub.io/

with Interpretability

Disclaimer: the terms ‘ML Interpretability’ and ‘ML Explainability’ will be used as synonyms in the
first part of the course, however some researchers will tell you differently... for the meantime let’s
assume they both refer to the same concept
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QUESTION @

>

Which word would you is closely connected to the problem of
explainability?
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QUESTION @

Which word would yc¢ blem of

explainability?
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QUESTION @

Guess who's not affiliated with the "WHY Fan Club"?

Machine Learning "black-box" models!



Introduction

S — (2] —= ¥

DATA BLACK-BOX MODEL OUTPUT

The model provide us outputs, but we have no clue about its inner
workings (think for example about the highly multivariate/non-linear
mechanisms of some ML approaches)

4

The logic governing the model's behavior is not understandable by
humans
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INTERPRETABLE MODEL OUTPUT

The elaborations performed by the model in order to generate the
output aim at being simple enough to be understood by humans
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QUESTION @

So why don't we use only interpretable models?
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QUESTION @

So why don't we use only interpretable models?

—
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s %‘ - — reason...
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SPOILER <&

Models commonly considered as interpretable are
actually not always easy to interpret!
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Deep Neural Networks

-

input layer

hidden layer 1 hidden layer 2 hidden layer 3
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output layer
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Let's assume for a moment that we can choose between a highly
accurate model and a (truly) interpretable model
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Same old story: it depends!
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Let's assume for a moment that we can choose between a highly
accurate model and a (truly) interpretable model

QUESTION @

Which one would you choose?

following a project requirement

e —

Same old story: it depadsl/ to ensure technology acceptance
&/ on the problem formalization
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Let's assume for a moment that we can choose between a highly
accurate model and a (truly) interpretable model

QUESTION @

Which one would you choose?

on the application
Same old story: it depends! to ensure technology acceptance

on the problem formalization
- following a project requirement

S
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We just need predictions!

From the web
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EXAMPLE 1

Stock market forecasting

We just need predictions!
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The more accurate the predictions, the more profit we can make

From the web
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EXAMPLE 1

Stock market forecasting

We just need predictions!

177.72

506856677962863 op

125.91 So%3

24.74 3236 / o e
S 103.95 100.98 103.95 99.99 8481

129.9 134.69 486,24 131.82
83.48

109 99.47 B

135.98 8,019.79,

56.29 92.37 @ 107.21 78.21 5834 197.41 | \69.72/ 410649
a \

v

DN

v
RINR

EMBE
UGUST SEPTENE!
MAY JUN JULY BT 04 30976

ON

The more accurate the predictions, the more profit we can make

From the web

use the most accurate model, even though it is not interpretable!
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EXAMPLE 2 ML for automated medical
diagnosis

From the web
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EXAMPLE 2 ML for automated medical
diagnosis

From the web

Doctors may want to verify whether they can trust or not the model's
predictions, since they have to make hard decisions about other people's
health
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EXAMPLE 2 ML for automated medical
diagnosis

From the web

Doctors may want to verify whether they can trust or not the model's
predictions, since they have to make hard decisions about other people's
health

—} trade some accuracy for higher interpretability
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DISCUSSION | Human surgeon VS robotic surgeon®

*inspired by "The Great Al Debate -NIPS2017" (https://www.youtube.com/watch?v=93Xv8vJ2acl)
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DISCUSSION

Human surgeon VS robotic surgeon®

You have a disease and you need surgery. You can choose between:

 HUMAN SURGEON h
* 10% mortality rate

’
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Sl
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Introduction

DISCUSSION | Human surgeon VS robotic surgeon’

You have a disease and you need surgery. You can choose between:

(HUMANSURGEON ) (ROBOTIC SURGEON )
* 10% mortality rate

e 19 1
* Fully interpretable 1% mortality rate

e Profoun ¢ BlaCk‘bOX
Enowlueéj%e of .
puman body and | » Trained on examples
nCLONINg QAsE: for a single task
L ana experience ) L )

*inspired by "The Great Al Debate -NIPS2017" (https://www.youtube.com/watch?v=93Xv8vJ2acl)
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Introduction

DISCUSSION | Human surgeon VS robotic surgeon®

You have a disease and you need surgery. You can choose between:

QUESTION @

( HUMAN SURGEO .
* 10% mortality ra Which one

* Fully interpreta{@ayVeYSile you piCk?
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puman 2y andd « Trained on examples
nCLONINg QAsE: for a single task
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*inspired by "The Great Al Debate -NIPS2017" (https://www.youtube.com/watch?v=93Xv8vJ2acl)



https://www.youtube.com/watch?v=93Xv8vJ2acI

Introduction

TEAM ROBOT

TEAM HUMAN




Introduction

TEAM ROBOT

annahveandthe
ro OISHKWG

accurate!

