UNIVERSITA Machine Learning n m CO
DEGLI STUDI

DI PADOVA 2 O 2 4 2 0 2 5 ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

I
| s
i crojun ) P D

Lecture #27
Convolutional
Nevural Networks
& Autoencoders

Gian Antonio Susto




Before starting: last lectures

WEEK 12
2025-05-12 Monday — Lecture 29: Fairness in ML
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2025-05-16 Friday - Lecture 30 (Lab 09): NN #02

WEEK 13
2025-05-19 Monday — (Optional) Theory recap session with TAs

2025-05-23 Friday — Lecture 32 (Lab 10): Recap LAB + Exam sim
WEEK 14

2025-05-26 Monday — Lecture 33: XAl #01

2025-05-29 Thursday — Lecture 34: XAl #02

2025-05-30 Friday — Lecture 35 (Lab 11): XAl LAB

WEEK 15



Recap: 2D convolutions
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The operationis the 2D
convolution: we multiply element-
BN wise 2 matrices (the input and the
kernel — weights), then we sum

and derive some ‘features’

-1 ] -2 -1

From From http://cs231n.github.io/convolutional-
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vimage/ConvolutionOperations/ConvolutionO networks/



https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

o 00|00 [Optional procedure] We include ‘padding’
=== . the image (equal to 1): we add a frame
| | | [ around the image of pixels with value = 0.
Input Image When performing the convolution
operation, padding allow border pixels to

have similar importance to inner pixels

ZZx[i,j]-h[O—i,O—j]

z[—1,-1] - h[1,1] + z[0,—1] - h[0,1] + z[1, —1] - h[—1,1]
6 +2[—1,0] - A[1,0] +2[0,0]-A[0,0] + z[1,0]-k[—1,0]
+2[—1,1] - h[1, —1] + 2[0,1] - [0, =1] + 2[1,1] - h[—1, —1]
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= 0-140-2+0-1
+0-04+1-04+2-0
F0-(—1)+4-(=2)+5-(=1)
— 13

From https://www.songho.ca/dsp/convolution/convolution2d_example.html



https://www.songho.ca/dsp/convolution/convolution2d_example.html

Output Soft

SOft—maX Iayer IaLIJyE:,LrJ activat?onn}ﬁ)r(lction Probabilities
8" 0.02]
5.1 e%i 0.90
- Softmax turns raw scores 2.0 | = — | 0.05
(logits) into probabilities. 0.7 D jm1 €7 0.01
1.1 0.02

- Each outputisinthe range
(0, 1), and all outputs sum to
1.

e
probabilities

softmax(z;) =

Zj e’

1 |

- Commonlyusedinthefinal , |.|_ |«
layer of neural networks for z ||
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Cross-entropy loss ' OO

Generalization of log-likelihood seen in
logistic regression

Measures the difference between predicted
probabilities and true labels.

Used as a loss function in classification tasks.

Formula (binary):

—[y - log(p) + (1 — y) - log(1 — p)] 0 probability
Formula (multi-class):

—~ Zyz- - log(p;)

Lower values mean better predictions.



Imagenet (2009)

- 21841 classes

- 14Mimages with
different
dimensions and
resolutions (many
apply resize to
256x256)

“Elongated crescent-shaped yellow fruit with soft sweet flesh”

- Unbalanced | 3
dataset - .
N ‘. ‘\ ‘ i 3 o £ ‘ ( %
- Colourimages
- Lead developer Fei- ™ . .
Fei Li o

MIT https://groups.csail.mit.edu/vision/Tinylmages/ | 409 pictur‘es of bananas.



https://groups.csail.mit.edu/vision/TinyImages/
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ImageNet Large Scale Visual Recognition Challenges
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Classification task: produce a list of object categories present in image. 1000
categories.

“Top 5 error”: rate at which the model does not output correct label in top 5
predictions



An overview on the most famous architectures

Imagenet — visual recognition challenge with 1000 classes.

