Hydronic systems – design principles

Heating, Ventilation and Air Conditioning Systems A.A. 2024/25

Jacopo Vivian 5/5/2025

Bernoulli's principle

For incompressible fluids with steady flow:

$$p + \rho gh + \frac{\rho u^2}{2} = cost.$$

The pressure drops of a closed circuit should be equal to the head of the pump:

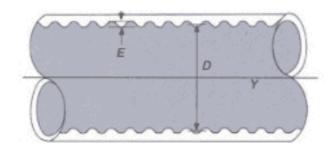
$$\Delta \mathbf{p} = \sum_{j} \rho \left(f_j \frac{L_j}{D_j} + \beta_j \right) \frac{u^2}{2} = \sum_{j} \frac{\rho}{2S_j^2} \left(f_j \frac{L_j}{D_j} + \beta_j \right) Q_{\nu,j}^2$$

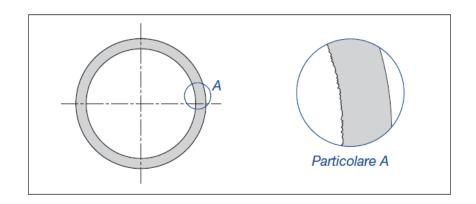
Pressure losses

The pressure losses in a hydronic circuit are of two types:

Distributed (or continuous) losses: proportional to the pipe length

$$\Delta \mathbf{p} = f \frac{L}{D} \frac{\rho u^2}{2}$$


Localized losses: dependent on the element (fitting, valve, heat exchanger etc) encountered by the flow


$$\Delta \mathbf{p} = \beta \frac{\rho u^2}{2}$$

Friction factor

In general, the friction factor f depends on the Reynolds number and on relative pipe roughness

$$f = f\left(\frac{\varepsilon}{D}, Re\right)$$

Reynolds number

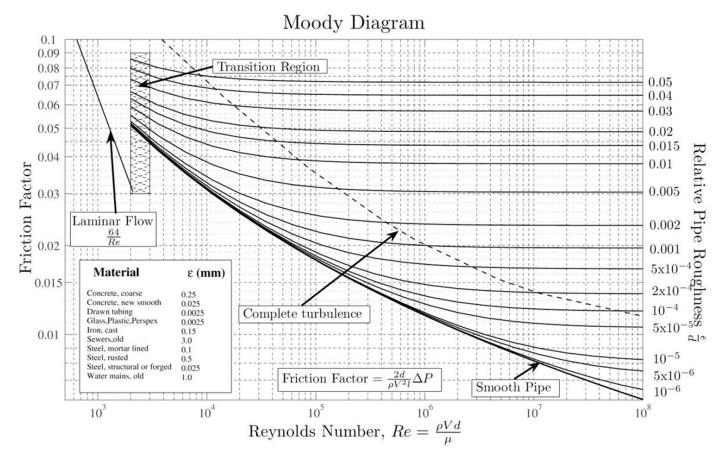
The Reynolds number is the ratio between between inertial and viscous forces on a fluid in motion

$$Re = \frac{u D \rho}{\mu} = \frac{u D}{v}$$

 $\mu = dynamic viscosity [Pa \cdot s] or [N \cdot s/m^2] or [kg/(m \cdot s)]$ $\nu = \frac{\mu}{\rho}$ kinematic viscosity [m²/s]

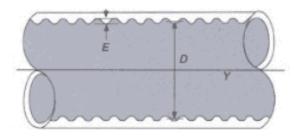
Friction factor

At low Reynolds numbers (Re < 2000), the flow is laminar and the friction factor depends only on the Reynolds number</p>


$$f = \frac{64}{Re}$$

At high Reynolds numbers (*Re* > 3000), the flow is turbulent and the friction factor depends also on relative pipe roughness according to Colebrook's correlation:

$$\frac{1}{f^{0.5}} = -2\log_{10}\left(\frac{2.51}{Re \cdot f^{0.5}} + \frac{\frac{\varepsilon}{D}}{3.71}\right)$$


Friction factor

The graphical representation of Colebrook's correlation is the Moody Diagram.

