
Lecture #25
Neural Networks 
Training – Part II
Gian Antonio Susto 

Machine Learning
2024/2025



1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization 



1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization 

Chapter 6.3 Hidden Units



Recap: Activation functions

Beside introducing non-
linearities, it is important for 
Activation functions to have 
an easy way to compute the 
gradients (we need this in 
backpropagation)



Recap: Sigmoid Simple interpretation (probability)

Issues:

- Vanishing gradient problem: gradient becomes 
increasily small as the absolute value of the 
input increases (it is a problem in 
backpropagation)

- No zero-centered output (zig-zagging 
dynamics in the gradient updates)

- Exp function can be expensive to compute
G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in 
Pattern Recognition Applications



Recap: Tanh

Zero-centered

Issues:

- Vanishing gradient problem

- Exp function can be expensive to 
computeG. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in 

Pattern Recognition Applications



Recap: ReLU

Simple implementation

Does not saturate (in + region we have no 
vanishing gradient)

Faster convergence of SGD than sigmoid/tanh

Issues:

- Not zero-centered

- Gradient is zero for negative values: dead 
ReLU (as much as 40% of the network never 
activate if the learning rate is too high)

G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in 
Pattern Recognition Applications



Recap: ReLU – Intuition

ReLU gives neural networks the power to ‘fold’ the input space.

This lets them transform complex, tangled data into something 
that even a straight line can separate.



1 hidden layer

2 hidden layers



Leaky ReLU, Parametric ReLU, Randomized Leaky ReLU

Very easy to compute

Does not saturate (in + 
region)

Faster convergence than 
sigmoid/tanh

Does not die!

In the Parametric ReLU 
(PReLU) the parameter 
alpha is learned along with 
the other network 
parameters

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/


Leaky ReLU, Parametric ReLU, Randomized Leaky ReLU

Alpha is chosen at random 
in a given range in training 
and it is then fixed in test

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/


TLDR: Activations

Main issues with activation functions:
• Vanishing gradients
• Non-centered on zero outputs
• Costly computations

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/


https://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function


In practice:
- prefer ReLU. Use slightly positive initial bias to avoid 

dead Relu issue.
- Try out Leaky ReLU/PRelu
- No sigmoid!

Which activation?



1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization 



First idea: all weights equals to 0

Initialization



First idea: all weights equals to 0… not a great idea! All the neurons will 
output the same thing (we will get the same gradients), but we would 
like the neurons to learn different things!

Initialization



Second idea: all weights small random numbers

(with small theta)

Initialization



Initialization

It just works with small networks… 

Second idea: all weights small random numbers

(with small theta)



F.-F. Li et A. Convolutional Neural Networks for Visual Recognition 
http://cs231n.stanford.edu/ 

A 10-layer NN with 500 neurons per 
layer: let us see the mean and std of 
the activations (output) for each layer

Std shrinks over 
time: vanishing 
gradient!

http://cs231n.stanford.edu/


Second idea: all weights small random numbers

(with big theta, ie. 1)

Initialization



F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

Weights are big 
and the neurons 
are always 
saturating (with 
tanh or sigmoid)

http://cs231n.stanford.edu/


F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

Weights are big 
and the neurons 
are always 
saturating (with 
tanh or sigmoid)

How to make it 
right?

http://cs231n.stanford.edu/


In principle: Glorot (a.k.a. Xavier) initialization (default in Keras, e.g.) can be a good 
starting point. 

With Glorot initialization, you keep the weights in the right range (not too small, not 
too big).

Weights are chosen from a Gaussian distribution with zero mean and variance that is 
associated with the number of nodes at that layer (n_IN) and number of neurons the 
result is fed to (n_OUT)

Initialization

-X. Glorot, Y. Bengio Understanding the difficulty of training deep feedforward neural networks. In 
Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 
249-256), 2010 



F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

http://cs231n.stanford.edu/


F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

Do not work well 
with ReLU…

We try He 
initialization 
instead!

http://cs231n.stanford.edu/


F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

K. He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet 
Classification https://arxiv.org/pdf/1502.01852.pdf

A ReLU is zero 
for half of its 
input, so you 
need to double 
the size of 
weight variance 
to keep the 
signal’s variance 
constant…

http://cs231n.stanford.edu/
https://arxiv.org/pdf/1502.01852.pdf


Initialization

Proper initialization is an active area of research…
• Understanding the difficulty of training deep feedforward neural networks by Glorot and 

Bengio, 2010
• Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013
• Random walk initialization for training very deep feedforward networks, by Sussillo and
Abbott, 2014
• Delving deep into rectifiers: Surpassing human-level performance on ImageNet
Classification, by He et al., 2015
• Data-dependent Initializations of Convolutional Neural Networks, by Krähenbühl et al., 2015
• All you need is a good init, by Mishkin and Matas, 2015
• Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019
• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and 

Carbin, 2019

Keep it simple: start with ReLU and He initialization!



1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization 



Data Normalization

One of the most important 
task in Machine Learning… 
but a forgotten one



Batch Normalization

J. Jordan https://www.jeremyjordan.me/batch-normalization/ 

Consider a simple neural network with two inputs. The first input value, x1, varies from 
0 to 1 while the second input value, x2, varies from 0 to 0.01. 
Since the network is tasked with learning how to combine these inputs through a 
series of linear combinations and nonlinear activations, the parameters associated 
with each input will also exist on different scales. 