Winners:
30

25
20
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10

5

28.2

152 layers| |152 layers| |152 layers

A A A

19 layers| |22 layers|

7.3 67/ .
Blicah
H B =

shallow

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & W Krizhevsky et al§  Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogLeNet) (ResNet) (SENet)

First CNN-based winner



AlexNet

AlexNet (2012) renewed interest in CNN. Softmax Full (simplified) AlexNet architecture:
227x227x3] INPUT

. FC 1000
It uses: — 55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
RELU (first use) FC 4096 27x27x96] MAX POOL1: 3x3 filters at stride 2
) ST USE FC 4006 27x27x96] NORM1: Normalization layer

27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
13x13x256] MAX POOL2: 3x3 filters at stride 2

- Layer normalization

_ Dropout 13x13x256] NORM2: Normalization layer
13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
- MaxPooling 13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
- Momentum 6x6x256] MAX POOL3: 3x3 filters at stride 2

4096] FC6: 4096 neurons
4096] FC7: 4096 neurons
1000] FC8: 1000 neurons (class scores)

- Data augmentation in training

| e B snsun B e B e B s B e B s B e B e B s B e B s B s B e |

Input

AlexNet

From: http://cs231n.stanford.edu - Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in neural information processing
svstems 2012



http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://cs231n.stanford.edu/

AlexNet

AlexNet (2012) renewed interest in CNN.

Data Augmentation:

a. No augmentation (= 1 image

It uses:

- RELU (first use)

- Layer normalization
- Dropout

- MaxPooling

- Momentum

- Data augmentation in training

From: http://cs231n.stanford.edu - Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in neural information processing
svstems. 2012



http://cs231n.stanford.edu/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

AlexNet

AlexNet (2012) renewed interest in CNN.

It uses:
55
- RELU (first use) » 1
7 13 13 13
- Layer normalization T el |
e — 13 AN 2 13 >
27 3% ., 3 13 3 >
- Dropout el . i L1\ /L
27 138 ‘\:,‘;',f’ 192 192 128 2048 2048
. 7N 13 13 13
- MaxPoollng N 3 [ N—3% 1000
Y ol M\l13 EAN | 27 {13 »| |Dense
- Momentum V F SN IN27 3 ‘ | - 1 P2y 13 Dense| |Dense
5\ |- 3 |-
224 . { 5| 192 192 128 g1 L |
. . . . Stridd 128
- Data augmentation in training [ o o Pooling 2048
3 a3  Pooling Pooling
Local Response Local Response
Normalization Normalization

62. 3 million ?arameters the original p?per showed that
the depth of the model was essential for its h
performance, which was computatlonad/ expenswe but
Jrcnade feasible due to the utilization of (GPUs) during
raining.

From: http://cs231n.stanford.edu - Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet

classification with deep convolutional neural networks." Advances in neural information processing
svstems 2012


http://cs231n.stanford.edu/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

An overview on the most famous architectures

Imagenet — visual recognition challenge with 1000 classes.

Winners:
30 282
152 layers| |152 layers| |152 layers
A A A
16-4
19 layers| W2 layers
7.3
an 5.1
E e e B
2010 2011 2012 2013 2014 2015 2016 2017 Human
Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan & He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus (ResNet) (SENet)

First really «deep»
network



VGG

VGG (2014);

- many small convolutional filters
stacked together before pooling

- very deep (at the time) with 16/19
layers

From: http://cs231n.stanford.edu

| Softmax |
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FC 4096
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Pool

Pool

Pool
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AlexNet

| Softmax J

| FC 1000 |
| Softmax ] | FC 4096 ]
[CFciooo_ 1 [C__rfcaos ]
| FC 4096 ] | Pool |
l FC 4096 ] | 12|
| Pool ] | nv, 512 |
l x ] | onv, 512 ]
l | | nv, 512 |
| 3 conv, ! | | Pool ]
[ Pool ] | ]
| col ] | J
| ] | ]
| r ] | ]
| Pool 1 | Pool |
| r ] | : ]
| l ] | w ]
| Pool ] | Pool ]
| r ] | , ]
L r ] | 0v, ]
| Pool ] | Pool |
| ) cony ] | ]
| ) CO ] |  con ]
| Input ] | Input |

VGG16 VGG19


https://arxiv.org/abs/1409.1556
http://cs231n.stanford.edu/

VGG

From: http://cs231n.stanford.edu

Wait. Why using

smaller conv filters?

L_Softmax _J

FC 1000

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

J
|
FCa006 ]
J
J
]

AlexNet

| Softmax J

[C_Fciooo_]
__Softmax ] [C_FCa0%6_ ]
[CFciooo ] [_Fcaoes ]
a1 | Pool ]
| E(_: 4096 | I 3x3conv,512 |
[ Pool ] [ 33conv.512 |
I 3x3conv.512 ] | 3x3conv.512 |
L 33conv,512 | [ 3x3conv,512 |
[ 33conwv.512 1 | Pool ]
| F-DO_O_l ] | 3x3conv,512 |
L 33conv,512 | | 3x3conv,512 |
I 3x8conv,512 | | 3x3conv.512 |
I 8x3conv,512 | | 8x3conv.512 |}
[ Pool ] | Pool ]
I 3Bconv,256 | | 3x3conv,256 |
I 3x8conv,256 | | 3x3conv,256 |
[ Pool ] | Pool ]
I 3x3conv, 128 | I 3x3conv, 128 |
I 3x3conv, 128 | I 3x3conv, 128 |

[ Pool ]

L 3x3conv.64 |

I 3x3conv.64 |}

[ Input ]

VGG19


http://cs231n.stanford.edu/

Consider a stack of three 3x3

VGG conv layers.