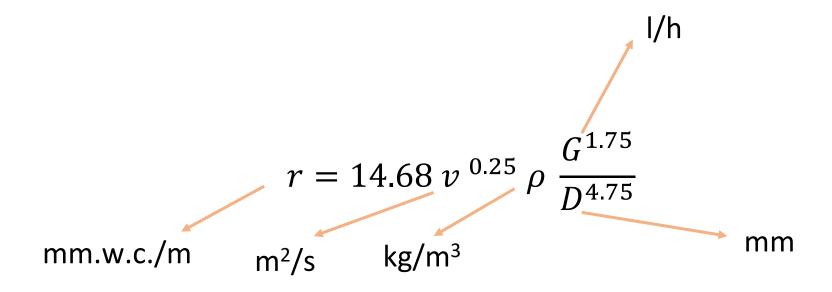
Friction factor

Alternatively, some approximated correlations can be used to calculate the friction factor. Their validity is limited to the case considered:

Material	Absolute Roughness (mm)		
Copper, Lead, Brass, Aluminum (new)	0.001 - 0.002		
PVC and Plastic Pipes	0.0015 - 0.007		
Flexible Rubber Tubing - Smooth	0.006-0.07		
Stainless Steel	0.0015		
Steel Commercial Pipe	0.045 - 0.09		
Weld Steel	0.045		
Carbon Steel (New)	0.02-0.05		
Carbon Steel (Slightly Corroded)	0.05-0.15		
Carbon Steel (Moderately Corroded)	0.15-1		
Carbon Steel (Badly Corroded)	1-3		
Asphalted Cast Iron	0.1-1		
New Cast Iron	0.25 - 0.8		
Worn Cast Iron	0.8 - 1.5		
Rusty Cast Iron	1.5 - 2.5		
Galvanized Iron	0.025-0.15		
Wood Stave	0.18-0.91		
Wood Stave, used	0.25-1		
Smoothed Cement	0.3		
Ordinary Concrete	0.3 - 1		
Concrete - Rough, Form Marks	0.8-3		

Friction factor

Alternatively, some approximated correlations can be used to calculate the friction factor. Their validity is limited to the case considered:


Low roughness

Commercially available <u>copper, inox, multi-layer and plastic pipes</u> can be considered as low roughness pipes (0.001 < ϵ < 0.007 mm)

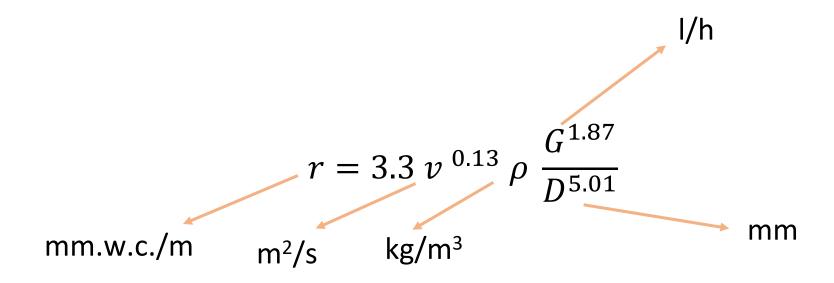
$$f = 0.316 \, Re^{-0.25}$$

Low roughness pipes

Commercially available <u>copper, inox, multi-layer and plastic pipes</u> can be considered as low roughness pipes ($0.001 < \varepsilon < 0.007$ mm)

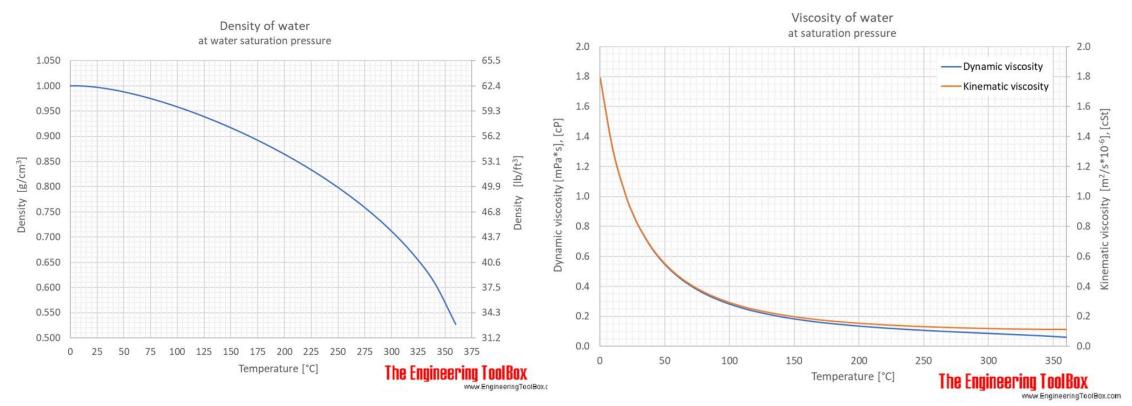
Friction factor

Alternatively, some approximated correlations can be used to calculate the friction factor. Their validity is limited to the case considered:


Average roughness

Commercially available iron and galvanized steel pipes can be considered as average roughness pipes (0.020 < ε < 0.090 mm)

$$f = 0.07 Re^{-0.13} D^{-0.14}$$


Average roughness pipes

Commercially available iron and galvanized steel pipes can be considered as average roughness pipes (0.020 < ε < 0.090 mm)

Effects of temperature

The viscosity and density of the water are affected by its temperature.

