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Before starting: last lectures

WEEK 12
2025-05-12 Monday – Lecture 29: Fairness in ML
2025-05-15 Thursday – (Optional) Programming Mock Exam discussion
2025-05-16 Friday - Lecture 30 (Lab 09): NN #02

WEEK 13
2025-05-19 Monday – (Optional) Theory recap session with TAs
2025-05-22 Thursday – (No exam) Lecture 31: Real-world Applications and MLOps
2025-05-23 Friday – Lecture 32 (Lab 10): Recap LAB + Exam sim

WEEK 14
2025-05-26 Monday – Lecture 33: XAI #01
2025-05-29 Thursday – Lecture 34: XAI #02
2025-05-30 Friday – Lecture 35 (Lab 11): XAI LAB

WEEK 15
2025-06-05 Thursday – (No exam) Lecture 36: ML, what’s next?



Recap: 2D convolutions

From
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionO
perations.html

From http://cs231n.github.io/convolutional-
networks/

The operation is the 2D 
convolution: we multiply element-
wise 2 matrices (the input and the 

kernel – weights), then we sum 
and derive some ‘features’
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https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/


From https://www.songho.ca/dsp/convolution/convolution2d_example.html

[Optional procedure] We include ‘padding’ 
the image (equal to 1): we add a frame 

around the image of pixels with value = 0. 
When performing the convolution 

operation, padding allow border pixels to 
have similar importance to inner pixels

https://www.songho.ca/dsp/convolution/convolution2d_example.html


Soft-max layer

- Softmax turns raw scores 
(logits) into probabilities.

- Each output is in the range 
(0, 1), and all outputs sum to 
1.

- Commonly used in the final 
layer of neural networks for 
classification.



Cross-entropy loss

- Generalization of log-likelihood seen in 
logistic regression

- Measures the difference between predicted 
probabilities and true labels.

- Used as a loss function in classification tasks.

- Formula (binary):

- Formula (multi-class):

- Lower values mean better predictions.



Imagenet (2009)

- 21841 classes

- 14M images with 
different 
dimensions and 
resolutions (many 
apply resize to 
256x256)

- Unbalanced 
dataset

- Colour images

- Lead developer Fei-
Fei Li

MIT https://groups.csail.mit.edu/vision/TinyImages/

https://groups.csail.mit.edu/vision/TinyImages/


Classification task: produce a list of object categories present in image. 1000 
categories.

“Top 5 error”: rate at which the model does not output correct label in top 5 
predictions



An overview on the most famous architectures
Imagenet – visual recognition challenge with 1000 classes.

Winners:

First CNN-based winner



AlexNet
AlexNet (2012) renewed interest in CNN. 

It uses:

- RELU (first use)

- Layer normalization

- Dropout

- MaxPooling

- Momentum

- Data augmentation in training

The original paper's primary result was that the depth of 
the model was essential for its high performance, which 
was computationally expensive, but made feasible due 
to the utilization of graphics processing units (GPUs) 
during training.

From: http://cs231n.stanford.edu - Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in neural information processing 
systems. 2012.

Full (simplified) AlexNet architecture: 
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores)

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://cs231n.stanford.edu/


AlexNet

From: http://cs231n.stanford.edu - Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in neural information processing 
systems. 2012.

Full (simplified) AlexNet architecture: 
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores)

AlexNet (2012) renewed interest in CNN. 

It uses:

- RELU (first use)

- Layer normalization

- Dropout

- MaxPooling

- Momentum

- Data augmentation in training

The original paper's primary result was that the depth of 
the model was essential for its high performance, which 
was computationally expensive, but made feasible due 
to the utilization of graphics processing units (GPUs) 
during training.

http://cs231n.stanford.edu/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks


AlexNet

From: http://cs231n.stanford.edu - Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in neural information processing 
systems. 2012.

AlexNet (2012) renewed interest in CNN. 

It uses:

- RELU (first use)

- Layer normalization

- Dropout

- MaxPooling

- Momentum

- Data augmentation in training

62.3 million parameters: the original paper showed that 
the depth of the model was essential for its high 
performance, which was computationally expensive, but 
made feasible due to the utilization of (GPUs) during 
training.

http://cs231n.stanford.edu/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks


An overview on the most famous architectures
Imagenet – visual recognition challenge with 1000 classes.

