
Lecture #27
Convolutional
Neural Networks
& Autoencoders
Gian Antonio Susto

Machine Learning
2024/2025

Before starting: last lectures

WEEK 12
2025-05-12 Monday – Lecture 29: Fairness in ML
2025-05-15 Thursday – (Optional) Programming Mock Exam discussion
2025-05-16 Friday - Lecture 30 (Lab 09): NN #02

WEEK 13
2025-05-19 Monday – (Optional) Theory recap session with TAs
2025-05-22 Thursday – (No exam) Lecture 31: Real-world Applications and MLOps
2025-05-23 Friday – Lecture 32 (Lab 10): Recap LAB + Exam sim

WEEK 14
2025-05-26 Monday – Lecture 33: XAI #01
2025-05-29 Thursday – Lecture 34: XAI #02
2025-05-30 Friday – Lecture 35 (Lab 11): XAI LAB

WEEK 15
2025-06-05 Thursday – (No exam) Lecture 36: ML, what’s next?

Recap: 2D convolutions

From
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionO
perations.html

From http://cs231n.github.io/convolutional-
networks/

The operation is the 2D
convolution: we multiply element-
wise 2 matrices (the input and the

kernel – weights), then we sum
and derive some ‘features’

1 2 1

-1 -2 -1

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

From https://www.songho.ca/dsp/convolution/convolution2d_example.html

[Optional procedure] We include ‘padding’
the image (equal to 1): we add a frame

around the image of pixels with value = 0.
When performing the convolution

operation, padding allow border pixels to
have similar importance to inner pixels

https://www.songho.ca/dsp/convolution/convolution2d_example.html

Soft-max layer

- Softmax turns raw scores
(logits) into probabilities.

- Each output is in the range
(0, 1), and all outputs sum to
1.

- Commonly used in the final
layer of neural networks for
classification.

Cross-entropy loss

- Generalization of log-likelihood seen in
logistic regression

- Measures the difference between predicted
probabilities and true labels.

- Used as a loss function in classification tasks.

- Formula (binary):

- Formula (multi-class):

- Lower values mean better predictions.

Imagenet (2009)

- 21841 classes

- 14M images with
different
dimensions and
resolutions (many
apply resize to
256x256)

- Unbalanced
dataset

- Colour images

- Lead developer Fei-
Fei Li

MIT https://groups.csail.mit.edu/vision/TinyImages/

https://groups.csail.mit.edu/vision/TinyImages/

Classification task: produce a list of object categories present in image. 1000
categories.

“Top 5 error”: rate at which the model does not output correct label in top 5
predictions

An overview on the most famous architectures
Imagenet – visual recognition challenge with 1000 classes.

Winners:

First CNN-based winner

AlexNet
AlexNet (2012) renewed interest in CNN.

It uses:

- RELU (first use)

- Layer normalization

- Dropout

- MaxPooling

- Momentum

- Data augmentation in training

The original paper's primary result was that the depth of
the model was essential for its high performance, which
was computationally expensive, but made feasible due
to the utilization of graphics processing units (GPUs)
during training.

From: http://cs231n.stanford.edu - Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in neural information processing
systems. 2012.

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://cs231n.stanford.edu/

AlexNet

From: http://cs231n.stanford.edu - Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in neural information processing
systems. 2012.

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

AlexNet (2012) renewed interest in CNN.

It uses:

- RELU (first use)

- Layer normalization

- Dropout

- MaxPooling

- Momentum

- Data augmentation in training

The original paper's primary result was that the depth of
the model was essential for its high performance, which
was computationally expensive, but made feasible due
to the utilization of graphics processing units (GPUs)
during training.

http://cs231n.stanford.edu/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

AlexNet

From: http://cs231n.stanford.edu - Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in neural information processing
systems. 2012.

AlexNet (2012) renewed interest in CNN.

It uses:

- RELU (first use)

- Layer normalization

- Dropout

- MaxPooling

- Momentum

- Data augmentation in training

62.3 million parameters: the original paper showed that
the depth of the model was essential for its high
performance, which was computationally expensive, but
made feasible due to the utilization of (GPUs) during
training.

http://cs231n.stanford.edu/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

An overview on the most famous architectures
Imagenet – visual recognition challenge with 1000 classes.