____Softmax
Which is the receptive field of — | : —
: : : max 4
this hidden unit? e
| FC 4096 ] | Pool
| FC 4096 Ny 3 nv, 51
/ | Pool . onv, 512
/ Layer 3 ooz ] | 512
ooz ] | 512
L_3x3conv, 5 ] | Pool
l Pool ] |
| Softmax ] L_33conv,512 ] | ny
Layer 2 ciowo ] 8oz ] [33con
[_fcaom ] Faeanse] |
[_Fcao% ] [ Pool ] | Pool
l Pool | L_3x3 conv, 2 ] |  ConV
Layer 1 ' - Lo e 11 :
L ] l Pool ] | Pool
| Pool | [ 3x3 conv, 1 ] | } col
| L [ 3x3 conv, 1 ] | v,
l Pool | Pool l Pool
L_5x ]  conv, § |
[ 7ix11 conv. 96 ] [  Cons
| Input | Input | Input
AlexNet VGG16 VGG19

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

Consider a stack of three 3x3

VGG conv layers.

____Softmax
Which is the receptive field of — | : —
: : : max 4
this hidden unit? e
| FC 4096 ] | Pool
| FC 4096 Ny 3 nv, 51
/ | Pool . onv, 512
/ Layer 3 ooz ] | 512
ooz ] | 512
L_3x3conv, 5 ] | Pool
l Pool ] |
| Softmax ] L_33conv,512 ] | ny
Layer 2 ciowo ] 8oz ] [33con
[_fcaom ] Faeanse] |
[_Fcao% ] [ Pool ] | Pool
l Pool | L_3x3 conv, 2 ] |  ConV
Layer 1 ' - Lo e 11 :
L ] l Pool ] | Pool
| Pool | [ 3x3 conv, 1 ] | } col
| L [ 3x3 conv, 1 ] | v,
l Pool | Pool l Pool
L_5x ]  conv, § |
[ 7ix11 conv. 96 ] [  Cons
| Input | Input | Input
AlexNet VGG16 VGG19

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

Consider a stack of three 3x3

VGG conv layers.

____Softmax
Which is the receptive field of — | : —
: : : max 4
this hidden unit? e
| FC 4096 ] | Pool
| FC 4096 Ny 3 nv, 51
| Pool . onv, 512
Layer 3 ooz ] | 512
ooz ] | 512
L_3x3conv, 5 ] | Pool
l Pool ] |
| Softmax ] L_33conv,512 ] | ny
Layer 2 ciowo ] 8oz ] [33con
[_fcaom ] Faeanse] |
[_Fcao% ] [ Pool ] | Pool
l Pool | L_3x3 conv, 2 ] |  ConV
Layer 1 ' - Lo e 11 :
L ] l Pool ] | Pool
| Pool | [ 3x3 conv, 1 ] | } col
| L [ 3x3 conv, 1 ] | v,
l Pool | Pool l Pool
L_5x ]  conv, § |
[ 7ix11 conv. 96 ] [  Cons
| Input | Input | Input
AlexNet VGG16 VGG19

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

Consider a stack of three 3x3

VGG conv layers.

___Softmax
Which is the receptive field of ————
is hi i Softmax FCa
this hidden unit? — 1
[C_—fcaoee__ 1 | Pool
C_fcaoo ] | e
| Pool . onv, 512
Layer 3 Coomsiz ] | TP
| 3 conv, ! | | Pool
| Pool ] | 3 conv, 512
Layer 2 [ Fciooo ] [ 1 ] |
| FC 4096 | L 3 cor . conv, 512
[_Fcao% ] [ Pool ] | Pool
| Pool | | 3conv, 266 | |  Con\
Layer1 | ) Cageon256 ] [C3dco
L 7 J | Pool Nl 3 Pool
| Pool | L 3 conv, 1 ] L  Conv,
I ] S8oonvizs ] |
L Pool ] Pool | Pool
L_5x! ] } conv, ¢ [
_11x11conv. 96 | 3 conv |
| Input | Input | Input
AlexNet VGG16 VGG19