TEAM HUMAN




Introduction

TEAM ROBOT TEAM HUMAN

anna live and the
ro ot |s more
accuratel

Was the testing
procedure conducted
properly? Is the test set
representative of the
|-world scenario?




Introduction

TEAM ROBOT TEAM HUMAN

anna live and the
ro ot |s more
accuratel

Was the testing
procedure conducted
properly? Is the test set
representative of the
|-world scenario?

We cannot just
deploy the model
and sée whether

people die or not...




Introduction

TEAM ROBOT TEAM HUMAN

anna live and the
ro ot |s more
accuratel

Was the testing
procedure conducted
properly? Is the test set
representative of the
|-world scenario?

We cannot just
deploy the model
and sée whether

people die or not...

That's exactly how
drugs are tested!



Introduction

TEAM ROBOT TEAM HUMAN

anna live and the
ro ot |s more
accuratel

Was the testing
procedure conducted
properly? Is the test set
representative of the
|-world scenario?

We cannot just
deploy the model
and sée whether

people die or not...

| don't trust that
thing

That's exactly how
drugs are tested!
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TEAM ROBOT TEAM HUMAN
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EXAMPLE 3 Image recognition for self-driving cars

From the web

We want to be 100% sure that our model performs well in every possible real scenario
Consequences of poor performance in real applications may be catastrophic!
PROBLEM: we may not be able to test the model simulating all possible scenarios

Interpretability can help in understanding whether the model has learnt reasonable
representations for the task at hand
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EXAMPLE 3 Image recognition for self-driving cars

From the web

We want to be 100% sure that our model performs well in every possible real scenario

Incompleteness in the problem

Conseqguences of poor performance in rez e .
formalization (evaluation procedure)!

PROBLEM: we may not be able to test the model simulating all possible scenarios

Interpretability can help in understanding whether the model has learnt reasonab
representations for the task at hand
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EXAMPLE 4 | Automatic Risk Modeling in
Insurance

From the web

Insurance companies are using Machine Learning approaches that consider many
factors to perform risk modeling.

Insurance premiums can be based on computed risks and people can be denied an
iInsurance coverage based on such risks.

While companies may only be interested in maximizing their profits, they need to care
about interpretability...
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EXAMPLE 4 | Automatic Risk Modeling in
Insurance

From the web

Insurance companies are using Machine Learning approaches that consider many
factors to perform risk modeling.

Insurance premiums can be based on computed risks and people can be denied an
iInsurance coverage based on such risks.

While companies may only be interested in maximizing their profits, they need to care
about interpretability...

(For example, we found that in Italy car insurance companies are not properly
dealing with fairness issues in insurance costs https://arxiv.org/abs/2105.10174)



https://arxiv.org/abs/2105.10174

Introduction

General Data Protection Regulation (GDPR)

So-called "Right to explanation": in critical applications (like in the medical
and legal domain), any decision involving human beings based on
automated processing should be adequately justified

Art. 22 GDPR
Automated individual decision-

making, including profiling

1. The data subject shall have the right not to be subject to a decision based solely on
automated processing, including profiling, which produces legal effects concerning him or
her or similarly significantly affects him or her.

https://adpr-info.eu/art-22-qgdpr/



https://gdpr-info.eu/art-22-gdpr/

Introduction

Interpretability as a constraint, required
in the development of the ML
technology

General Data Protection Regulation ZGDU

So-called "Right to explanation": in critical applications (like in the medical
and legal domain), any decision involving human beings based on
automated processing should be adequately justified

Art. 22 GDPR
Automated individual decision-

making, including profiling

1. The data subject shall have the right not to be subject to a decision based solely on
automated processing, including profiling, which produces legal effects concerning him or
her or similarly significantly affects him or her.

https://adpr-info.eu/art-22-qgdpr/
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Introduction Interpretability as a constraint, required
in the development of the ML

technology

General Data Protection Regulation ZGDU

So-called "Right to explanation": in critical applications (like in the medical
and legal domain), any decision involving human beings based on
automated processing should be adequately justified

7

At 22 GDPR . Al Act is coming!
Automated individual decision- https://digital-strateqy.ec.europa.eu/en/policies/european-

making, including profiling

approach-artificial-intelligence

1. The data subject shall have the right not to be subject to a decision based solely on
automated processing, including profiling, which produces legal effects concerning him or
her or similarly significantly affects him or her.

https://adpr-info.eu/art-22-qgdpr/



https://gdpr-info.eu/art-22-gdpr/
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
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How does ML and ML interpretability relate to you and your
work?

