Dehumidification in residential buildings

Michele De Carli Angelo Zarrella

Department of Industrial Engineering

Introduction (1/2)

Developments in the field of air conditioning with radiant systems are also stimulating interest in issues related to air treatment.

In particular, with radiant systems, humidity control in summer operation is of fundamental importance.

The problem of high specific humidity occurs only in the summer season because in winter, even in conditions of high external relative humidity, the specific humidity is low.

Introduction (2/2)

In summer it often happens that: external specific humidity > $12 g_v/kg_{as}$ = limit value according to UNI EN 16798.

In addition, internal vapour generation further contributes to increasing the specific humidity level in the indoor environment.

A radiant system <u>cannot</u> provide latent power. In this case all of the latent power required by the environment must be provided by air handling.

Dehumidification systems for radiant systems

Isothermal Dehumidifier

Isothermal dehumidifier: characteristics

- Refrigeration fluid: R134a or R407C
- Condenser and evaporator: made of copper tubes and aluminum fins.
- The hermetic reciprocating type compressor with motor cooled by the suction gas.
- Centrifugal type, double inlet forward-bladed, multi-speed (the most common solution is three-speed) directly coupled supply fan.

Dehumidification systems for radiant systems

t _{supply} < t _{ambient}

- 2 Pre-cooling coil
- 3 Evaporator
- 4 Compressor
- 5 Air Condenser
- 7 Fan
- 8 Filter
- 9 Throttling valve
- 10 Water Condenser

Isothermal dehumidifiers: control and protection devices

All isothermal dehumidifiers have the following control and protection devices:

Defrost thermostat, which provides the need to perform the defrost cycle and determines its duration.

Limit probe, which occurs when the temperature limits of the water entering the pre- and post-cooling coils are exceeded.

In deu-air conditioner, there is also a high-pressure switch, which blocks the operation of the unit if the preset limits are exceeded.

Other systems for radiant systems

Fan – coil

and

Controlled Mechanical Ventilation (CMV)

Fan-coil

An alternative to the use of dehumidifiers in rooms with radiant systems are fan-coils.

These are given the task of taking charge of the latent power in summer operation, possibly providing sensible power.

Fan-coils are usually sized with an inlet water temperature of 7°C, necessary to ensure a good dehumidification capacity. In this case, the water feeding the fan-coils is not the same as the water circulating in the radiant system.

The fan-coils can eventually work also in winter as a support to the radiant system.

Potential undercooling in case of humid days with low solar radiation

Fan-coil

Controlled mechanical ventilation

CMV with double flow

Extraction \rightarrow bathrooms and kitchen

Supply \rightarrow other rooms

UNI EN 16798

Category	Thermal state of the body as a whole		
	Predicted Percentage of Dissatisfied PPD %	Predicted Mean Vote PMV	
I	< 6	-0,2 < PMV < + 0,2	
п	< 10	-0,5 < PMV < + 0,5	
III	< 15	-0,7 < PMV < + 0,7	
IV	< 25	-1,0 < PMV < + 1,0	

Thermal comfort

Table B.2 — Default design values of the indoor operative temperature in winter and summer for buildings with mechanical cooling systems (for more examples see FprCEN/TR 16798-2 [7])

Type of building/ space	Category	Operative temperature °C		
		Minimum for heating (winter season), approximately 1,0 clo	Maximum for cooling (summer season), approximately 0,5 clo	
Residential buildings, living spaces (bed room's, living rooms, kitchens, etc.) Sedentary activity ~1,2 met	I	21,0	25,5	
	п	20,0	26,0	
	III	18,0	27,0	
	IV	16,0	28,0	
Residential buildings, other spaces (utility rooms, storages, etc.) Standing-walking activity ~1,5 met	I	18,0		
	п	16,0		
	ш	14,0		
Offices and spaces with similar	I	21,0	25,5	
activity (single offices, open plan offices, conference rooms,	П	20,0	26,0	
auditorium, cafeteria, restaurants,	ш	19,0	27,0	
class rooms, Sedentary activity ~1,2 met	IV	18,0	28,0	

NOTE A 50% relative humidity level and low air velocity level (<0,1 m/s) is assumed.

Table B.2 presents design values for the indoor operative temperature in buildings that have active heating systems in operation during winter season and active cooling systems during summer season.

Assumed clothing thermal insulation level for winter and summer (clo-value) and activity level (metvalue) are listed in Table B.2. Note that the operative temperature limits shall be adjusted when clothing levels and/or activity levels are different from the values mentioned in the table.