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

Consider a stack of three 3x3

VGG conv layers.

| Softmax |

Which is the receptive field of e e

this hidden unit? [ Ec1ooo ] [_Ffcaoe, ]

[ Fca0% 1 [ Pool ]

Same as one layer with 7x7 — 7

conv filters. Coowse ] ooz ]

L onv,512 | | 3x3conv,512 |

T I 0T 1 Lavers oot Cotmoar ]

o | Pool I | 3x3conv.512 |

Still, 138M parameters for VGG16! = —

oomsz ] [ 512

[ 2 ] CEEowsr ] [ 517 ]

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ | 224222 | | Pool ke 3 Pool |

l Pool | I 3 cony, 256 l [ ) l

But three layers mean more non-linearities, i.e. more =~ ——— —
complex features... —— s | )
L_3x3conv, 384 ] | onv, 128 | [ v, 128 |

.. and fewer parameters! e _
| 11x11conv,96 | X3 conv, 64 | 3conv, 64 |

C channels (e.g. C=3 for RGB images): 1 o — - r—
AlexNet VGG16 VGG19

- 7x7 conv has 72 x C = 147 parameters

From: http://cs231n.stanford.edu

- 3lavers of 3x3 conv have 3x (32 x C) = 81


http://cs231n.stanford.edu/

An overview on the most famous architectures

Imagenet — visual recognition challenge with 1000 classes.

Winners:
30 282
152 layers| |152 layers| |152 layers
A A A
16.4
11.7 22 layers |
an 5.1
E e e B
2010 2011 2012 2013 2015 2016 2017 Human
Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al

Perronnin (AlexNet) Fergus  Zisserman (VAG) (GoogLeNet) (ResNet) (SENet)



GoogLeNet (optional)

Inception + GooglLeNet (2015)-introduces =
parallel conv blocks (inception)

Previou )
Inception module M=
e~
R
=
o
From: http://cs231n.stanford.edu From: http://cs231n.stanford.edu =



https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

GOOg LeNet (O ptiOna |) Preserves spatial dimensions, but
reduces depth! Feature maps (depth)

are projected to lower dimension

Inception + GooglLeNet (2015)- introduces —
parallel conv blocks (inception) 1 CONY
56 with 32 filters 56
(each filter has size
1x1x64, and performs a
64-dimensional dot
56 product) 56
Cleverly uses 1x1 convolutions 54 2
28x28x480
28x28x(128+192+96+256) = 529k Db
Filter
cogc:bauon 28x28x128 _ 28x28x192 28x28x96 28x28x64
28x28x128 28x28£1 92 28x38x96 28\x28x256 e [53 P | L T
" 1ix1conv, | | 3x3cony, ‘ ] 5x5 conv, | 3x3 pool . 128 ’ 192 L 9% 64
g%v 28x28x64  28x28x64  28x28x256
. 1 1 1
1x1 conv, 1x1 conv,
: 2 3x3 pool
Module input: Input . %\ L/v
28x28x256 S ey
MOdUIe |npUt- Previous Layer
28x28x256

Naive Inception module
Inception module with dimension reduction

From: http://cs231n.stanford.edu From: http://cs231n.stanford.edu



https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

GOOg LeNet (O ptiOna |) Preserves spatial dimensions, but

Inception + GooglLeNet (2015)-introduces [1x1 conv, 64] 28x28x64x1x1x256
. - [1x1 conv, 64] 28x28x64x1x1x256

parallel g

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5x5 conv, 96] 28x28x96x5x5x256
Cleverly | Total: 854M ops

[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops

28x28x480
28x28x(128+192+96+256) = 529k e
Filter A
- 28x28x128 . 28x28x192  28x28x96  28x28x64
28x28x128__ 28x28x192 ~ 28x28x96  28x28x256 Y -
1x1 conv, 3x3 conv, 5x5 conv, 128 192 96 64
12 192 96 2 poos
W 28x28x64  28x28x64  28x28x256
1 1 1
1x1 conv, 1x1 conv.
) 2 4 3x3 pool
Module input: Input 6\464/7
28x28x256 :
MOdUIe InPUt: Previous Layer
28x28x256

Naive Inception module
Inception module with dimension reduction

From: http://cs231n.stanford.edu From: http://cs231n.stanford.edu



https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

GoogLeNet (optional)

Full GooglLeNet
architecture

Auxiliary classification outputs to inject additional gradient at lower layers
(AvgPool-1x1Conv-FC-FC-Softmax)

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

An overview on the most famous architectures

Imagenet — visual recognition challenge with 1000 classes.

