

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

Machine Learning

2024/2025

AMCO
ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

Lecture #26

Convolutional Neural Networks

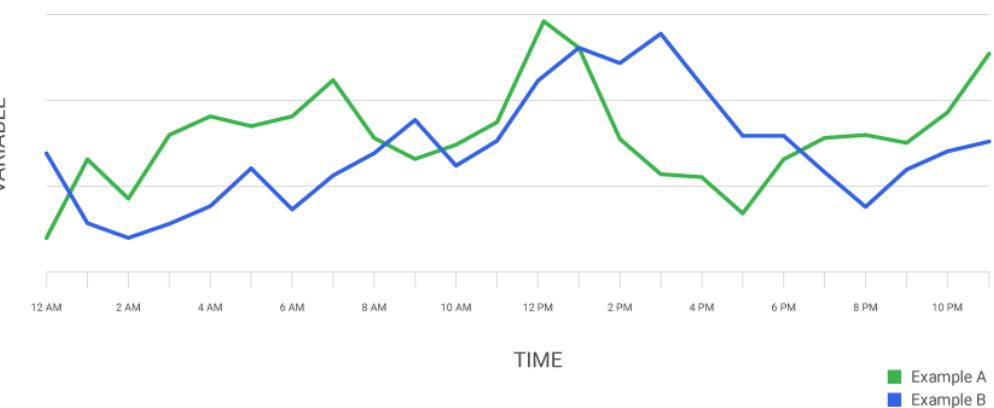
Gian Antonio Susto

Reference Material (used for this presentation):

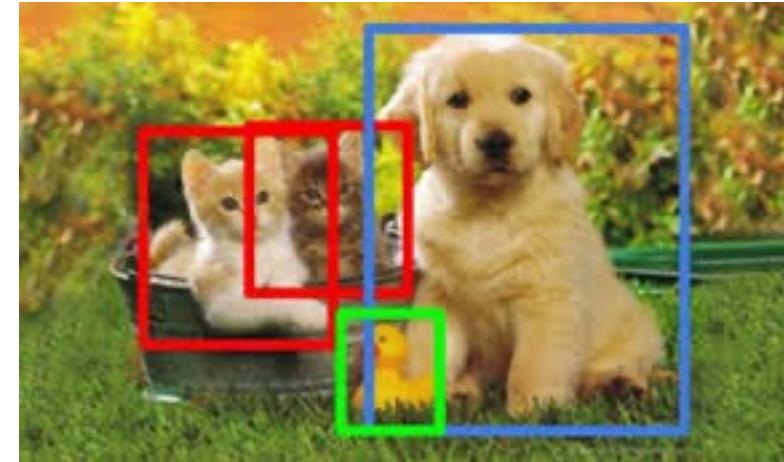
- MIT *Introduction to Deep Learning* <http://introtodeeplearning.com>
- L. Fridman MIT Deep Learning <https://deeplearning.mit.edu/>
- I. Goodfellow, Y. Bengio, A. Courville. *Deep learning*. MIT press, 2016.
- ImageNET <http://www.image-net.org/>
- C. Szegedy et al. *Going Deeper with Convolutions* CVPR2015
- F. Li, J. Johnson, S. Yeung. *Stanford CS231n Convolutional Neural Networks for Visual Recognition* <http://cs231n.stanford.edu/> + <http://cs231n.github.io/convolutional-networks/>
- Y. LeCun <http://yann.lecun.com/exdb/lenet/>
- <https://www.kaggle.com/zalando-research/fashionmnist>
- MIT <https://groups.csail.mit.edu/vision/TinyImages/>
- ImageNET <http://www.image-net.org/>
- <https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd>
- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. *Imagenet classification with deep convolutional neural networks*. Advances in neural information processing systems. 2012.
- C. Szegedy et al. *Going Deeper with Convolutions* CVPR2015
- Lee, Honglak, et al. "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations." Proceedings of the 26th annual international conference on machine learning. ACM, 2009
- Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014
- Lee, Honglak, et al. "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations." Proceedings of the 26th annual international conference on machine learning. ACM, 2009
- Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014
- The complete history of Lenna <http://www.ee.cityu.edu.hk/~lmpo/lenna/Lenna97.html>
- Style transfer <https://deepart.io/>
- <https://paperswithcode.com/sota/image-classification-on-imagenet>

From lecture #02:

Different tasks
(objectives), different
models, different **data
type**... and different
stages of development!

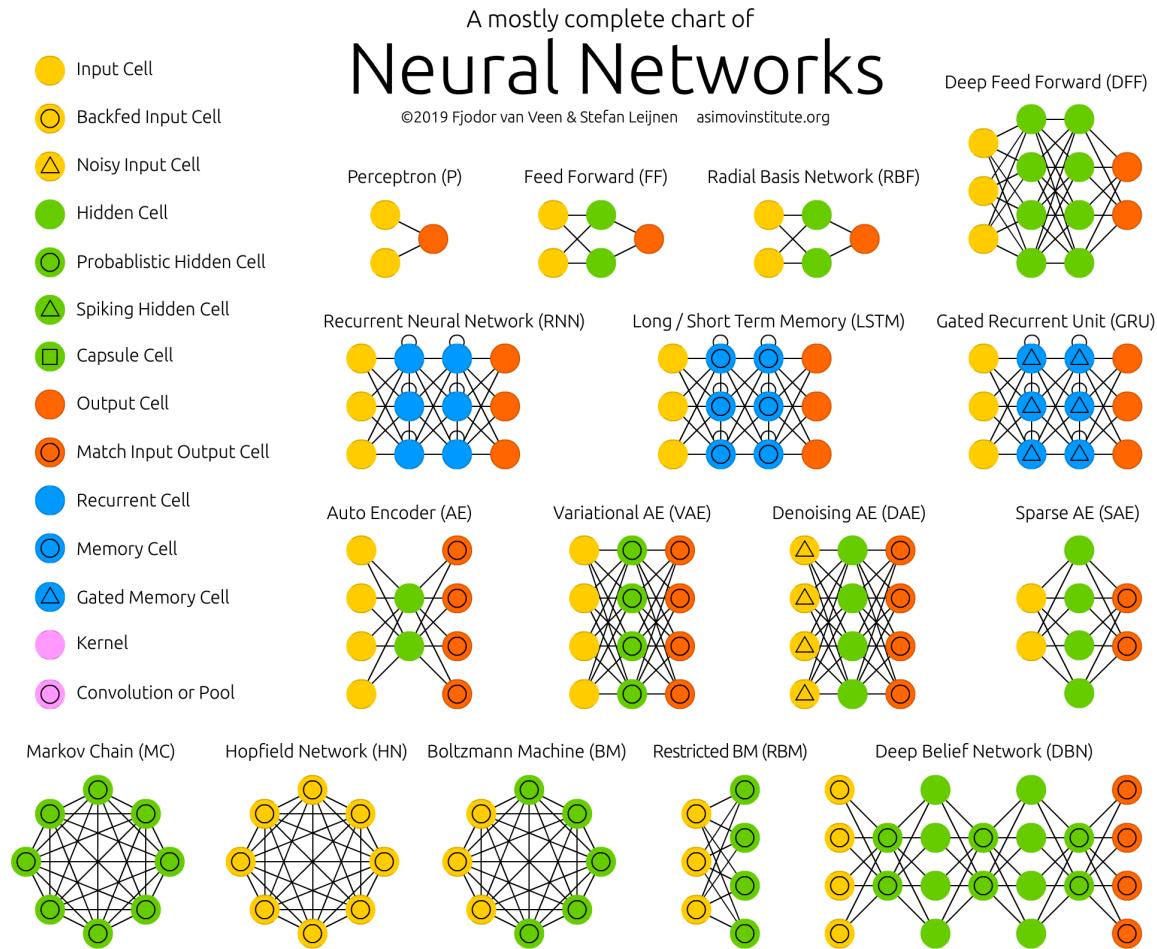
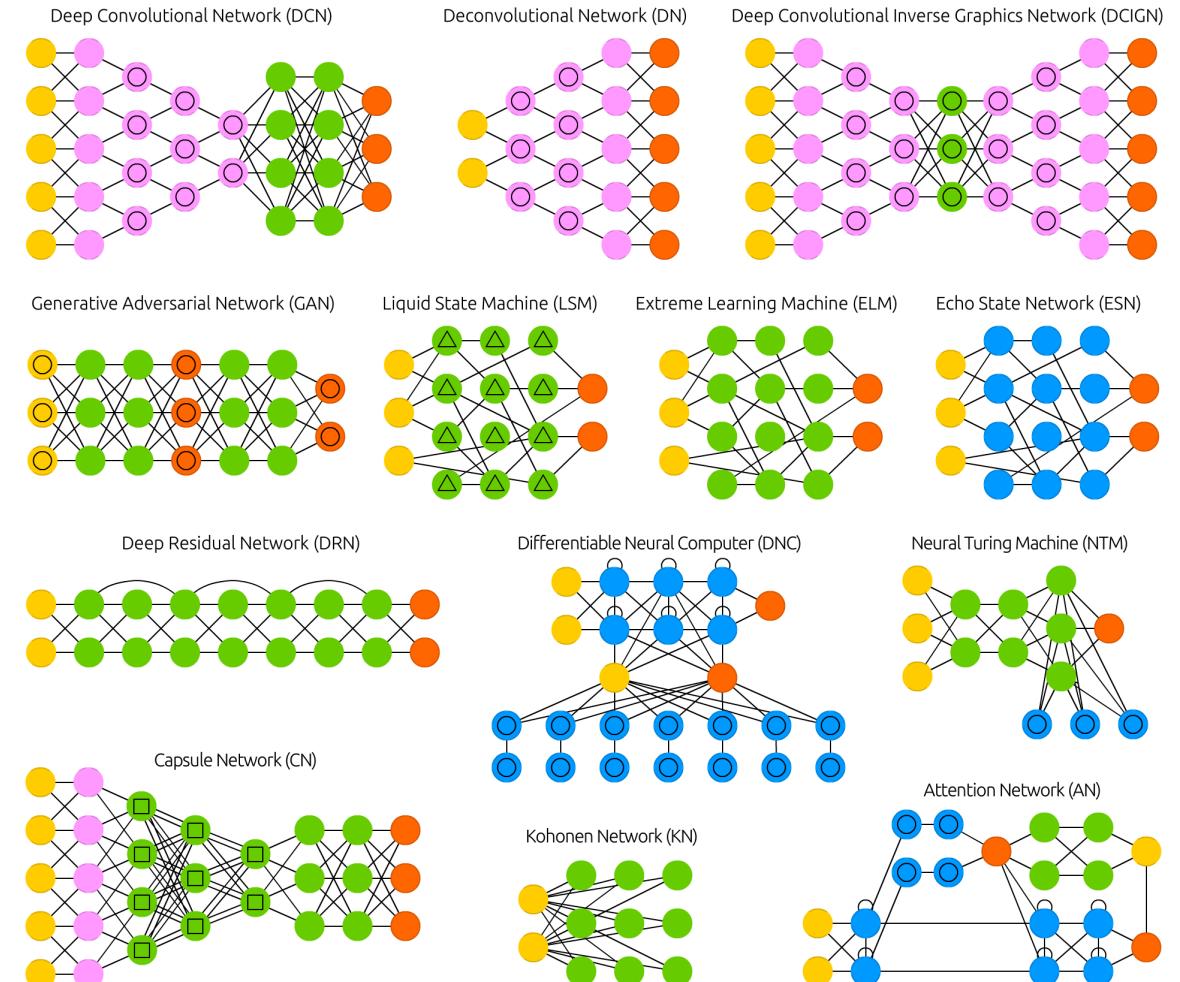


semantic web search results



39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45	United-States	>50K
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50K
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40	United-States	>50K
37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80	United-States	>50K
30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	India	>50K
23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50K
32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50K
40	Private	121772	Assoc-vc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	?	>50K
34	Private	245487	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50K
25	Self-emp-not-inc	176756	HS-grad	9	Never-married	Farming-fishing	Own-child	White	Male	0	0	35	United-States	<=50K
32	Private	186824	HS-grad	9	Never-married	Machine-op-inspct	Unmarried	White	Male	0	0	40	United-States	<=50K
38	Private	28887	11th	7	Married-civ-spouse	Sales	Husband	White	Male	0	0	50	United-States	<=50K
43	Self-emp-not-inc	292175	Masters	14	Divorced	Exec-managerial	Unmarried	White	Female	0	0	45	United-States	>50K
40	Private	193524	Doctorate	16	Married-civ-spouse	Prof-specialty	Husband	White	Male	0	0	60	United-States	>50K
54	Private	302146	HS-grad	9	Separated	Other-service	Unmarried	Black	Female	0	0	20	United-States	<=50K
35	Federal-gov	76845	9th	5	Married-civ-spouse	Farming-fishing	Husband	Black	Male	0	0	40	United-States	<=50K
43	Private	117037	11th	7	Married-civ-spouse	Transport-moving	Husband	White	Male	0	2042	40	United-States	<=50K
59	Private	109015	HS-grad	9	Divorced	Tech-support	Unmarried	White	Female	0	0	40	United-States	<=50K

With DL architectures we are able to handle all sort of data



Today: Convolutional Neural Networks (CNNs) to deal with images/videos

Today: Convolutional
Neural Networks (CNNs)
to deal with
images/videos

We will not see in this course
Recurrent Neural Networks
(RNNs) to deal with
sequence learning tasks

Outline:

- CNN building blocks
- Tasks in Computer Vision
- Datasets for Computer Vision & Historical CNNs
- What a CNN sees?

Human Vision

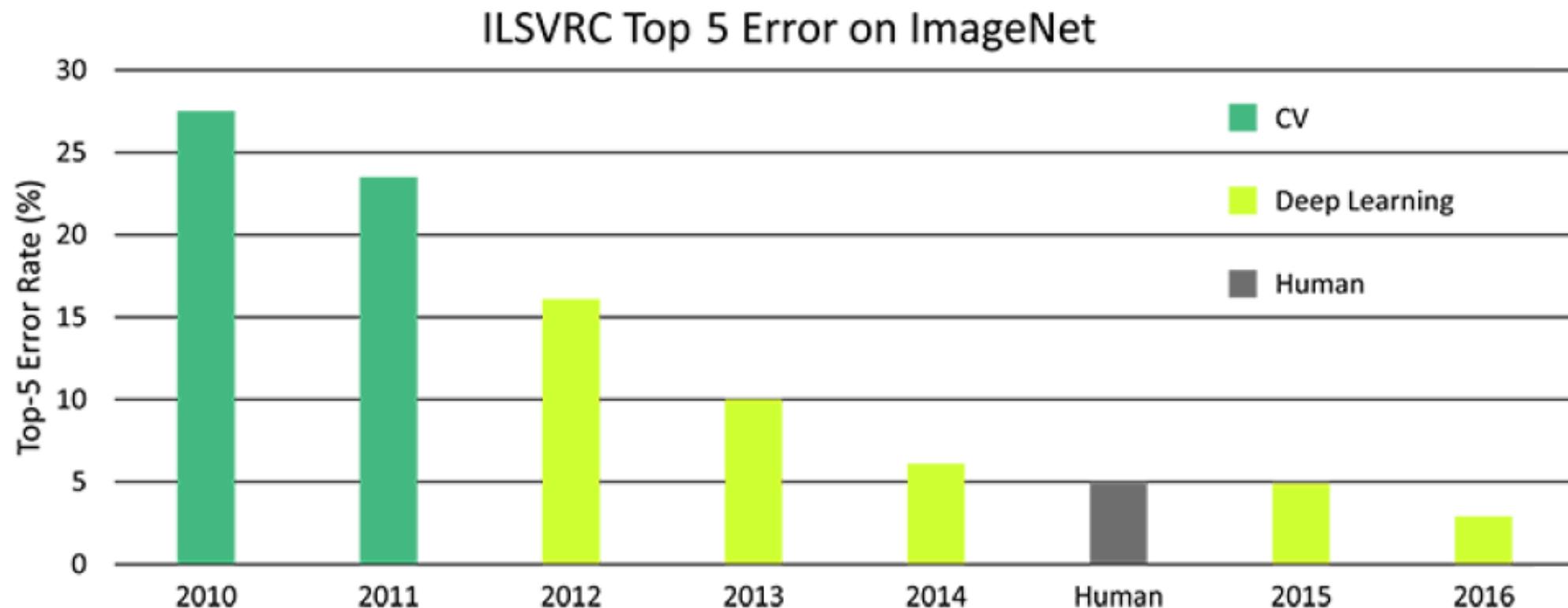
A system trained on 540 million years
of data

Computer Vision

Started in the 60s aiming at automatically doing what human vision can do

CV is undoubtly THE field that mostly benefit from Deep Learning

DL has been disruptive in computer vision!



A dataset with more than 14 Million
annotated images of 20K categories

Example Task #1: Classification Chihuahua vs Muffin

Example Task #2: Semantic Segmentation

Input:
 $3 \times H \times W$



Predictions:
 $H \times W$

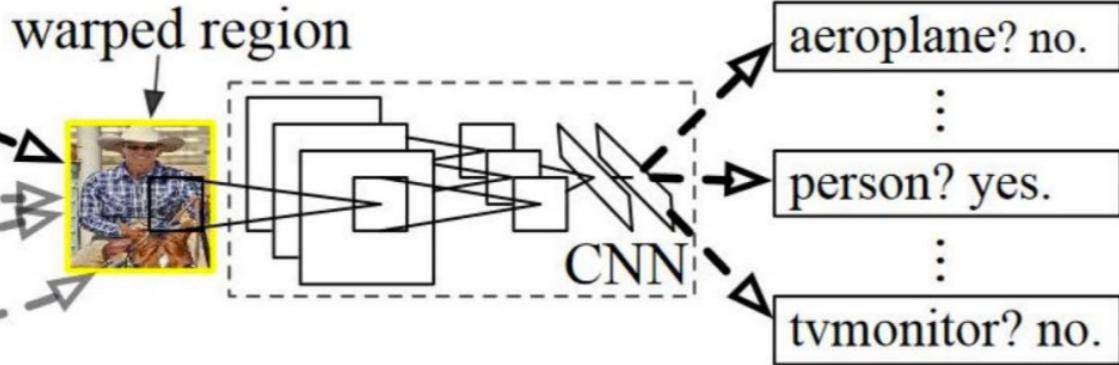
All convolutional layers with downsampling and upsampling operations

Example Task #2: Semantic Segmentation

Example Task #3: Object Detection

1. Input image

2. Extract region proposals (~2k)



3. Compute CNN features

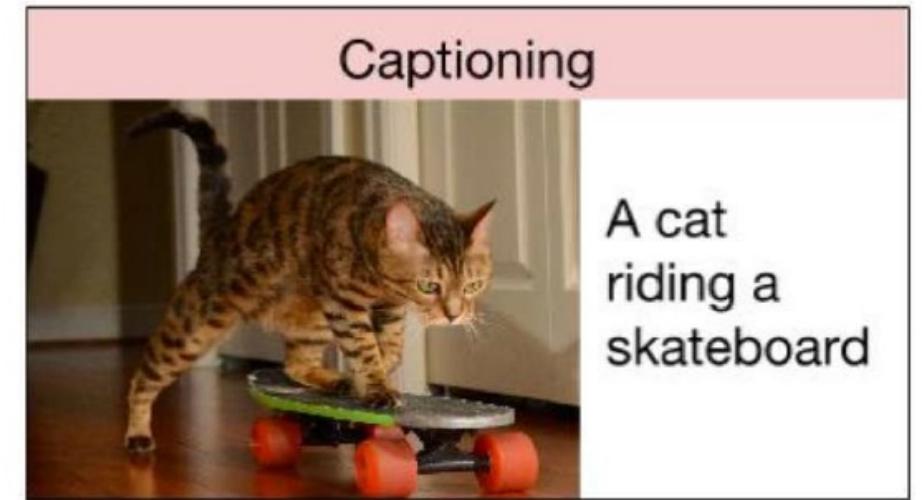
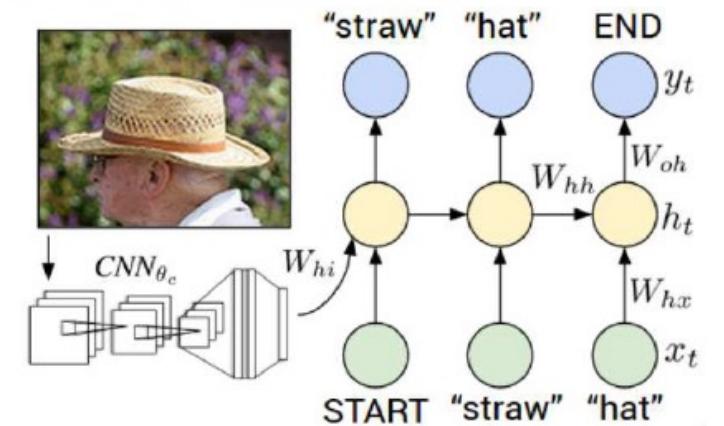
4. Classify regions

MIT *Introduction to Deep Learning* <http://introtodeeplearning.com>

1. Find regions that we think have objects
2. Classify such objects

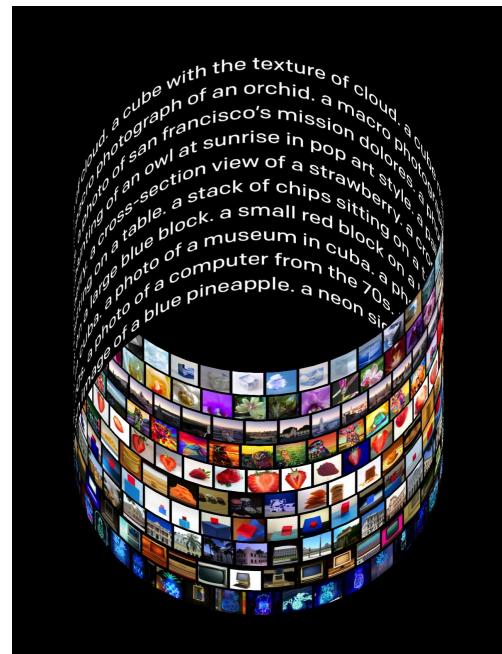
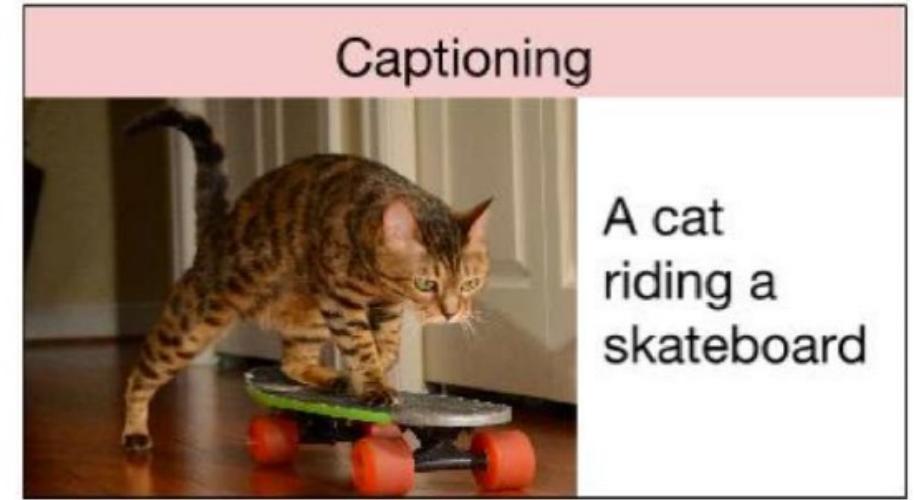
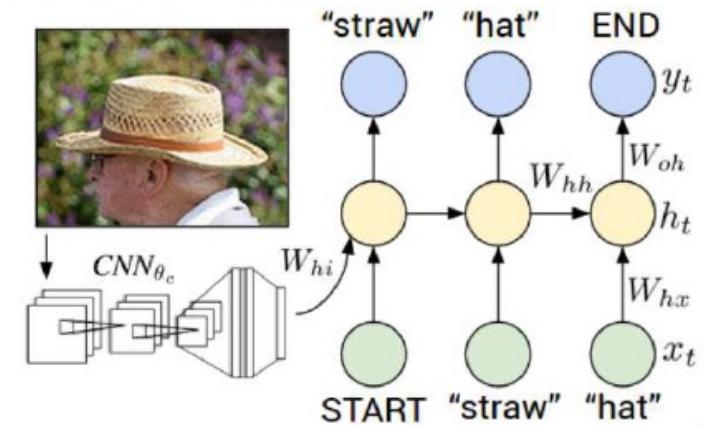
Example Task #4: Image Captioning

Combination of CNN and sequence learning



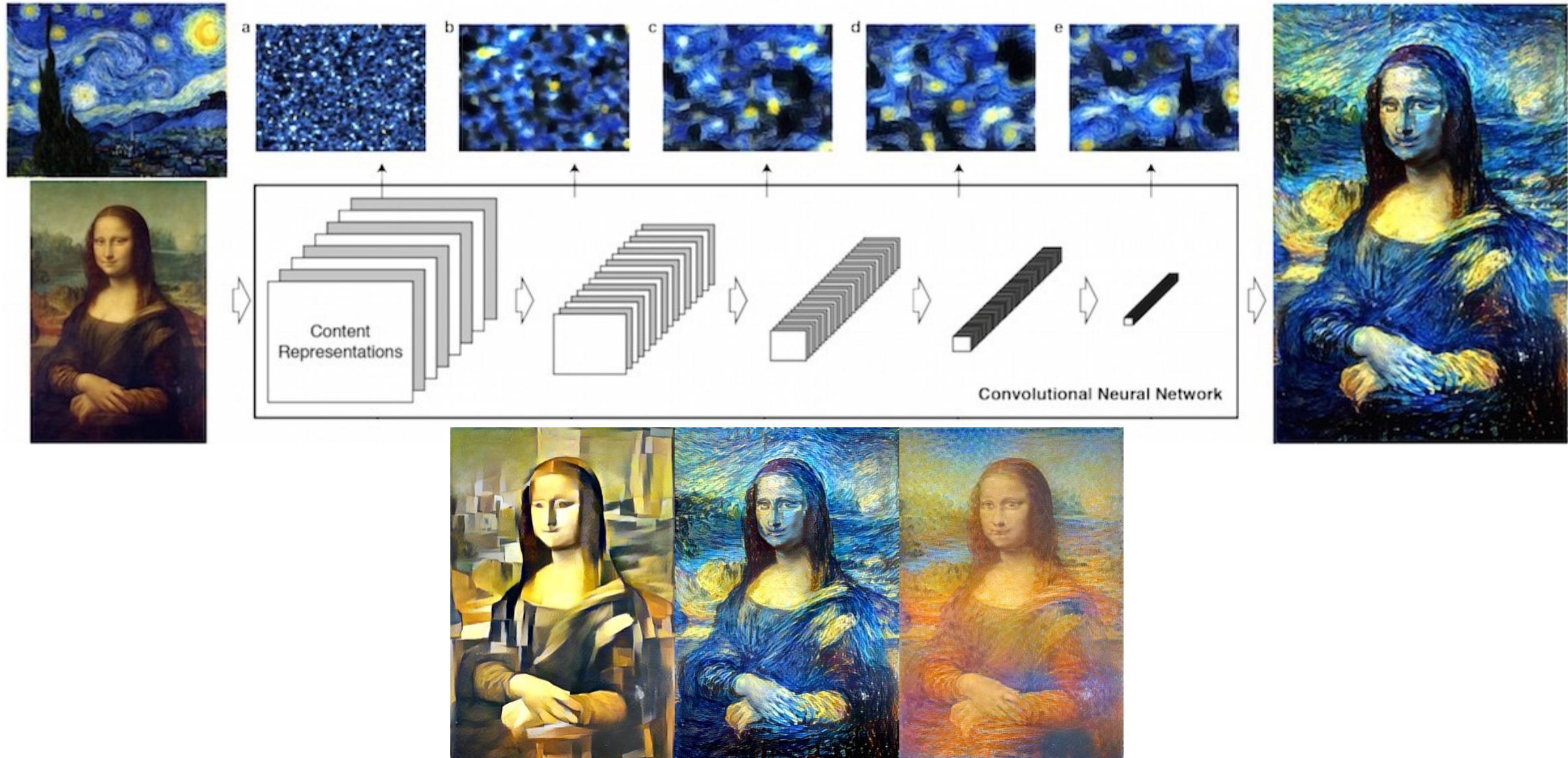
Example Task #4: Image Captioning

Combination of CNN and sequence learning



-MIT *Introduction to Deep Learning* <http://introtodeeplearning.com>

Example Task #5: Style Transfer



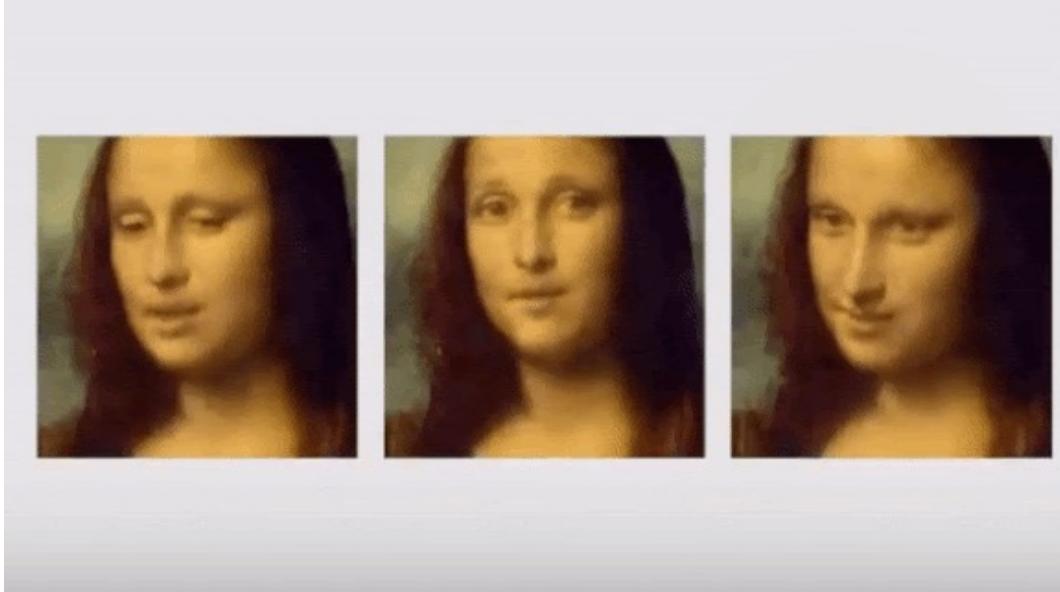
Example Task #5: Style Transfer

-<https://deepart.io/> (not working anymore)