Winners:

First really «deep»
network

VGG

VGG (2014):

- many small convolutional filters
stacked together before pooling

- very deep (at the time) with 16/19
layers

From: http://cs231n.stanford.edu

https://arxiv.org/abs/1409.1556
http://cs231n.stanford.edu/

VGG

From: http://cs231n.stanford.edu

Wait. Why using
smaller conv filters?

http://cs231n.stanford.edu/

VGG

From: http://cs231n.stanford.edu

Consider a stack of three 3x3
conv layers.

Which is the receptive field of
this hidden unit?

Layer 1

Layer 2

Layer 3

http://cs231n.stanford.edu/

VGG

From: http://cs231n.stanford.edu

Consider a stack of three 3x3
conv layers.

Which is the receptive field of
this hidden unit?

Layer 1

Layer 2

Layer 3

http://cs231n.stanford.edu/

VGG

From: http://cs231n.stanford.edu

Consider a stack of three 3x3
conv layers.

Which is the receptive field of
this hidden unit?

Layer 1

Layer 2

Layer 3

http://cs231n.stanford.edu/

VGG

From: http://cs231n.stanford.edu

Consider a stack of three 3x3
conv layers.

Which is the receptive field of
this hidden unit?

Layer 1

Layer 2

Layer 3

http://cs231n.stanford.edu/

VGG

From: http://cs231n.stanford.edu

Consider a stack of three 3x3
conv layers.

Which is the receptive field of
this hidden unit?

Same as one layer with 7x7
conv filters.

Layer 1

But three layers mean more non-linearities, i.e. more
complex features…

… and fewer parameters!

C channels (e.g. C=3 for RGB images):

- 7x7 conv has 72 x C = 147 parameters

- 3 layers of 3x3 conv have 3 x (32 x C) = 81
parameters

Still, 138M parameters for VGG16!

http://cs231n.stanford.edu/

An overview on the most famous architectures
Imagenet – visual recognition challenge with 1000 classes.

Winners:

Inception + GoogLeNet (2015)– introduces
parallel conv blocks (inception)

From: http://cs231n.stanford.edu From: http://cs231n.stanford.edu

GoogLeNet (optional)

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

Inception + GoogLeNet (2015)– introduces
parallel conv blocks (inception)

Cleverly uses 1x1 convolutions

From: http://cs231n.stanford.edu From: http://cs231n.stanford.edu

Preserves spatial dimensions, but
reduces depth! Feature maps (depth)
are projected to lower dimension

GoogLeNet (optional)

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

Inception + GoogLeNet (2015)– introduces
parallel conv blocks (inception)

Cleverly uses 1x1 convolutions

From: http://cs231n.stanford.edu From: http://cs231n.stanford.edu

Preserves spatial dimensions, but
reduces depth! Feature maps (depth)
are projected to lower dimension

GoogLeNet (optional)

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

From: http://cs231n.stanford.edu

GoogLeNet (optional)

http://cs231n.stanford.edu/

An overview on the most famous architectures
Imagenet – visual recognition challenge with 1000 classes.

Winners:

ResNet

Why not stacking more and more layers?

From: http://cs231n.stanford.edu

http://cs231n.stanford.edu/

ResNet

Why not stacking more and more layers?

From: http://cs231n.stanford.edu

Even with all of the ‘tricks’ from
some point onward, stacking
more layers make the training

really hard!

http://cs231n.stanford.edu/

ResNet

ResNet (2015) – very deep model (152
layer) with shortcut connections

From: http://cs231n.stanford.edu

From: http://cs231n.stanford.edu

https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

ResNet

From: http://cs231n.stanford.edu

ResNet training:

- Batch Normalization after every CONV layer

- Xavier/2 initialization from He et al.

- SGD + Momentum (0.9)

- Learning rate: 0.1, divided by 10 when
validation error plateaus

- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used
For ResNet with

more than 50
layers

http://cs231n.stanford.edu/

State of the art is always on the move…

https://paperswithcode.com/sota/image-classification-on-imagenet

https://paperswithcode.com/sota/image-classification-on-imagenet

Is not all about accuracy…
EfficientNet

Tan, M., & Le, Q. (2019, May).
Efficientnet: Rethinking model
scaling for convolutional neural
networks. In International
Conference on Machine
Learning (pp. 6105-6114). PMLR.