Effects of temperature

The viscosity and density of the water are affected by its temperature.

Property of Water	0° C	20° C	40° C	60° C	80° C	100° C	Units	
Density	999.84	998.21	992.22	983.20	971.82	958.40	kg m ⁻³	
Thermal Expansion	-0.07	0.207	0.385	0.523	0.643	0.752	*10 ⁻³ K ⁻¹	
Isothermal Compression	5.0879	4.5895	4.4241	4.4507	4.6418	4.9015	*10 ⁻¹⁰ Pa ⁻¹	
(Volume Viscosity)								
Dynamic Viscosity	1.793	1.002	0.6532	0.4665	0.3544	0.2818	*10 ⁻³ kg m ⁻¹ s ⁻¹ (Pa s)	
Kinematic Viscosity	1.787	1.004	0.658	0.475	0.365	0.294	*10 ⁻⁶ m ² s ⁻¹	
Thermal Conductivity	561.0	598.4	630.5	654.3	670.0	679.1	*10 ⁻³ W m ⁻¹ K ⁻¹	
Specific Heat	4.2176	4.1818	4.1785	4.1843	4.1963	4.2159	*10 ³ J kg ⁻¹ K ⁻¹	
at constant pressure C_p								
Specific Heat							*10 ³ J kg ⁻¹ K ⁻¹	
at constant volume C_v								
Specific Entropy e	0	0.296	0.581	0.832	1.076	1.307	*10 ³ J kg ⁻¹ K ⁻¹	
Specific Enthalpy	0	83.8	167.6	251.5	335.3	419.1	*10 ³ J kg ⁻¹	
Saturation Vapor	611.3	2,338.8	7,381.4	19,932	47,373	101,325	Pa	
Pressure								
Surface Tension	75.64	72.75	69.60	66.24	62.47	58.91	*10 ⁻³ Nm ⁻¹	
Speed of Sound	1,403	1,481	1,526	1,552	1,555	1,543	m s ⁻¹	

[Source: www.engineersedge.com]

Friction factor

Alternatively, some approximated correlations can be used to calculate the friction factor. Their validity is limited to the case considered:

High roughness

<u>Pipes with deposits and corroded pipes</u> can be considered as high roughness pipes (0.200 < ϵ < 1.000 mm)

$$f = \cdots$$

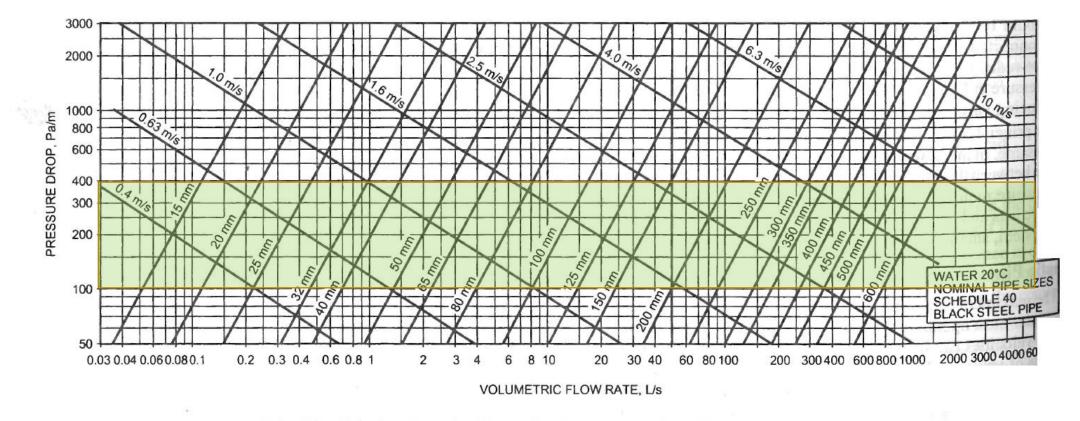


Fig. 14 Friction Loss for Water in Commercial Steel Pipe (Schedule 40)

[Source: ASHRAE Handbooks]