Winners:

First really «deep» 
network



VGG 

VGG (2014): 

- many small convolutional filters 
stacked together before pooling

- very deep (at the time) with 16/19 
layers 

From: http://cs231n.stanford.edu

https://arxiv.org/abs/1409.1556
http://cs231n.stanford.edu/


VGG 

From: http://cs231n.stanford.edu

Wait. Why using 
smaller conv filters?

http://cs231n.stanford.edu/


VGG 

From: http://cs231n.stanford.edu

Consider a stack of three 3x3 
conv layers.

Which is the receptive field of 
this hidden unit?

Layer 1

Layer 2

Layer 3

http://cs231n.stanford.edu/
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VGG 

From: http://cs231n.stanford.edu

Consider a stack of three 3x3 
conv layers. 

Which is the receptive field of 
this hidden unit?

Same as one layer with 7x7 
conv filters.

Layer 1

But three layers mean more non-linearities, i.e. more 
complex features…

… and fewer parameters!

C channels (e.g. C=3 for RGB images):

- 7x7 conv has 72 x C = 147 parameters

- 3 layers of 3x3 conv have 3 x (32 x C) = 81 
parameters

Still, 138M parameters for VGG16!

http://cs231n.stanford.edu/


An overview on the most famous architectures
Imagenet – visual recognition challenge with 1000 classes.

Winners:



Inception + GoogLeNet (2015)– introduces 
parallel conv blocks (inception)

From: http://cs231n.stanford.edu From: http://cs231n.stanford.edu

GoogLeNet (optional) 

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/


Inception + GoogLeNet (2015)– introduces 
parallel conv blocks (inception)

Cleverly uses 1x1 convolutions

From: http://cs231n.stanford.edu From: http://cs231n.stanford.edu

Preserves spatial dimensions, but 
reduces depth! Feature maps (depth) 
are projected to lower dimension

GoogLeNet (optional) 

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/


Inception + GoogLeNet (2015)– introduces 
parallel conv blocks (inception)

Cleverly uses 1x1 convolutions

From: http://cs231n.stanford.edu From: http://cs231n.stanford.edu

Preserves spatial dimensions, but 
reduces depth! Feature maps (depth) 
are projected to lower dimension

GoogLeNet (optional)  

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/


From: http://cs231n.stanford.edu

GoogLeNet (optional) 

http://cs231n.stanford.edu/


An overview on the most famous architectures
Imagenet – visual recognition challenge with 1000 classes.

Winners:



ResNet

Why not stacking more and more layers?

From: http://cs231n.stanford.edu

http://cs231n.stanford.edu/


ResNet

Why not stacking more and more layers?

From: http://cs231n.stanford.edu

Even with all of the ‘tricks’ from
some point onward, stacking 
more layers make the training 

really hard!

http://cs231n.stanford.edu/


ResNet

ResNet (2015) – very deep model (152 
layer) with shortcut connections

From: http://cs231n.stanford.edu

From: http://cs231n.stanford.edu

https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/


ResNet

From: http://cs231n.stanford.edu

ResNet training:

- Batch Normalization after every CONV layer

- Xavier/2 initialization from He et al.

- SGD + Momentum (0.9)

- Learning rate: 0.1, divided by 10 when 
validation error plateaus

- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used
For ResNet with 

more than 50 
layers

http://cs231n.stanford.edu/


State of the art is always on the move…

https://paperswithcode.com/sota/image-classification-on-imagenet

https://paperswithcode.com/sota/image-classification-on-imagenet


Is not all about accuracy… 
EfficientNet

Tan, M., & Le, Q. (2019, May). 
Efficientnet: Rethinking model 
scaling for convolutional neural 
networks. In International 
Conference on Machine 
Learning (pp. 6105-6114). PMLR.



What do CCN see? (Optional)



What do CNN see? Visualize the layers

From: http://cs231n.stanford.edu

AlexNet 1CONV layer AlexNet 2CONV layer

http://cs231n.stanford.edu/


What do CNN see? Embedding space for features 

From: http://cs231n.stanford.edu

We can consider k-nearest neighbors in embedding space for last FC layer:

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012. 

http://cs231n.stanford.edu/


What do CNN see?
Embedding space for 
features 

From: http://cs231n.stanford.edu

We can plot final FC 
embedding layer by means of 
dimensionality reduction, e.g. 
tSNE (more powerful than PCA) 
or UMAP

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008 

http://cs231n.stanford.edu/


What do CNN see? Maximally 
activating neuros 

From: http://cs231n.stanford.edu

We can compute maximally 
activating patches.