TEAM DEVELOPERS

ML experts

« Aware of ML limitations and
guarantees

 Desire to get additional information
from the ML model (besides
predictions)
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QUESTION @

How does ML and ML interpretability relate to you and your
work?

TEAM DEVELOPERS TEAM USERS
« ML experts ML end-users
* Aware of ML limitations and » Need to use ML to get better results
guarantees (or reduce the effort)

 Desire to get additional information
from the ML model (besides
predictions)

« Need to soften your colleagues'
skepticism towards opaque ML
systems



Concepts: Definitions

Most of the key concepts in the field of explainable Al have no clear
definition

The name of the research field itself is not unigue and many expressions
are being used interchangeably:

Explainable Al (XAl)

Explainable Machine Learning
Interpretable Machine Learning
Transparent Machine Learning



Concepts: Definitions

Although the problem is not new, only recently some researchers and
scilentists put a big effort in organizing concepts, procedures and
solutions

Throughout this course we mainly rely on the following works:

Lipton, Z. C. (2018). The mythos of model interpretability. Queue, 16(3), 31-57.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv
preprint arXiv:1702.08608.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2018, October). Explaining
explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th International
Conference on data science and advanced analytics (DSAA) (pp. 80-89). IEEE.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of
methods for explaining black box models. ACM computing surveys (CSUR), 51(5), 1-42.

Molnar, C. (2019). Interpretable machine learning. Lulu. com.



Concepts: Definitions

“Interpretability”’ is an ill-defined term, which might be used in the
ML literature to refer to slightly different ideas

Generally speaking, we can define “interpretability” as the

science/art of producing descriptions simple enough to be easily
understood by humans

While representing a concrete attempt to increase trust in black-
box models, it is just the first step towards a more ambitious goal...



Concepts: Definitions

As claimed by Gilpin et al., interpretability might not suffice to
pro(\j/idle a comprehensive solution to the problem of opaque
models

—— we need “explainability”

Explainability = Interpretability AND Completeness

where an explanation is considered as “complete” when it allows
humans to anticipate the model’s prediction



Concepts: Definitions

QUESTION @

Would you prefer an interpretable explanation or a complete
one?




Concepts: Definitions

list(model.parameters())
torch.Size([10, 784]) torch.Size([10])

[Parameter containing:

tensor([[ 4.8673e-03, 2.5654e-02, 1.4312e-02, ..., -1.4949%e-02,

-1.1675e-02, 1.8740e-02],

[ 1.2544e-03, -1.2904e-02, 1.0140e-02, ..., -1.5626e-02,
2.9115e-02, 3.5050e-03],

[-3.0447e-02, 1.6315e-02, -8.7722e-03, ..., -6.3704e-03,

-1.2951e-02, -3.4346e-02],

seosy

[ 2.4438e-02, 2.6935e-02, 4.3357e-03, ..., 1.2128e-03,

-3.4761e-02, 2.4345e-03],

[-3.5191e-03, 3.3461e-02, -9.0063e-03, ..., 2.0578e-02,
1.8074e-02, 2.5010e-03],

[ 3.1909e-02, -6.9384e-03, 1.4326e-03, ..., =-5.1625e-05,

-7.3041e-03, -2.7546e-02]], requires grad=True),

Parameter containing:
tensor([ 0.0299, 0.0349, -0.0304, 0.0285, 0.0297, 0.0052, 0.012
7, 0.0190,

0.0332, -0.0139], requires grad=True) ]



Concepts: Definitions,

Complete explanation of a

e sl very simple Neural Net... Is it
torch.Size([10, 784]) torch.Size([10]) USGfUl?
[Parameter containing: \
tensor([[ 4.8673e-03, 2.5654e-02, 1.4312e-02, ..., -1.4949%e-02,
-1.1675e-02, 1.8740e-02],
[ 1.2544e-03, -1.2904e-02, 1.0140e-02, ..., -1.5626e-02,
2.9115e-02, 3.5050e-03],
[-3.0447e-02, 1.6315e-02, -8.7722e-03, ..., -6.3704e-03,
-1.2951e-02, -3.4346e-02],
——
[ 2.4438e-02, 2.6935e-02, 4.3357e-03, ..., 1.2128e-03,
-3.4761e-02, 2.4345e-03],
[-3.5191e-03, 3.3461le-02, -9.0063e-03, ..., 2.0578e-02,
1.8074e-02, 2.5010e-03],
[ 3.1909e-02, -6.9384e-03, 1.4326e-03, ..., -5.1625e-05,
-7.3041e-03, -2.7546e-02]], requires grad=True),

Parameter containing:
tensor([ 0.0299, 0.0349, -0.0304, 0.0285, 0.0297, 0.0052, 0.012
7, 0.0190,

0.0332, -0.0139], requires grad=True) ]



Concepts: Definitions

As you might imagine, since we cannot have both interpretability
and completeness, we end up with another trade-off!