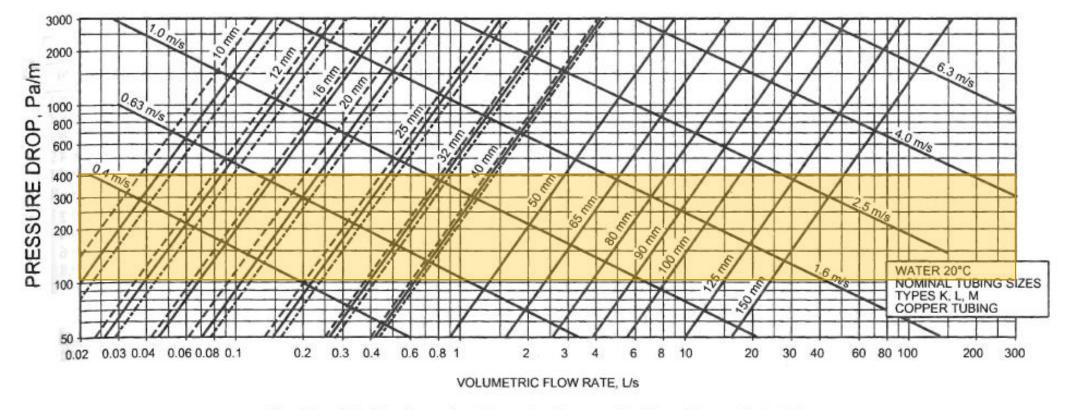


Fig. 15 Friction Loss for Water in Copper Tubing (Types K, L, M)

[Source: ASHRAE Handbooks]

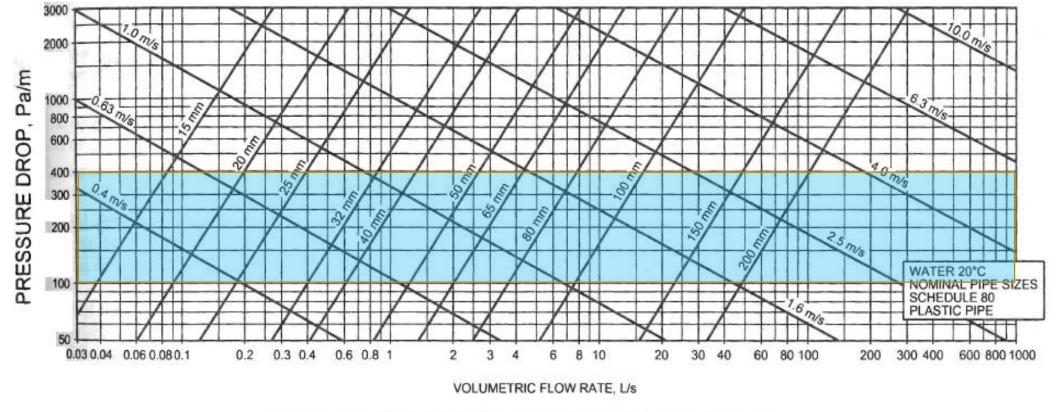


Fig. 16 Friction Loss for Water in Plastic Pipe (Schedule 80)

[Source: ASHRAE Handbooks]

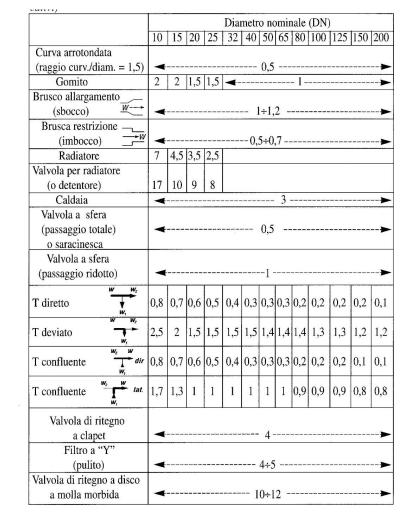
Localized pressure losses

Loss coefficients for valves

Internal diameter copper tube	8÷16 mm	18÷28 mm	30÷54 mm	>54 mm	
External diamete	3/8"÷1/2"	3/4"÷1"	1 1/4"÷2"	>2"	
Localised loss type	Symbol				
Shut-off valve	-174-	. 10,0	8,0	7,0	6,0
Shut-off valve	->&-	5,0	4,0	3,0	3,0
Reduced passage gate valve	-545-	1,2	1,0	0,8	0,6
Total passage gate valve	-12421-	0,2	0,2	0,1	0,1
Reduced passage ball valve	->>>-	1,6	1,0	0,8	0,6
Total passage ball valve	->>>-	0,2	0,2	0,1	0,1
Butterfly valve	-1 ~ .+	3,5	2,0	1,5	1,0
Check valve	4	3,0	2,0	1,0	1,0
Radiator valve	—ō—	8,5	7,0	6,0	_
Radiator valve		4,0	4,0	3,0	_
Lockshield	§	1,5	1,5	1,0	_
Lockshield		1,0	1,0	0,5	-
4-way valve	- 读-	6,0 4,0		á,0	
3-way valve	-\$	10,0 8,0			8,0
Passage through radiator		3,0			
Passage through boiler		3,0			

[source: *M. Doninelli,* Design principles of hydronic heating systems, Caleffi Handbooks]

Localized pressure losses


Loss coefficients for elbows, bends, section changes, Tjoints and other elements

> [source: *M. Doninelli,* Design principles of hydronic heating systems, Caleffi Handbooks]