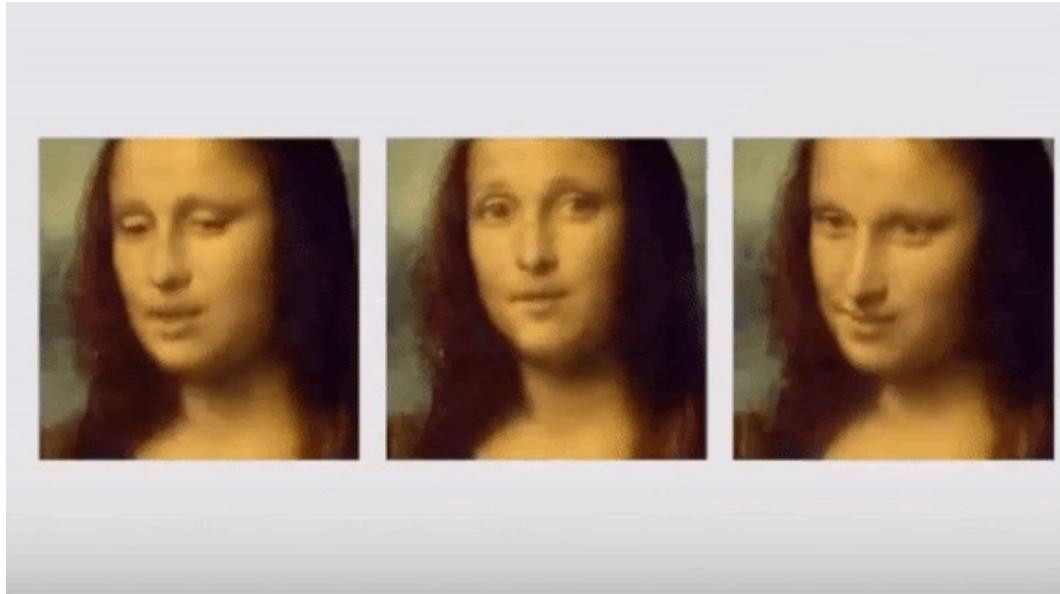
Example Task #5: Style Transfer

-<https://deepart.io/> (not working anymore)

Example Task #5: Style Transfer



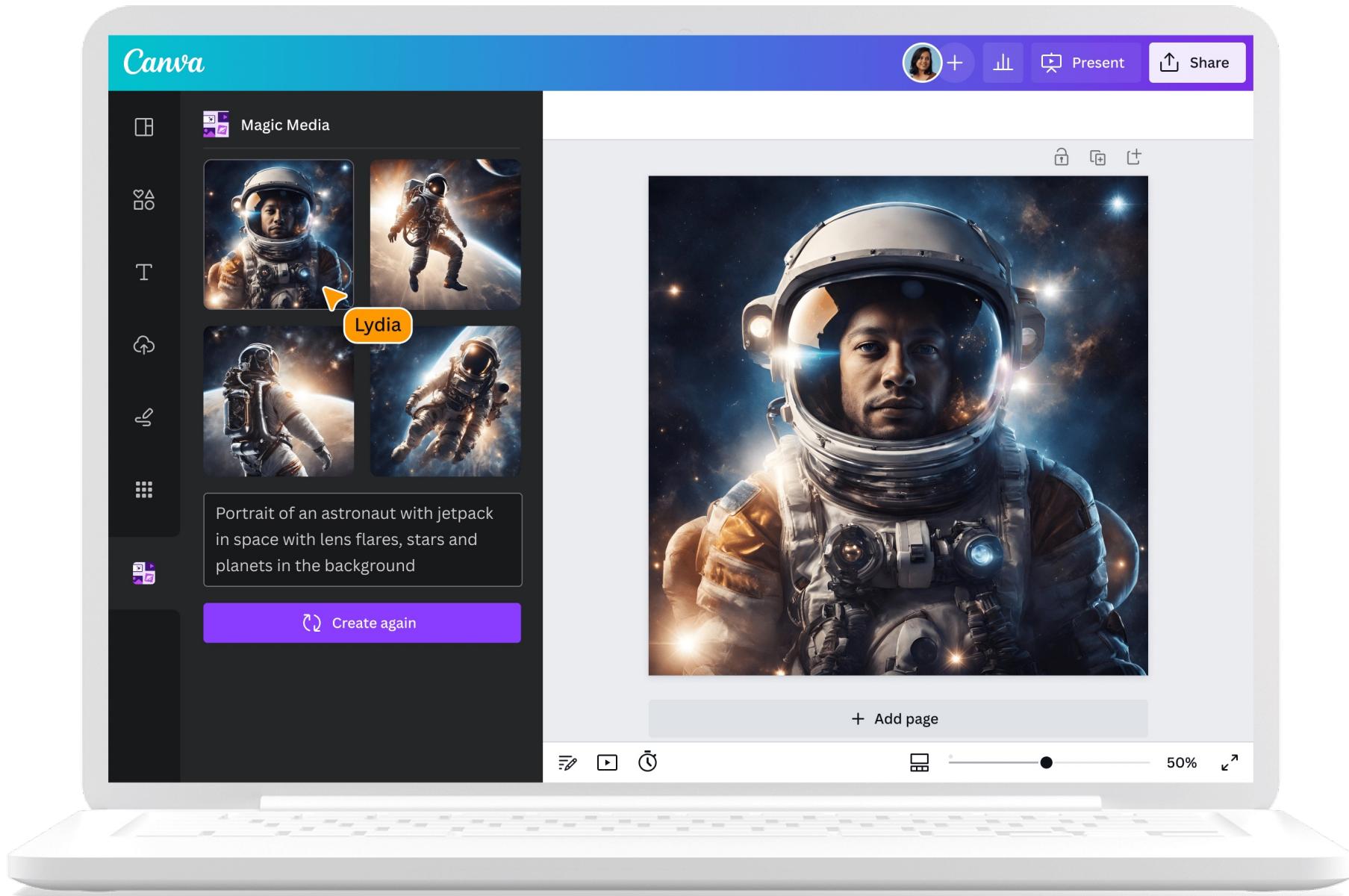
Example Task #5: Style Transfer



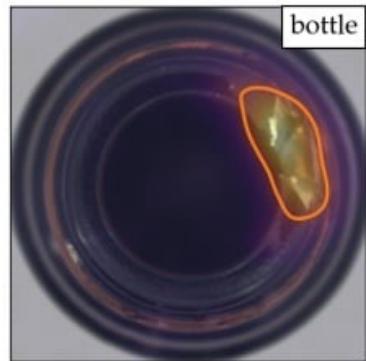
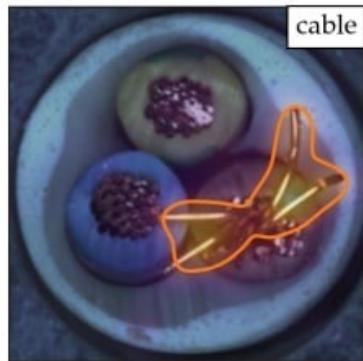
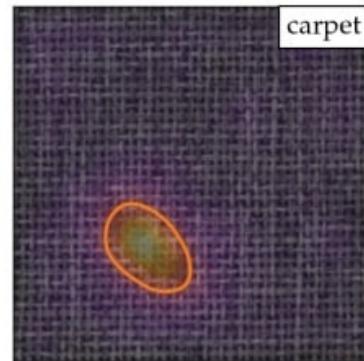
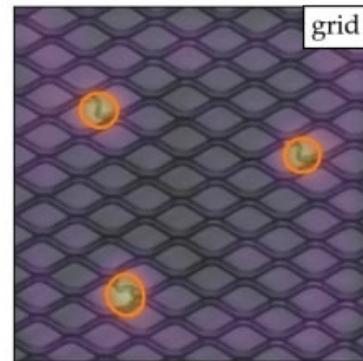
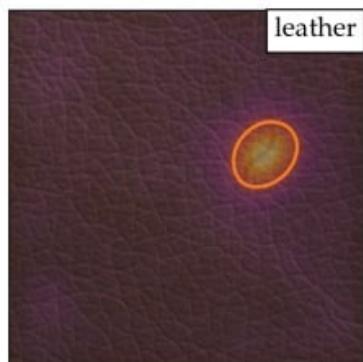
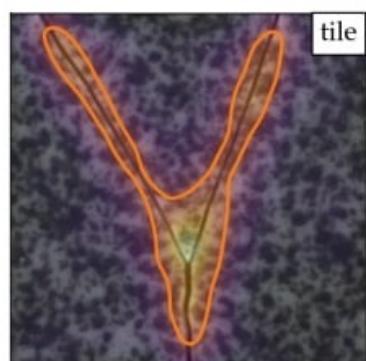
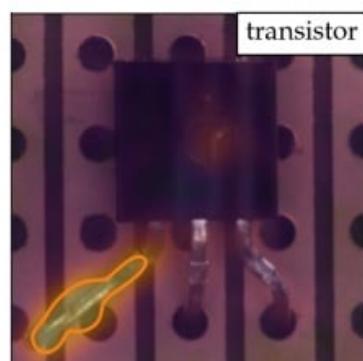
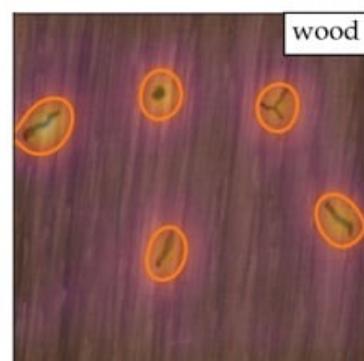
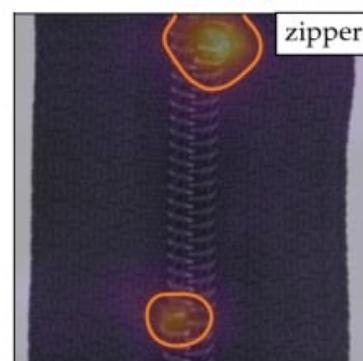
Some style transfer works

- Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2414-2423).
- Johnson, J., Alahi, A., & Fei-Fei, L. (2016, October). Perceptual losses for real-time style transfer and super-resolution. In European conference on computer vision (pp. 694-711). Springer, Cham.
- Luan, F., Paris, S., Shechtman, E., & Bala, K. (2017). Deep photo style transfer. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4990-4998).
- i, X., Liu, S., Kautz, J., & Yang, M. H. (2019). Learning linear transformations for fast image and video style transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3809-3817)

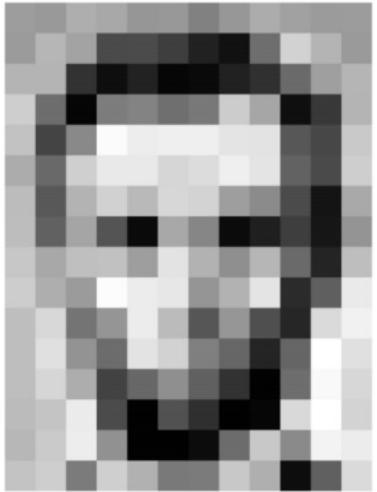
Example Task #6: Image Generation



Example Task #7: Visual Anomaly Detection



Images are numbers



157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	93	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	67	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	64	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

What the computer sees

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	93	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	64	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

L. Fridman MIT Deep Learning <https://deeplearning.mit.edu/>

JPG 260 X 194

260 X 194 X 3

8,11,0, 55,13,25,19

15,241,2,155,13,35,65

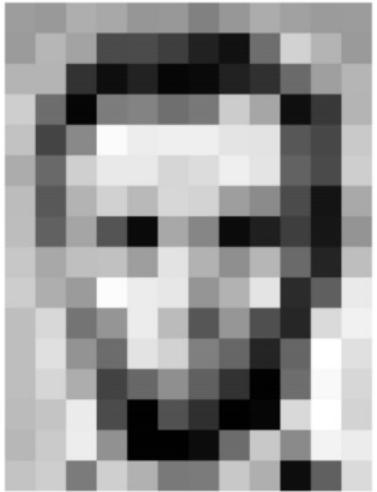
14,211,0,255,23,45,11

05,255,1,255,10,17,23

77,167,9,112,56,16,90

45,245,0,145,22,55,48

Images are numbers



157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	93	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	67	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	64	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

What the computer sees

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	93	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	64	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

L. Fridman MIT Deep Learning <https://deeplearning.mit.edu/>

Any (simple) ideas on how to feed this into a model?

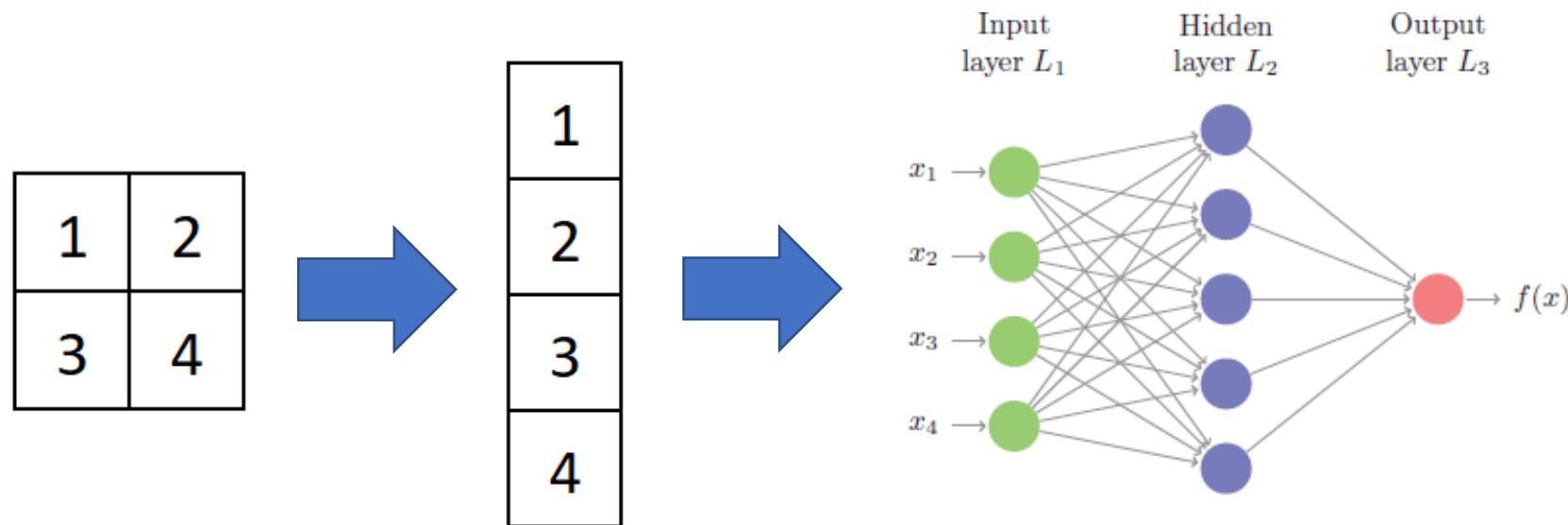
JPG 260 X 194

260 X 194 X 3

8,11,0, 55,13,25,19
15,241,2,155,13,35,65
14,211,0,255,23,45,11
05,255,1,255,10,17,23
77,167,9,112,56,16,90
45,245,0,145,22,55,48

Using FFNN is not a good idea...

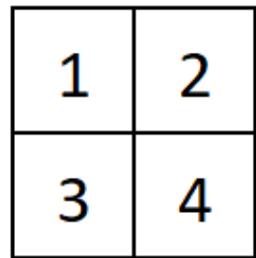
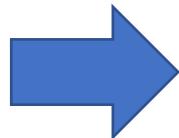
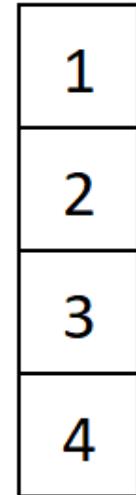
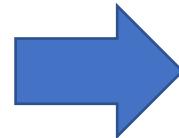
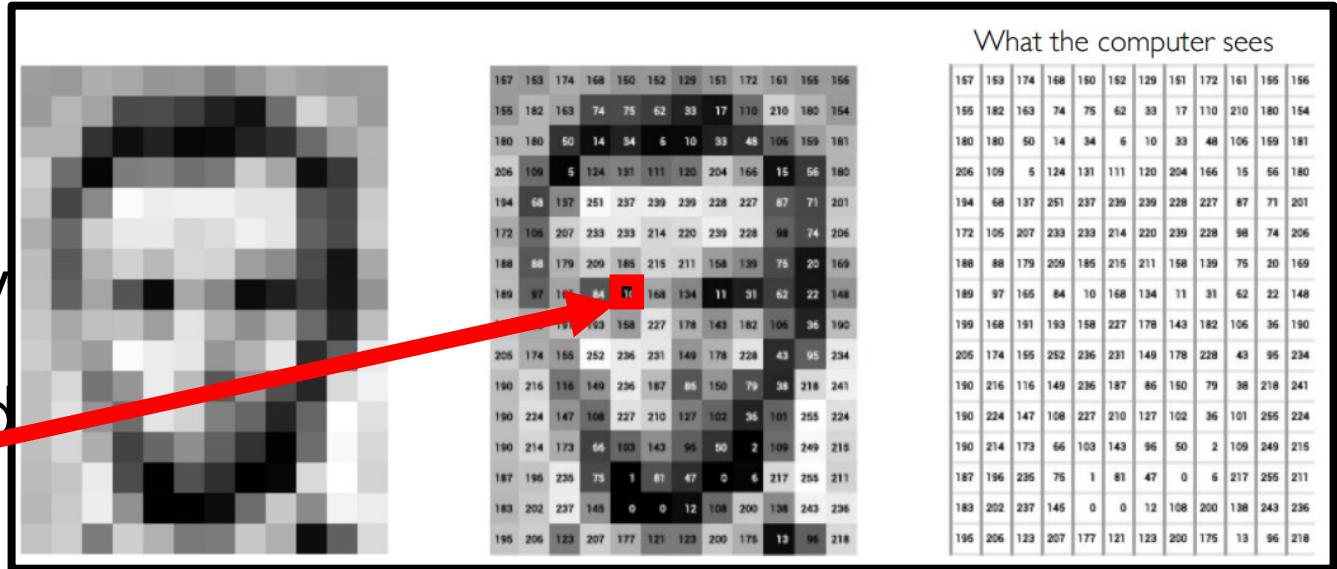
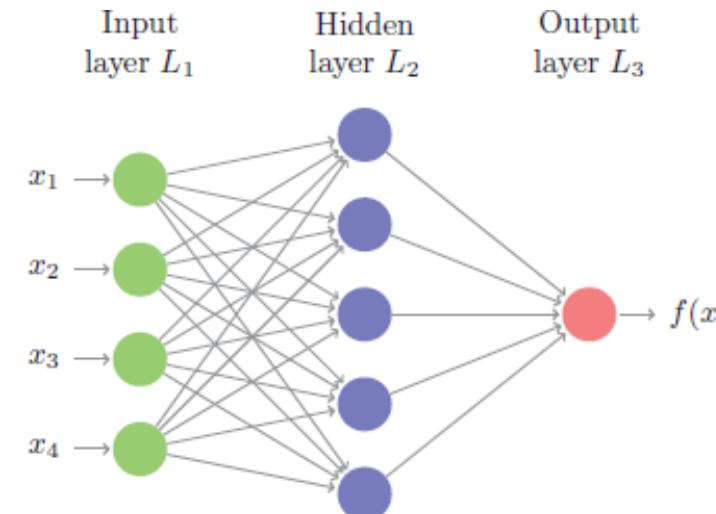
- 2D images converted to arrays: **spatial information is lost!**
- Each hidden unit is connected to all units in the previous layers: **lots of parameters!**



Using FFNN is not a good

- 2D images converted to array

Does the value in this specific pixel really matters by itself?



In Computer Vision, feature engineering is hard

Domain knowledge

Define features

Detect features
to classify

Viewpoint variation

Scale variation

Deformation

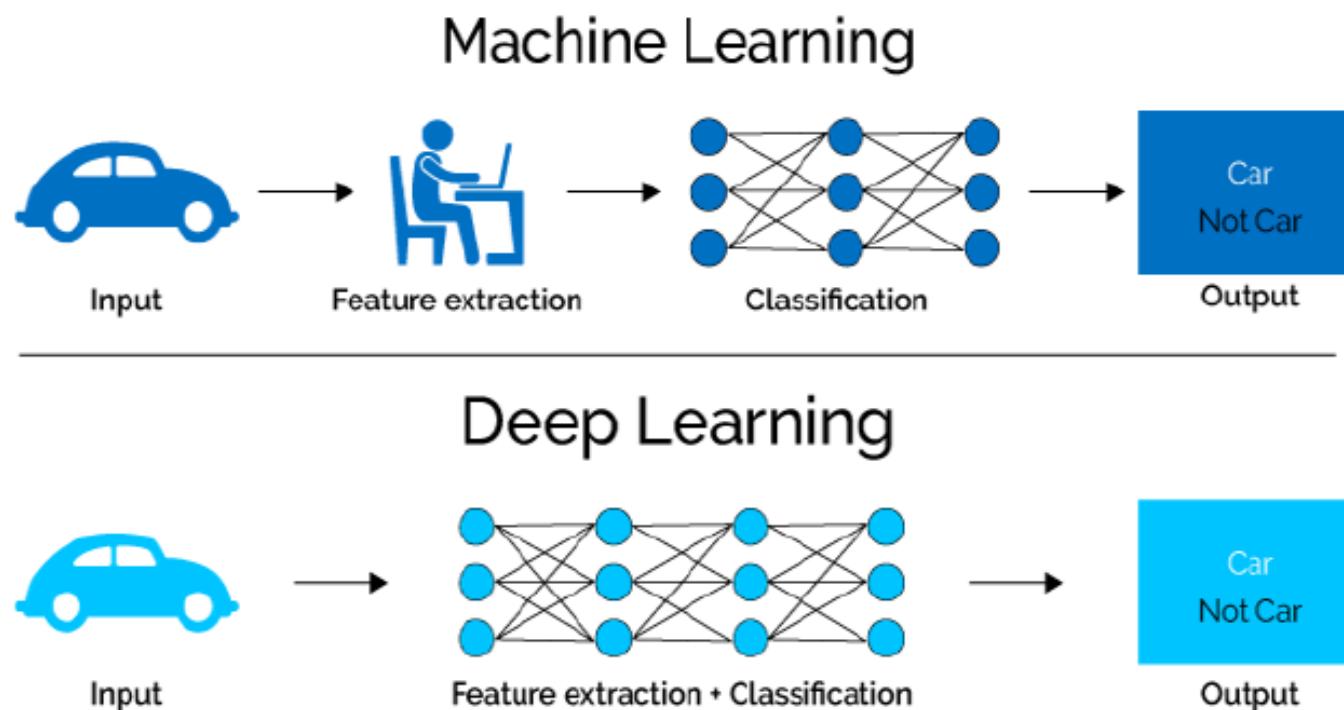
Occlusion

Illumination conditions

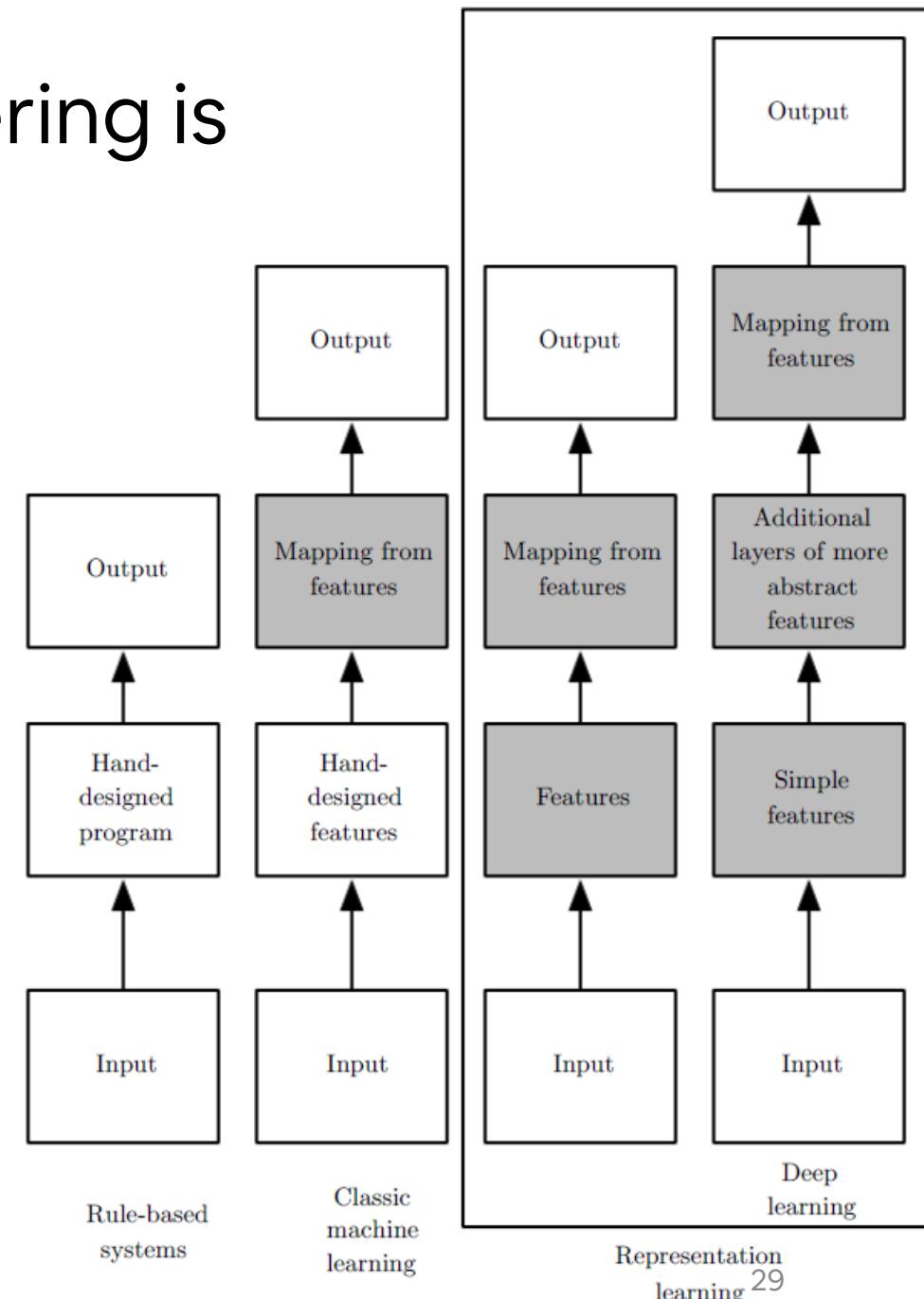
Background clutter

Intra-class variation

As seen before: no feature engineering is needed with DL

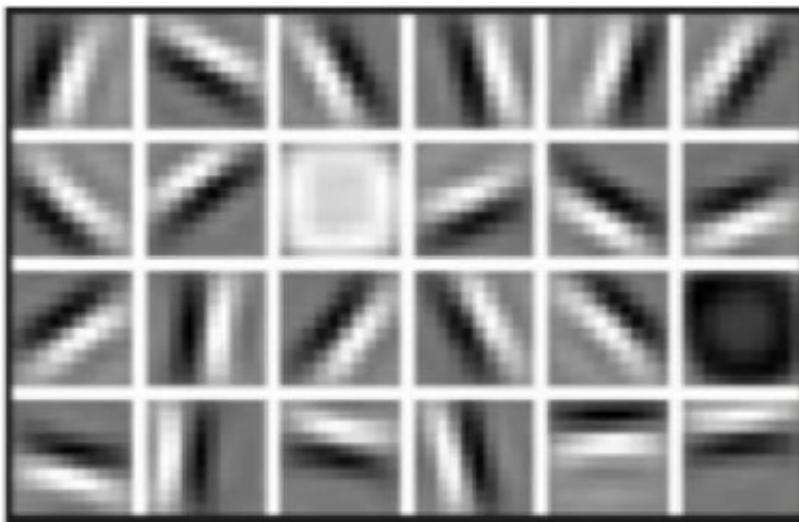


L. Fridman MIT Deep Learning <https://deeplearning.mit.edu/>



Features extracted by Deep Neural Networks

Low Level Features



Lines & Edges

Mid Level Features

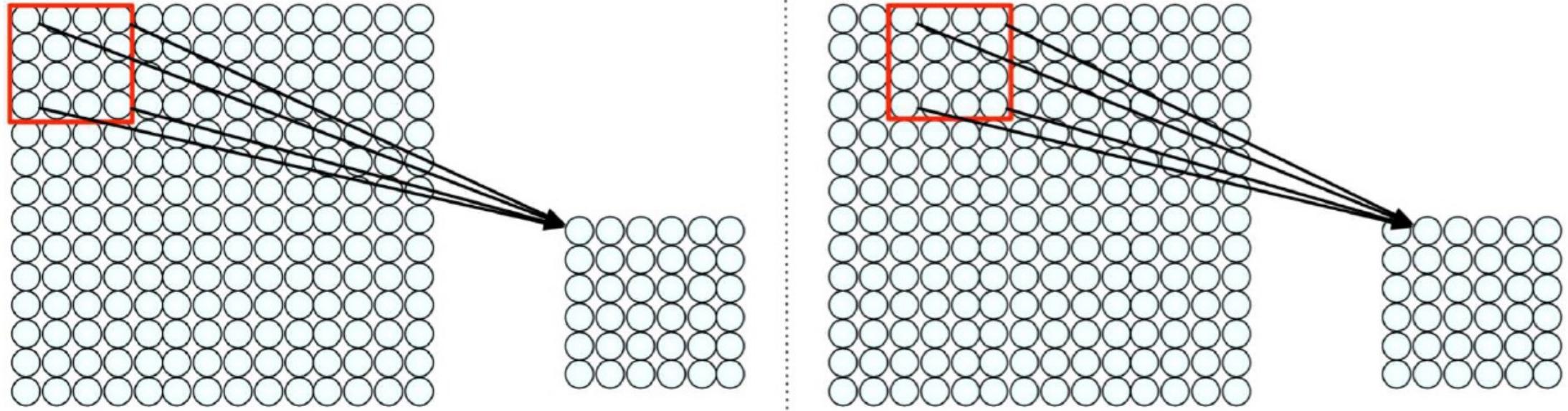
Eyes & Nose & Ears

High Level Features

Facial Structure

These features were obtained in an automatic fashion!