* Interpretable explanations may be too simple to catch the
whole logic behind the model’s predictions

« Complete explanations may lose communication power due to
their overwhelming level of detail



Concepts

“The need for interpretability stems from an
incompleteness in the problem formalization.”

[ Towards A Rigorous Science of Interpretable Machine Learning,
Finale Doshi-Velez and Been Kim]

ML models are optimized to minimize the error, but in real-world
applications we usually require additional features which cannot be

translated into an optimization problem

Example: how can we force a ML model to be “ethical’? Can we quantify
ethical traits/make such characteristic measurable?




Concepts

Desidered Qualities of Al systems:

 Trust

« Causality

« Transferability

« Informativeness

* Robustness

* Fairness

e ...and many othersl!
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Concepts

QUESTION @

Ok, but... how does interpretability relate to this?

Interpretability is used to verify whether the mentioned desiderata are
met or not!

Of course, it does not provide the solution to the problem, but rather
represents a reasonable tool to flag the existence of incompletenessin
the problem formalization



Concepts

Desidered Qualities of Al systems:

 Trust

« Causality

« Transferability

« Informativeness

* Robustness

* Fairness

e ...and many othersl!



Concepts

Desidered Qualities of Al systems - Trust
Interpretability as a prerequisite for trust (in ML systems)
What is trust?

« [sit guaranteed that the model will perform well when deployed? Will
the model be robust to perturbations (in the data/parameters)?

« |sit a subjective notion (a personal preference for a specific model)?



Concepts

Desidered Qualities of Al systems - Trust (2)

We may also consider how the model behaves compared to
humans

- Does the model fail on the same examples on which also
humans fail?

- Inmany applications, ML-based approaches have to outperform
humans in order to be trusted!

This is a crucial question we need to answer when deciding whether
to maintain or not human supervision
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Desidered Qualities of Al systems:

 Trust

« Causality

« Transferability

« Informativeness

* Robustness

« Fairness

e ...and many othersl!
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Desidered Qualities of Al systems:

 Trust

« Causality

« Transferability

* Informativeness

* Robustness

* Fairness

e ...and many othersl!



Concepts

Desidered Qualities of Al systems — Informativeness

A ML model provides information most commonly through its
outputs

— ] = |N

DATA OUTPUTS

This paradigm is suitable when we are mainly interested in the
outputs



Concepts

Desidered Qualities of Al systems — Informativeness (2)

An alternative way a ML model could provide information is through
the interpretation of its outputs or structure

= SUPERVISED
— — [ iy ] — ‘ﬂ
DATA @ % OUTPUTS

INTERPRETATIONS




Concepts

REMARK A\ ]

Desidered Qualitiesr

An alternative way a

In this context, the formulation as a ML problem
may be just a proxy to gain additional knowledge
about the problem at hand!

the interpretation of its outputs or structure

E — (o) — |¥

DATA

@ % OUTPUTS
@,

INTERPRETATIONS
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Desidered Qualities of Al systems:

 Trust

« Causality

« Transferability

« Informativeness

* Robustness

* Fairness

e ...and many othersl!



Concepts

Desidered Qualities of Al systems — Fairness

We must (not just “should”!) make sure that
predictions made by a ML model do not
discriminate protected groups

Example: if we train a model to predict the risk
of recidivism (Compas i Y
https://www.psychologytoday.com/us/blog/ps SV FOGEGMY  BERNARD PARKER
vched/201801/law-enforcement-ai-is-no-more- AT A “"10
or-less-biased-people), we need to ensure that

the predictions do not rely on the ethnicity



https://www.psychologytoday.com/us/blog/psyched/201801/law-enforcement-ai-is-no-more-or-less-biased-people
https://www.psychologytoday.com/us/blog/psyched/201801/law-enforcement-ai-is-no-more-or-less-biased-people
https://www.psychologytoday.com/us/blog/psyched/201801/law-enforcement-ai-is-no-more-or-less-biased-people

XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches
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F. Lecue et al. On Explainable Al: From Theory to Motivation, Industrial Applications and Coding Practices, AAAI2021



Taxonomy

Interpretability methods can be categorized according to several criteria,
depending on the specific aspect we want to highlight

In other words, each criterion characterize the problem of interpretability
as viewed from a particular angle

In this lecture we focus on 3 dichotomies:

e intrinsic vs post-hoc interpretability
e model-agnostic vs model-specific methods
e global vslocal methods



Taxonomy: intrinsic vs post-

hoc

-

\_

The ML model itself
(interpretable models)

~N

4 )
Who produces

explanations /

interpretation?