Winners:

30 282

152 layers| f152 layers| |152 layers

A A A

19 layers| |22 layer ‘

16.4
11.7
7-3 6.7 J
5.1

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan & Szegedy etfl He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus  Zisserman (VGG) (GoogLeNeH) (ResNet) (SENet)




ResNet

Why not stacking more and more layers?

Test error
[

lterations

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

ResNet

Why not stacking more and more layers?

Even with all of the ‘tricks’ from
some point onward, stacking

Test error
(4

more layers make the training
reaIIy hard! lterations

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

ResNet

ResNet (2015) — very deep model (152
layer) with shortcut connections

o HX)=F(X) + X ~_

H(x)

relu

conv
X
“Plain” layers

From: http://cs231n.stanford.edu

F(x) + x

F(x)

I relu

X
Residual block

X
identity

Use layers to
fit residual
F(x) = H(x) - X
instead of
H(x) directly

From: http://cs231n.stanfo

—
e
L conv, 64 | .
 E———
A A L)



https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

ResNet

ResNet training:

28253?6 - Batch Normalization after every CONV layer

- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)

- Learningrate: 0.1, divided by 10 when
T validation error plateaus

- Mini-batch size 256

08x28x256 - Weight decay of 1e-5

input

, - No dropout used
For ResNet with

more than 50
layers

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

State of the art is always on the move...

Image Classification on ImageNet

Leaderboard Dataset
View Top 1 Accuracy v by Date v for All models v
100 —
NoisyViT-B (384res, ImageNet-21k pretrain)
*“f__¥77%7}
0 Meta Pseudo Labels (EfficientNet-L2)  ViT-G/14 Model soups BASIC-L) —
FixResNeXt-101 32x48dp—® '
> _ PNASNetz5—®—— = '
O SlmpIeNetVI—9[{1—£gr7e£t;lib_els__._g o
% 80 ResNetz152—°
< /
/
: 70 FireCaffe (GooglLeNet)
o O
'_
60
50
2016 2017 2018 2019 2020 2021 2022 2023

Other models -e- State-of-the-art models

https://paperswithcode.com/sota/image-classification-on-imagenet



https://paperswithcode.com/sota/image-classification-on-imagenet

Is not all about accuracy...
EfficientNet

Tan,M,, & Le, Q. (2019, May).
Efficientnet: Rethinking model
scaling for convolutional neural
networks. In /nternational
Conference on Machine
Learning (pp. 6105-6114). PMLR.

EfficientNet-B7
84 1

(0.9)
(SV]

.®
.
.®
.

0.]
]

Imagenet Top 1 Accuracy (%)

P
T 7 :
¢~ Xception
I T
8 | : eResNet-152 Topl Acc. #Params
" ResNet-152 (He et al,, 2016) | 77.8% 60M
| ;DenseNet-201 EfficientNet-B1 788%  7.8M
BO - ResNeXt-101 (Xie etal., 2017)| 80.9% 84M
61 1 - ° EfficientNet-B3 81.1% 12M
I ResNet-50 SENet (Hu et al., 2018) 827%  146M
1 - NASNet-A (Zophet al., 2018) | 82.7% 8OM
! .I tion-v2 EfficientNet-B4 82.6% 19M
2l 4 nception-v. GPipe (Huang etal, 2018) T | 843%  556M
NASNet-A Effﬁciel'ltNet-B7 84.4% 66M
° Not plotted
ResNet-34
0 20 40 60 80 100 120 140 160 180

Number of Parameters (Millions)

Figure 1. Model Size vs. ImageNet Accuracy. All numbers are
for single-crop, single-model. Our EfficientNets significantly out-
perform other ConvNets. In particular, EfficientNet-B7 achieves
new state-of-the-art 84.4% top-1 accuracy but being 8.4x smaller
and 6.1x faster than GPipe. EfficientNet-B1 is 7.6x smaller and
5.7x faster than ResNet-152. Details are in Table 2 and 4.



What do CCN see? (Optional)



What do CNN see? Visualize the layers

AlexNet 1CONYV layer AlexNet 2CONV layer

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

What do CNN see? Embedding space for features

We can consider k-nearest neighbors in embedding space for last FC layer:

Testimage L2 Nearest neighbors in feature space

Krizhevsky et al, “lmageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

What do CNN see?
Embedding space for
features

We can plot final FC
embedding layer by means of
dimensionality reduction, e.g.
tSNE (more powerful than PCA)
or UMAP

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

What do CNN see? Maximally
activating neuros

-

We can compute maximally
activating patches.