What do CCN see? (Optional)

What do CNN see? Visualize the layers

From: http://cs231n.stanford.edu

AlexNet 1CONV layer AlexNet 2CONV layer

http://cs231n.stanford.edu/

What do CNN see? Embedding space for features

From: http://cs231n.stanford.edu

We can consider k-nearest neighbors in embedding space for last FC layer:

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

http://cs231n.stanford.edu/

What do CNN see?
Embedding space for
features

From: http://cs231n.stanford.edu

We can plot final FC
embedding layer by means of
dimensionality reduction, e.g.
tSNE (more powerful than PCA)
or UMAP

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008

http://cs231n.stanford.edu/

What do CNN see? Maximally
activating neuros

From: http://cs231n.stanford.edu

We can compute maximally
activating patches.

Run many images through the
network, record values of
chosen channel (e.g. channel
17/128 in conv5).

Visualize image patches that
correspond to maximal
activations.

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Figure copyright Jost
Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;

http://cs231n.stanford.edu/

What do CNN see? Most relevant pixels

From: http://cs231n.stanford.edu

Saliency maps, e.g. by occlusion:

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

P(elephant)=0,9
5

P(elephant)=0,7
5

http://cs231n.stanford.edu/

Unsupervised Learning in DL: Autoencoders

Unsupervised Learning Tasks

- Clustering
- Dimensionality Reduction/Learning latent

representations (Representation learning)
- Anomaly Detection
- Data Generation

Dimensionality Reduction/Learning latent
representations
Hypothesis: in high-dimensional data sets, the data nearly always lie
on (or close to) a much lower-dimensional, smoothly curved manifold

Genes mirror geography within Europe – Nature 2008

Dimensionality Reduction/Learning latent
representations
Simplest approach: Principal Component Analysis

The problem of finding meaningful and minimal
representation is recurring in engineering…

- In Telecommunication
we have the encoding
and decoding of a signal
before and after the
transmission

This is a recurring problem, with different
setting

L. Fridman MIT Deep Learning https://deeplearning.mit.edu/

https://deeplearning.mit.edu/

Autoencoders

- Deterministic models
trained using error
backpropagation
- Input and Output are
the same data: we force
a network to be able to
reconstruct such data
with the limitation of
having a ‘bottleneck’
(code) of limited size

Autoencoders

- Deterministic models
trained using error
backpropagation
- Input and Output are
the same data: we force
a network to be able to
reconstruct such data
with the limitation of
having a ‘bottleneck’
(code) of limited size

The encoder provides a
low dimensional
representation of the
input

Autoencoders

- Deterministic models
trained using error
backpropagation
- Input and Output are
the same data: we force
a network to be able to
reconstruct such data
with the limitation of
having a ‘bottleneck’
(code) of limited size

The decoder
reconstructs the input

from its compressed
representation

Autoencoders

Autoencoders

- Encoder and decoder
can have different
structure, however we
can regularize the
network by imposing a
symmetric architecture
- Typically, the number
of hidden units is chosen
to be lower than input
units

Autoencoders

- With linear activations
we can get PCA
- We can introduce
regularizes to learn even
more meaningful
representations:
1. Sparse autoencoders
(L1 penalty on hidden
activations)
2. Denoising
autoencoders

Denoising Autoencoders

… we can still use convolutions…

Neural inpainting

Neural inpainting

Neural inpainting

Unsupervised Learning Tasks

- Clustering
- Dimensionality Reduction/Learning latent

representations (Representation learning)
- Anomaly Detection
- Data Generation

Anomaly Detection

D. M. Hawkins, Identification of outliers, vol. 11., Springer, 1980.

What is an anomaly/outlier?
‘An outlier is an observation that
deviates so much from other
observations as to arouse suspicion
that it was generated by a different
mechanism’ (Hawkins definition [1])

Multivariate Anomaly Detection

Such approaches allow us to provide ‘anomaly
scores’: unique quantitative indicators able to
represent the degree of ‘outlierness’ of complex
systems with many variables

Many approaches:
- Density-based methods (e.g. LOF, DBSCAN)
- Distance-based methods (e.g. ORCA)
- Clustering-based methods (e.g. CBLOF)
- Neural Networks (e.g. Autoencoder)
- Isolation Forest
...