Run many images through the 
network, record values of 
chosen channel (e.g. channel 
17/128 in conv5).

Visualize image patches that 
correspond to maximal 
activations.

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Figure copyright Jost
Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 

http://cs231n.stanford.edu/


What do CNN see? Most relevant pixels

From: http://cs231n.stanford.edu

Saliency maps, e.g. by occlusion:

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

P(elephant)=0,9
5

P(elephant)=0,7
5

http://cs231n.stanford.edu/


Unsupervised Learning in DL: Autoencoders



Unsupervised Learning Tasks

- Clustering
- Dimensionality Reduction/Learning latent 

representations (Representation learning)
- Anomaly Detection
- Data Generation



Dimensionality Reduction/Learning latent 
representations
Hypothesis: in high-dimensional data sets, the data nearly always lie 
on (or close to) a much lower-dimensional, smoothly curved manifold

Genes mirror geography within Europe – Nature 2008



Dimensionality Reduction/Learning latent 
representations
Simplest approach: Principal Component Analysis



The problem of finding meaningful and minimal 
representation is recurring in engineering…

- In Telecommunication 
we have the encoding 
and decoding of a signal 
before and after the 
transmission



This is a recurring problem, with different 
setting

L. Fridman MIT Deep Learning https://deeplearning.mit.edu/  

https://deeplearning.mit.edu/


Autoencoders

- Deterministic models 
trained using error 
backpropagation
- Input and Output are 
the same data: we force 
a network to be able to 
reconstruct such data 
with the limitation of 
having a ‘bottleneck’ 
(code) of limited size 



Autoencoders

- Deterministic models 
trained using error 
backpropagation
- Input and Output are 
the same data: we force 
a network to be able to 
reconstruct such data 
with the limitation of 
having a ‘bottleneck’ 
(code) of limited size 

The encoder provides a 
low dimensional 
representation of the 
input



Autoencoders

- Deterministic models 
trained using error 
backpropagation
- Input and Output are 
the same data: we force 
a network to be able to 
reconstruct such data 
with the limitation of 
having a ‘bottleneck’ 
(code) of limited size 

The decoder
reconstructs the input 

from its compressed 
representation



Autoencoders



Autoencoders

- Encoder and decoder 
can have different 
structure, however we 
can regularize the 
network by imposing a 
symmetric architecture
- Typically, the number 
of hidden units is chosen 
to be lower than input 
units 



Autoencoders

- With linear activations 
we can get PCA
- We can introduce 
regularizes to learn even 
more meaningful 
representations:
1. Sparse autoencoders 
(L1 penalty on hidden 
activations)
2. Denoising 
autoencoders



Denoising Autoencoders



… we can still use convolutions… 



Neural inpainting



Neural inpainting



Neural inpainting



Unsupervised Learning Tasks

- Clustering
- Dimensionality Reduction/Learning latent 

representations (Representation learning)
- Anomaly Detection
- Data Generation



Anomaly Detection

D. M. Hawkins, Identification of outliers, vol. 11., Springer, 1980.

What is an anomaly/outlier?
‘An outlier is an observation that 
deviates so much from other 
observations as to arouse suspicion 
that it was generated by a different 
mechanism’ (Hawkins definition [1])



Multivariate Anomaly Detection

Such approaches allow us to provide ‘anomaly 
scores’: unique quantitative indicators able to 
represent the degree of ‘outlierness’ of complex 
systems with many variables 

Many approaches:
- Density-based methods (e.g. LOF, DBSCAN)
- Distance-based methods (e.g. ORCA)
- Clustering-based methods (e.g. CBLOF)
- Neural Networks (e.g. Autoencoder)
- Isolation Forest
...