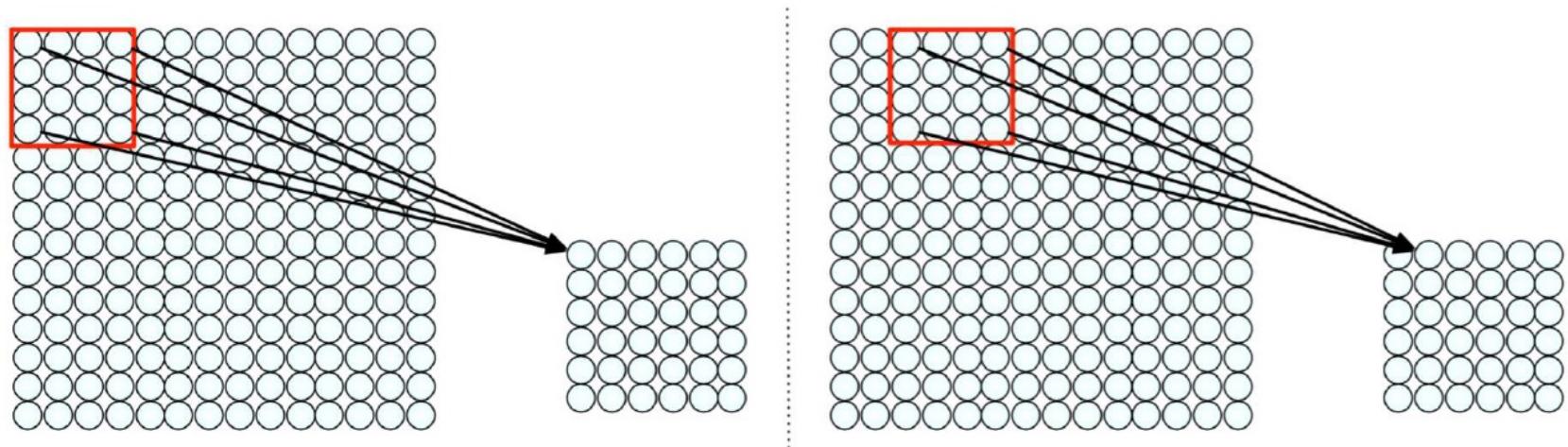
Idea: using the spatial structure (patches)



-MIT *Introduction to Deep Learning* <http://introtodeeplearning.com>

- Connect patch in input layer to a single neuron in subsequent layer.
- Use a sliding window to define connections.

Idea: 2D convolutions

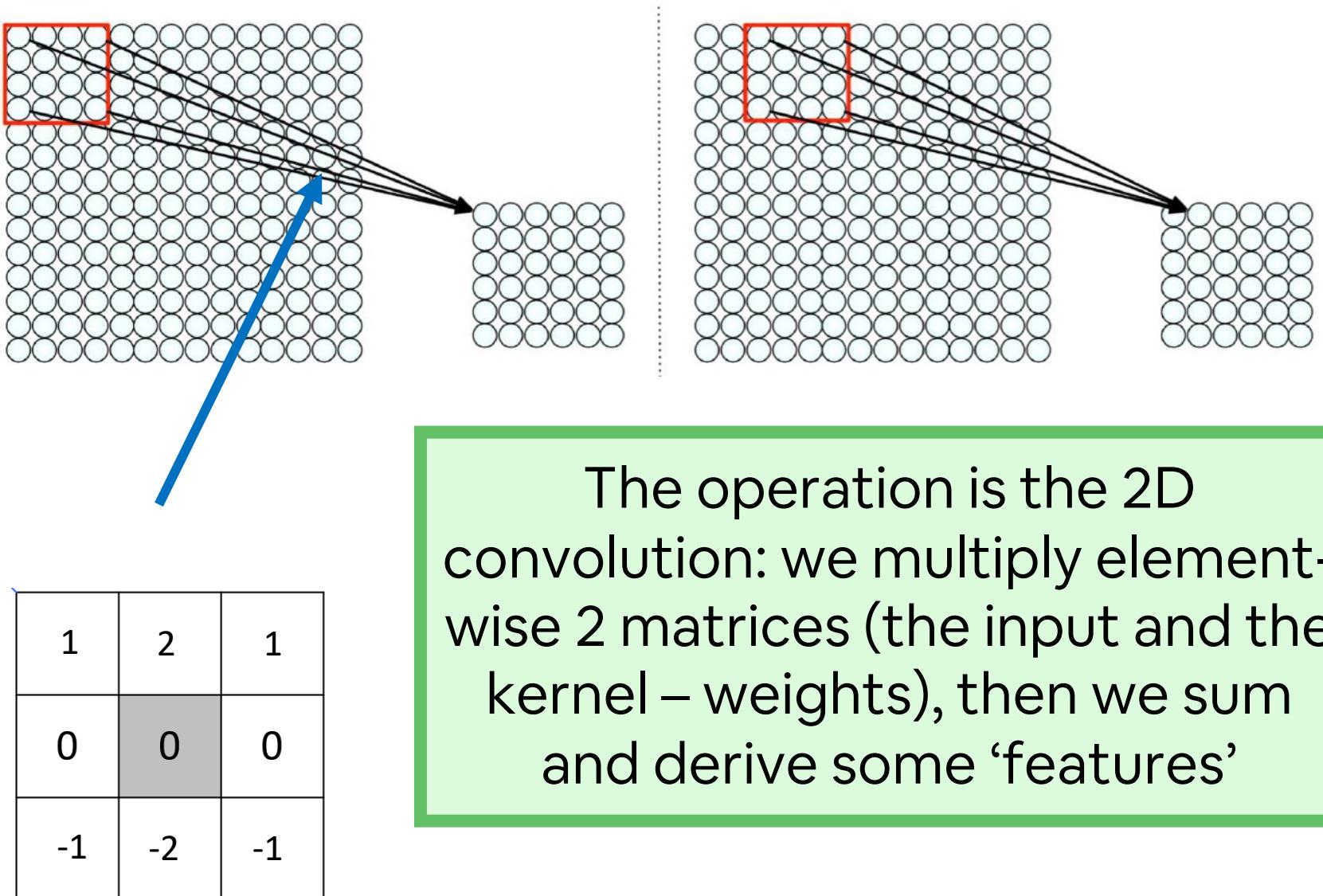


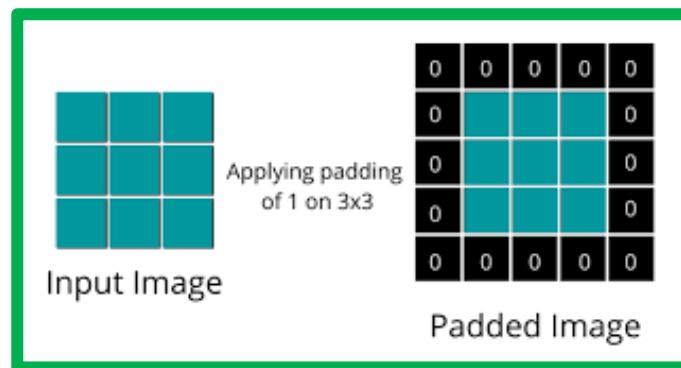
1	2	3
4	5	6
7	8	9

We would like to extract something useful out of this patch! Why not doing a ‘linear combination’ as we did with tabular data?

Idea: 2D convolutions

1	2	3
4	5	6
7	8	9





[Optional procedure] We include ‘padding’ the image (equal to 1): we add a frame around the image of pixels with value = 0.

When performing the convolution operation, padding allow border pixels to have similar importance to inner pixels

1	2	1
0	0	0
-1	-2	-1
4	5	6
7	8	9

$$\begin{aligned}
 y[0,0] &= \sum_j \sum_i x[i,j] \cdot h[0-i, 0-j] \\
 &= x[-1, -1] \cdot h[1, 1] + x[0, -1] \cdot h[0, 1] + x[1, -1] \cdot h[-1, 1] \\
 &\quad + x[-1, 0] \cdot h[1, 0] + x[0, 0] \cdot h[0, 0] + x[1, 0] \cdot h[-1, 0] \\
 &\quad + x[-1, 1] \cdot h[1, -1] + x[0, 1] \cdot h[0, -1] + x[1, 1] \cdot h[-1, -1] \\
 &= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 \\
 &\quad + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 \\
 &\quad + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) \\
 &= -13
 \end{aligned}$$

We then ‘stride’ (equal to 1): we move the kernel (ie. filter, ie. weights) horizontally to a different patch

1	2	1
0	1	2
-1	4	5
7	8	9

$$\begin{aligned}
 y[1, 0] &= \sum_j \sum_i x[i, j] \cdot h[1 - i, 0 - j] \\
 &= x[0, -1] \cdot h[1, 1] + x[1, -1] \cdot h[0, 1] + x[2, -1] \cdot h[-1, 1] \\
 &\quad + x[0, 0] \cdot h[1, 0] + x[1, 0] \cdot h[0, 0] + x[2, 0] \cdot h[-1, 0] \\
 &\quad + x[0, 1] \cdot h[1, -1] + x[1, 1] \cdot h[0, -1] + x[2, 1] \cdot h[-1, -1] \\
 &= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 \\
 &\quad + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 \\
 &\quad + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) \\
 &= -20
 \end{aligned}$$

We then ‘stride’ (equal to 1): we move the kernel (ie. filter, ie. weights) horizontally to a different patch... until we arrive to the end of the row!

	1	2	1	
1	0	0	0	
4	-1	5	-2	6
7	8	9		

$$\begin{aligned}
 y[2,0] &= \sum_j \sum_i x[i,j] \cdot h[2-i, 0-j] \\
 &= x[1, -1] \cdot h[1, 1] + x[2, -1] \cdot h[0, 1] + x[3, -1] \cdot h[-1, 1] \\
 &\quad + x[1, 0] \cdot h[1, 0] + x[2, 0] \cdot h[0, 0] + x[3, 0] \cdot h[-1, 0] \\
 &\quad + x[1, 1] \cdot h[1, -1] + x[2, 1] \cdot h[0, -1] + x[3, 1] \cdot h[-1, -1] \\
 &= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 \\
 &\quad + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 \\
 &\quad + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) \\
 &= -17
 \end{aligned}$$

We then 'stride' vertically!

1	2	1	2	3
0	0	0	5	6
-1	-2	-1	8	9

$$\begin{aligned}
 y[0, 1] &= \sum_j \sum_i x[i, j] \cdot h[0 - i, 1 - j] \\
 &= x[-1, 0] \cdot h[1, 1] + x[0, 0] \cdot h[0, 1] + x[1, 0] \cdot h[-1, 1] \\
 &\quad + x[-1, 1] \cdot h[1, 0] + x[0, 1] \cdot h[0, 0] + x[1, 1] \cdot h[-1, 0] \\
 &\quad + x[-1, 2] \cdot h[1, -1] + x[0, 2] \cdot h[0, -1] + x[1, 2] \cdot h[-1, -1] \\
 &= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 \\
 &\quad + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 \\
 &\quad + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) \\
 &= -18
 \end{aligned}$$

After completing the stride:

1	2	3
4	5	6
7	8	9

Input

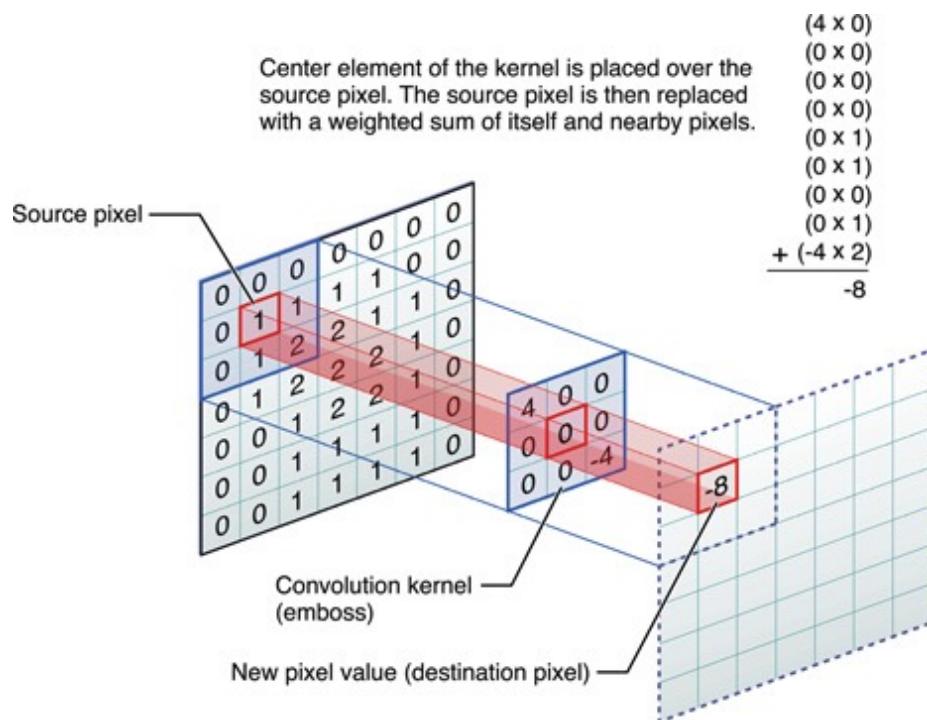
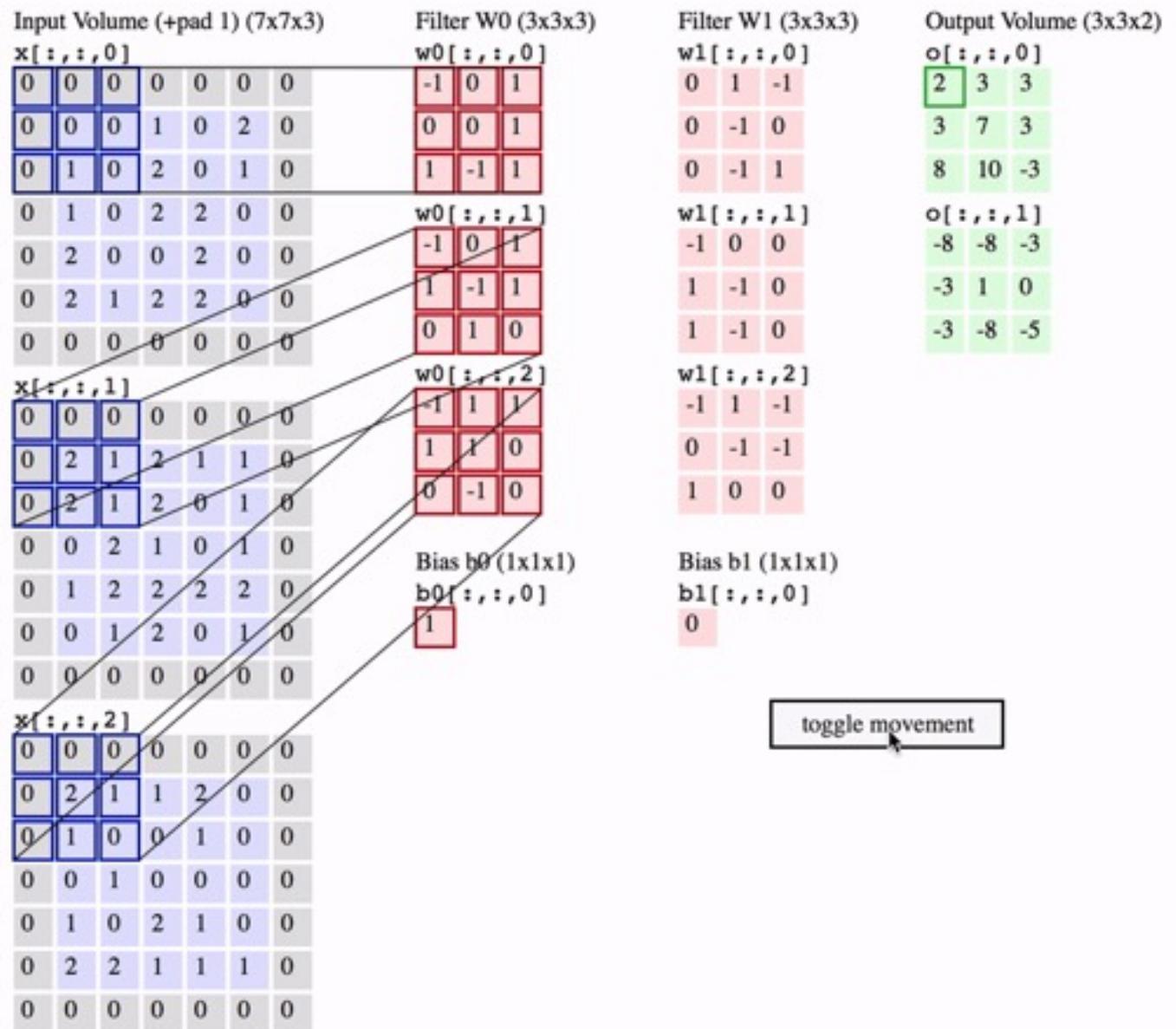
m	-1	0	1
n	-1	-2	-1
0	0	0	0
1	1	2	1

Kernel

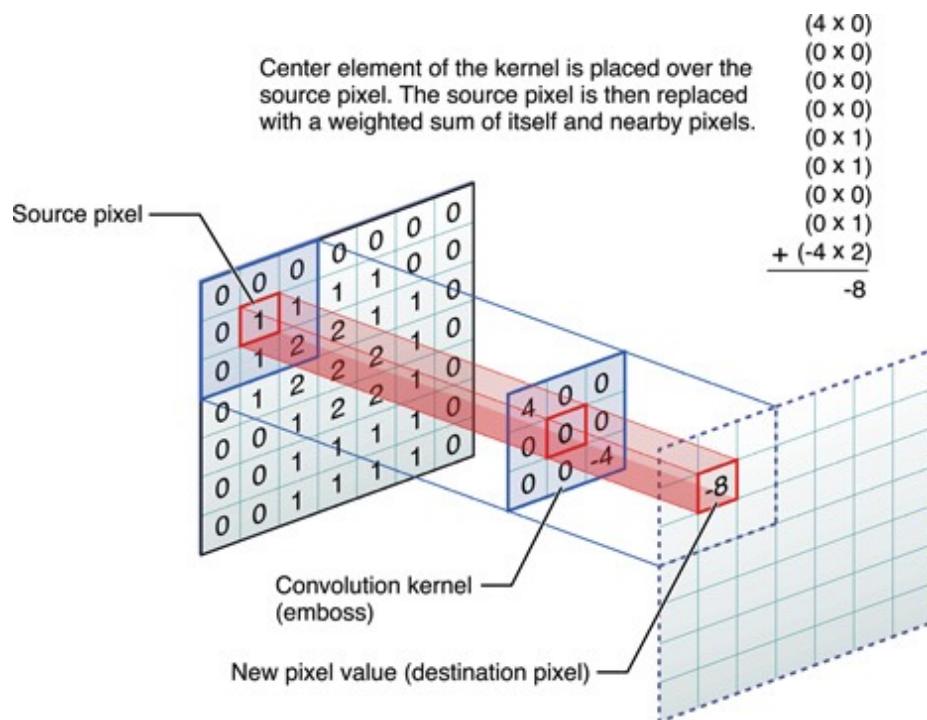
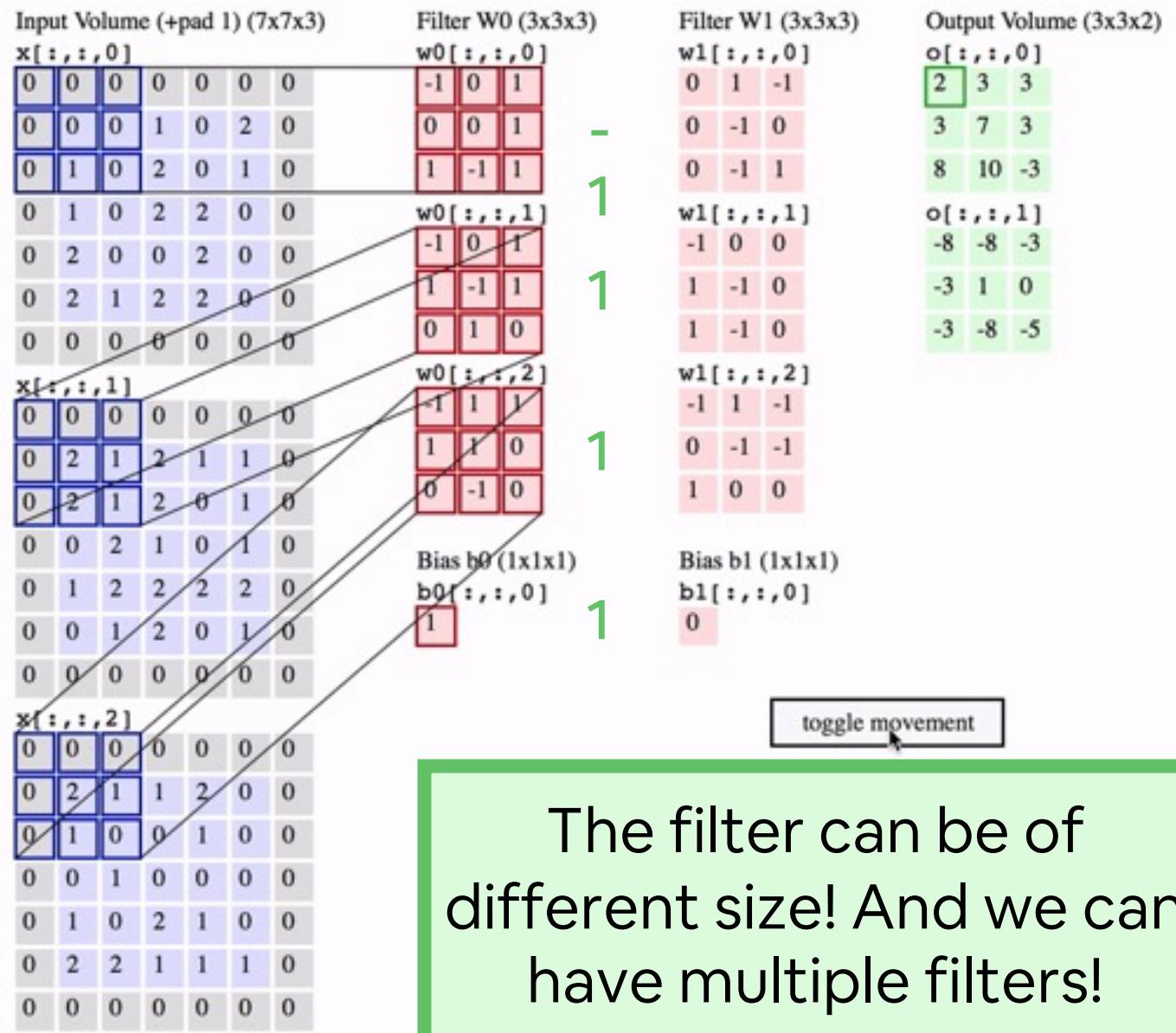
-13	-20	-17
-18	-24	-18
13	20	17

Output

Idea: 2D convolutions

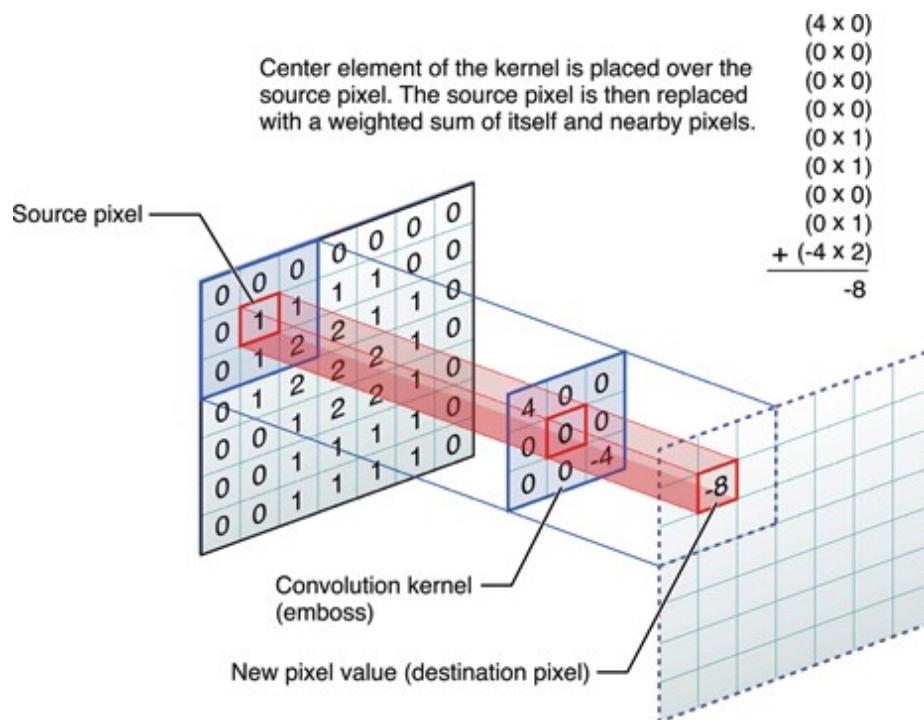
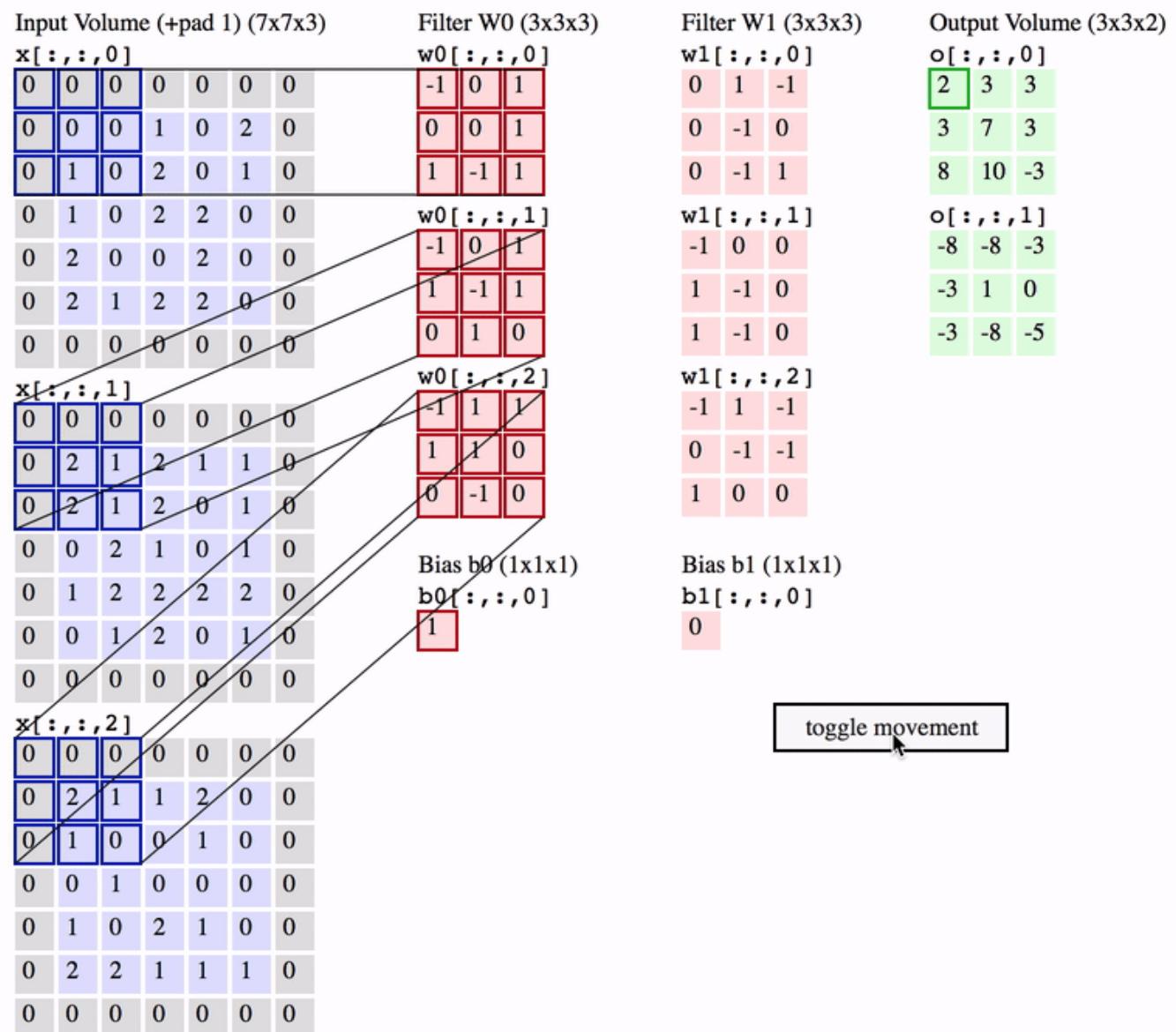


Idea: 2D convolutions



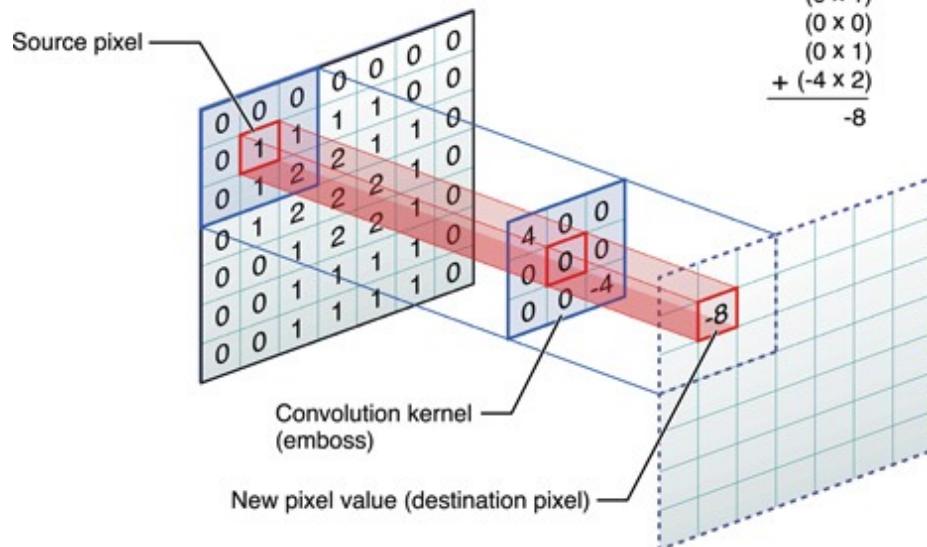
The filter can be of different size! And we can have multiple filters!