Internal dian	neter copper tub	e, PEad, PEX	8÷16 mm	18÷28 mm	30÷54 mm	>54 mm
External diameter steel tube			3/8"÷1/2"	3/4"÷1"	1 1/4"÷2"	>2"
Localised loss type		Symbol				
Narrow bend 90°	r/d = 1,5	ſ	2,0	1,5	1,0	0,8
Normal bend 90°	r/d = 2,5	C	1,5	1,0	0,5	0,4
Wide bend 90°	r/d > 3,5	C	1,0	0,5	0,3	0,3
Narrow bend U	r/d = 1,5	n	2,5	2,0	1,5	1,0
Normal bend U	r/d = 2,5	\cap	2,0	1,5	0,8	0,5
Wide bend U	r/d > 3,5	\cap	1,5	0,8	0,4	0,4
Section change			1,0			
Section change			0,5			
T joint			1,0			
T joint			1,0			
T joint			3,0			
T joint			3,0			
Angle joint (45°- 60°)		\neg		0	,5	
Angle joint (45°- 60°)		7	0,5			
Bend joint			2,0			
Bend joint		γ	2,0			

Localized pressure losses

Loss coefficients for valves, section changes, T-joints and other elements

[source: *Miniguida AICARR*]

Pipe design

Rules of thumb for pipe sizing

- The general range for pipe sizing is between 100 and 400 Pa/m, with the mean value of 250 Pa/m being a commonly used target for pipe design
- Upper limits to avoid noise are 1.2 m/s for piping with D<50 mm and 400 Pa/m for bigger pipes, where higher velocities are allowed.

Note: Noise is not directly caused by high velocity, but rather by free air, pressure drops, turbulence or a combination of these that cause cavitation of flashing of water into steam.

Pipe design

Rules of thumb for pipe sizing

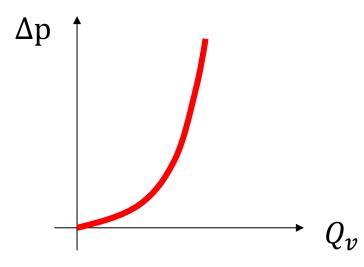
Note: Noise is not directly caused by high velocity, but rather by free air, pressure drops, turbulence or a combination of these that cause cavitation of flashing of water into steam.

- Air in hydronic systems is undesirable because (i) it causes flow noise, (ii) allows oxygen to react with piping material, (iii) might prevent flow in parts of a system.
- The solubility of air in water increases with pressure and decreases with temperature. Therefore, air separation is best achieved in the point of lowest pressure and/or highest temperature.

Rules of thumb for pipe sizing

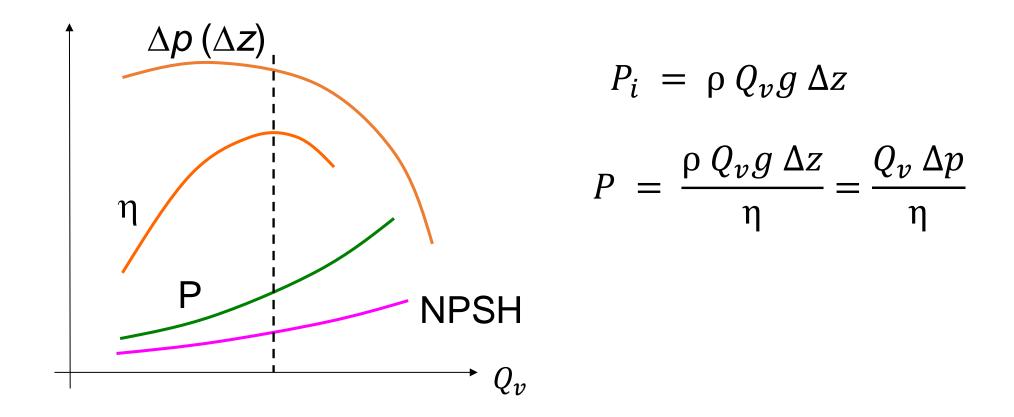
Note: Air can be entrained in the water and carried to separation units at flow velocities higher than 0.5-0.6 m/s in pipes with D<50 mm.

- For this reason, a minimum velocity of 0.6 m/s is recommended for pipes with D<50 mm.</p>
- For bigger pipes, velocities that correspond to at least 75 Pa/m are sufficient.