Case Study

Apartment of 60 m²

Opaque external wall: U_T = 0.25 W/(m²K)

Windows: U_w = 1.5 W/(m²K)

Case Study

Floor radiant systems

Floor covering: > livingroom, bathroom, corridor → TILE (ceramic) > bedrooms → PARQUET (wood)

Computer simulation

DigiThon (3/3)

23

Analysis

Table 3 – List of the case studies analyzed.			
	External fresh air		
	flow rate		
		vol/h	
Case 1 (RF) Badiant floar AND Natural vantilation		0.6	
		1	
Case 2 (RF – ID)	Radiant floor AND Isothermal	0.6	
	dehumidifier		
Case 3 (RF – DC)	Radiant floor AND Dehu-conditioner	0.6	
Case 4 (RF – FC)	Radiant floor AND Fan coil	0.6	
	Padiant floor AND Machanical vontilation	0.6	
Case J(RF - WV)		1	

Analysis

Boundary conditions

- Given the type of building, some walls have been considered adiabatic since they divide rooms with the same internal conditions (floor and ceiling, because it is an inter-floor apartment, and the two walls of internal type that are along the perimeter of the apartment).
- The internal loads were considered variable during the hours of the day according to the different activities that can be carried out in each room. It is assumed that the apartment is occupied by three persons, who contribute to both sensible and latent internal loads.

Heat gain profiles

27

Possible latent loads

DAILY HUMIDITY FOR DOMESTIC ACTIVITIES				
Number of	Humidity expressed in kg/day			
people	Low moisture	Average	High moisture	
	emission	moisture	production	
		emission		
1	3,5	6	9	
2	4	8	11	
3	4	9	12	
4	5	10	14	
5	6	11	15	
6	7	12	16	

Latent load profiles

29

Loads

	WINTER	SUMMER	
	Energy need	Cooling load	
VENICE DD = 2345 (climate zone E)	2275 kWh (39 kWh/m²)	1925 W (33 W/m²)	
ROME DD = 1415 (climate zone D)	937 kWh (17 kWh/m²)	2183 W (37 W/m²)	
BARI DD = 1185 (climate zone C)	658 kWh (11 kWh/m²)	2059 W (35 W/m²)	

Results

Without dehumidification Reference climate: Venice

Without dehumidification Reference climate: Venice

Without dehumidification Reference climate: Venice

- High specific humidity > 12 $g_v/kg_{a.s.}$
- High relative humidity
- ✤ Air temperature not constant at set-point value

→ Dehumidification is required!

Radiant floor only with air infiltration rate equal to 1 vol/h: time percentage of PMV index and specific humidity ranges in living room.

Radiant floor with isothermal dehumidifier: time percentage of PMV index and specific humidity ranges in living room.

Radiant floor with dehu-conditioner: time percentage of PMV index and specific humidity ranges in living room.

Radiant floor with fan coil: time percentage of PMV index and specific humidity ranges in living room.

Radiant floor with mechanical ventilation system (0.6 vol/h): time percentage of PMV index and specific humidity ranges in living room.

Radiant floor with mechanical ventilation system (1 vol/h): time percentage of PMV index and specific humidity ranges in living room.

Radiant system and isothermal dehumidifier

Radiant system and deu-air conditioner

Radiant systems and controlled mechanical ventilation

Specific yearly primary energy use per unit floor area

Table 4 – Mean seasonal COP during the cooling period.			
	Venice	Rome	Bari
Reversible heat pump for radiant panels	3.86	3.85	3.84
Isothermal dehumidifier	3.31	3.31	3.27
Dehu-conditioner	3.38	3.36	3.32
Chiller for fan coil	4.07	4.05	3.93
Chiller for mechanical ventilation system (0.6 vol/h and 1 vol/h)	3.99	3.98	3.86

42

Conclusions

- In summer, with radiant cooling, air dehumidification system is needed.
- Dehumidifiers: good dehumidification but higher consumption.
- > Fan-coil: good dehumidification and low consumption.
- CMV: excellent dehumidification (with the same flow rate), low consumption and controlled air changes.

UNIZEB

MCV with chiller on board. The chiller condenses on a parallel circuit starting from the manifold

MCV + dehumidification technologies

EOS

By Aertesi company

By Aertesi company

Full air systems

61

By Nilan company

These solutions are named all-in-one