TP

)

Run many images through the
network, record values of
chosen channel (e.g. channel
17/128 in convb).

=

Visualize image patches that
correspond to maximal

activations.
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Figure copyright Jost Sl 5 \‘“ e "(f’ - ﬂ =
Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; . R ! “ , )
i -

—

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

What do CNN see? Most relevant pixels

Saliency maps, e.g. by occlusion:

- (== {— JHNI—'JH\ .
P(elephant)=0,9

African elephant, Loxodonta africana

5

lax 128 ax
pocling pooling

\\\\\

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

From: http://cs231n.stanford.edu



http://cs231n.stanford.edu/

Unsupervised Learning in DL: Autoencoders



Unsupervised Learning Tasks

- Clustering

- Dimensionality Reduction/Learning latent
representations (Representation learning)

- Anomaly Detection
- Data Generation



Dimensionality Reduction/Learning latent
representations

Hypothesis: in high-dimensional data sets, the data nearly always lie
on (or close to) a much lower-dimensional, smoothly curved manifold

Original Data

20 - :

Rk ENeR

-40 -20 0 20 , s
Genes mirror geography within Europe —Nature 2008



Dimensionality Reduction/Learning latent
representations

Simplest approach: Principal Component Analysis

=+ T T T T T T T
Largest Principal
Component 90%
80%
o o
—_ 70%
&
3 B0%
£
- = 50%
O w
i
c 40%
&
= 30%
o 20%
Smallest Principal 10%
Component
0%
T - - Principal Component
[ [ | I |
4 2 0 2 4



The problem of finding meaningful and minimal
representation is recurring in engineering...

- In Telecommunication

we have the encoding

and decoding of a signal

before and after the
transmission

transmitter

receiver
information .fﬂ*\ information
source user
NN~ Nl AVAN

analog-to-digital conversion

encoding

modulation

digital-to-analog conversion

2\ )

) )/))

channel
(transmission

decoding

demodulation

demultiplexing

il

~ .y ”III/I,['

multiple access

4
P

.‘"
\J

edia Britannica, Inc.



This is a recurring problem, with different
setting

Machine Learning

& & 1737 - Il

Input Feature extraction Classification Output

Deep Learning

o — iz - Il

Input Feature extraction + Classification Output



https://deeplearning.mit.edu/

Autoencoders

- Deterministic models
trained using error
backpropagation

- Input and Output are
the same data: we force
a network to be able to
reconstruct such data
with the limitation of
having a ‘bottleneck’
(code) of limited size

T~

neural network
encoder

/

/

neural network
decoder

T~

loss = |[x-x|* = ]

-d(2) |]> = || x-d(e(x)) ||?



Autoencoders

- Deterministic models
trained using error
backpropagation

- Input and Output are
the same data: we force
a network to be able to
reconstruct such data
with the limitation of
having a ‘bottleneck’
(code) of limited size

The encoder provides a

low dimensional

representation of the

Input

T~

neural network

encoder

/

/

neural network
decoder

T~

loss = |[x-x|* = ]

-d(2) |]> = || x-d(e(x)) ||?



Autoencoders

- Deterministic models
trained using error
backpropagation

- Input and Output are
the same data: we force
a network to be able to
reconstruct such data
with the limitation of
having a ‘bottleneck’
(code) of limited size

The decoder

reconstructs the input
from its compressed

T~

neural network
encoder

/

representation

/

neural network

decoder

T~

loss = || x-x||* = ||

-d(2) |]> = || x-d(e(x)) ||?



Autoencoders

e

Output
Probabilities

e
Add & Norm 2

Feed
Forward

| Add & Norm |<_:

1
Add & Norm

Feed
Forward

Multi-Head
Attention

2 )

 S—

3

Add & Norm
f-bl Add & Norm | TR
Multi-Head Multi-Head
Attention Attention
T
\_ [e—

Positional
Encoding

nput

Positional
Encoding

Outpu

Embedding Embedding
Inputs Outputs

(shifted right)

neural network

encoder

neural network

decoder

=d(2)

- =

-d(2) ]2 = ||

-d(e(x)) ||?