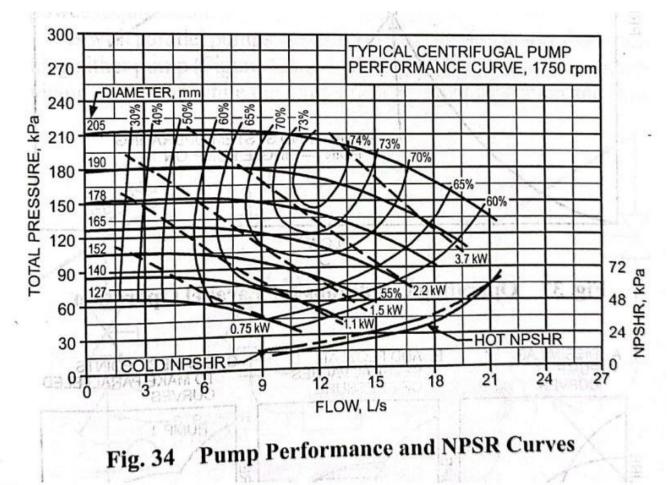

Note: The constraint of minimum velocity is particularly important in the upper floors of high rise buildings, where air tends to leak into the circuit due to reduced pressures.

Pipe design

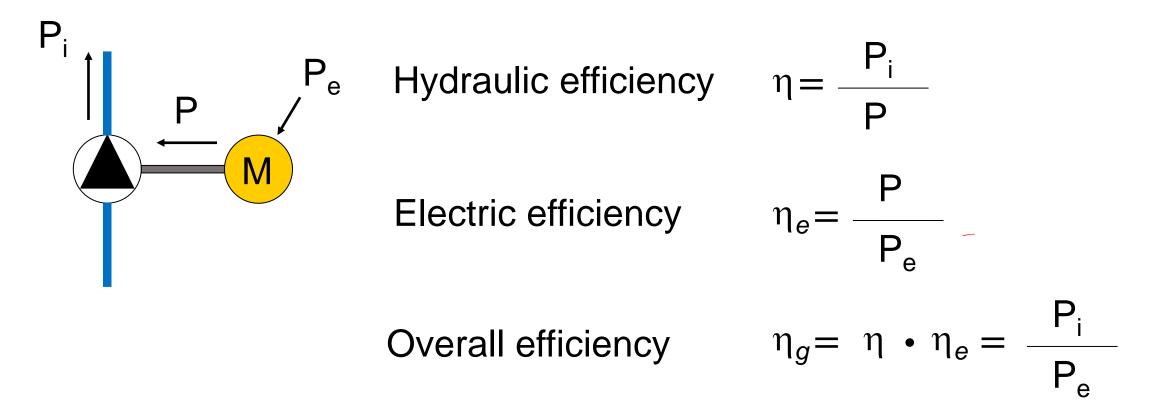
Sizing procedure


- 1. Given the heat load of the building zones, size the terminal units and calculate the corresponding flow rates
- 2. Sketch the distribution system connecting the heat supply station to the terminal units (see previous lecture)
- 3. Set a target value to the flow velocity (m/s) or to the linear pressure loss (Pa/m) in all pipes, valves and fittings
- 4. Calculate the corresponding diameter and find the closest available diameter
- 5. Recalculate velocities and pressures according to the selected diameters and check if they are within upper and lower limits.

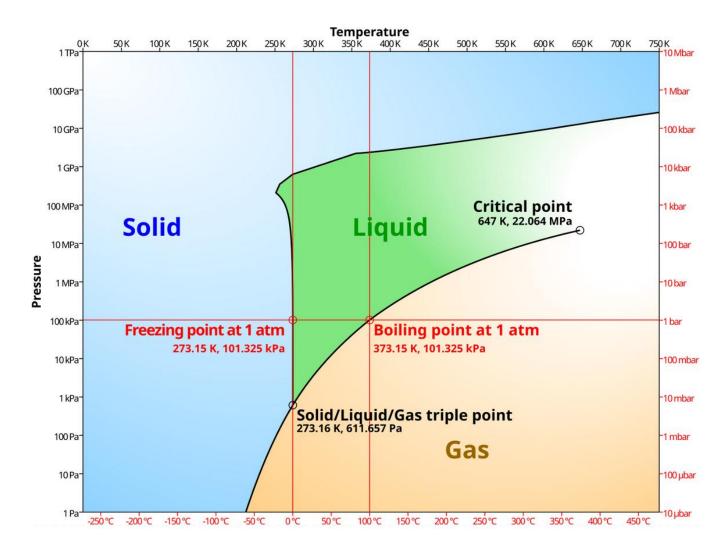
Characteristic curve of the circuit

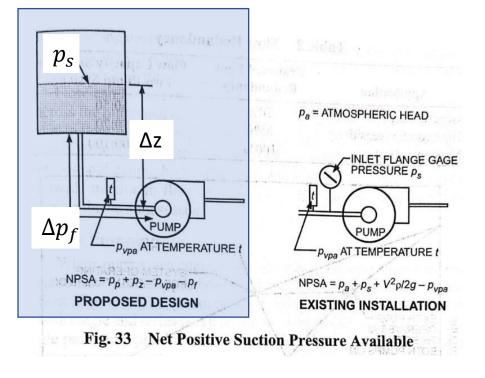


$$\Delta \mathbf{p} = \sum_{j} \frac{\rho}{2S_j^2} \left(f_j \frac{L_j}{D_j} + \beta_j \right) Q_{\nu,j}^2 = k Q_\nu^2$$