Idea: 2D convolutions

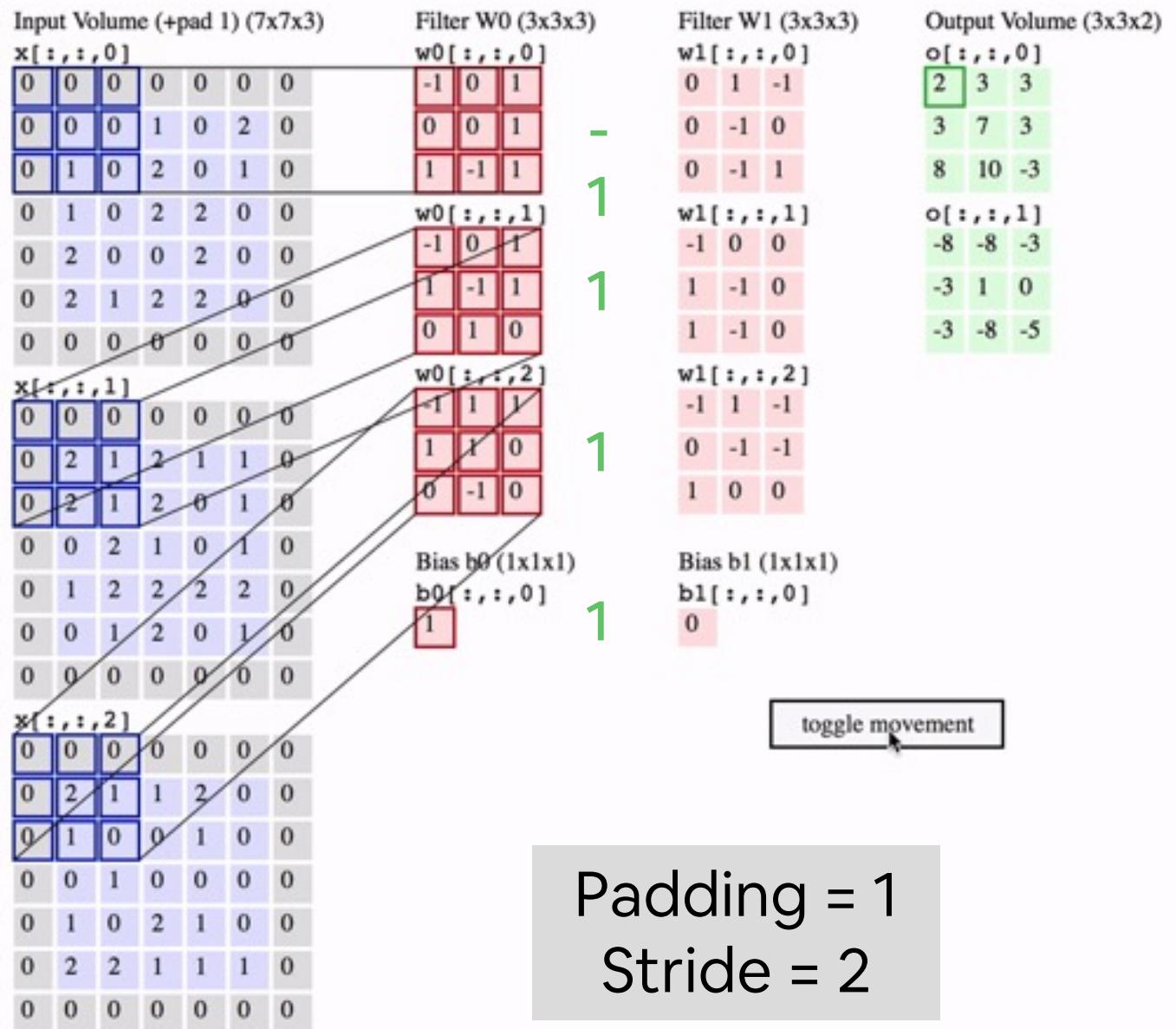


Idea: 2D convolutions

Center element of the kernel is placed over the source pixel. The source pixel is then replaced with a weighted sum of itself and nearby pixels.



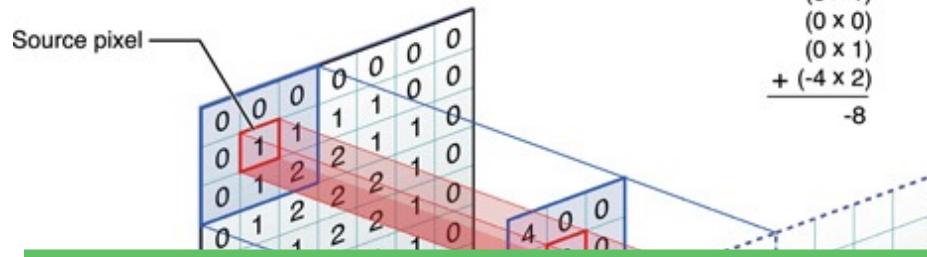
$$\begin{array}{r}
 (4 \times 0) \\
 (0 \times 0) \\
 (0 \times 0) \\
 (0 \times 0) \\
 (0 \times 1) \\
 (0 \times 1) \\
 (0 \times 0) \\
 (0 \times 1) \\
 \hline
 + (-4 \times 2) \\
 \hline
 -8
 \end{array}$$



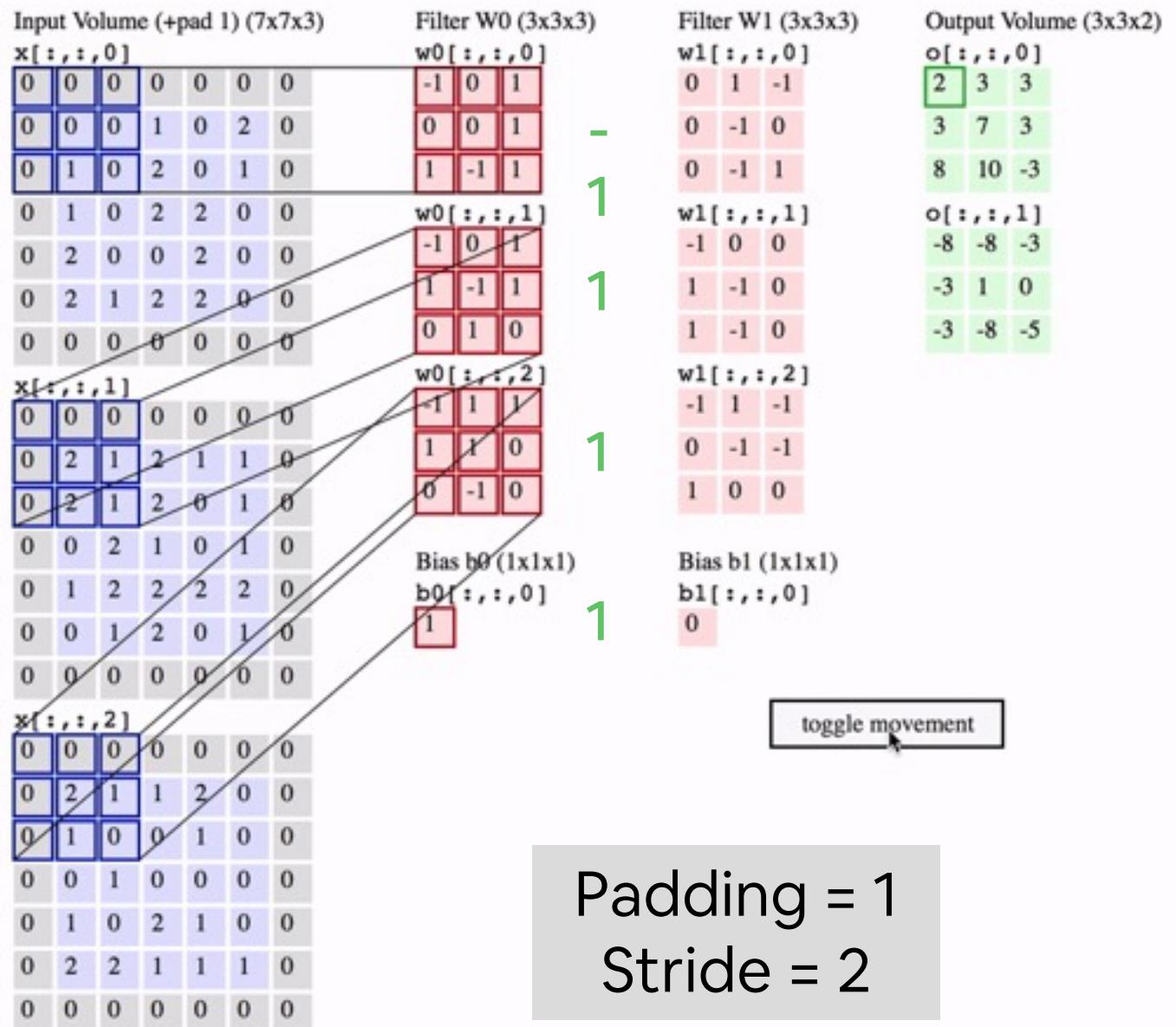
Padding = 1
Stride = 2

Idea: 2D convolutions

Center element of the kernel is placed over the source pixel. The source pixel is then replaced with a weighted sum of itself and nearby pixels.



With padding we give ‘right’ importance to pixels in the border, while with stride we can tune the inner dimensions of the network



Padding = 1
Stride = 2

Feature maps induced by convolutions: some examples

Original

Sharpen

Edge Detect

“Strong” Edge
Detect

Feature maps induced by convolutions: some examples

Original

Sharpen

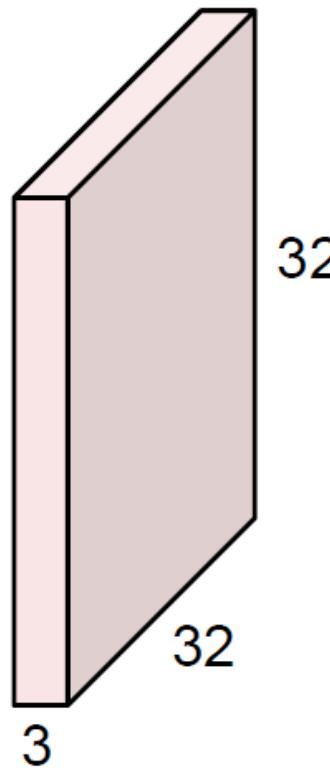
Edge Detect

“Strong” Edge
Detect

?	?	?
?	?	?
?	?	?

Recap

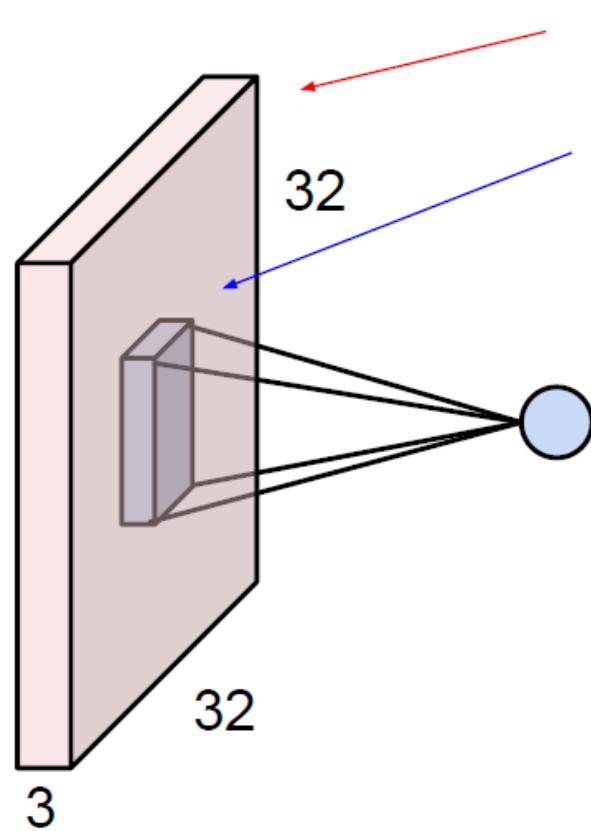
32x32x3 image



5x5x3 filter

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

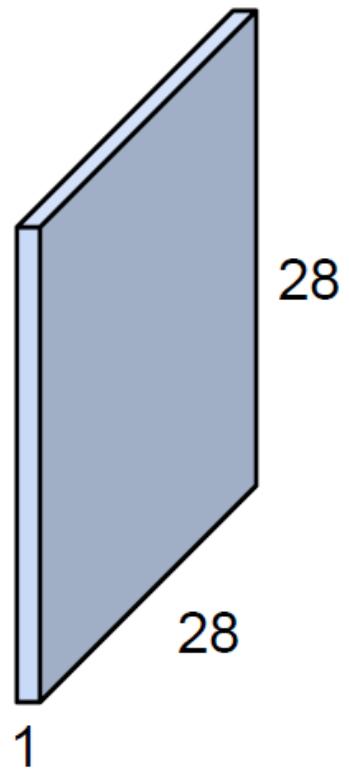
Recap



32x32x3 image
5x5x3 filter

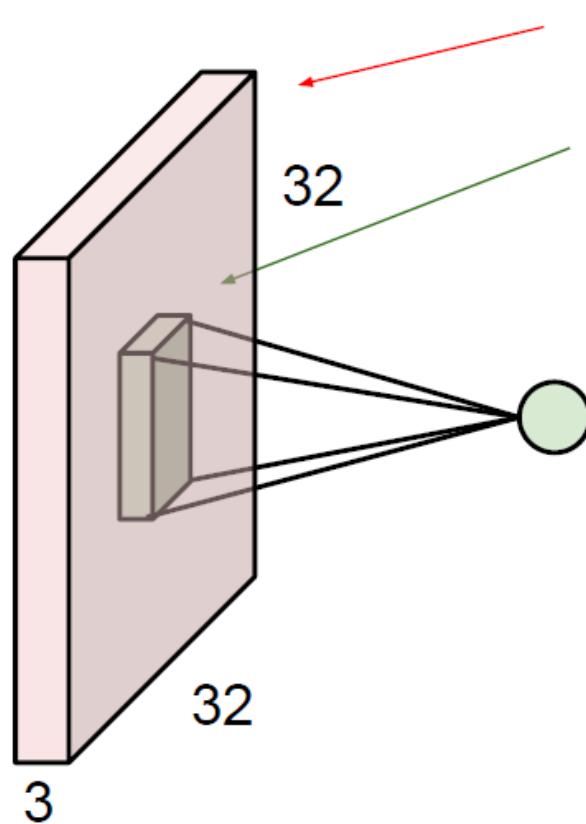
convolve (slide) over all
spatial locations

activation map



stride = 1,
no padding

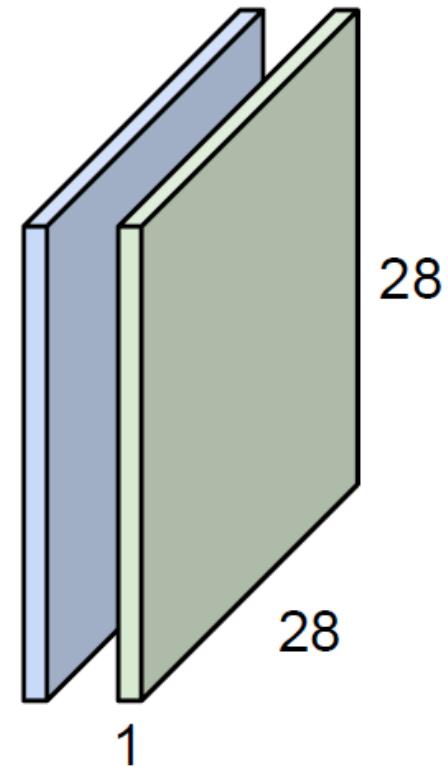
Recap



32x32x3 image
5x5x3 filter

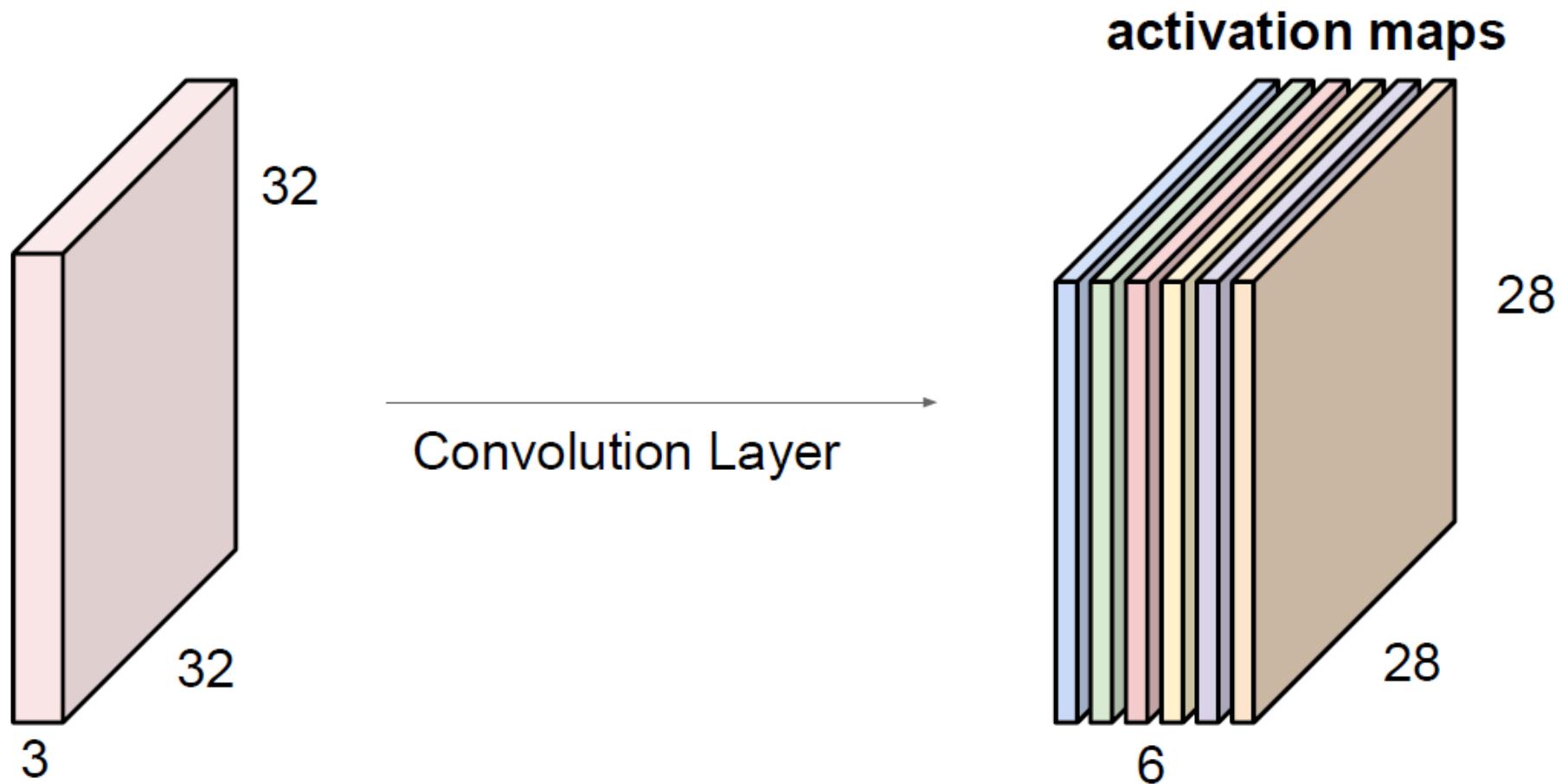
convolve (slide) over all
spatial locations

activation map
activation maps

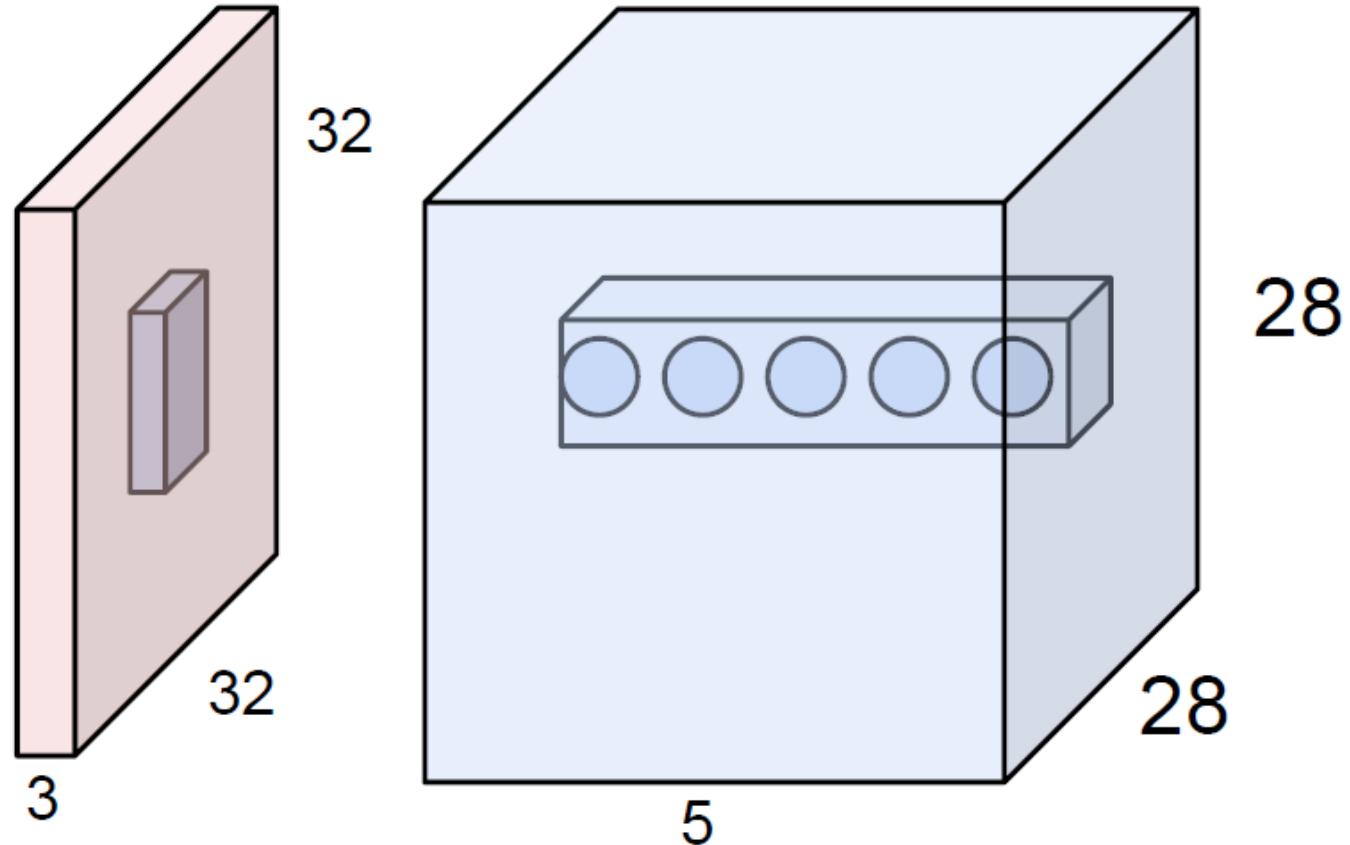


stride = 1,
no padding

Recap



Receptive field

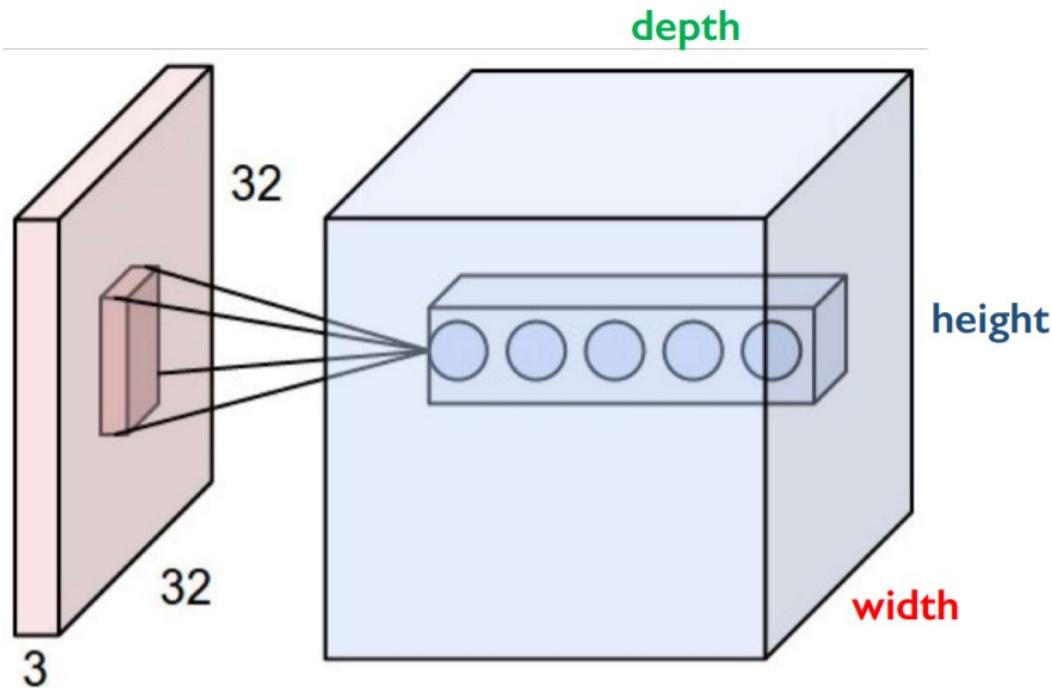


E.g. with 5 filters,
CONV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume

Pros of 2D convolutions

- Use convolution filters (weights) to extract local features
- Use multiple filters to extract different features
- Filter parameters are shared spatially across the whole input



Layer Dimensions:

$h \times w \times d$

where h and w are spatial dimensions
 d (depth) = number of filters

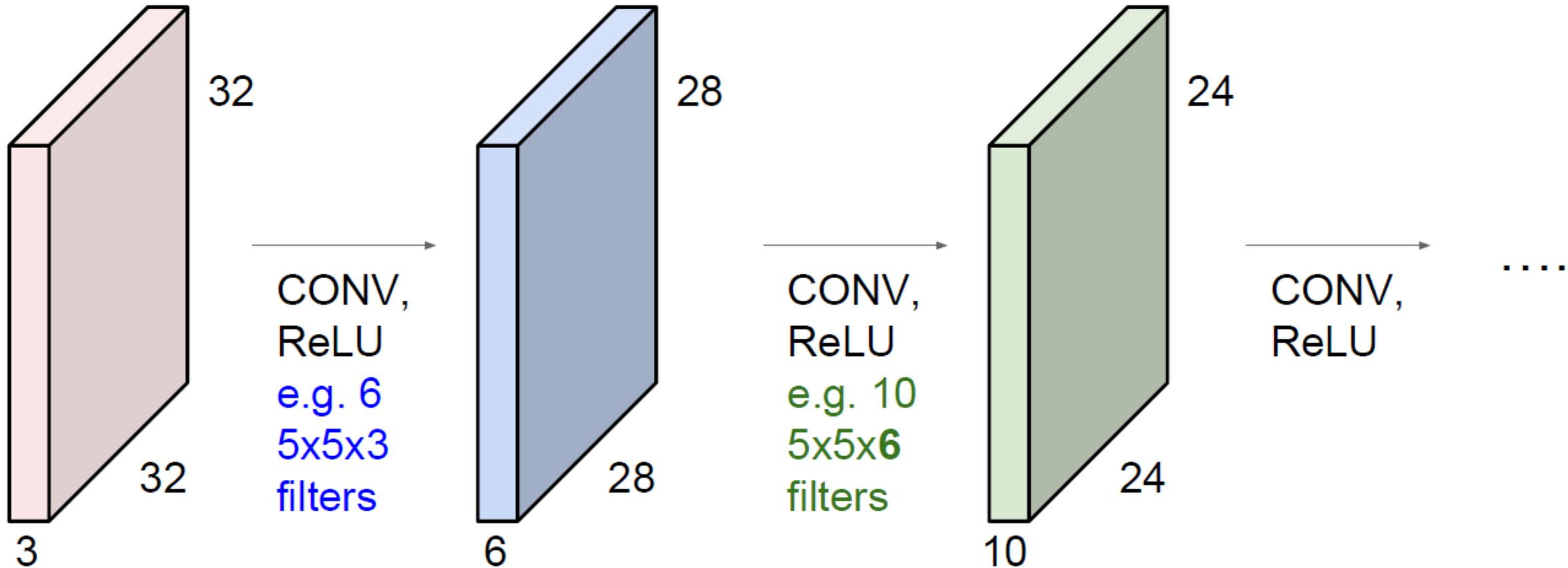
Stride:

Filter step size

Receptive Field:

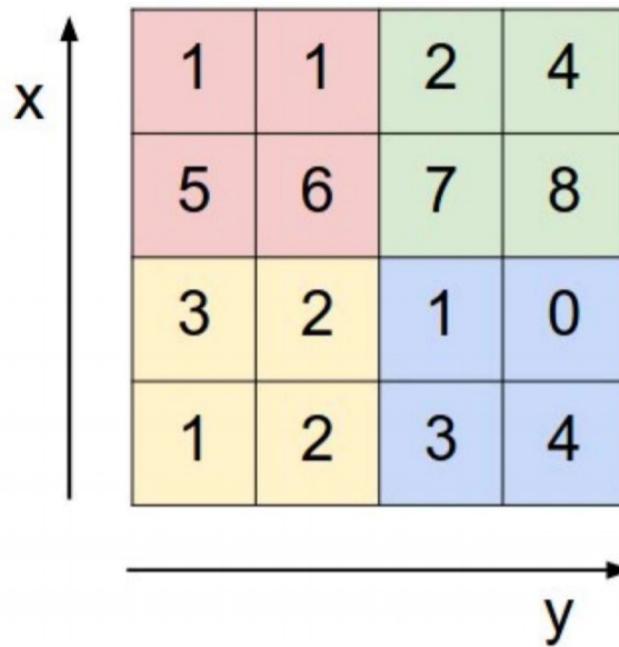
Locations in input image that a node is path connected to

Deep Learning: we stack different layers!