J

INTRINSIC
INTERPRETABILITY

-

\_

An algorithm explains a
trained ML model

~N

POST-HOC
INTERPRETABILITY



Taxonomy: model-agnostic vs model-
specific
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Portability of the

interpretability
algorithm?
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\_

In principle, it can
be applied to all ML
models

~N

J

MODEL-AGNOSTIC

-

\_

It is tailored for a
specific ML model

J

MODEL-SPECIFIC



Taxonomy: model-agnostic vs model-
specific

4 )
Portability of the

interpretability
algorithm?

/&

-

\_

o )
In principle, it can

be applied to all ML
models

J

MODEL-AGNOSTIC
+ Portability

-

\_

It is tailored for a
specific ML model

J

MODEL-SPECIFIC
+ Accuracy

+ Easier comparison with different models + Easier/Faster to be computed



Taxonomy: global vs local
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Taxonomy: global vs local

-

\_

Aims at explaining
the ML model as a
whole

~N

J

GLOBAL

Level of the

interpretability

algorithm?

Interesting for example for Knowledge
Extraction (life science team) and for

developers

Which one to choose?

It depends on the application

(and also on the user)

-

\_

N
Aims at explaining

single predictions

J

LOCAL

Interesting for example to users



Output of interpretability
methods

.« e . Factor Typical output

Prellmlnarles Case | Mesh |Element Boundary|ConstitutiveComputationall Computa-
method| type [condition| model cost (s) tional error

1 1 1 1 1 191 167.3

We recall that, in supervised settings with > [ 1 | 2 2 2 193 758.2

tabular data, a data pointis composed of 3 1| 3 3 3 198 27.5

- 2 1 2 3 312 18.8

5 2 2 3 1 241 64.4

e input variables (or features) x;, x,, ..., 6 | 2 | 3 1 2 354 769.1

X,O 7 3 1 3 2 534 755.9

8 3 2 1 3 780 55.2

9 3 3 2 1 674 62.2

e target variable y(what we want to
predict)



Output of interpretability
methods

Interpretability methods’ outputs can be:

e simple feature summary statistics: for each feature, a quantity
representing the corresponding importance is provided; advanced
methods also provide importance for each pair of features to explain
how different features interact with each other

e feature summary visualizations: more complex feature summary
statistics which can be effectively provided in the form of curves/plots

e data points: to explain a single prediction, we can provide the user with
a set of similar data points obtained by slightly changing some features
and whose predictions are significantly dissimilar w.r.t. the point we

want to explain (so-called “counterfactval examples”)
o ..

(adapted from Molnar)


https://christophm.github.io/interpretable-ml-book/taxonomy-of-interpretability-methods.html

Good explanations

Good explanations should be:

e contrastive: instead of answering the question “why class A?”, we
should answer (when possible) “why not class B?”

e short and intuitive: as we have seen in the first lecture, complete
explanations are usually not very useful; a good explanations should
focus on few very important features

e tailored on the audience: explanations for technical audience should
be different from explanations for non-experts

o ..

(adapted from Molnar)


https://christophm.github.io/interpretable-ml-book/explanation.html

Taxonomy: model-agnostic vs model-
specific

4 . )
Portability of the
interpretability

algorithm?
In principle, it can It is tailored for a
be applied to all ML specific ML model
I
% models y % Y

MODEL-AGNOSTIC MODEL-SPECIFIC



Feature statistics, model specific - Linear
Regression

Linear models, while typically not the preferred choice if we are aiming at high
accuracy, are however an obvious choice when it came to interpretability

y=P0o+Pixz1+ ...+ Bpxp, + €

n p . :
B = arg min Z (y(i) — (ﬁo + ZBJ’J{S‘Z)))
j=1

0By £



Feature statistics, model specific - Linear

Regression

Linear models, while typicallyj ' ) E——
accuracy, are however an op WEIGHTS are the simplest
describers of feature importance

6+ Bix1+ ...+ By + €

p | -
,B = arg min Z (y(z) _ (60 i ZB]$§Z)))
.. . =

hing at high
tability




Feature statistics, model specific - Linear

Regression

(Intercept)
seasonSUMMER
seasonFALL
seasonWINTER
holidayHOLIDAY
workingdayWORKING DAY
weathersitMISTY
weathersitRAIN/SNOW/STORM
temp

hum

windspeed

days_since 2011

Weight
2399 .4
899.3
138.2
425.6
-686.1
124.9

-379.4

-1901.5

110.7

-17.4

-42.5

4.9

Let’s consider the example of
prediction of rented bikes given
weather and calendar information.

