District heating and cooling systems

HEATING VENTILATION AIR CONDITIONING SYSTEMS 20-05-2025 Jacopo Vivian

What is it?

Characteristics

- 1) Networked, local system
- 2) Heating, cooling or both
- 3) Public \rightarrow requires political action
- 4) Heat recovery from waste heat and renewables

[Source: https://www.rehau.com/]

What is it?

Characteristics

- 1) Supply station(s)
- 2) Distribution system
- 3) Substations

[Source: https://www.rehau.com/]

Why do we need DH?

Advantage

Who are the typical users?

FIGURA 4 Volumetria teleriscaldata distinta per tipologia d'utenza

[Source: Annuario AIRU 2021]

First generation

Where: New York, Paris.. Why: replace polluting coal boilers in big cities Heat carrier fluid: Steam Characteristics:

Steam leakage, huge heat losses, corrosion

Second generation

Third generation

Where: Scandinavian countries Why: Efficiency and energy security concerns Heat carrier fluid: Hot water (90/60°C) Characteristics: Pre-insulated pipes «Demand-driven» regulation

Fourth generation

Where: Scandinavian countries Why: Heat demand reduction, renewables Heat carrier fluid: Hot water (70/40°C) Characteristics: Increased supply from renewable heat, use of twin pipes «Demand-driven» regulation

Fifth generation

Fifth generation

[[]Source: Buffa et al, 2019]

Linear heat density

Ratio between annual heat demand and length of the (transmission) pipes

$$d = \frac{E_T(MWh)}{l_{net}(m)}$$

	Energy delivered to the buildings (MWh)	Overall network length (km)	Linear heat density (MWh/m)
Asiago	9'711	13.47	0.72
Brescia DH	981'194	379.8	2.58
Brescia DC	32'122	7.91	4.06
Ferrara	134'816	82.58	1.63
Forni di Sopra	1'614	3.08	0.52
San Martino di Castrozza	17'727	15.19	1.17
Verona	260'395	80.63	3.23
Vicenza	38'967	23.15	1.68
Torino	1'790'025	598.66	2.99

Linear heat density

Ratio between annual heat demand and length of the pipes

Linear heat density

Ratio between annual heat demand and length of the pipes

[Fonte: Status Report on District Heating Systems in IEA Countries, 2014]

Distribution network

Heat tariff (€/MWh) for the final user must be the same (or lower) than that of alternative individual heat supply solutions (e.g. gas boilers). Therefore, heat generation cost for the utility must be lower than that of domestic users.

Distribution network

Distribution network

In order to size the district heating network pipes, the following procedure can be followed:

- 1) Estimate target heat demand and peak load of the connected buildings + heat losses (kW)
- 2) Use nominal ΔT (e.g. 20-30 K) to find corresponding mass flow rate
- 3) Calculate diameter with either constant velocity (e.g. 0.65 m/s) or constant pressure loss (e.g. 150 Pa/m)

Distribution network

Steel

- Advantages: High strength and good flexibility, can be joined by welding for a high-integrity joint that can be inspected for quality control, widely available in all sizes, familiar material to most workforces.
- *Disadvantages*: Relatively high cost, highly susceptible to corrosion and will require corrosion protection. Skilled labor force required for welding. Slower installation, especially in larger diameters.

PE and HDPE

- Advantages: Low weight, very flexible, can be fusion welded for high-integrity joints, available in sizes up to 1.6 m. Leak free and fully restrained (no anchor blocks).
- *Disadvantages*: Low strength compared to steel results in significant wall thickness and thus cost in larger diameters. Increased wall thickness also reduces inside diameter, which results in higher pressure losses and may require larger sizes for the same flow rates. Larger-diameter fusion welding machines may be of limited availability. Cost fluctuates with oil price.

Distribution network

Distribution network

Table about installation centre distance

Dimensions	mm									
De Casing PE	90	110	125	140	160	200	225	250	315	400
A1 Installation centre distance	150	200	250	250	250	250	250	350	350	350

Example: Nord Piovego

Example: Nord Piovego

2nd generation network operated with constant flow.

Mixing valve on the return (primary side) of the heat exchangers regulates the flow rate depending on the building heat demand.