Make extracted features rich, robust and low-dimensional

- Introduce non-linearity: apply non-linear activation to convolution output
- Downsample and preserve spatial invariance: pooling



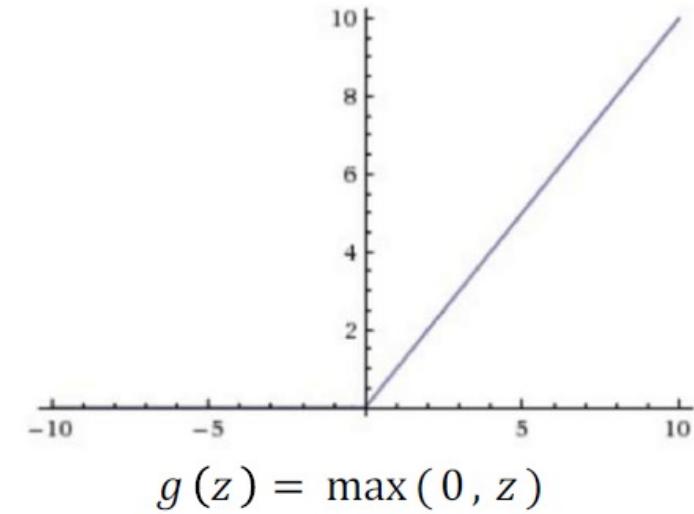
max pool with 2x2 filters
and stride 2

A 2x2 output feature map resulting from max pooling:

6	8
3	4

- 1) Reduced dimensionality
- 2) Spatial invariance

Rectified Linear Unit (ReLU)

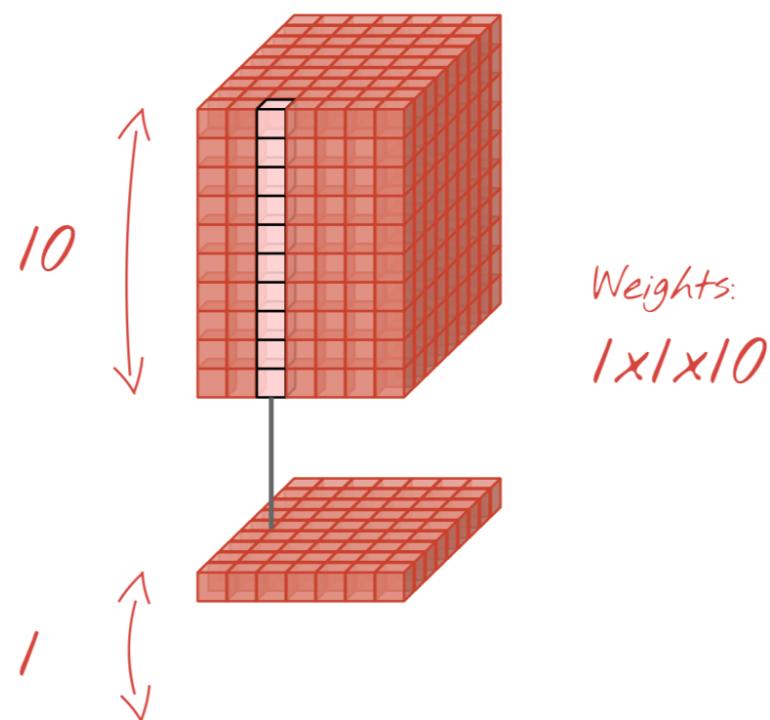


Dimensionality reduction (optional)

- While to reduce width and height we can exploit pooling (or bigger strides), to reduce depth we can use 1d convolutions

1d convolutions

Why 1×1 convolutions?

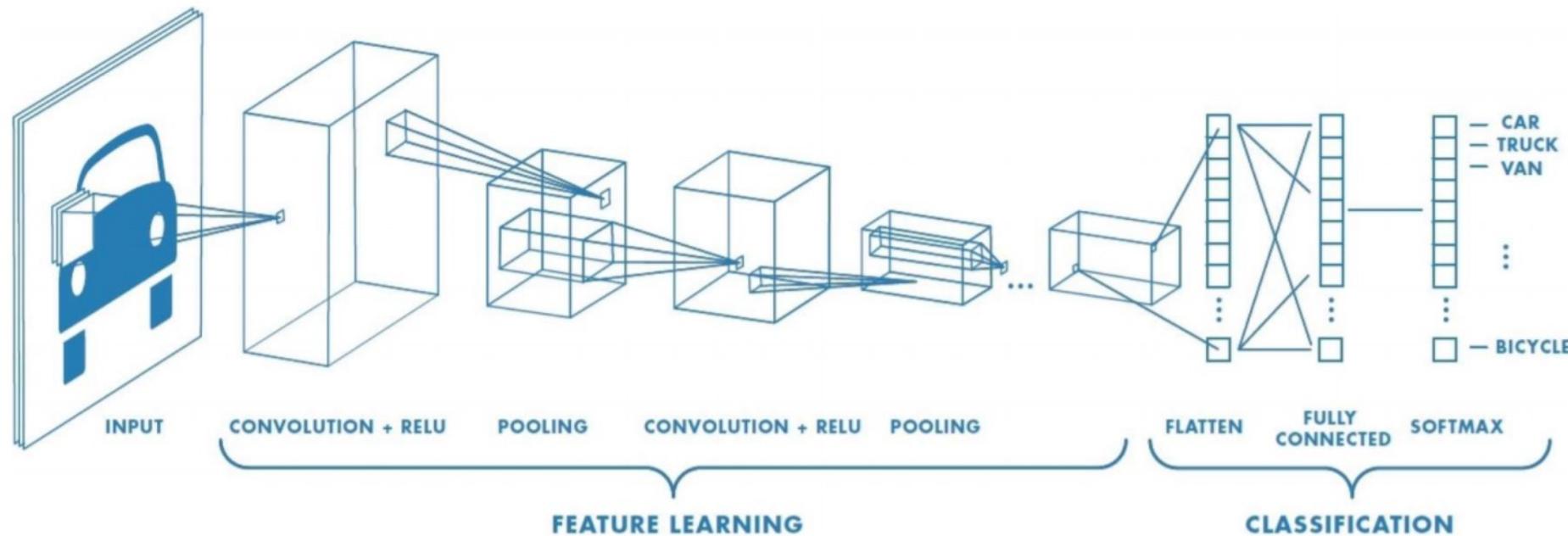


- **Efficiency:** reduces the depth (number of channels). Width and height are unchanged. To reduce the horizontal dimensions, you would use pooling (or increase the stride of the conv).
- The 1×1 conv computes a weighted sum of input channels (or features). This allows it to "select" certain combinations of features that are useful downstream.

Now put it all together to perform classification

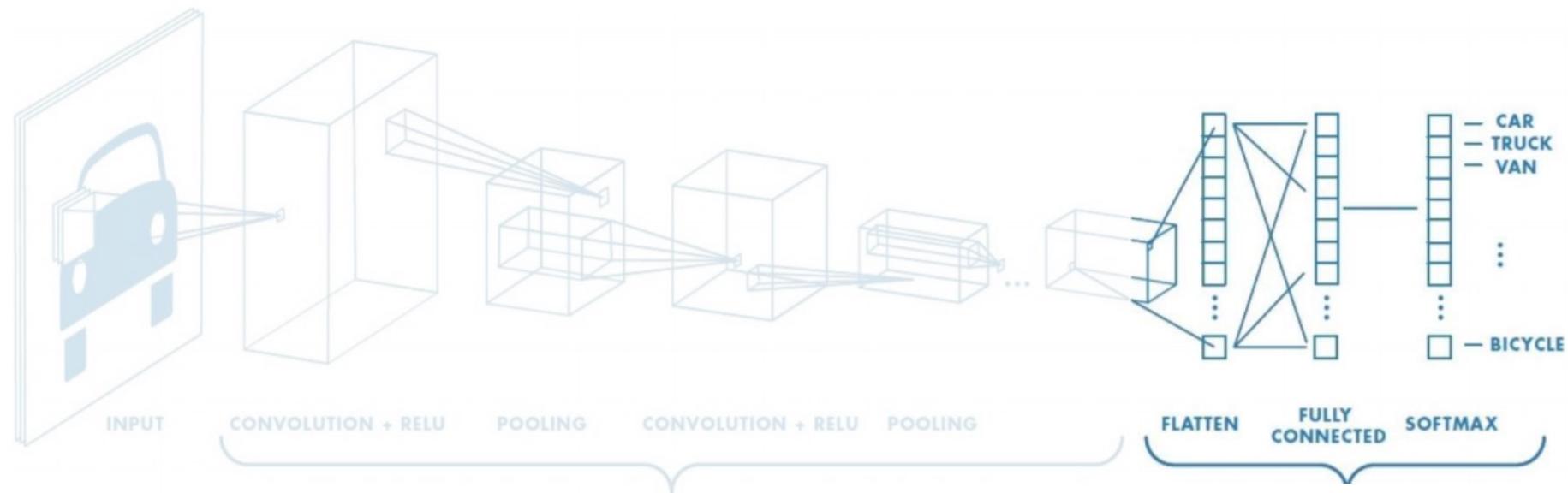
- We apply back-propagation to train model (weights for convolution and dense layers)
- Cross entropy loss

$$J(\theta) = \sum_i y^{(i)} \log(\hat{y}^{(i)})$$



Now put it all together to perform classification

- Extract high-level features from last conv and pool layer
- Add fully connected layers to learn complex transformation of the features
- Output expressed as probability distribution over classes

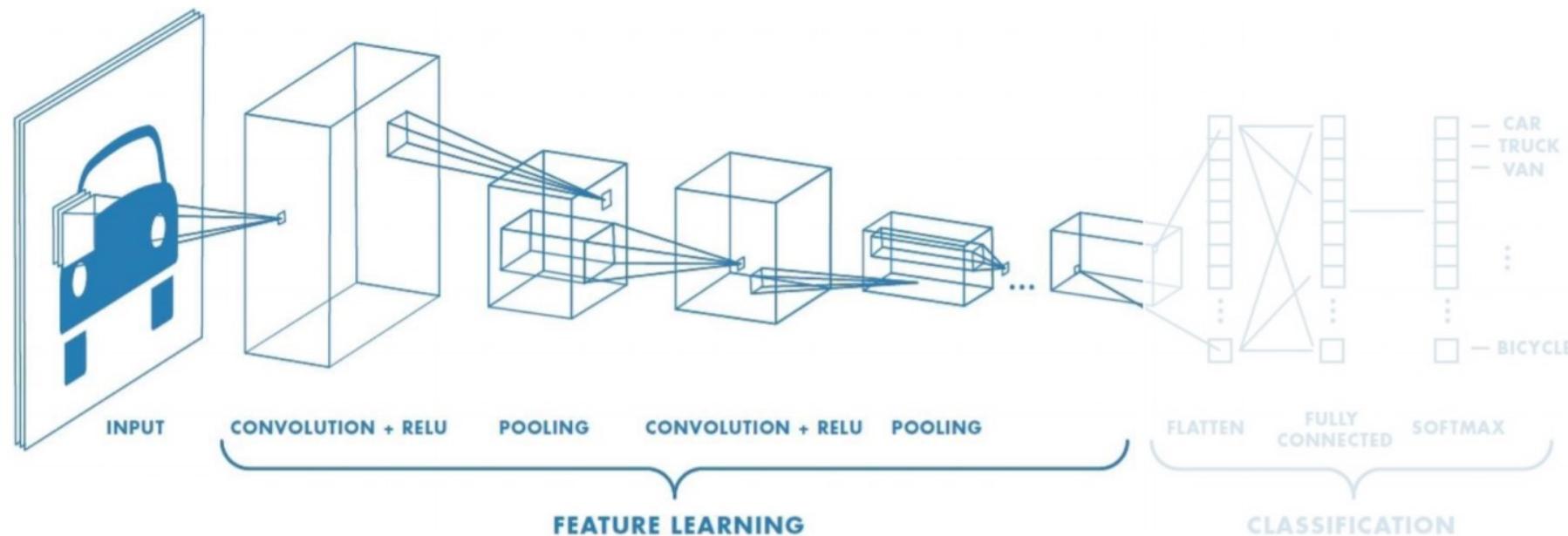


We'll see softmax on next lecture

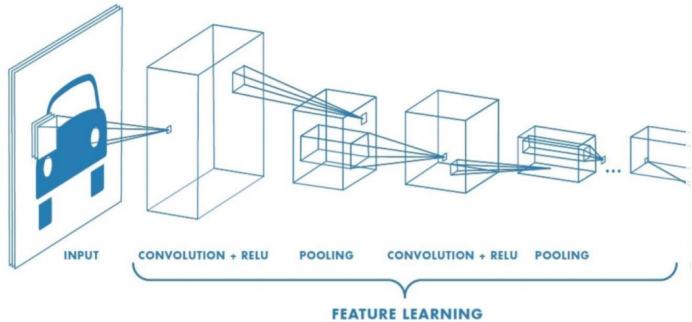
$$\text{softmax}(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

Now put it all together to perform **classification**

- Convolution to learn local features from input image
- Introduce non-linear activation
- Reduce dimensionality and preserve local translation invariance with pooling



One feature extraction tool, many tasks!



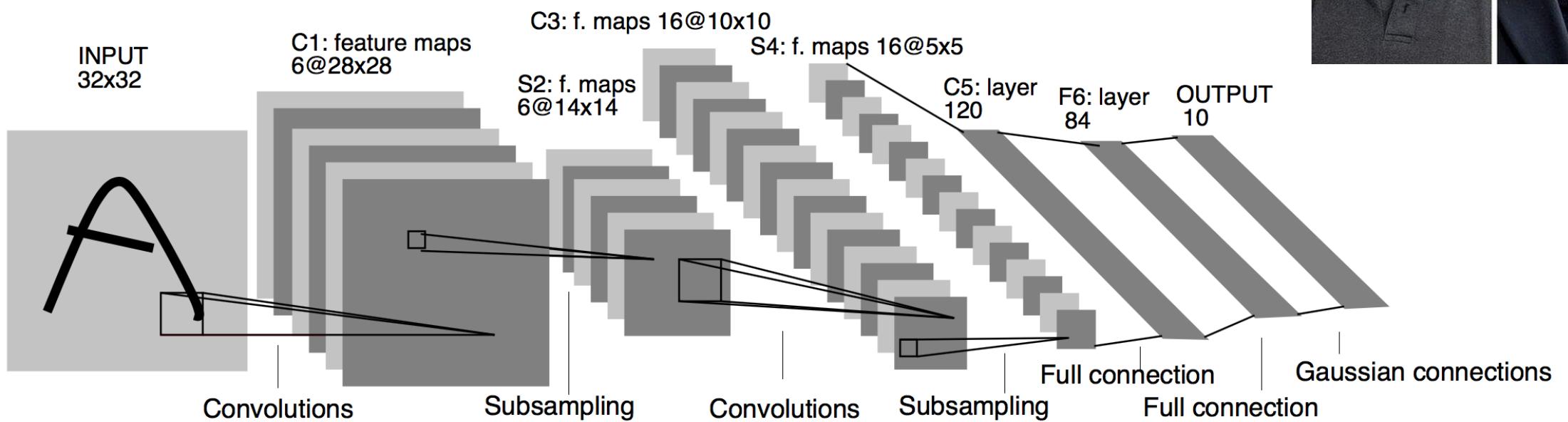
You can use feature learning part to perform a variety of tasks!

An overview of famous architectures and datasets

LeNet (LeNet-5)

Once upon a time... LeNet [LeCun et al., 1998]

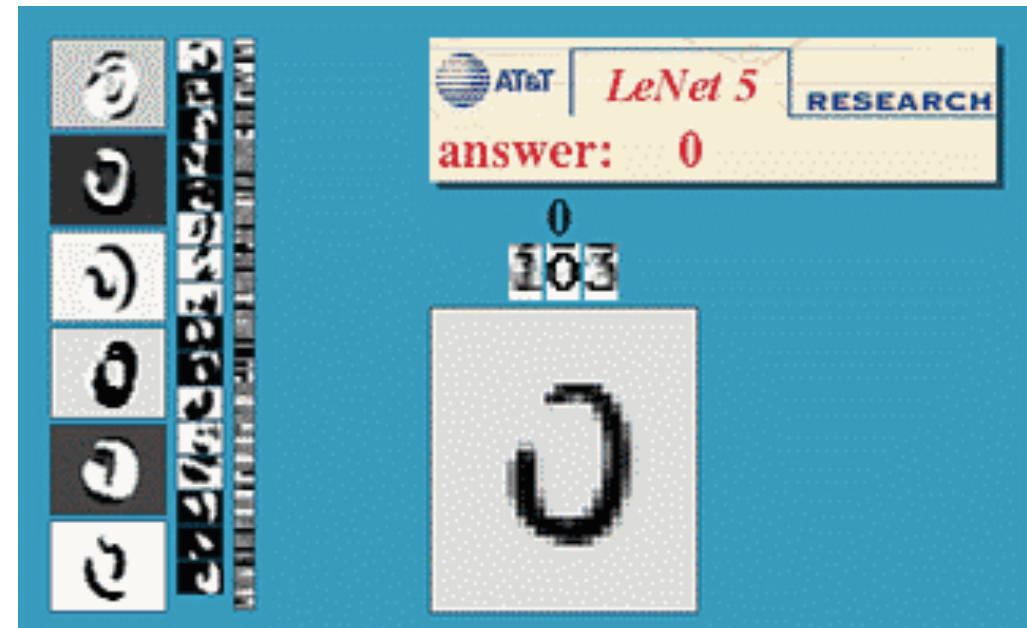
- 5x5 conv filters with stride 1
- 2x2 pooling with stride 2



CONV-POOL-CONV-POOL-FC-FC architecture

MNIST (1998)

- Handwritten digits recognition
- 10 classes (of course!)
- 60k training images (28x28), 10k test images
- Grayscale images
- MNIST: Modified National Institute of Standards and Technology database
- Original NIST: training dataset was taken from American Census Bureau employees, while the testing dataset was taken from American high school students
- Available on Tensorflow
- LeNet on MNIST was the first real NN application!
- MNIST is not much of a challenge anymore...



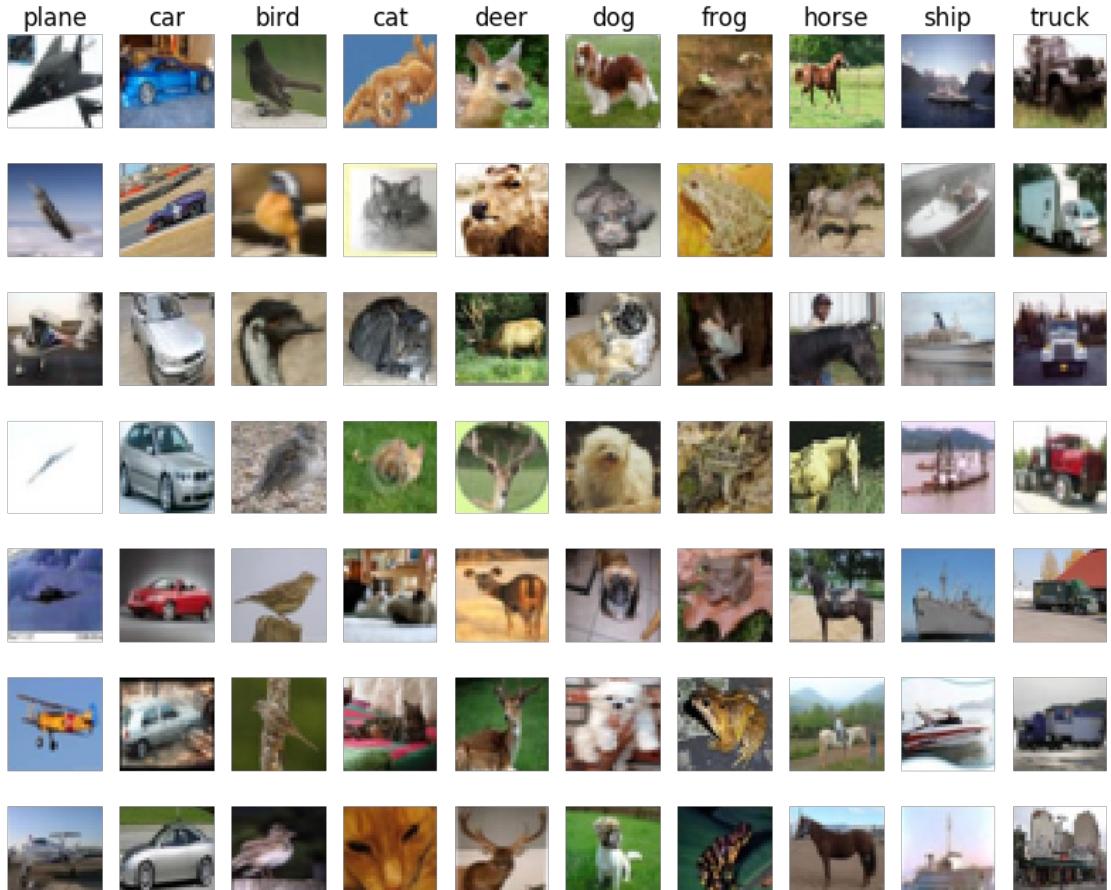
Fashion MNIST (2017)

- Clothing classification
- 10 classes
- 60k training images (28x28), 10k test images
- Grayscale images
- Available on Tensorflow
- More challenging than MNIST

Cifar10 (2010)

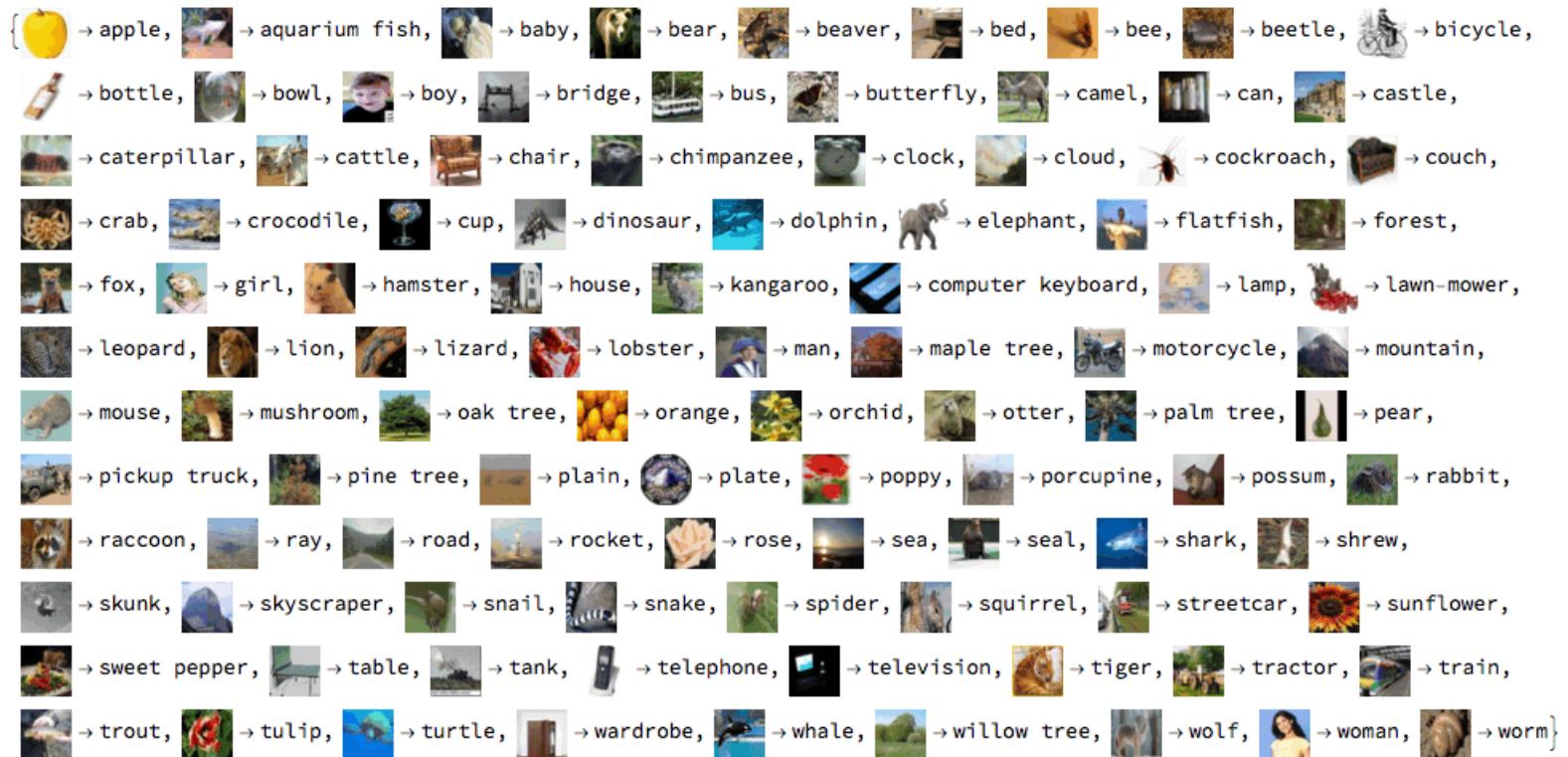
- 10 classes
- 60k images (32x32)
- Balanced dataset: 6000 images each
- Colour images
- It is a labeled subset of the 80 million tiny image dataset
- Available on Tensorflow
- Widely used for research nowadays

CIFAR
CANADIAN
INSTITUTE
FOR
ADVANCED
RESEARCH



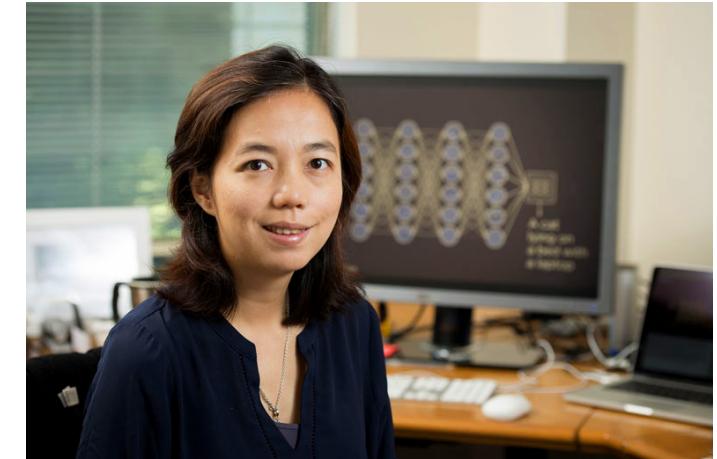
Cifar100 (2010)

- 100 classes
- 60k images (32x32)
- Balanced dataset: 600 images each
- Colour images
- It is a labeled subset of the 80 million tiny image dataset
- Available on Tensorflow
- Widely used for research nowadays (less than Cifar10)

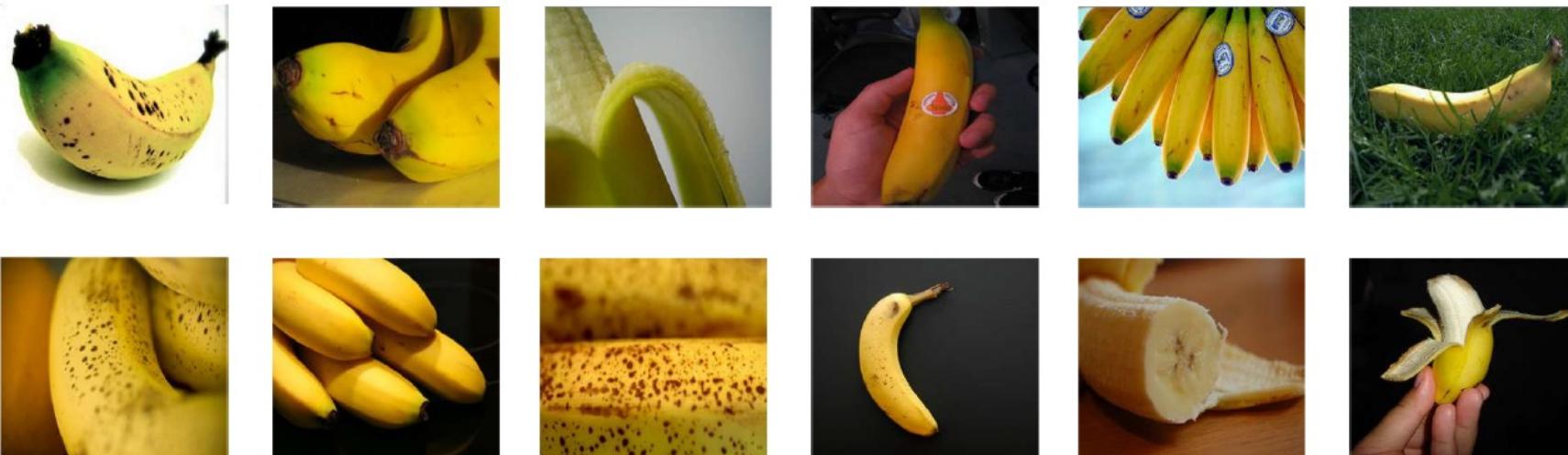


Imagenet (2009)

- 21841 classes
- 14M images with different dimensions and resolutions (many apply resize to 256x256)
- Unbalanced dataset
- Colour images
- Lead developer Fei-Fei Li



“Elongated crescent-shaped yellow fruit with soft sweet flesh”



| 409 pictures of bananas.