For each feature the table shows
the estimated weight.


https://christophm.github.io/interpretable-ml-book/limo.html

Feature statistics, model specific - Linear

R °
egression
workingdayWORKING DAY = F—O—i

windspeed + .
weathersitRAIN/SNOW/STORM 4 | P,
weathersitMISTY o —e—i
temp
ssssss WINTER +
sssssss SUMMER 4
sssssss FALL ;
hum o ‘
holidayHOLIDAY + o
days_since_2011 o .

-2000 -1000 ; 1000

Weight estimate

Weights also come with
confidence intervals (in this
case 95%): arange for the
weight estimate that covers
the “true” weight with a
certain confidence.
Confidence interval (Cl): if we
repeated the estimation 100
times with newly sampled
data, the Cl would include the
true weight in 95 out of 100
cases, given that the linear
regression model is the
correct model for the data.



In the context of linear regression: the
LASSO

LASSO (least absolute shrinkage and selection operator) is a popular
approach that by design provide sparsity: ie. some of the weights are
forced to be equal to zero

- This make feature statistics analysis simpler

¢ Underfitting | Overfitting >
L1 penalty / Penalty Term / . BesT§ Fit
Regularisation Term O
1 =

' 1 LU ,

k 5 Irainin E
| ror
RSSpass0(Bi, Bo) = argmin| Z - (Bizi + Bo))* +a ) _ |Bj| ] |
8 =1 ' :

A — A ‘TJ Model “complexity”

Fit training data well (OLS) Keep parameters small


https://web.stanford.edu/~hastie/Papers/ESLII.pdf

In the context of linear regression: the
LASSO

LASSO (least absolute shrinkage and selection operator) is a popular
approach that by design provide sparsity: ie. some of the weights are

forced to be equal to zero

- This make feature statistics analysis simpler
y:50+X$1+...+5paEp+e (

B



https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Weights

Feature statistics, model specific - Linear
Regression

0

-1500

12 12 12 10 8

Log Lambda

A decreased number of variables
‘entering’ the model could lead to
more intuitive interpretations

Nevertheless, the are drawbacks,
for example the so-called ‘grouping
effect’: variables highly correlated
to each other can alternatively
entered in the model, but that do
not means that a variable is not
relevant for solving a task



Since we are talking about linear models...

Model Form Intelligibility | Accuracy
Linear Model y=Po+ P1x1+ ... + BnZn e -
Generalized Linear Model | g(y) = Bo + fiz1 + ... + BnZn +4++ +
Additive Model y= fi(z1) + ... + fn(zn) Gt G
Generalized Additive Model | g(y) = fi(z1) + ... + fn(zn) 4 ++
Full Complexity Model g = JF(®1,0s%5%) ks ot

Lou, Caruana, Gehrke, Hooker, Accurate Intelligeble Models with Pairwise Interactions. KDD2013

Sometimes the trade-off ‘Accuracy vs Interpretability’ is clearly there...




Feature statistics, Model specific - Tree-
based methods

» Decision Trees are ‘classical’ solutions to supervised
tasks

* The classification is done by following a tree-structure:
« each interior node is a input variable (and there are

edges to children for each possible value of that
variable)

« eachleafis aclass

« Advantages
 ‘Easily interpretable’

* They require no data normalization
* The outcome computation is almost immediate



Feature statistics, Model specific - Tree-
based methods

« DTs are constructed with top-
down approaches: at each step
of the algorithm is to choose a
variable that ‘best’ splits the

set of observations (recursive 7~ rootsplit
partitioning) — —
« Many criteria: v v
- entropy and information gain «° ° ° %
- Giniimpurity / Mean 15 child split_/\_ N 2™ child split
Decrease in impurity T\ /TN
- Variance reduction = p— = p—

o o
o




Feature statistics, Model specific - Tree-
based methods

Example: ‘Iris Classification’ dataset, Ronald Fisher il .
(1936) - UCI ML Repository Py S