Strongly recommended library: 
https://pyod.readthedocs.io/en/latest/

https://pyod.readthedocs.io/en/latest/


Anomaly Detection

https://www.mdpi.com/1424-8220/21/19/6679 

https://www.mdpi.com/1424-8220/21/19/6679


Unsupervised Learning Tasks

- Clustering
- Dimensionality Reduction/Learning latent 

representations (Representation learning)
- Anomaly Detection
- Data Generation



Unsupervised Learning Tasks

- Clustering
- Dimensionality Reduction/Learning latent 

representations (Representation learning)
- Anomaly Detection
- Data Generation



Data Generation

- Generative Models
1. Variational Autoencoder
2. Generative Adversarial 
Network (Previous year 
lecture by N. Gentner)
- Generative Models aims at 

learning useful 
representations and to 
generate new samples 
from a complex distribution 
that they model where the 
data are sampled from

https://thispersondoesnotexist.com/

https://thispersondoesnotexist.com/
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Variational Autoencoder (VAE)

- In standard autoencoders, the latent space can be extremely 
irregular (close points in latent space can produce very different –
often meaningless – patterns over visible units) so usually we 
cannot implement a generative process that simply samples a 
vector from the latent space and passes it through the decoder

- Possible fix: make the mapping probabilistic! 
1. The encoder returns a distribution over the latent space instead 

of a single point 
2. The loss function has an additional regularisation term in order to 

ensure a “better organization” of the latent space

https://arxiv.org/abs/1312.6114 

https://arxiv.org/abs/1312.6114


Variational Autoencoder (VAE)
- The encoded distribution is chosen to be a multivariate Gaussian, so that 

the encoder can be trained to estimate the means and covariance 
matrix 

- This way we can regularize the loss function by forcing the latent 
distribution to be as close as possible to a standard Normal distribution

KL Divergence:



Variational Autoencoder (VAE)
- The encoded distribution is chosen to be a multivariate Gaussian, so that 

the encoder can be trained to estimate the means and covariance 
matrix 

- This way we can regularize the loss function by forcing the latent 
distribution to be as close as possible to a standard Normal distribution



Reparametrization trick
- The latent representation is 

now defined by two vectors 
(means and covariance), so 
the encoder network has two 
(possibly partially overlapping) 
branches 

- The covariance could just be a 
square matrix; however, to 
reduce computational 
complexity we assume that 
the multivariate Gaussian has 
a diagonal covariance matrix 
(i.e., latent variables are 
independent) 

- Sampling is a discrete process, 
and we cannot use 
backpropagation! We need to 
re-parameterize z to make it 
differentiable



Reparametrization trick
- The latent representation is 

now defined by two vectors 
(means and covariance), so 
the encoder network has two 
(possibly partially overlapping) 
branches 

- The covariance could just be a 
square matrix; however, to 
reduce computational 
complexity we assume that 
the multivariate Gaussian has 
a diagonal covariance matrix 
(i.e., latent variables are 
independent) 

- Sampling is a discrete process, 
and we cannot use 
backpropagation! We need to 
re-parameterize z to make it 
differentiable

A. Testolin ‘Neural Networks and Deep Learning’



Reparametrization trick



Variational Autoencoder (VAE)
- The regularization 

term indeed 
promotes the 
creation of a 
gradient over the 
latent 
representations, 
which allows to 
generate samples 
varying smoothly!



Disentangled VAE: 𝜷-VAE 
- VAE can be further extended to promote learning of more disentangled 

representations, which in some cases might encode independent latent 
factors of variation in the data distribution

- The final goal would be to have single latent units of z sensitive to changes 
in single generative factors (e.g., color of the hair) while being relatively 
invariant to changes in other factors (e.g., color of the skin) 

- Basic idea: introduce a penalization term in the KL-divergence using a 
hyperparameter β > 1 that balances latent channel capacity and 
independence constraints with reconstruction accuracy (the higher the β, 
the more disentangled should be the representation)



Disentangled VAE: 𝜷-VAE https://arxiv.org/pdf/1606.05579.pdf

https://arxiv.org/pdf/1804.03599.pdf 

https://arxiv.org/pdf/1804.03599.pdf
https://arxiv.org/pdf/1804.03599.pdf


Disentangled VAE: 𝜷-VAE https://arxiv.org/pdf/1606.05579.pdf

https://arxiv.org/pdf/1804.03599.pdf 

https://arxiv.org/pdf/1804.03599.pdf
https://arxiv.org/pdf/1804.03599.pdf


Other generative approaches: GANs
- Generative Adversarial 

Networks

- You’ll find a dedicated 
legacy lecture on the 
moodle page by N. 
Gentner

https://sthalles.github.io/intro-to-gans/ 

https://sthalles.github.io/intro-to-gans/


Thank you!

Gian Antonio Susto 

Machine Learning
2024/2025