Autoencoders

- Encoder and decoder
can have different
structure, however we
canregularize the
network by imposing a
symmetric architecture

- Typically, the number
of hidden units is chosen
to be lower than input
units

T~

neural network
encoder

/

/

neural network
decoder

T~

loss = [|x-%[P = |

-d(2) [|> = |[ x-d(e(x)) |



Autoencoders

- With linear activations
we can get PCA

- We canintroduce
regularizes to learn even
more meaningful
representations:

1. Sparse autoencoders
(L1 penalty on hidden
activations)

2. Denoising
autoencoders

T~

neural network
encoder

/

/

neural network
decoder

T~

loss = || x-x||* = ||

-d(2) |]> = || x-d(e(x)) ||?



Denoising Autoencoders

_______________________________________________

Original
input

E 0000000

Partially
destroyed
input

Encoder

9o

Ideally they are identical.

X ~ X'

Bottleneck!

An compressed low dimensional
representation of the input.

Decoder

fo

Reconstructed
input




... we can still use convolutions...

14x14x32 14x14x32

1152 1152
" ﬁ".
Tx7x64 10 ‘ Tx7x64
ﬁ

3x3x128 ‘i 3x3x128
; i (b E é-:}
Conv3 * Reshape
Conv2 stride=2 h 1|/ DeConv3 /
stride=2 « L) stride=2
Flatten FC L

Convil DeConv2
stride =2 stride=2

DeConv1
stride=2



Neural inpainting

3

Depth: 3
Width: 128
Height: 160

Sy T

Depth: 256
Width: 64
Height: 80

Depth: 256
Width: 32
Height: 40

Depth: 512 Depth: 1024 Depth: 512 Depth: 256
Width: 16 ~ Width: 8 Width: 16  Width: 32
Height: 20 Height: 10 Height: 20 Height: 40

= Eﬂ
i e o o o

Depth: 256
Width: 64
Height: 80

MSE + BCE

Depth: 128
Width: 128
Height: 160



Neural inpainting




Neural inpainting

FTa30a330




Unsupervised Learning Tasks

- Clustering

- Dimensionality Reduction/Learning latent
representations (Representation learning)

- Anomaly Detection
- Data Generation



Anomaly Detection

What is an anomaly/outlier?

‘An outlier is an observation that
deviates so much from other
observations as to arouse suspicion
that it was generated by a different
mechanism’ (Hawkins definition [1])

D. M. Hawkins, Identification of outliers, vol. 11., Springer, 1980.



Multivariate Anomaly Detection

Such approaches allow us to provide ‘anomaly

scores’: unique quantitative indicators able to

represent the degree of ‘outlierness’ of complex

systems with many variables Equipment view (high-level)

Many approaches:

- Density-based methods (e.g. LOF, DBSCAN)
- Distance-based methods (e.g. ORCA)

- Clustering-based methods (e.g. CBLOF)

- Neural Networks (e.g. Autoencoder)

- Isolation Forest

Strongly recommended library: th@mw

https://pyod.readthedocs.io/en/latest/ 2 hours ago Now

Violation severity



https://pyod.readthedocs.io/en/latest/

Anomaly Detection

N
MSE( X, X')

ke

A

> threshold

( (
|
: o 1 2 3 5 6 7 1t
\_>Abnorma or Anomaly points

https://www.mdpi.com/1424-8220/21/19/6679



https://www.mdpi.com/1424-8220/21/19/6679

Unsupervised Learning Tasks

- Clustering

- Dimensionality Reduction/Learning latent
representations (Representation learning)

- Anomaly Detection
- Data Generation



Unsupervised Learning Tasks

- Clustering

- Dimensionality Reduction/Learning latent
representations (Representation learning)

- Anomaly Detection
- Data Generation




Data Generation

- Generative Models
1. Variational Autoencoder

2. Generative Adversarial
Network (Previous year
lecture by N. Gentner)

- Generative Models aims at
learning useful
representations and to
generate new samples
from a complex distribution
that they model where the https://thispersondoesnotexist.com/
data are sampled from



https://thispersondoesnotexist.com/

Data Generation

- Generative Models
1. Variational Autoencoder

2. Generative Adversarial
Network (Previous year
lecture by N. Gentner)

- Generative Models aims at
learning useful
representations and to
generate new samples
from a complex distribution
that they model where the https://thispersondoesnotexist.com/
data are sampled from



https://thispersondoesnotexist.com/

Variational Autoencoder (VAE)

- In standard autoencoders, the latent space can be extremely
irregular (close points in latent space can produce very different -
often meaningless — patterns over visible units) so usually we
cannot implement a generative process that simply samples a
vector from the latent space and passes it through the decoder

- Possible fix: make the mapping probabilistic!