L = 3 classes problem: classify Setosa, Versicolour
and Virginica iris from data containing sepal and i U . ,
petal width and length —n =150 samples, p = 4 ;';.2'5;::;43:.,., AR g

| B R TP e

variables
'&".'f. TR i :;;.:::
i"'is?‘ .Efgsf:!!p:.. Petal.Length i,i!";' i I

L 2
o wilg o §§" 3-.:..
SRR .__?‘ g Petal. Width

|||||||
1111111




Feature statistics, Model specific - Tree-

based methods
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Feature statistics, Model specific - Tree-

based methods
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Feature statistics, Model specific - Tree-
based methods

 Also in this case we would like
to provide feature statistics
summary: what are the most
important variables?

« Gini Importance or Mean

Decrease in Impurity (MDI) v v )
calculates each feature - - ° ° e ®°.
importance as the sum over 1 child split _/\_ N 2™ child split

the number of splits that (variable Z) N /N (variableY)
include the feature, - p— -~ ——
proportionally to the number .

of samples it splits



Feature statistics, Model specific - Tree-
based methods

days_since_2011

ays_since_2011

b

<434.5 =434.5
temp 4
days_since_2011 o
<1055 =1055 <11.662 =11.662
/ \ / \
n =106 n =329 n=70 n =226 windspeed{ @

8000 — 8000 — 8000 | 8000 —
6000 — 6000 — 6000 — 6000 — md e
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Feature statistics, Model specific - Tree-
based methods

- Decision Trees are high variance models: they are really sensible to small
fluctuations in the training set and they tendto overfit

- The variance can be reduced with Random Forest: one of the most
powerful supervised approach, adopted in several areas

- RF are an ensemble agproacb: it is a set of several DTs, where the
classification is done by a majority vote / regression

- Ensemble tree-based methods (RF, CatBoost, XGBoost) are among the
most accurate ML models

\% Vv

Gadd

L |
Tl 1

I



Feature statistics, Model specific - Tree-
based methods

- Random Forest are generally based on bagging (bootstrap ag?regating%):
the creation of several dataset by uniformly sampling with replacéemen
from the original dataset

DECISION TREE |

DECISION TREE Il

DECISION TREE 11

BAGGING
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Feature statistics, Model specific - Tree-

based methods
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Feature statistics, Model specific - Tree-
based methods

Even though RF consists of a collection of Decision Trees (which are
recognized as interpretable models), its interpretation isn’t as trivial as it

may seem

The most widely used feature importance measure in this context is again
the Mean Decrease Impurity (MDI): think about averaging MDI of the

individual Decision Trees
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Even though RF consists of a collection of Decision Trees (which are
recognized as interpretable models), its interpretation isn’t as trivial as it

may seem

The most widely used feature importance measure in this context is again
the Mean Decrease Impurity (MDI): think about averaging MDI of the

individual Decision Trees
REMARK A\ ]

Problem: MDI measure suffers from so-called
“feature selection bias’, i.e. it may erroneously
assign high MDI values to features that are not
highly correlated to the output




Feature statistics, Model specific - Tree-
based methods

Ev[  Rremark A Bistsofa Collect|on of Decision Trees (which are
req \t as trivial as it

MY Solution: “A Debiased MDI Feature Importance
Measure for Random Forests”, by Li et al.

Th Jcontext is again
the Mean Decrease Impurity (MDI): think about averaging MDI of the
individual Decision Trees

REMARK A\ ]

Problem: MDI measure suffers from so-called
“feature selection bias’, i.e. it may erroneously
assign high MDI values to features that are not
highly correlated to the output



https://arxiv.org/pdf/1906.10845.pdf
https://arxiv.org/pdf/1906.10845.pdf

Feature statistics, Model specific - Tree-
based methods

So, we have a robust model-specific method to compute feature
importance for RF... are we done?

Not really... in several applications we may need to detect high-order
interactions between features!



Feature statistics, Model specific - Tree-
based methods

So, we have a robust model-specific method to compute feature
importance for RF... are we done”?

Not really... in several applications we may need to detect high-order
interactions between features!

REMARK A\ ]
Solution: “/terative Random Forests to discover
predictive and stable high-order interactions”, by
Basu et al. (THIS IS A ‘NEW’ INTERPRETABLE-
ORIENTED MODEL)



https://arxiv.org/pdf/1706.08457.pdf
https://arxiv.org/pdf/1706.08457.pdf
https://arxiv.org/pdf/1706.08457.pdf
https://arxiv.org/pdf/1706.08457.pdf

Feature statistics, Model specific - Tree-
based methods

For other ensemble tree-based methods, similar approaches can be used.