Characteristic (performance) curves of the pump

Characteristic (performance) curves of the pump

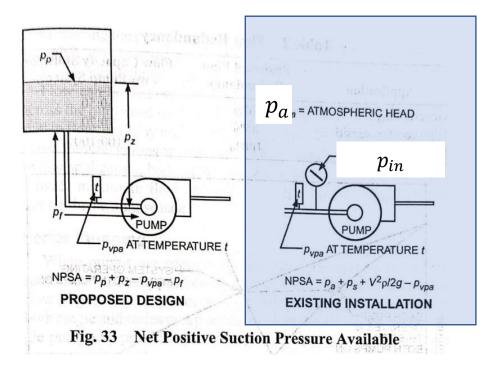

Efficiency of the pump


Cavitation

Cavitation is the phenomenon in which the static pressure of a liquid reduces to below the liquid's vapor pressure, leading to the formation of small vapor-filled cavities in the liquid.

When subjected to higher pressure, these cavities (bubbles), collapse and can generate shock waves that may damage machinery.

Net Positive Suction Head (NPSH)



[source: 2020 ASHRAE Handbook – HVAC systems and Equipment]

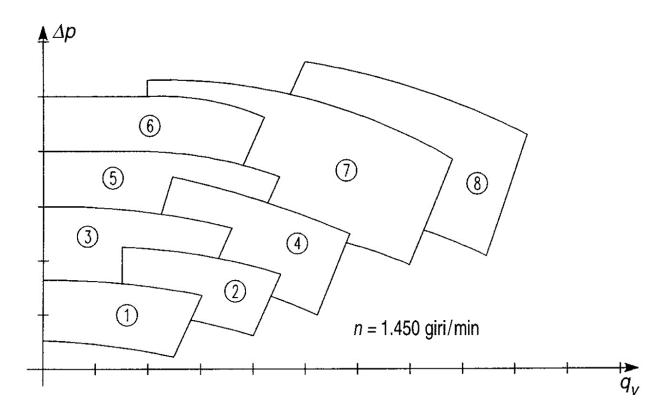
 $NPSH_a \ge NPSH_r$

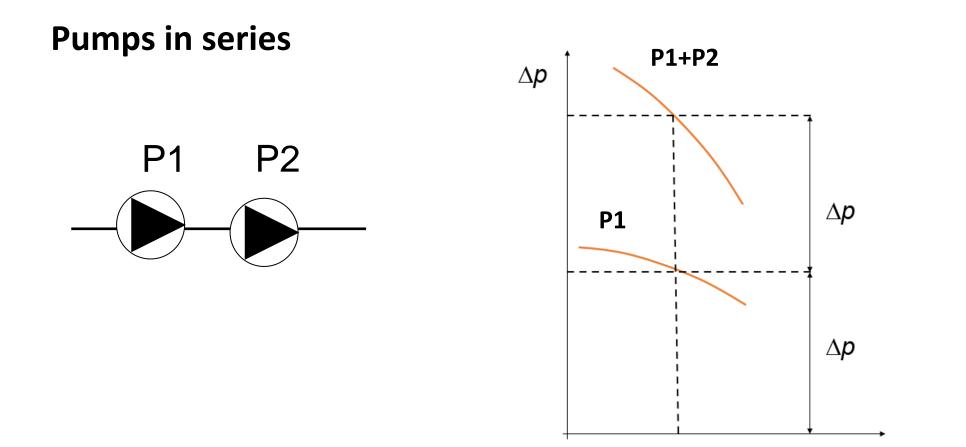
$$NPSH_a = p_s + \rho g \Delta z - \Delta p_f - p_v(T)$$

Net Positive Suction Head (NPSH)

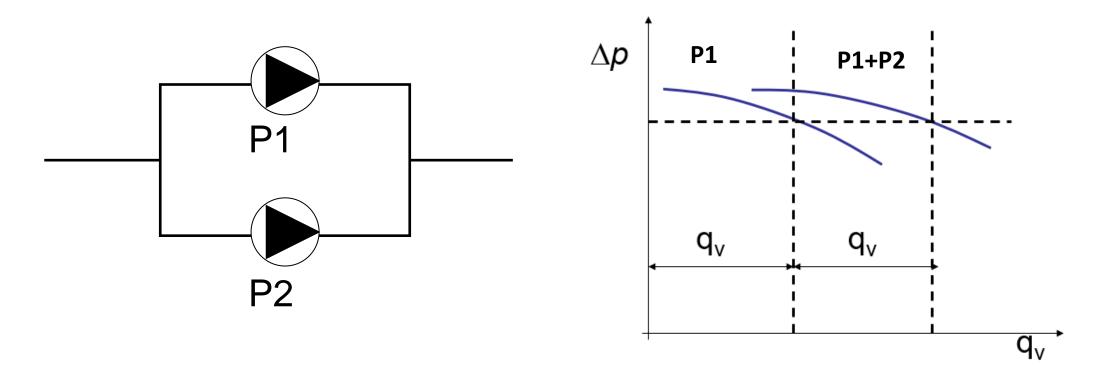
[source: 2020 ASHRAE Handbook – HVAC systems and Equipment]