Heat supply stations

Cooling supply stations

Important characteristics

User substations

- Direct vs indirect connection
- SH-only, DHW-only, SH+DHW

Heat supply station

• Constant flow vs variable flow operation

User substations

 $T_e(t) \rightarrow T_{su,set}(t)$

$$\mathbf{e}(t) = T_{su,meas}(t) - T_{su,set}(t)$$

Network

Example of pressure distribution with 2 lines and +50% mass flow (plot on the right)

Network

Example of pressure distribution from supply to critical user

User substation

Differential pressure controller ensures that the MCV regulates the flow with approximately constant ΔP at all network operating conditions.

The **user** typically "calls" for heat when needed with a 2-way valve on the primary side, possibly with weather compensation (electronic control system needed).

DH operator

- 1) Ensure each customer, especially critical one, has $\Delta P > \Delta Pmin$ (e.g. 150 kPa)
- 2) Save energy i.e. reduce flow rate (or supply temperature) when heat demand is low

Case study

Example from Verona Centro Città's network:

Figure 3.2 Plan of the district heating network of Verona Centro Città obtained with QGis [73] (the blue dots represent the substations and the green dots represent the supply stations).

Table 3.1 Installed thermal and electrical power of the supply stations.

Supply station	Heat generation	Units	Total installed power	
	Gas-fired internal combustion	5	11 MWth (11.25 MWe)	
CCC	engines	5	2.0 MW _{th}	
	Heat pumps	3	25.5 MWth	
	Gas boilers			
CRV	Waste heat from foundry	1	1.1 MW _{th}	
CSD	Gas boilers	3	3.4 MWth	

Case study

Variable flow control in main heat supply station. Example from Verona Centro Città's network:

Case study

Variable flow control in main heat supply station. Example from Verona Centro Città's network:

Heat supply station

Position of additional heat supply stations

[Source: Ben Hassine I, Eicker U, 2014]

DHC systems in Europe

DHC systems in Europe

Heat supply mix

DHC systems in Italy

ONLY 2.3% OF THE ITALIAN HEAT DEMAND SUPPLIED BY DH !

FIGURA 2 DISTRIBUZIONE GEOGRAFICA DEGLI IMPIANTI DI TELERISCALDAMENTO

[Fonte: Annuario AIRU 2020]

DHC systems in Italy

Figura 1.5 Volumetria teleriscaldata nell'anno

[Fonte: Annuario AIRU 2020]

Decarbonization of existing DHC systems

To reduce the share of fossil fuels in the heat supply mix of the **existing networks** there are clear steps to be undertaken:

- 1) Reduction of operating temperatures (90-60°C \rightarrow 70-40°C)
- Integration of renewables (e.g. solar thermal, ground and air-source heat pumps etc) and industrial waste heat
- 3) Integration of seasonal thermal storage systems
- 4) Monitoring substations and improve system control

Decarbonization of existing DHC systems

Today's situation: -25% primary energy consumption compared to replaced individual systems

FIGURA 2 Tecnologia di produzione dell'energia immessa in rete – anno 2020

Decarbonization of existing DHC systems

Today's situation: -30% CO₂ emissions compared to replaced individual systems

FIGURA 2 Tecnologia di produzione dell'energia immessa in rete – anno 2020

Seasonal thermal storage

Storage type	Storage medium	Volumetric heat capacity [MJ/(m3 K)]	Latent heat [kJ/kg]	Density [kg/m3]	Energy density [kWh/m3]
Latent	Salt hydrate Tf = 25°C		125.9	1800	63.0
	Salt hydrate Tf = 29°C		188.0	1562	81.6
	Salt hydrate Tf = 34°C		246.0	1442	98.5
	Ice/Water	4.18	334.0	1000.0	92.8
Sensible	Water (deltaT = 10 K)	4.18			11.6
	Water (deltaT = 20 K)	4.18			23.2
	Water (deltaT = 50 K)	4.18			58.1
	Ground (deltaT = 10 K)	2.40			6.7
	Ground (deltaT = 20 K)	2.40			13.3

Fig. 2. Types of seasonal thermal energy stores (Benner et al., 2003).

Seasonal thermal storage

Example: 5th generation with seasonal thermal storage