The are other approaches, for example:

Boruta implements a different feature selection algorithm. It randomly
permutes variables like Permutation Importance (next slides) does, but
performs on all variables at the same time and concatenates the shuffled
features with the original ones. The concatenated result is used to fit the

model.

Miron B. Kursa, Witold R. Rudnicki (2010). Feature Selection with the Boruta Package.

Journal of Statistical Software, 36(11) , p. 1-13.



https://www.jstatsoft.org/article/view/v036i11
https://www.jstatsoft.org/article/view/v036i11

Tree-based Approaches for Anomaly

Detection

There are tree-based approaches
for anomaly/outlier detection
that are quite powerful and widely
adopted

Isolation Forest is based on
recursive partitioning

Some fellows developed methods
for providing interpretability
(feature summary, model-
specific) in Isolation Forests
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M. Carletti, M. Terzi, G.A. Susto. Interpretable Anomaly
Detection with DIFFI: Depth-based Feature
Importance for the Isolation Forest

https://arxiv.org/abs/2007.11117



https://ieeexplore.ieee.org/abstract/document/4781136/
https://arxiv.org/abs/2007.11117

Model-specific methods for
DNNSs

Deep Neural Networks (DNNs) are arguably the hardest ML models to be interpreted
by human beings
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Despite their amazing performance on a wide variety of applications (e.g. Computer
Vision, Natural Language Processing, ...), interpretation of DNNs and produced
outputs is still an open research problem

In this lecture we just give a brief overview of the research works in this field and refer the curious readers to the
work of Gilpin et al. for further details and analyses



https://arxiv.org/pdf/1806.00069.pdf

Model-specific methods for
DNNSs

As described in Gilpin et al., interpretability methods for DNNs can be
roughly divided into three main categories:

e methods focused on the explanation of the processing of the data by a
DNNs

e methods focused on the explanation of the representations generated
within the DNNs

e methods focused on the design of architectures that facilitate
interpretations of the network’s behavior



https://arxiv.org/pdf/1806.00069.pdf

Model-specific methods for

DNNs

Explanation of the processing

Saliency maps:

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

African elephant, Loxodonta africana
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Model-specific methods for
DNNs

Explanation of the processing

Some examples:

e surrogate models specifically tailored for DNNs (such as

DeepRED, ANN-DT)
e saliency mapping (such as DeepLIFT, Grad-CAM)

From “Grad-CAM: Visuval Explanations
: from Deep Networks via Gradient-
(a) Original Image (f) ResNet Grad-CAM *Cat’ (DResNet Grad-CAM ‘Dog”  pased L ocalization”, Selvaraju et al.



https://kizi.vse.cz/wp-content/uploads/seminar/866/Loza_IW19Prague.pdf
https://ieeexplore.ieee.org/document/809084
https://arxiv.org/pdf/1704.02685.pdf
https://arxiv.org/pdf/1610.02391.pdf
https://arxiv.org/pdf/1610.02391.pdf
https://arxiv.org/pdf/1610.02391.pdf
https://arxiv.org/pdf/1610.02391.pdf

Model-specific methods for
DNNSs

Explanation of the representations

Some examples:

e role of layers - example Razavian et al. it gy 1 1ove 1 Hidden v 2 ikden lver

e role of individual units, both units or filters N\
(like in CNN) - example Network v 0 oo

output layer

1

dissection) RO e O
e role of other representation vectors - s : =
example Concept Activation Vectors NS 8
=S X ;jj'____:::_? XN ?:.—-.—f —J



https://ieeexplore.ieee.org/abstract/document/6910029
https://arxiv.org/pdf/1704.05796.pdf
https://arxiv.org/pdf/1704.05796.pdf
https://arxiv.org/pdf/1711.11279.pdf

Model-specific methods for
DNNs

Explanation-producing systems

Some examples:

e attention networks (such as
Xiao et al.)

e Self-Explaining Neural b
Networks (Alvarez-Melis et al.) ®® B  cxplanation
b eb

(h(x)i,0(x)i) }

From “ Towards Robust Interpretability
with Self-Explaining Neural Networks”,
Alvarez-Melis et al.



https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Xiao_The_Application_of_2015_CVPR_paper.pdf
https://arxiv.org/pdf/1806.07538.pdf
https://arxiv.org/pdf/1806.07538.pdf
https://arxiv.org/pdf/1806.07538.pdf
https://arxiv.org/pdf/1806.07538.pdf
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Thank you!

Gian Antonio Susto