1. The encoder returns a distribution over the latent space instead
of a single point

2. Theloss function has an additional regularisation term in order to
ensure a “better organization” of the latent space

https://arxiv.org/abs/1312.6114



https://arxiv.org/abs/1312.6114

Variational Autoencoder (VAE)

- The encoded distribution is chosen to be a multivariate Gaussian, so that
thete.ncoder can be trained to estimate the means and covariance
matrix

- This yva¥.we can regularize the loss function by forcing the latent
distribution to be as close as possible to a standard Normal distribution

KL Divergence:

neural network neural network

encoder decoder

loss = ||x-X]|P + KLI N0, )] = |[x-d(2) | + KL ,N(©O,1)]



Variational Autoencoder (VAE)

- The encoded distribution is chosen to be a multivariate Gaussian, so that
thete.ncoder can be trained to estimate the means and covariance
matrix

- This yva¥.we can regularize the loss function by forcing the latent
distribution to be as close as possible to a standard Normal distribution

training encoder

process e

encoded vector

(in latent space)
P decoder

input d

generation

sampler decoded content
process

(reconstructed input /
generated content)

sampled vector
(from latent space)



Reparametrization trick

The latent representation is
now defined by two vectors
(means and covariance), so
the encoder network has two
(possibly partially overlapping)
branches

The covariance could just be a
square matrix; however, to
reduce computational
complexity we assume that
the multivariate Gaussian has
a diagonal covariance matrix
(i.e., latent variables are
independent)

Sampling is a discrete process,
and we cannot use
backpropagation! We need to
re-parameterize z to make it
differentiable

<> Deterministic node Random node

Decoder Model Decoder Model

T |

Reparameterization

~q(z|x) { z @z:p+o®8
> N
® <%> ® @ s

Encoder Model Encoder Model



Reparametrization trick

- The I(ajtefnt rccje%retsentatiotn IS
now define wo vectors . :
(m\évans and Co¥/ariance), SO Original Reparameterized
the encoder network has two Formulation Formulation
(possibly partially overlapping)
brancheés

- The covariance could just be a
square matrix; however, to —

reduce computational o
complexity we assume that -
the multivariate Gaussian has

a diagonal covariance matrix )

(i.e., latent variables are X
independent) —

- Sampling is a discrete process,
and we cannot use

backpropagation! We need to
re-parameterize z to make it [:] O — —
differentiable

Deterministic Random Feedforward Differentiation
Node Node

A. Testolin ‘Neural Networks and Deep Learning’



Reparametrization trick

z = h(x)¢ + g(z) ¢ ~N(0,1)

N(o, I)

\/ .
h
K —> f
@

f(z)

x>
Il

o = h(x)

loss = C||x-% | +KLIN(u,0),N(O,)] = C||x-f(z)]|? + KLIN(g() , h(x)), N(O, 1) ]



Variational Autoencoder (VAE)
- Theregularization §2ﬂnﬂn E

term indeed n ﬂ ﬂ
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Disentangled VAE: f-VAE

- VAE can be further extended to promote learning of more disentangled
representations, which in some cases might encode independent latent
factors of variation in the data distribution

- The final goal would be to have single latent units of z sensitive to changes
in single generative factors (e.g., color of the hair) while being relatively
invariant to changes in other factors (e.g., color of the skin)

- Basic idea: introduce a penalization term in the KL-divergence using a
hyperparameter B > 1that balances latent channel capacity and
independence constraints with reconstruction accuracy (the higher the B,
the more disentangled should be the representation)

£(0, ¢, x7) = ~8Dx (s(21x ) || p(2)) + Eq, (21%7) |log po(x)|2)
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https://arxiv.org/pdf/1804.03599.pdf
https://arxiv.org/pdf/1804.03599.pdf

Disentangled VAE‘ ﬁ'VAE https://arxiv.org/pdf/1606.05579.pdf

https://arxiv.org/pdf/1804.03599.pdf

(a) Coloured dSprites ,
(b) 3D Chairs
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https://arxiv.org/pdf/1804.03599.pdf
https://arxiv.org/pdf/1804.03599.pdf

Other generative approaches: GANs

- Generative Adversarial
Networks

- You’ll find a dedicated
legacy lecture on the
moodle page by N.
Gentner Training set V

Discriminator

e {Fa ke

—»
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/ N\
y
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= N

Generator _V /Fake Image

https://sthalles.qgithub.io/intro-to-gans/



https://sthalles.github.io/intro-to-gans/
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Thank you!

Gian Antonio Susto