ImageNet Large Scale Visual Recognition Challenges

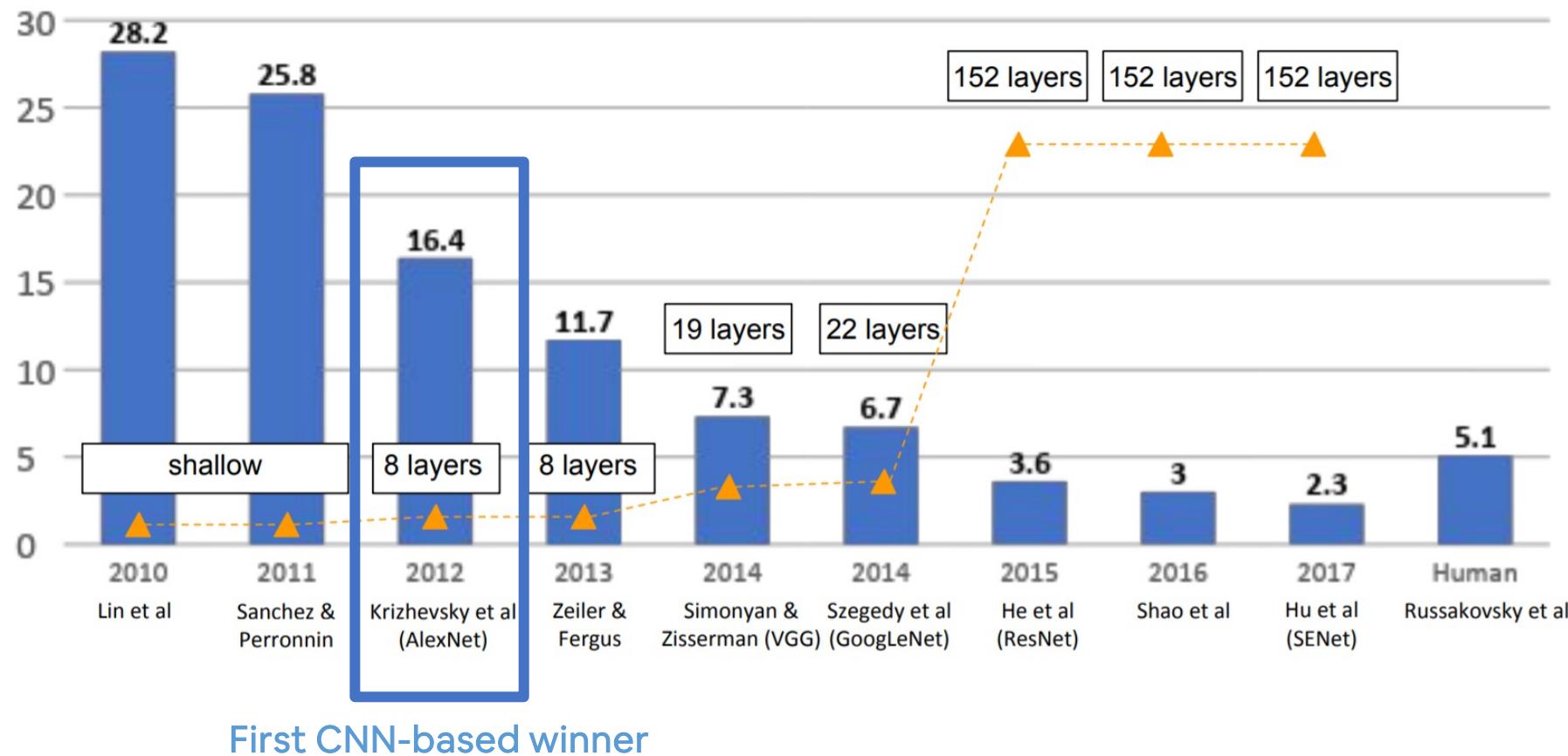
Classification task: produce a list of object categories present in image. 1000 categories.

“Top 5 error”: rate at which the model does not output correct label in top 5 predictions

An overview on the most famous architectures

Imagenet – visual recognition challenge with 1000 classes.

Winners:

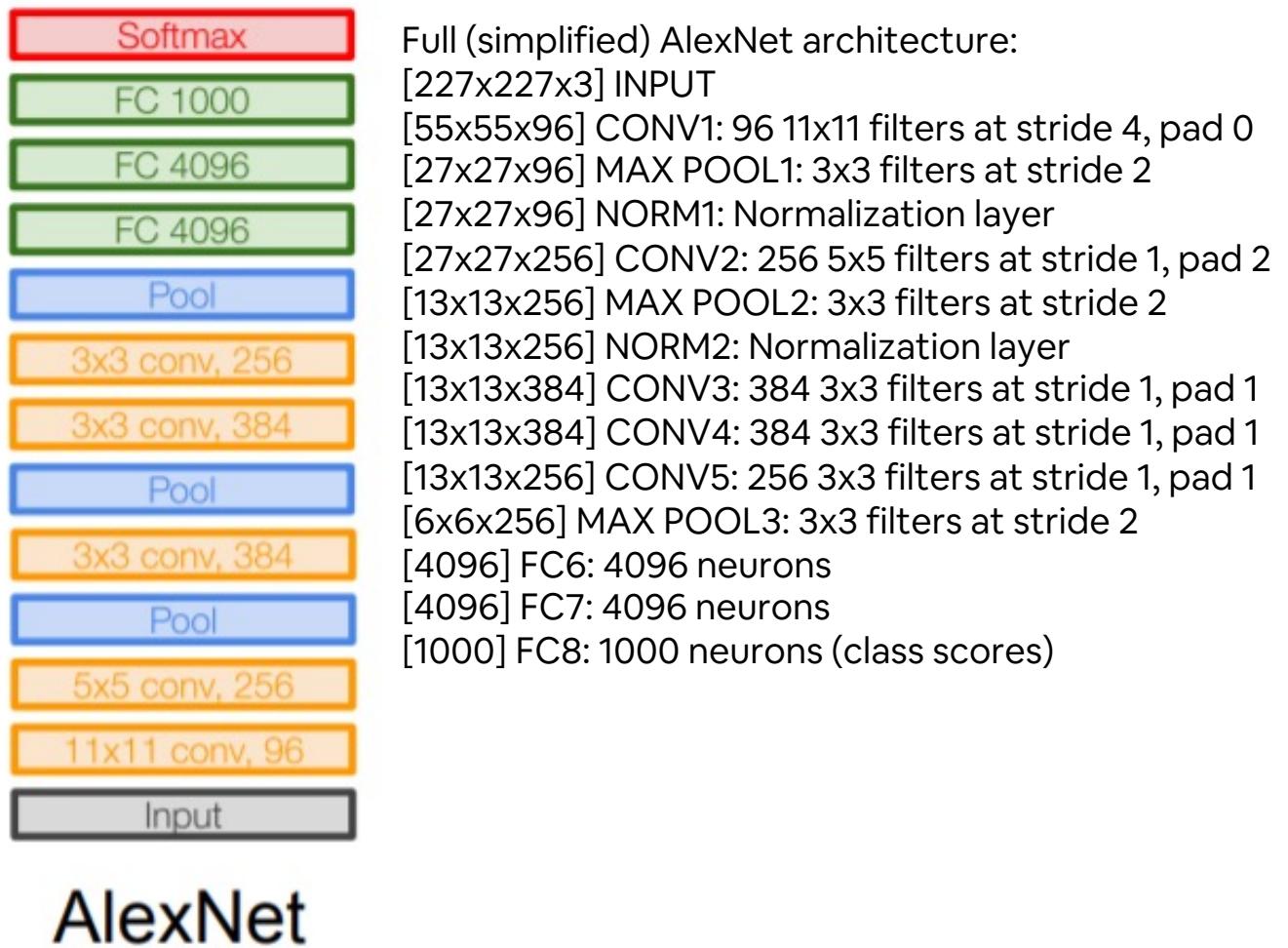


AlexNet

AlexNet (2012) renewed interest in CNN.

It uses:

- RELU (first use)
- Layer normalization
- Dropout
- MaxPooling
- Momentum
- Data augmentation in training



AlexNet

AlexNet (2012) renewed interest in CNN.

It uses:

- RELU (first use)
- Layer normalization
- Dropout
- MaxPooling
- Momentum
- **Data augmentation in training**

Data Augmentation:

a. No augmentation (= 1 image)

224x224
→

b. Flip augmentation (= 2 images)

224x224
→ +

c. Crop+Flip augmentation (= 10 images)

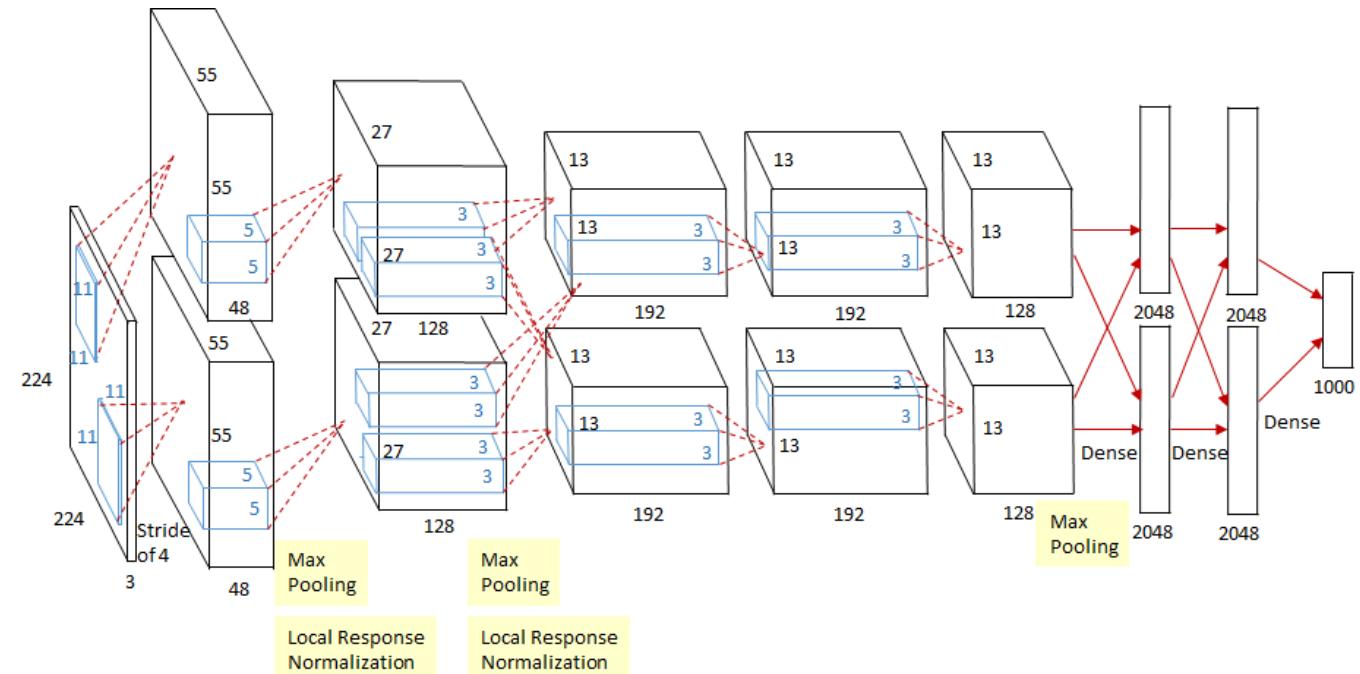
224x224
→ + flips

AlexNet

AlexNet (2012) renewed interest in CNN.

It uses:

- RELU (first use)
- Layer normalization
- Dropout
- MaxPooling
- Momentum
- **Data augmentation in training**

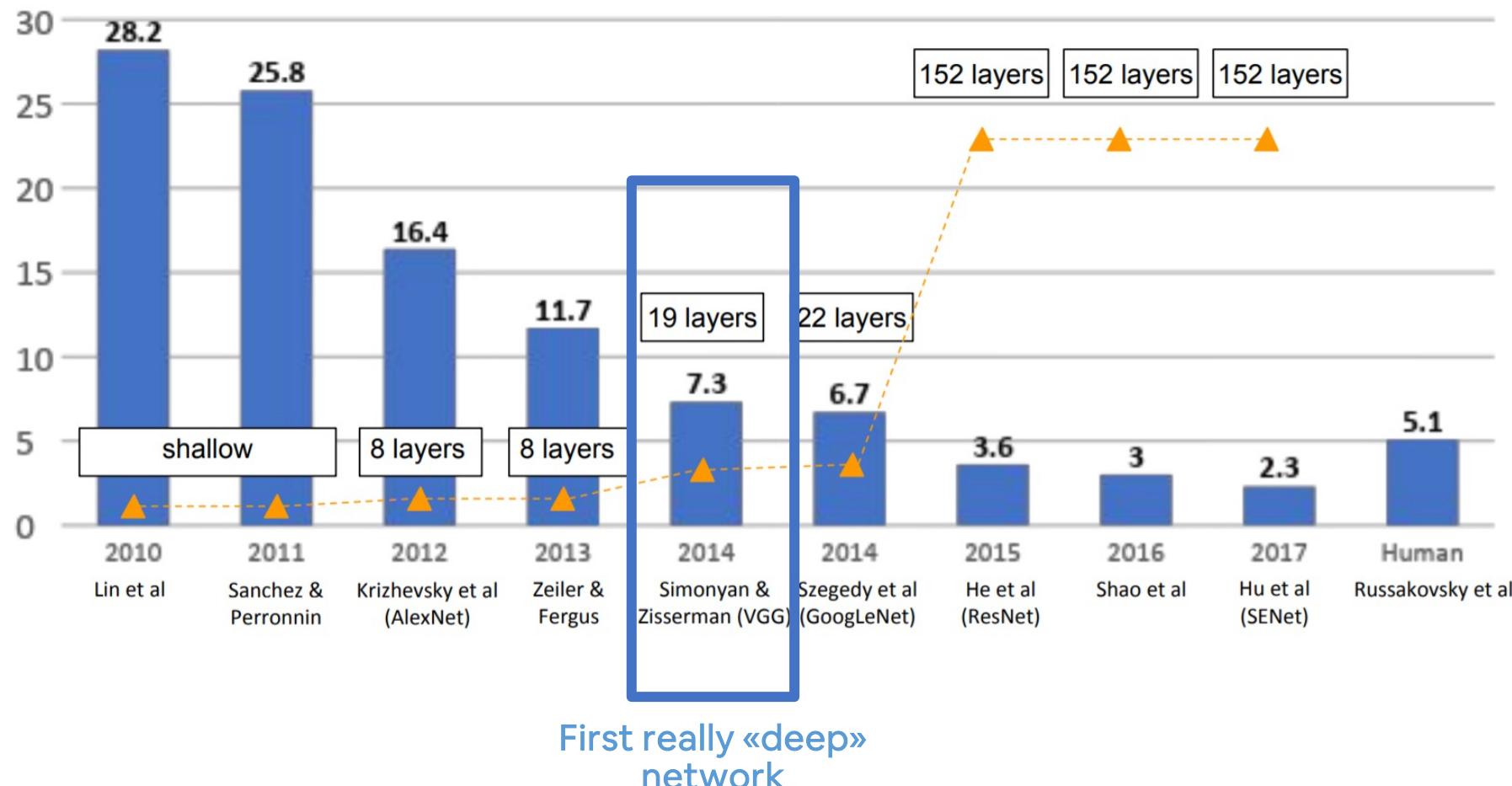


62.3 million parameters: the original paper showed that the depth of the model was essential for its high performance, which was computationally expensive, but made feasible due to the utilization of (GPUs) during training.

An overview on the most famous architectures

Imagenet – visual recognition challenge with 1000 classes.

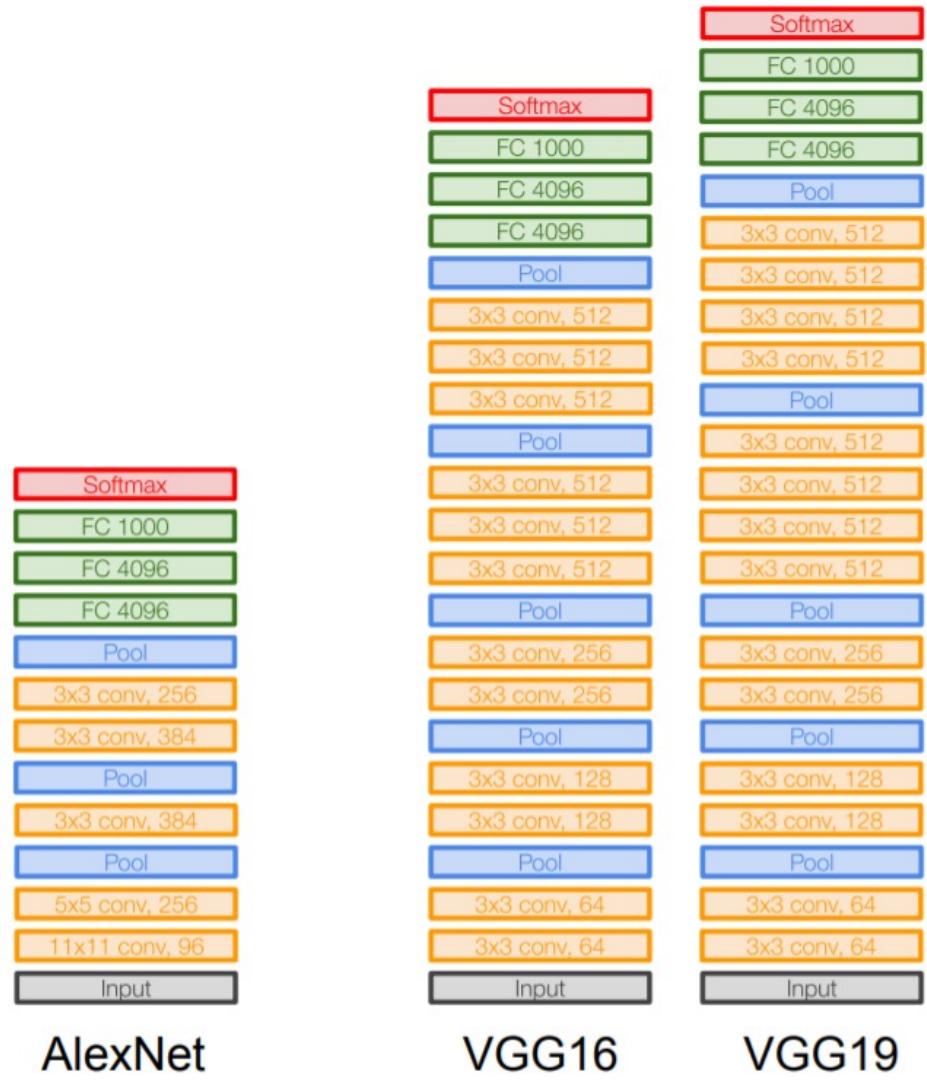
Winners:



VGG

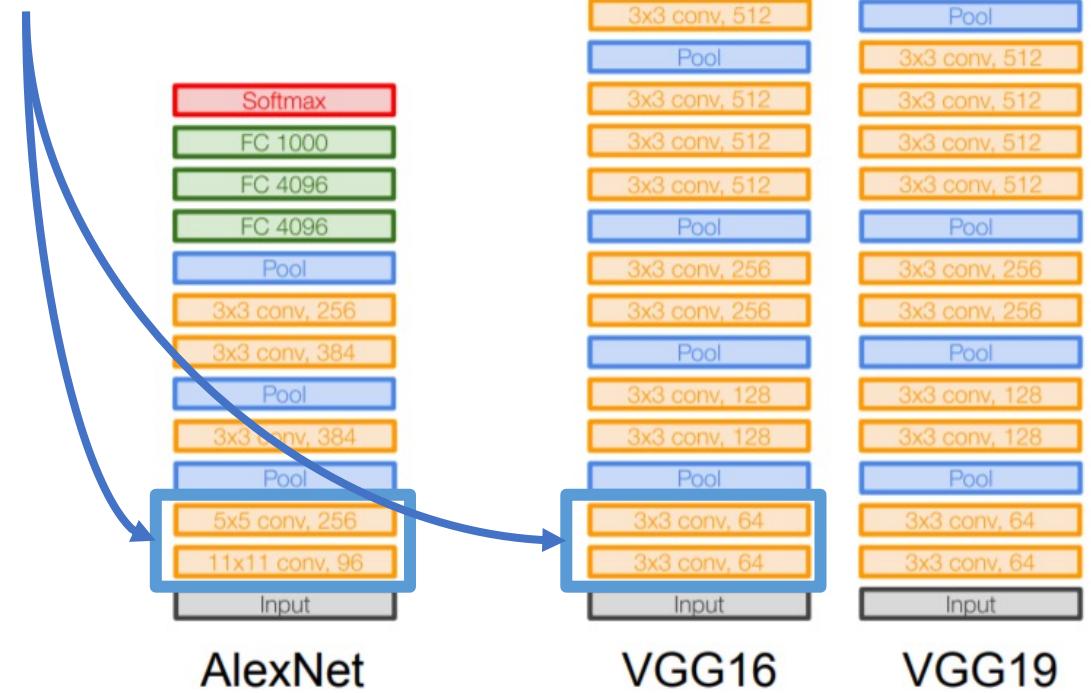
VGG (2014):

- many small convolutional filters stacked together before pooling
- very deep (at the time) with 16/19 layers



VGG

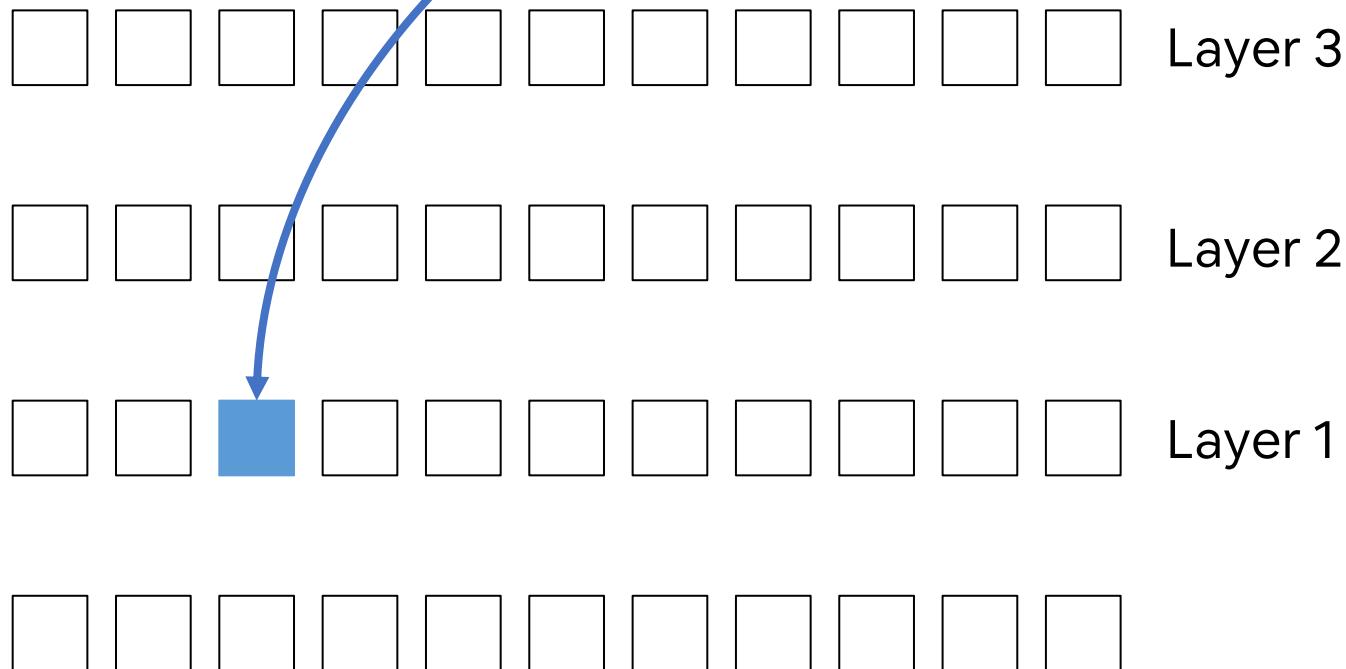
Wait. Why using
smaller conv filters?



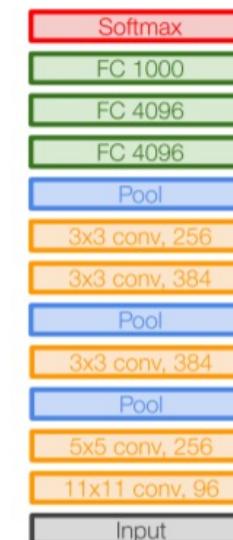
VGG

Consider a stack of three 3×3 conv layers.

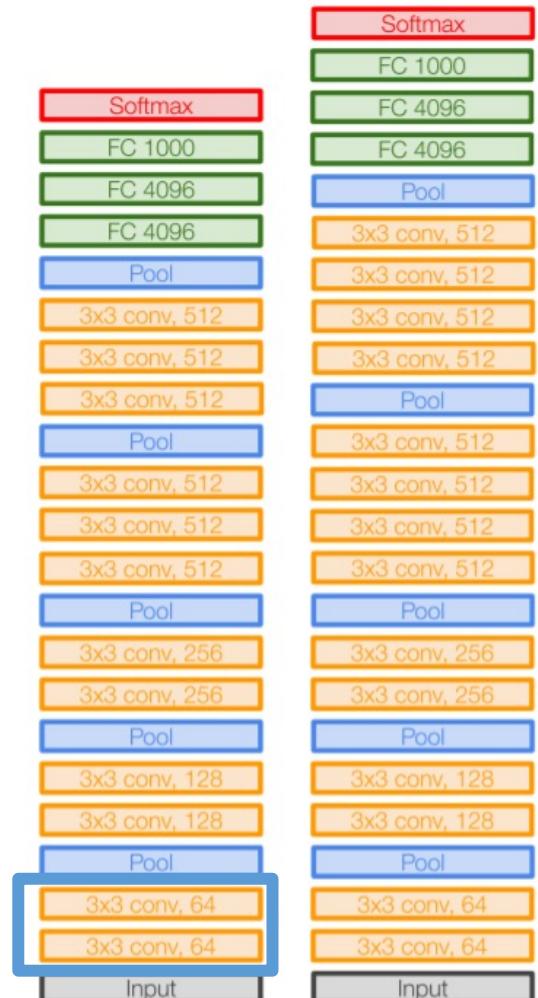
Which is the receptive field of this hidden unit?



AlexNet

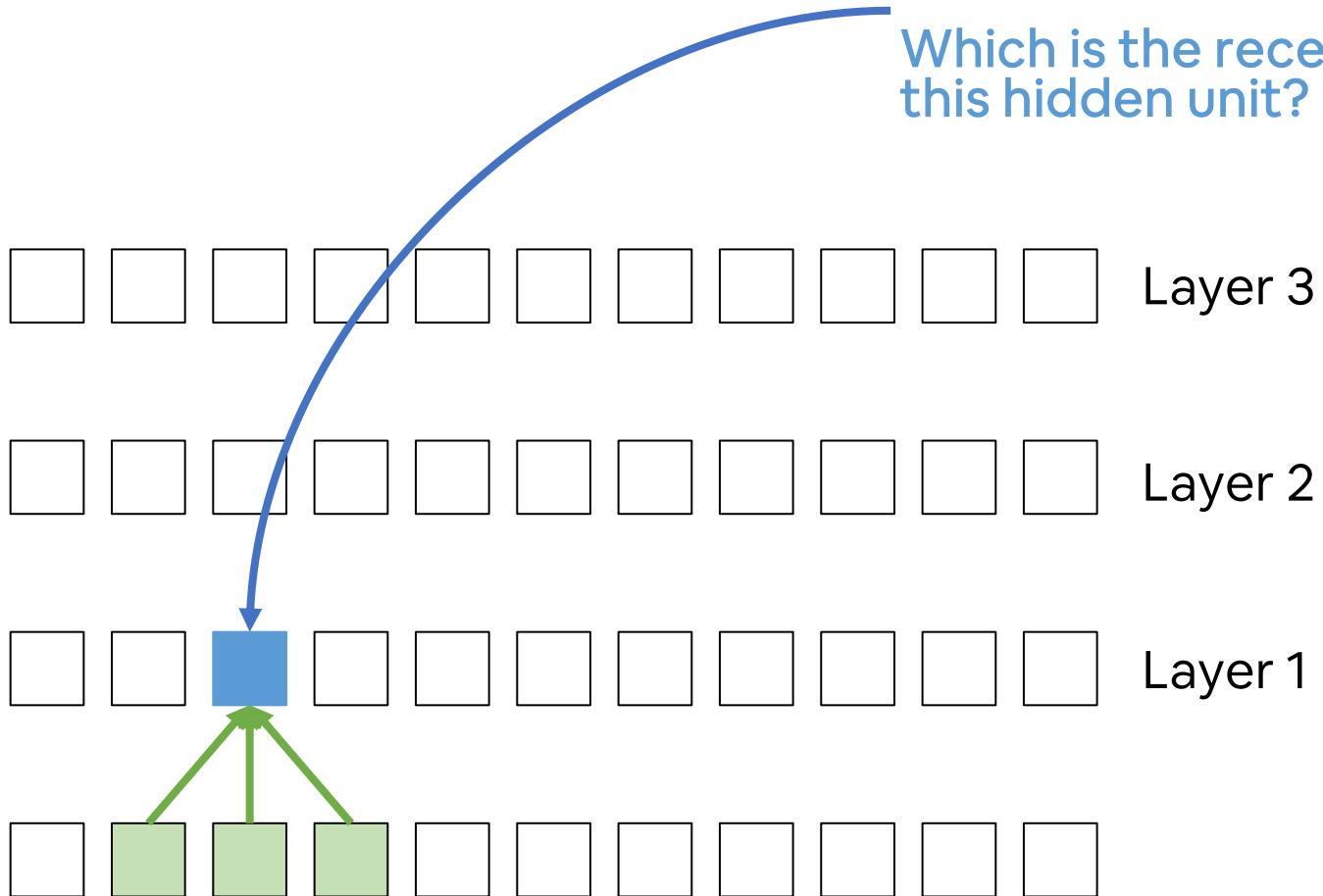
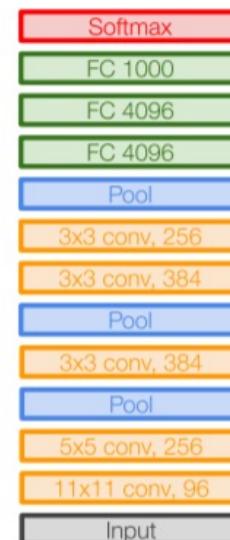