 $NPSH_a \ge NPSH_r$

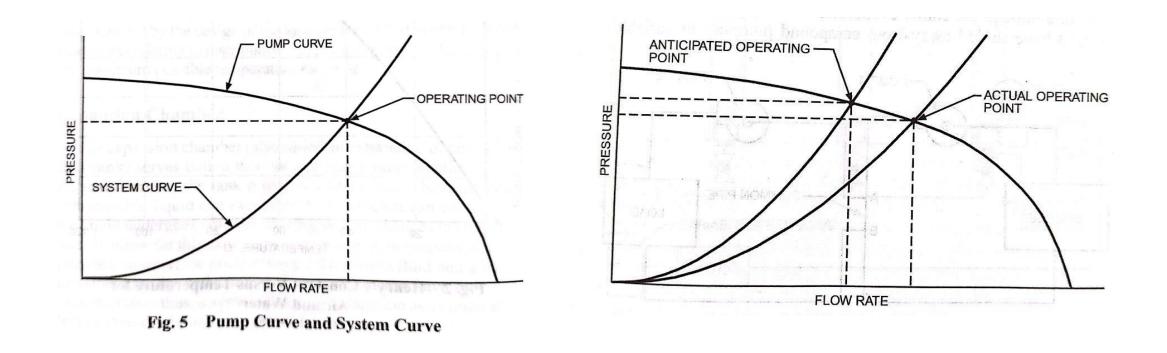

$$NPSH_a = p_a + p_{in} + \frac{\rho u^2}{2} - p_v(T)$$

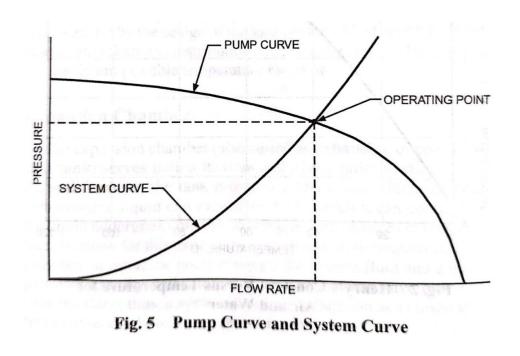

Affinity laws

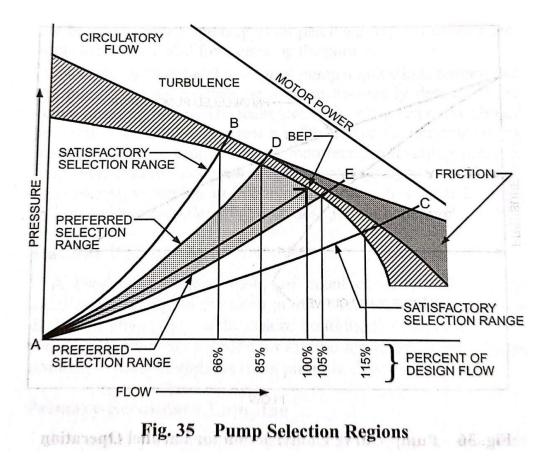
	Speed change (same diameter)	Impeller diameter change (same speed)
Flow	$Q_{\nu 2} = Q_{\nu 1} \left(\frac{n_2}{n_1}\right)$	$Q_{\nu 2} = Q_{\nu 1} \left(\frac{D_2}{D_1}\right)$
Pressure head	$\Delta p_2 = \Delta p_1 \left(\frac{n_2}{n_1}\right)^2$	$\Delta p_2 = \Delta p_1 \left(\frac{D_2}{D_1}\right)^2$
Power	$P_2 = P_1 \left(\frac{n_2}{n_1}\right)^3$	$P_2 = P_1 \left(\frac{D_2}{D_1}\right)^3$
Efficiency	$\eta_1=\eta_2$	$\eta_1\cong {\eta_2}^*$


Affinity laws

 $\frac{Q_{\nu 1}}{Q_{\nu 2}} = \frac{D_1}{D_2}$ $\frac{\Delta p_1}{\Delta p_2} = \left(\frac{D_1}{D_2}\right)^2$




Pumps in parallel



Working point

Working point