Strongly recommended library:
https://pyod.readthedocs.io/en/latest/

https://pyod.readthedocs.io/en/latest/

Anomaly Detection

https://www.mdpi.com/1424-8220/21/19/6679

https://www.mdpi.com/1424-8220/21/19/6679

Unsupervised Learning Tasks

- Clustering
- Dimensionality Reduction/Learning latent

representations (Representation learning)
- Anomaly Detection
- Data Generation

Unsupervised Learning Tasks

- Clustering
- Dimensionality Reduction/Learning latent

representations (Representation learning)
- Anomaly Detection
- Data Generation

Data Generation

- Generative Models
1. Variational Autoencoder
2. Generative Adversarial
Network (Previous year
lecture by N. Gentner)
- Generative Models aims at

learning useful
representations and to
generate new samples
from a complex distribution
that they model where the
data are sampled from

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

Data Generation

- Generative Models
1. Variational Autoencoder
2. Generative Adversarial
Network (Previous year
lecture by N. Gentner)
- Generative Models aims at

learning useful
representations and to
generate new samples
from a complex distribution
that they model where the
data are sampled from

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/

Variational Autoencoder (VAE)

- In standard autoencoders, the latent space can be extremely
irregular (close points in latent space can produce very different –
often meaningless – patterns over visible units) so usually we
cannot implement a generative process that simply samples a
vector from the latent space and passes it through the decoder

- Possible fix: make the mapping probabilistic!
1. The encoder returns a distribution over the latent space instead

of a single point
2. The loss function has an additional regularisation term in order to

ensure a “better organization” of the latent space

https://arxiv.org/abs/1312.6114

https://arxiv.org/abs/1312.6114

Variational Autoencoder (VAE)
- The encoded distribution is chosen to be a multivariate Gaussian, so that

the encoder can be trained to estimate the means and covariance
matrix

- This way we can regularize the loss function by forcing the latent
distribution to be as close as possible to a standard Normal distribution

KL Divergence:

Variational Autoencoder (VAE)
- The encoded distribution is chosen to be a multivariate Gaussian, so that

the encoder can be trained to estimate the means and covariance
matrix

- This way we can regularize the loss function by forcing the latent
distribution to be as close as possible to a standard Normal distribution

Reparametrization trick
- The latent representation is

now defined by two vectors
(means and covariance), so
the encoder network has two
(possibly partially overlapping)
branches

- The covariance could just be a
square matrix; however, to
reduce computational
complexity we assume that
the multivariate Gaussian has
a diagonal covariance matrix
(i.e., latent variables are
independent)

- Sampling is a discrete process,
and we cannot use
backpropagation! We need to
re-parameterize z to make it
differentiable

Reparametrization trick
- The latent representation is

now defined by two vectors
(means and covariance), so
the encoder network has two
(possibly partially overlapping)
branches

- The covariance could just be a
square matrix; however, to
reduce computational
complexity we assume that
the multivariate Gaussian has
a diagonal covariance matrix
(i.e., latent variables are
independent)

- Sampling is a discrete process,
and we cannot use
backpropagation! We need to
re-parameterize z to make it
differentiable

A. Testolin ‘Neural Networks and Deep Learning’

Reparametrization trick

Variational Autoencoder (VAE)
- The regularization

term indeed
promotes the
creation of a
gradient over the
latent
representations,
which allows to
generate samples
varying smoothly!

Disentangled VAE: 𝜷-VAE
- VAE can be further extended to promote learning of more disentangled

representations, which in some cases might encode independent latent
factors of variation in the data distribution

- The final goal would be to have single latent units of z sensitive to changes
in single generative factors (e.g., color of the hair) while being relatively
invariant to changes in other factors (e.g., color of the skin)

- Basic idea: introduce a penalization term in the KL-divergence using a
hyperparameter β > 1 that balances latent channel capacity and
independence constraints with reconstruction accuracy (the higher the β,
the more disentangled should be the representation)

Disentangled VAE: 𝜷-VAE https://arxiv.org/pdf/1606.05579.pdf

https://arxiv.org/pdf/1804.03599.pdf

https://arxiv.org/pdf/1804.03599.pdf
https://arxiv.org/pdf/1804.03599.pdf

Disentangled VAE: 𝜷-VAE https://arxiv.org/pdf/1606.05579.pdf

https://arxiv.org/pdf/1804.03599.pdf

https://arxiv.org/pdf/1804.03599.pdf
https://arxiv.org/pdf/1804.03599.pdf

Other generative approaches: GANs
- Generative Adversarial

Networks

- You’ll find a dedicated
legacy lecture on the
moodle page by N.
Gentner

https://sthalles.github.io/intro-to-gans/

https://sthalles.github.io/intro-to-gans/

Thank you!

Gian Antonio Susto

Machine Learning
2024/2025