VGG16

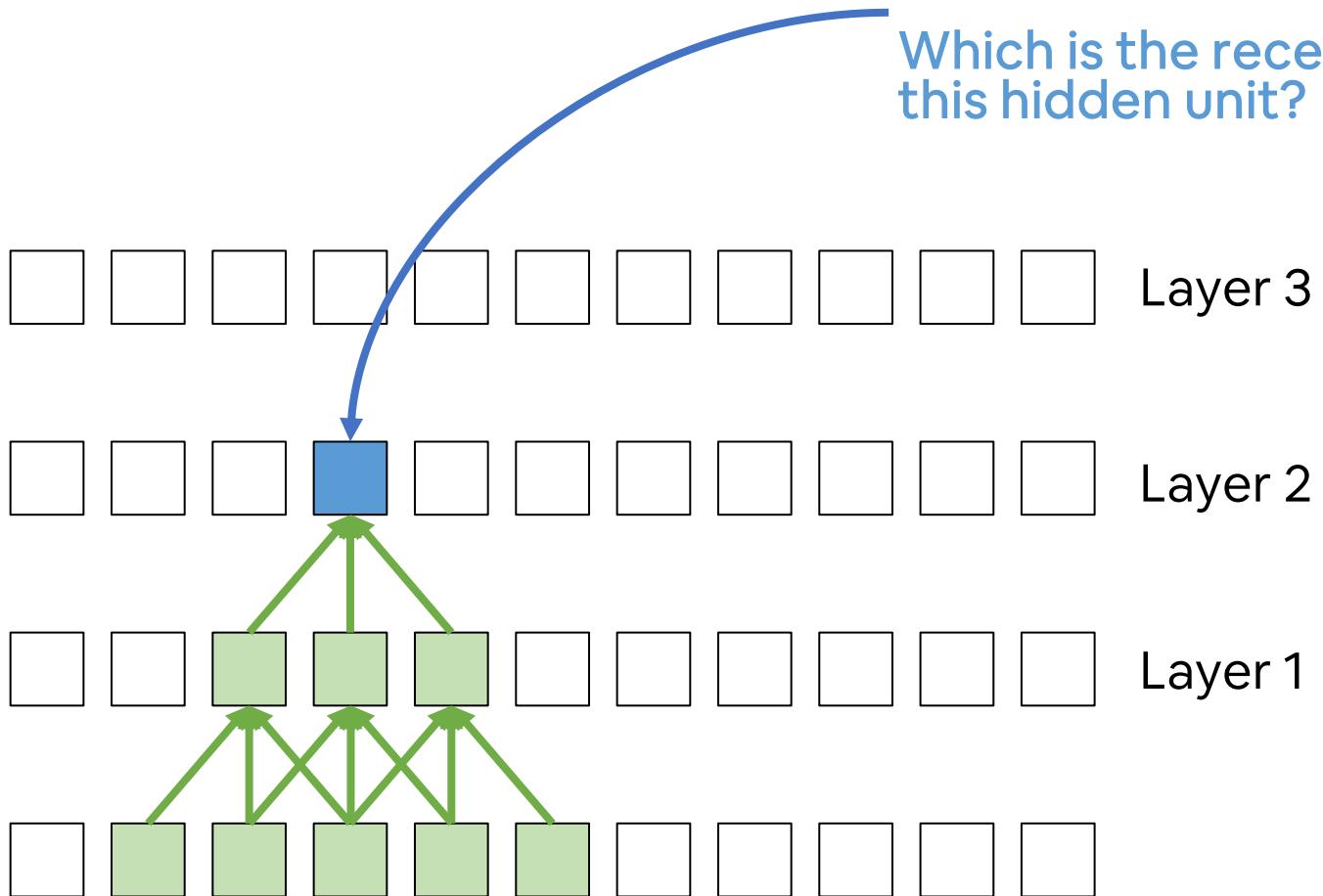


VGG19

VGG

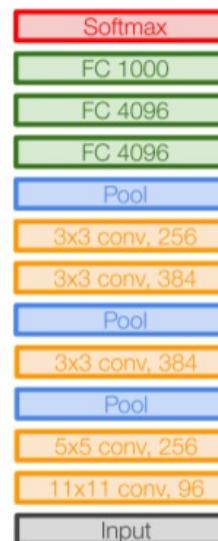


VGG

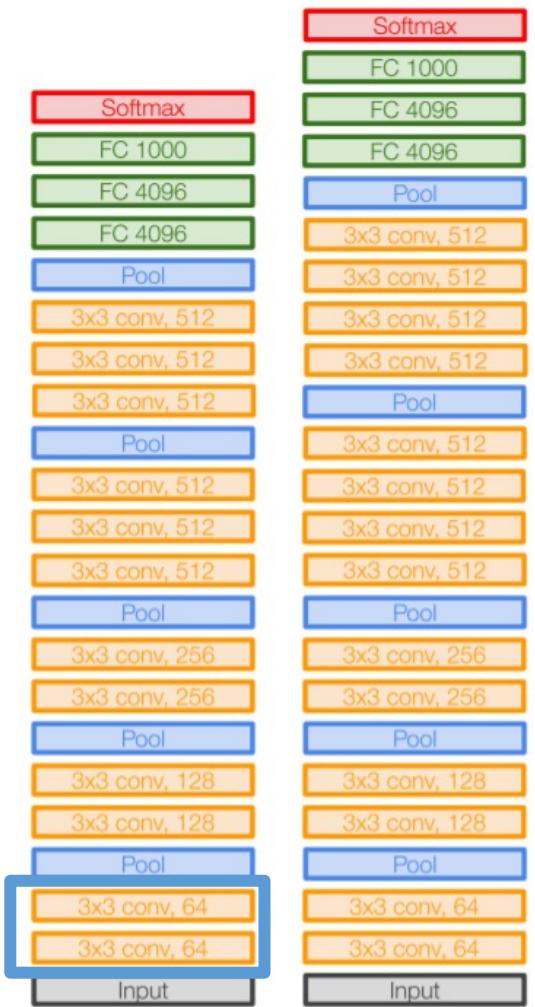


Consider a stack of three 3x3 conv layers.

Which is the receptive field of this hidden unit?



AlexNet



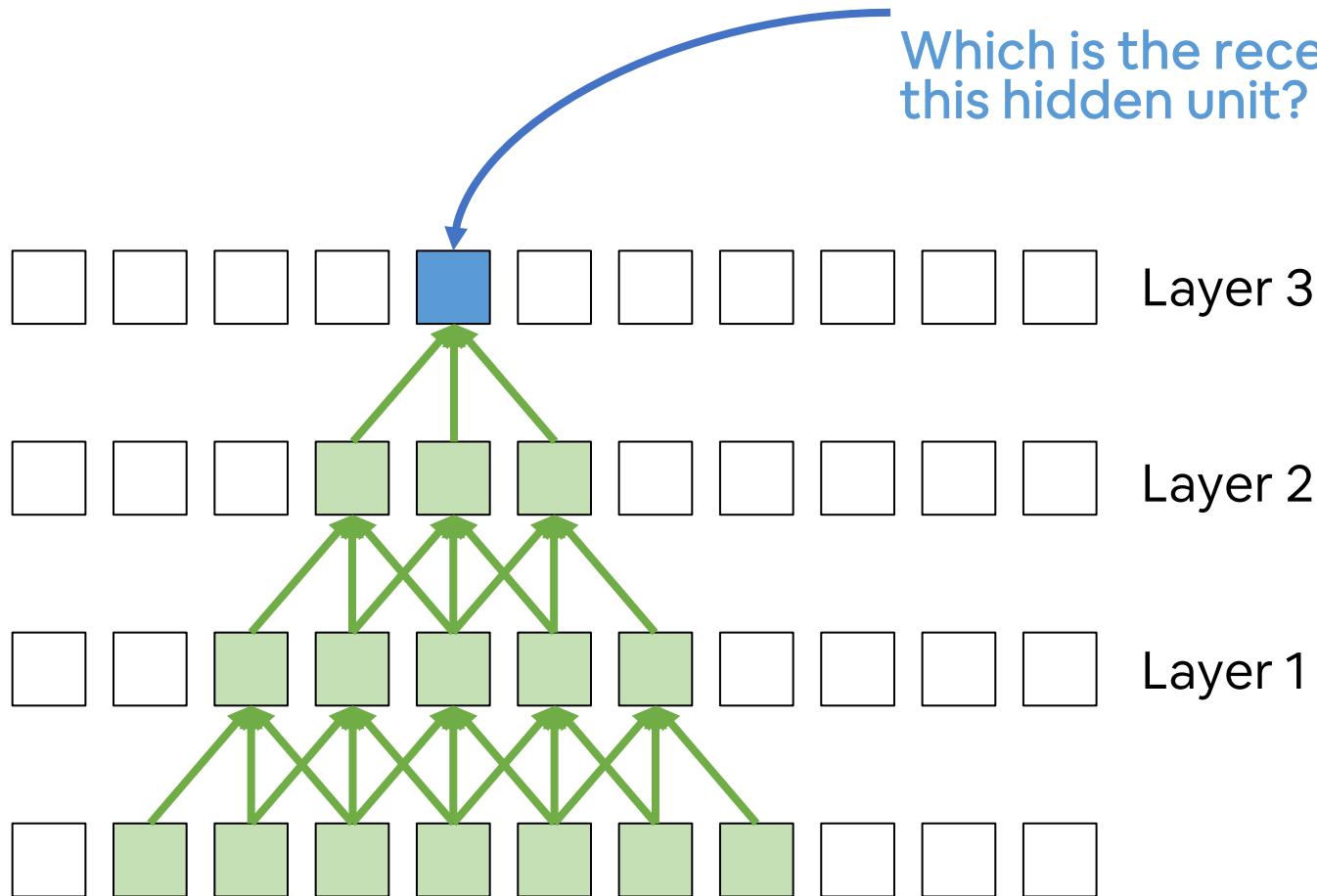
VGG16

VGG19

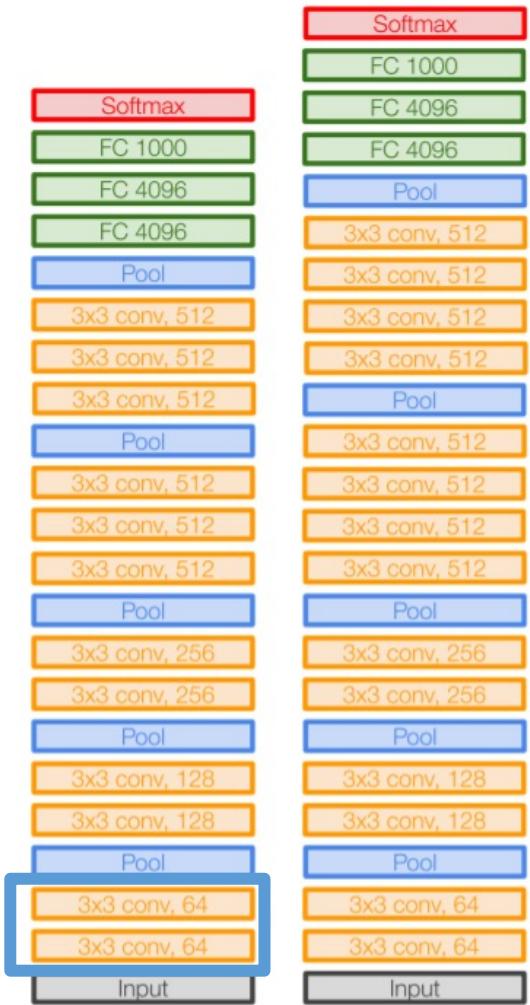
VGG

Consider a stack of three 3×3 conv layers.

Which is the receptive field of this hidden unit?



AlexNet



VGG16

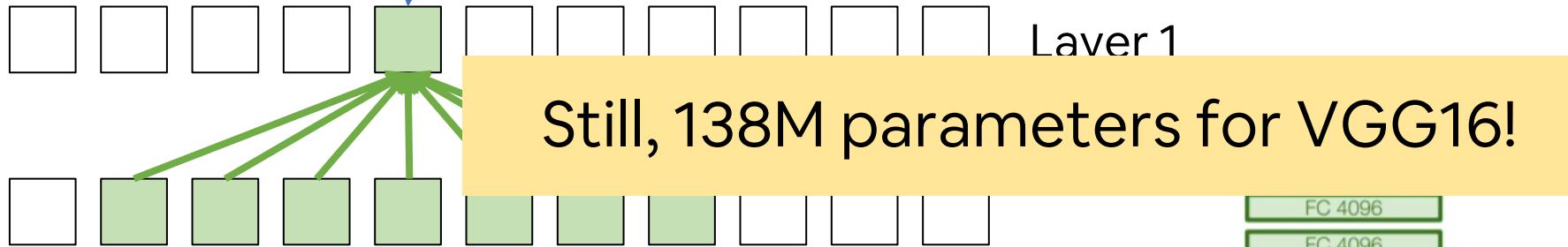
VGG19

VGG

Consider a stack of three 3×3 conv layers.

Which is the receptive field of this hidden unit?

Same as one layer with 7×7 conv filters.

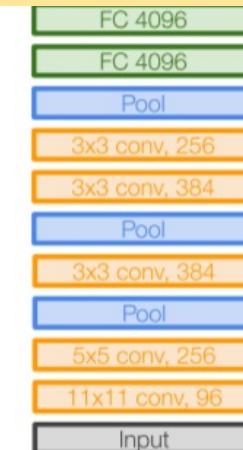


But three layers mean more non-linearities, i.e. more complex features...

... and fewer parameters!

C channels (e.g. C=3 for RGB images):

- 7×7 conv has $7^2 \times C = 147$ parameters
- 3 layers of 3×3 conv have $3 \times (3^2 \times C) = 81$



AlexNet

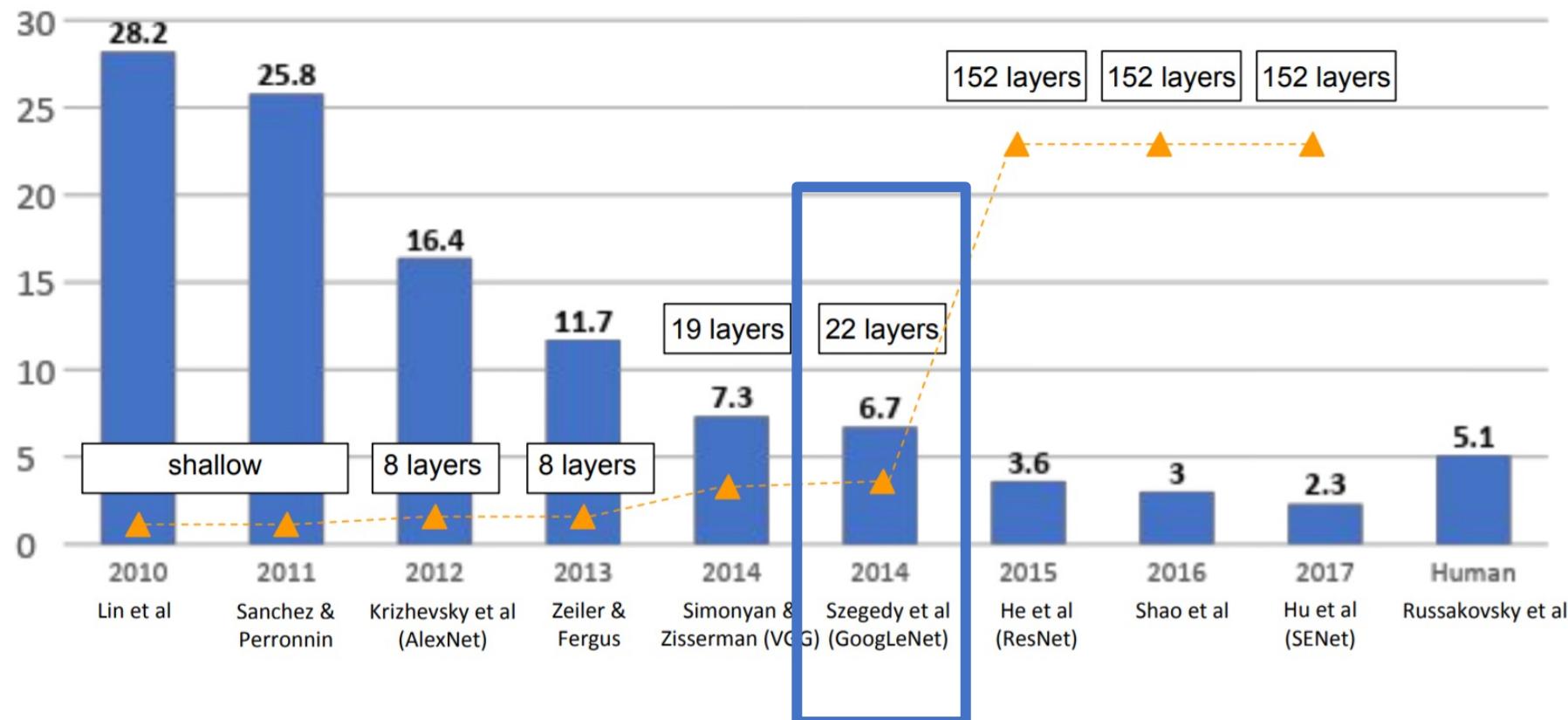
VGG16

VGG19

An overview on the most famous architectures

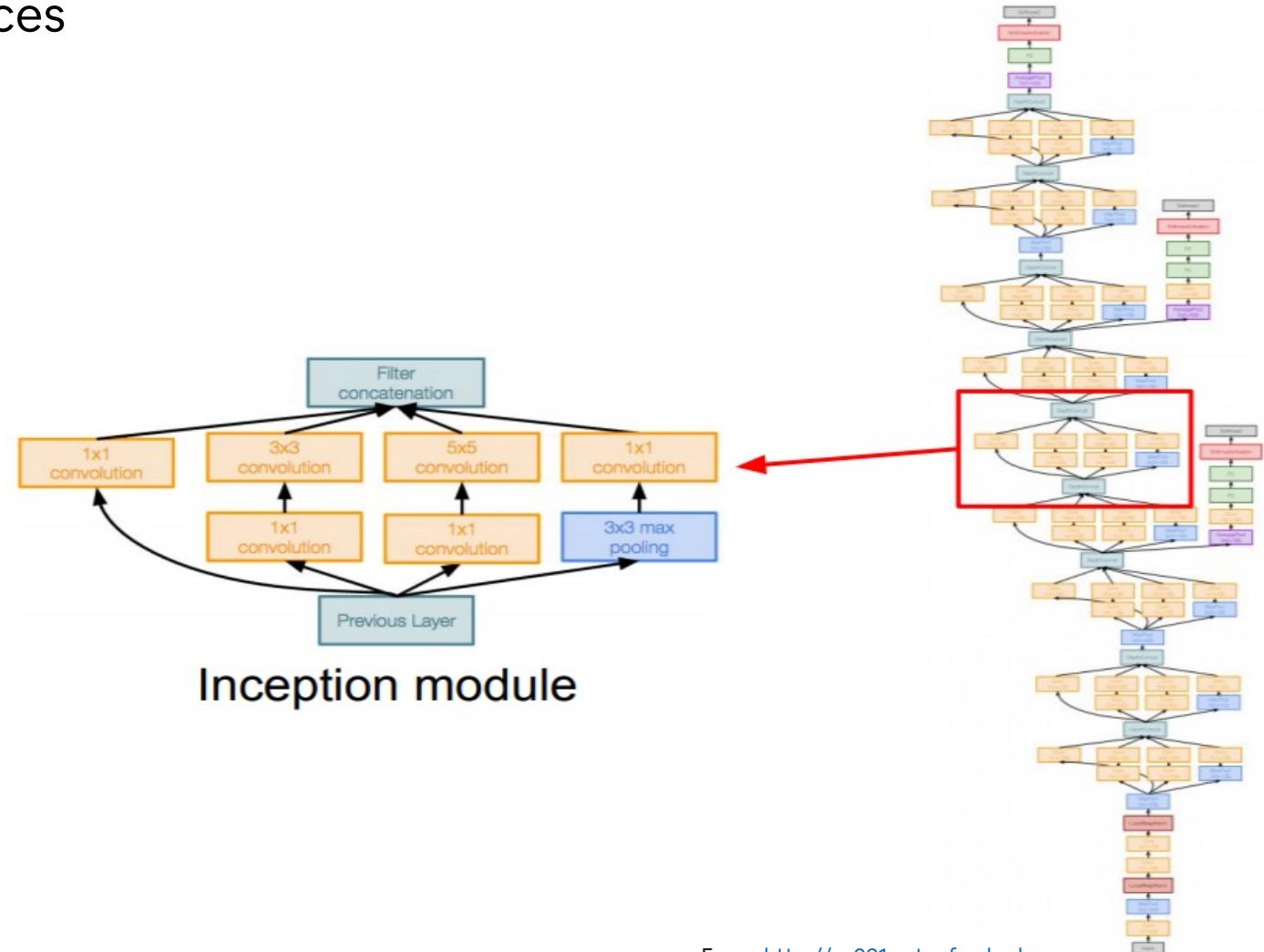
Imagenet – visual recognition challenge with 1000 classes.

Winners:



GoogLeNet

Inception + GoogLeNet (2015)– introduces parallel conv blocks (inception)

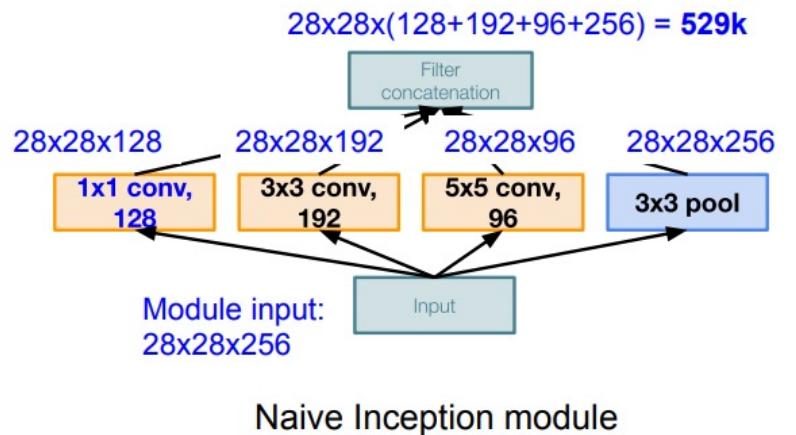
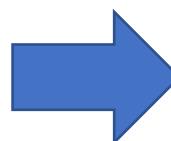
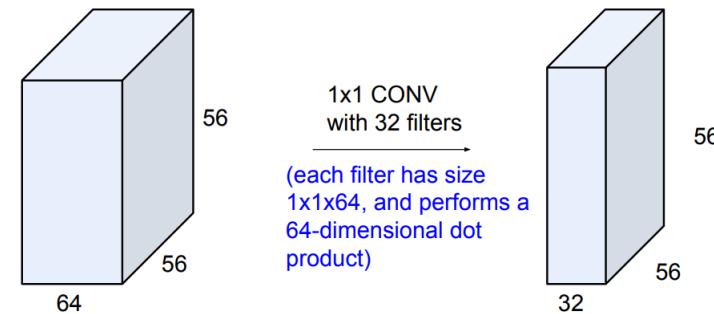
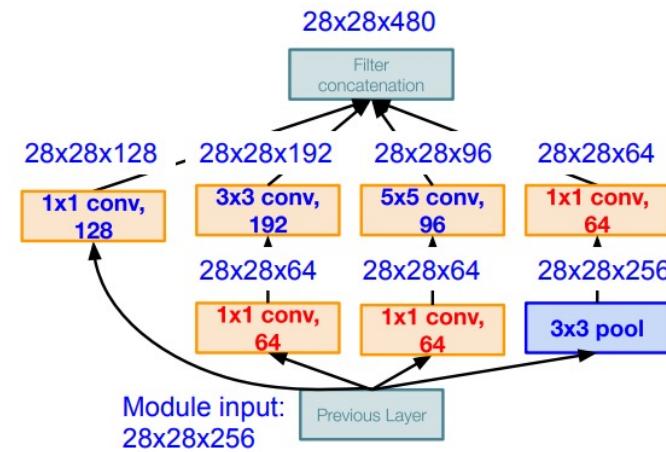


GoogLeNet

Preserves spatial dimensions, but reduces depth! Feature maps (depth) are projected to lower dimension

Inception + GoogLeNet (2015)– introduces parallel conv blocks (inception)

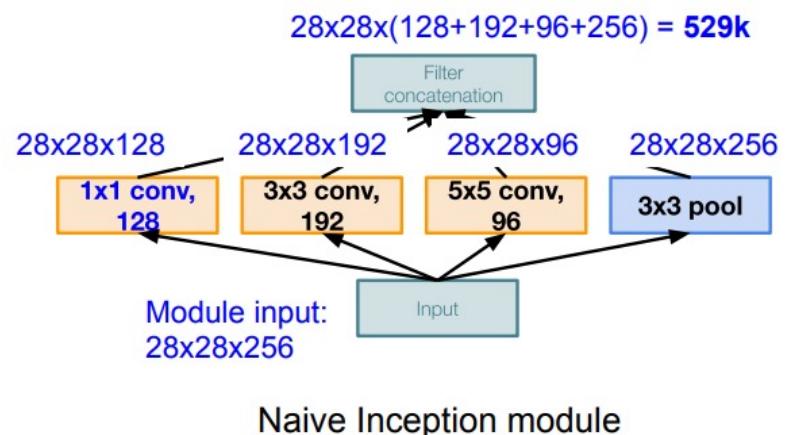
Cleverly uses 1x1 convolutions



GoogLeNet

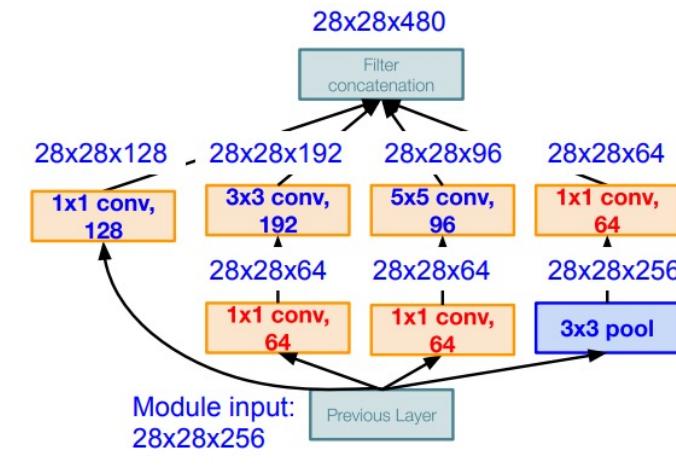
Inception + GoogLeNet (2015) – introduces parallel convolution (inception)

Cleverly
Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5x5 conv, 96] 28x28x96x5x5x256
Total: 854M ops



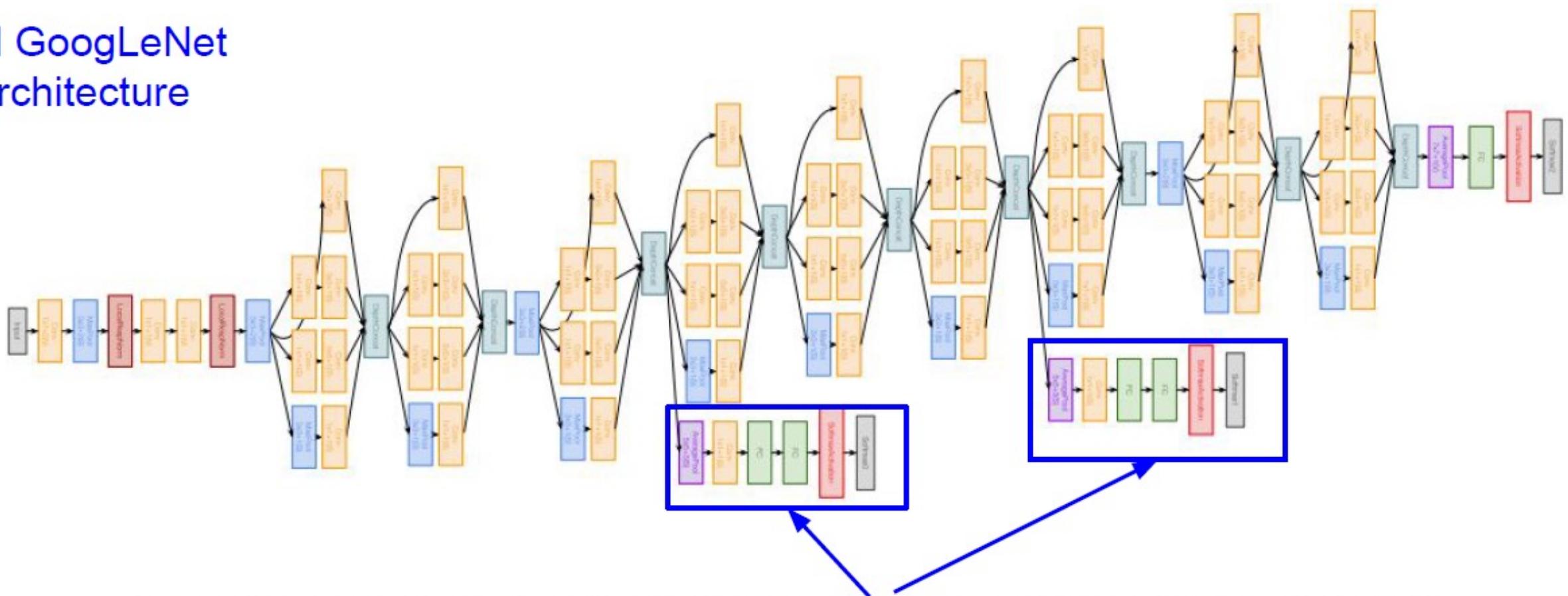
Preserves spatial dimensions, but reduces depth! Feature maps (depth) are projected to lower dimension

Conv Ops:
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops



GoogLeNet

Full GoogLeNet architecture

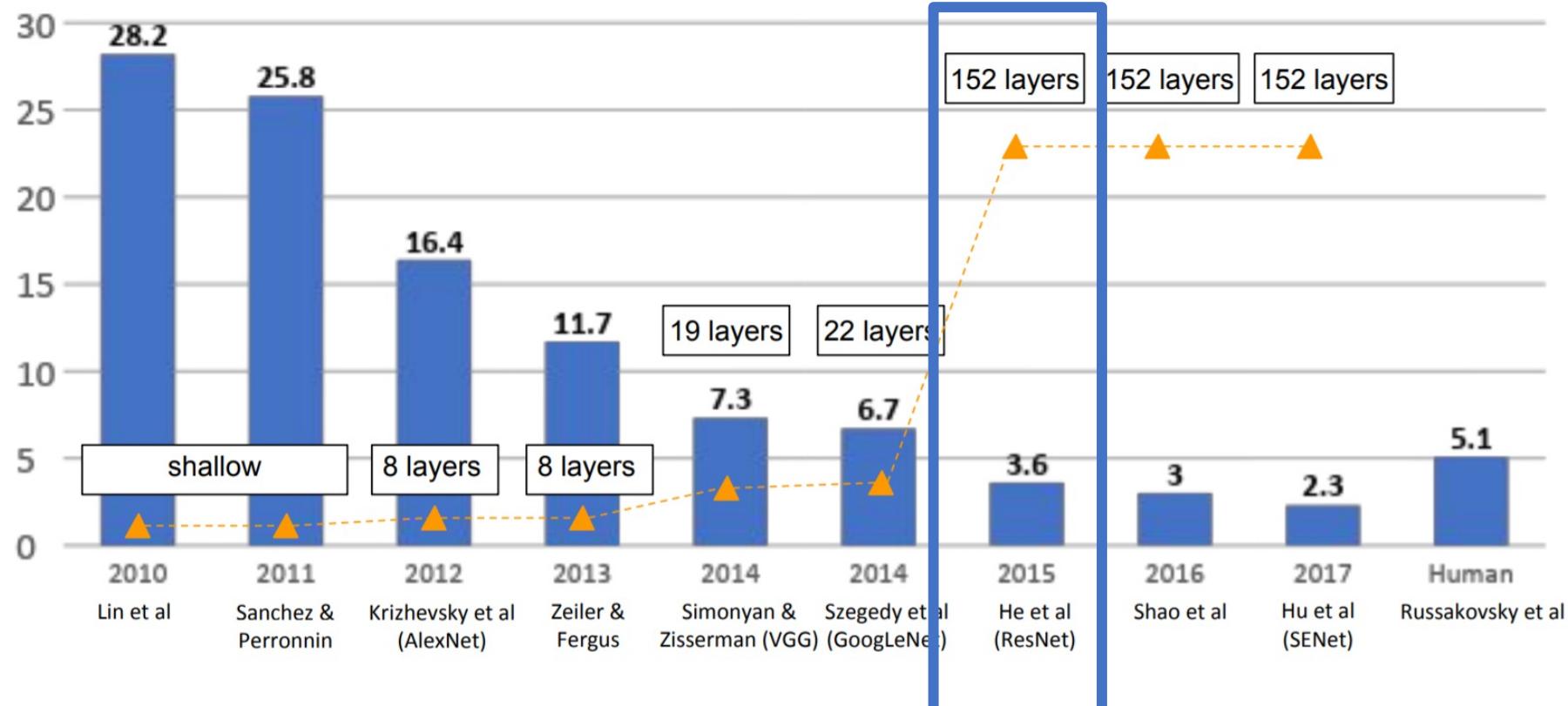


Auxiliary classification outputs to inject additional gradient at lower layers
(AvgPool-1x1Conv-FC-FC-Softmax)

An overview on the most famous architectures

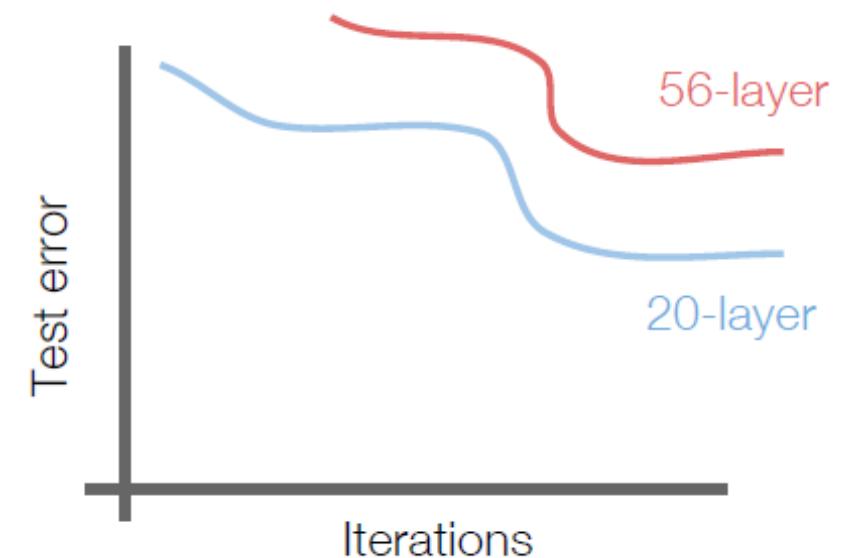
Imagenet – visual recognition challenge with 1000 classes.

Winners:



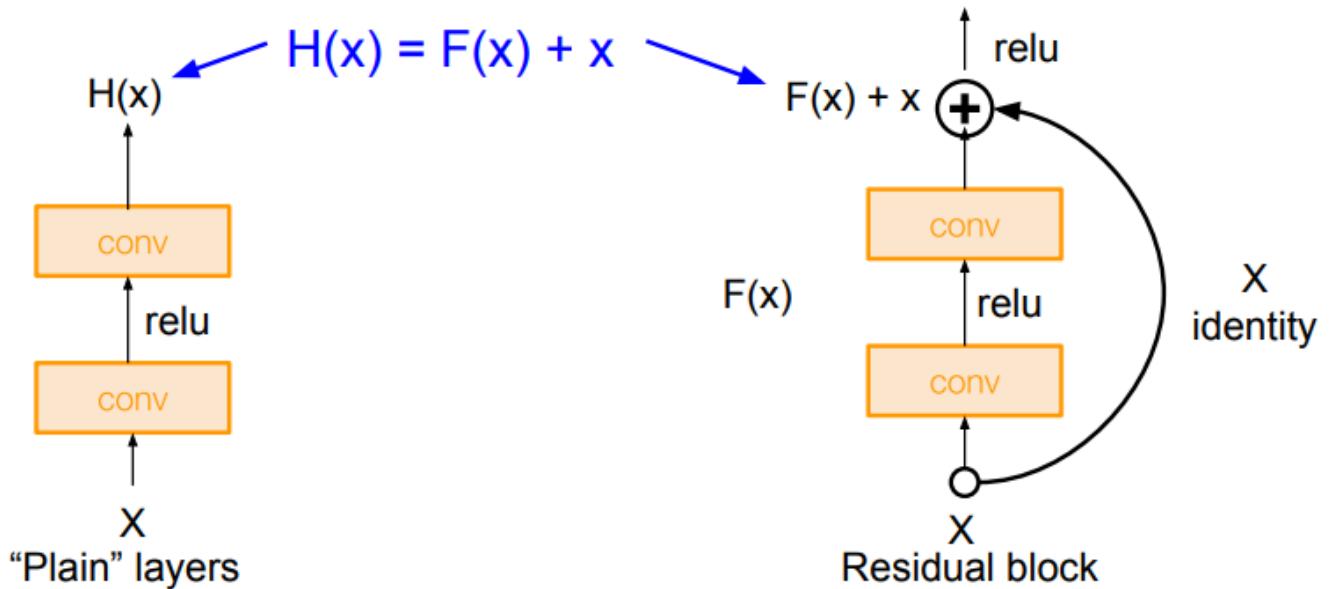
ResNet

Why not stacking more and more layers?

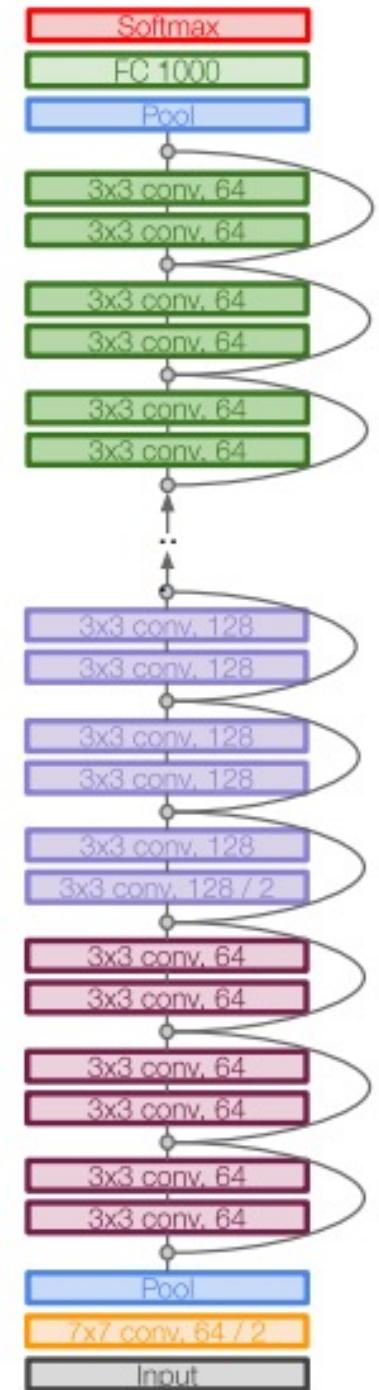


ResNet

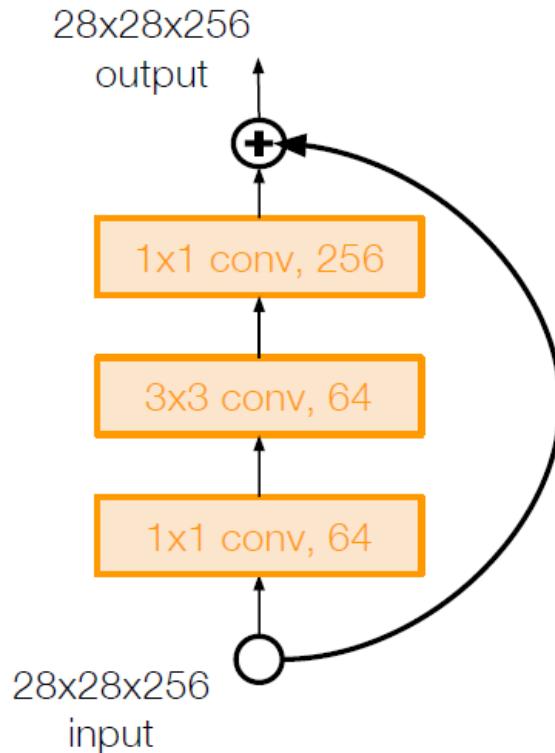
ResNet (2015) – very deep model (152 layer) with shortcut connections



Use layers to fit residual
 $F(x) = H(x) - x$ instead of $H(x)$ directly



ResNet



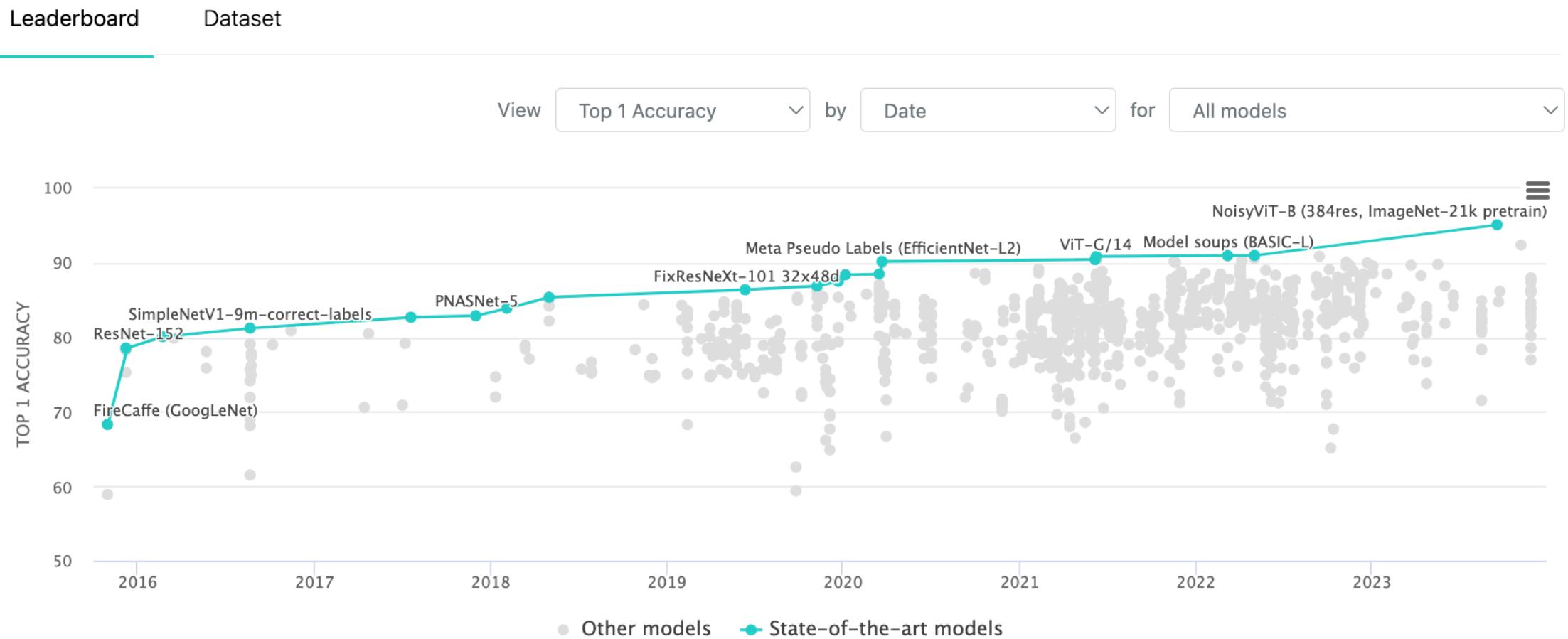
For ResNet with
more than 50
layers

ResNet training:

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

State of the art is always on the move...

Image Classification on ImageNet



Is not all about accuracy... EfficientNet

Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In *International Conference on Machine Learning* (pp. 6105-6114). PMLR.

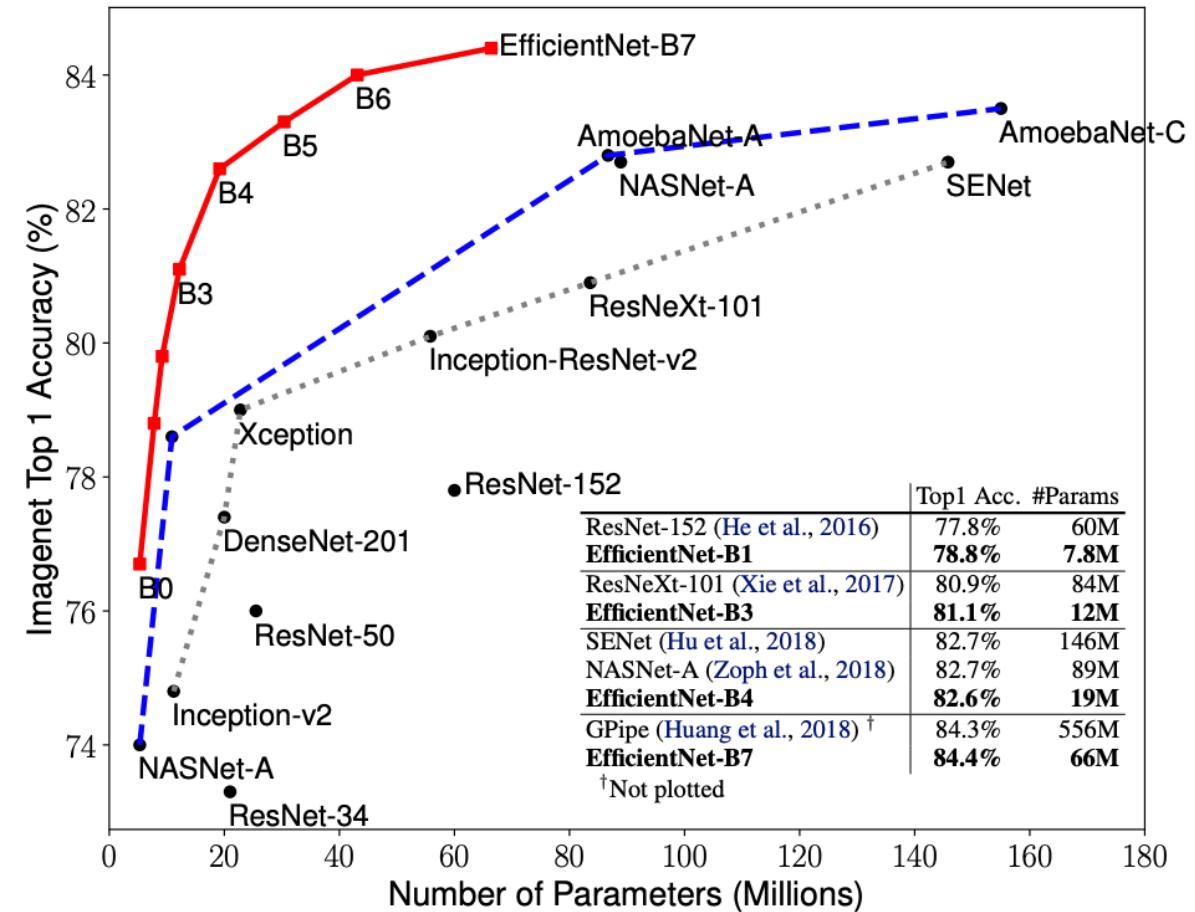
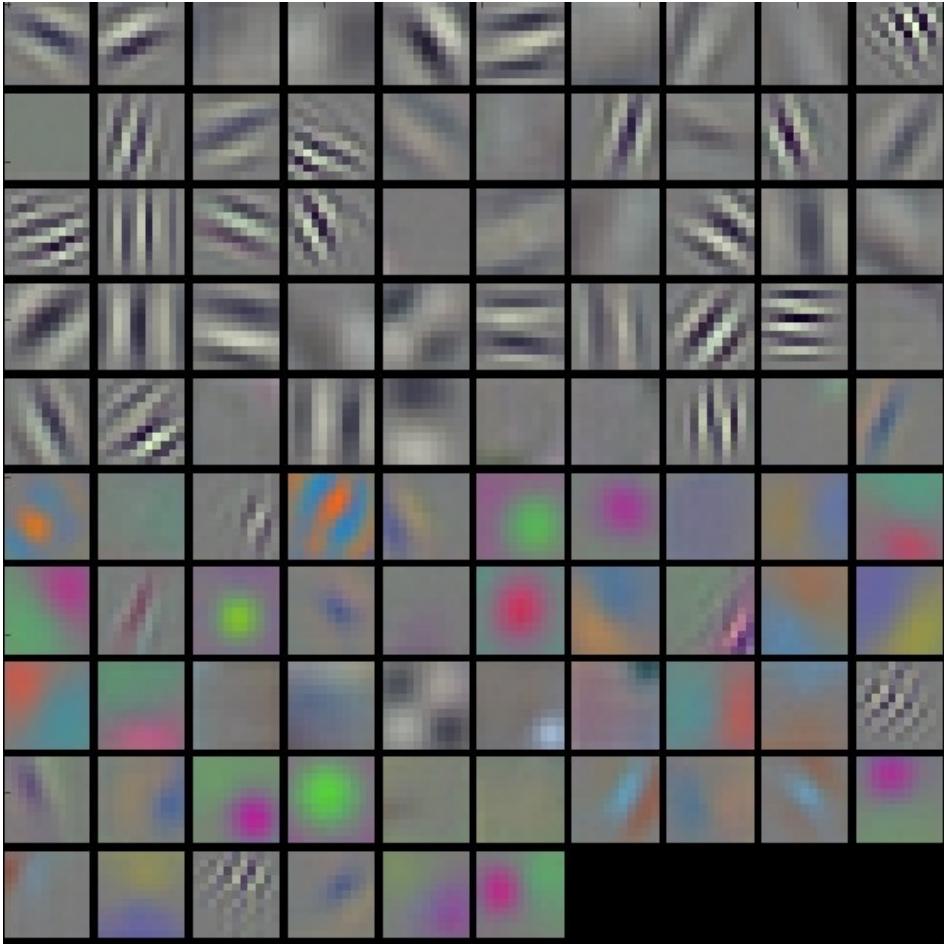


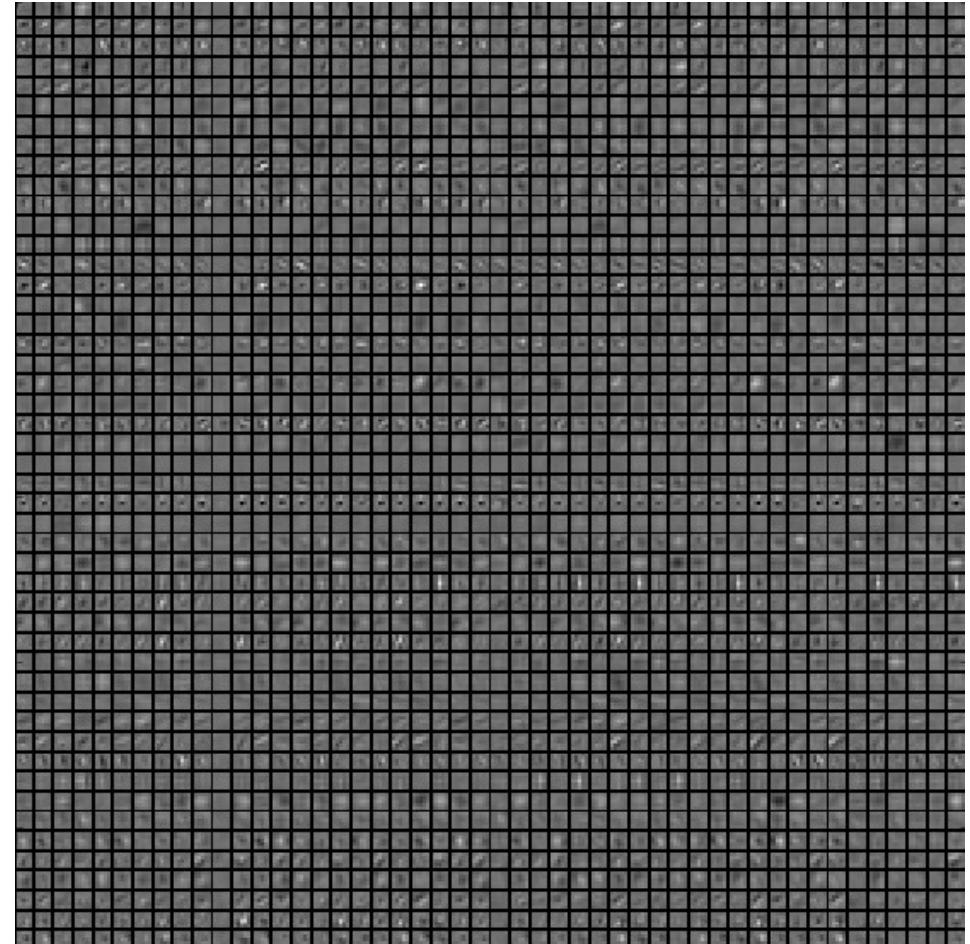
Figure 1. Model Size vs. ImageNet Accuracy. All numbers are for single-crop, single-model. Our EfficientNets significantly outperform other ConvNets. In particular, EfficientNet-B7 achieves new state-of-the-art 84.4% top-1 accuracy but being 8.4x smaller and 6.1x faster than GPipe. EfficientNet-B1 is 7.6x smaller and 5.7x faster than ResNet-152. Details are in Table 2 and 4.

What do CCN see?

What do CNN see? Visualize the layers



AlexNet 1CONV layer

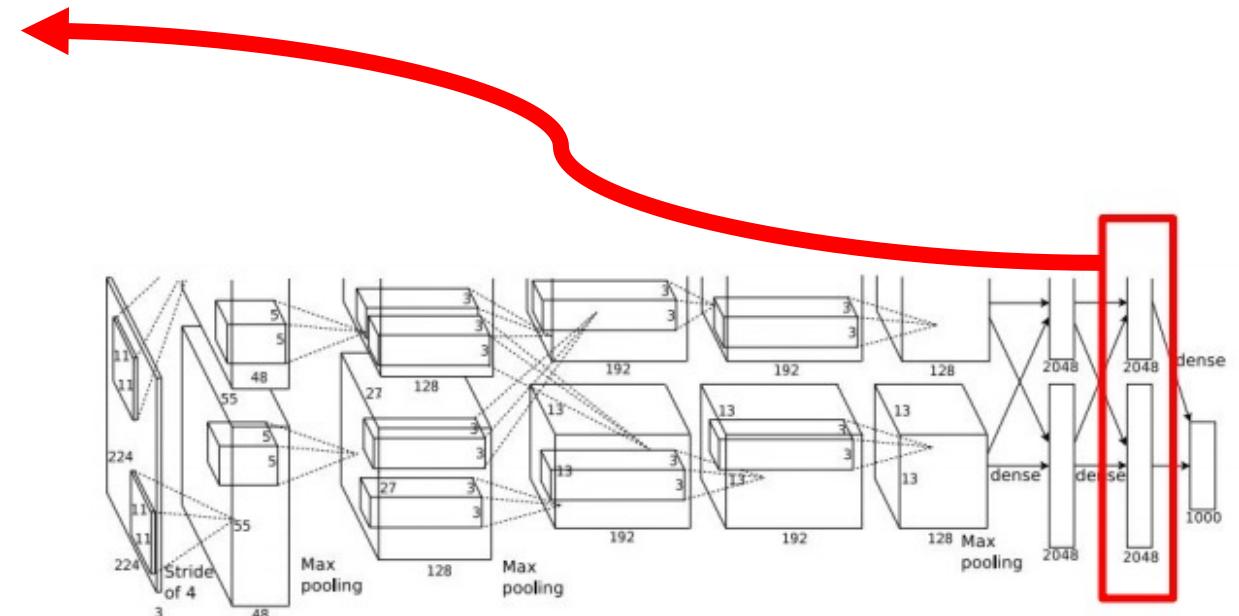


AlexNet 2CONV layer

What do CNN see? Embedding space for features

We can consider k-nearest neighbors in embedding space for last FC layer:

Test image L2 Nearest neighbors in feature space



Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012.

What do CNN see? Embedding space for features

We can plot final FC
embedding layer by means of
dimensionality reduction, e.g.
tSNE (more powerful than PCA)
or UMAP

Van der Maaten and Hinton, "Visualizing Data using t-SNE", JMLR 2008

From: <http://cs231n.stanford.edu>

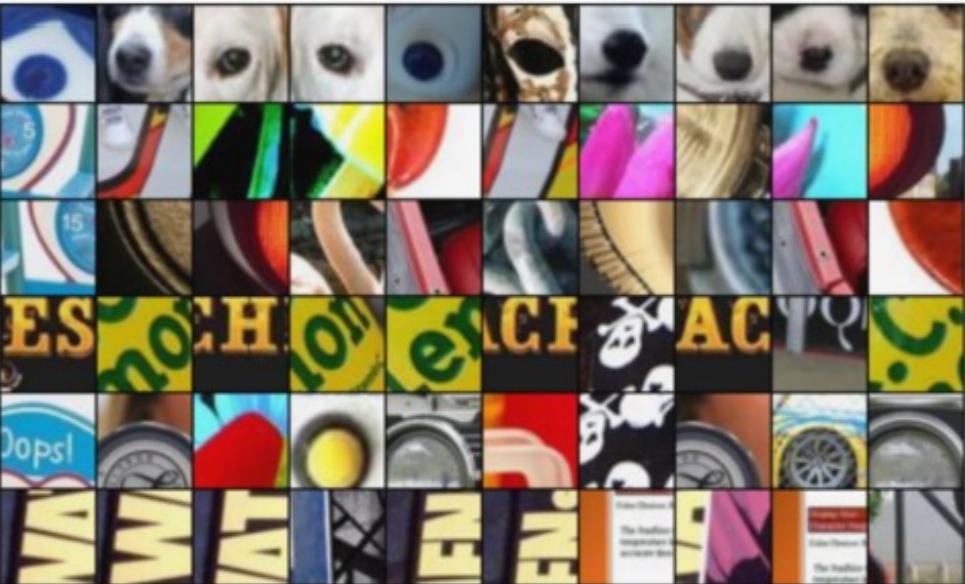
What do CNN see? Maximally activating neuros

We can compute maximally activating patches.

Run many images through the network, record values of chosen channel (e.g. channel 17/128 in conv5).

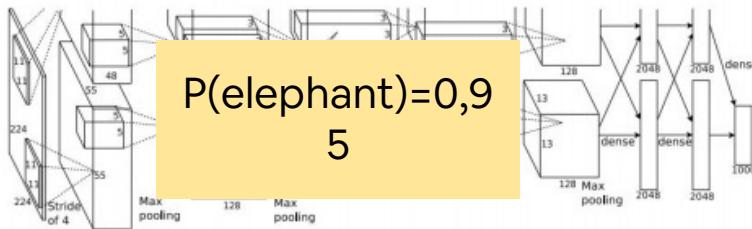
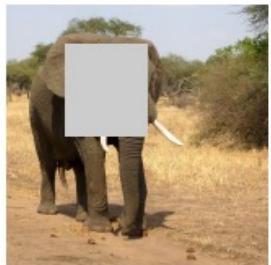
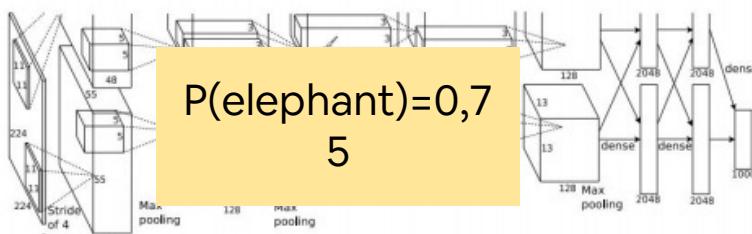
Visualize image patches that correspond to maximal activations.

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;

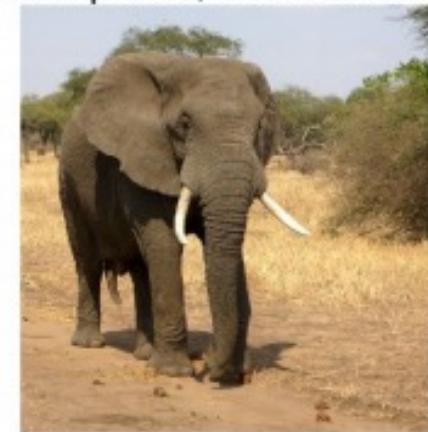
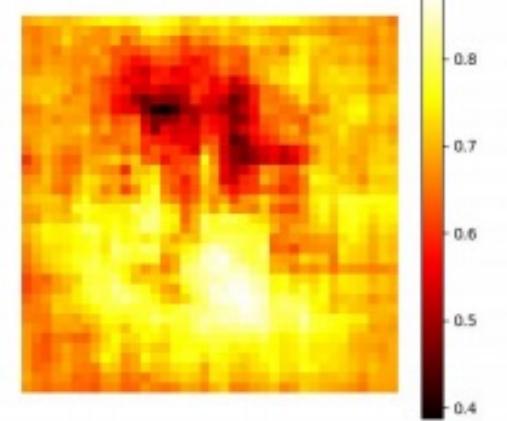


What do CNN see? Most relevant pixels

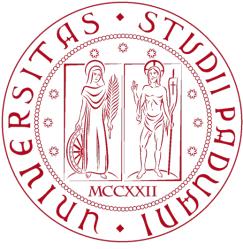
Saliency maps, e.g. by occlusion:



African elephant, *Loxodonta africana*



Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014



UNIVERSITÀ
DEGLI STUDI
DI PADOVA

Machine Learning

2024/2025

AMCO
ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

Thank you!

Gian Antonio Susto