Unnormalized input Normalized input

https://www.jeremyjordan.me/batch-normalization/


1. Preprocessing: just helps the first 
layer

2. This is why we prefer zero-mean 
activations functions

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

Batch Normalization

http://cs231n.stanford.edu/


Batch Normalization

F. Doukkali https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c 

https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c


Batch Normalization

S. Ioffe, C. Szegedy Batch Normalization: Accelerating Deep Network Training by Reducing 
Internal Covariate Shift https://arxiv.org/abs/1502.03167

• 𝜇! and 𝜎"# are batch-specific;

• 𝛾 and 𝛽	 are learnt by the BN 
layer (shared across batches)

• Reduces the strong 
dependence on initialization

• Allows higher learning rates

https://arxiv.org/abs/1502.03167


1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization 

Chapter 8 Optimization for Training Deep Models



Optimization with SGD

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

If the loss changes quickly from one direction to another we get very 
slow progresses along shallow dimensions and  jitters along steep 
directions

http://cs231n.stanford.edu/


Optimization with SGD

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

http://cs231n.stanford.edu/


Optimization with SGD: Momentum

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
Sutskever et al, On the importance of initialization and momentum in deep learning, ICML 2013 

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

velocity

http://cs231n.stanford.edu/


Optimization with SGD: Nesterov Momentum (Optional)

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
Nesterov,  A method of solving a convex programming problem with convergence rate O(1/k^2), 1983

http://cs231n.stanford.edu/


Optimization with SGD: Nesterov Momentum (Optional)

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


Optimization: AdaGrad

Duchi et al, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

This helps to accelerate movements with coordinates where the 
gradient is small and decelerate over the coordinates where the 
gradient is high

http://cs231n.stanford.edu/


Optimization: AdaGrad

Duchi et al, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

The problem is that over time (during the training) the update gets 
smaller and smaller 

http://cs231n.stanford.edu/


Optimization: AdaGrad & RMSProp

Basu, Amitabh, et al. "Convergence guarantees for rmsprop and adam in non-convex optimization and 
their comparison to nesterov acceleration on autoencoders." arXiv preprint arXiv:1807.06766 (2018).

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

http://cs231n.stanford.edu/


Optimization with SGD: RMSProp

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


Optimization with SGD: RMSProp

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

AdaGrag gets stuck 
here

http://cs231n.stanford.edu/


Optimization: Adam (almost)

Kingma and Ba, Adam: A method for stochastic optimization, ICLR 2015

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

http://cs231n.stanford.edu/


Optimization: Adam (real)

- Kingma and Ba, Adam: A method for stochastic optimization, ICLR 2015
- http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
- F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

http://ruder.io/optimizing-gradient-descent/index.html
http://cs231n.stanford.edu/


Optimization with SGD: Adam

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

TLDR: Start with 
ADAM!

http://cs231n.stanford.edu/


Another experiment

Data generated from:

A NN with 3 hidden layers -> 128 units per layer



Another experiment



Another experiment



1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization 

Chapter 4.3 Gradient-Based Optimization



Learning rate

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

- SGD, SGD+Momentum, 
Adagrad, RMSProp, Adam all 
have learning rate as a 
hyperparameter

http://cs231n.stanford.edu/


Learning rate

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

- SGD, SGD+Momentum, 
Adagrad, RMSProp, Adam all 
have learning rate as a 
hyperparameter

- An interesting and common 
strategy is to employ time-
varying learning rate

http://cs231n.stanford.edu/


Learning rate

- F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
- Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

- Reduce learning rate at a few fixed 
points.

- E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

http://cs231n.stanford.edu/


Learning rate

Goyal et al, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, arXiv 2017

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

Linear

Inverse Sqrt.

Linear Warmup

http://cs231n.stanford.edu/


1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization 

Chapter 7 Regularization for Deep Learning



-MIT Introduction to Deep Learning http://introtodeeplearning.com

The Problem of Overfitting and Regularization

http://introtodeeplearning.com/


Regularization #0: Lasso

-T. Hastie, R. Tibshirani, J. Friedman The Elements of Statistical 
Learning https://web.stanford.edu/~hastie/Papers/ESLII.pdf 

Regularization is a paradigm in Machine 
Learning that allow to have a good trade-off 
between accuracy on training data and 
model complexity enabling generalization

In the case of LASSO this is achieved by a 
dedicated loss function and by tuning the 
hyperparameter

https://web.stanford.edu/~hastie/Papers/ESLII.pdf


Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving

http://introtodeeplearning.com/


Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving

http://introtodeeplearning.com/


Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving

http://introtodeeplearning.com/


Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving

http://introtodeeplearning.com/


Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving

http://introtodeeplearning.com/


Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving

http://introtodeeplearning.com/


Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving

http://introtodeeplearning.com/


Regularization #2: Drop Out

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A popular approach is to set-up some activations equals to 0 during 
training

http://introtodeeplearning.com/


Regularization #2: Drop Out

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A popular approach is to set-up some activations equals to 0 during 
training

Typically, 50% of activations are 
dropped 

http://introtodeeplearning.com/


Regularization #2: Drop Out

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A popular approach is to set-up some activations equals to 0 during 
training

Typically, 50% of activations are 
dropped 

Dropout make the model not rely 
too much on a single node

http://introtodeeplearning.com/


Regularization #2: Drop Out

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A popular approach is to set-up some activations equals to 0 during 
training

Typically, 50% of activations are 
dropped 

Dropout make the model not rely 
too much on a single node

One way to remember it….

http://introtodeeplearning.com/


Regularization #2: Drop Out

How is that a good idea?

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization 

=> Summarizing…



How to train a NN: some tips for your first try

- Scale your input data (preprocessing)
- Use ReLU
- Use He Inizialization
- Use Batch Normalization
- Use ADAM
- Babysit the learning process

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


How to train a NN: some tips for your first try

- Scale your input data (preprocessing)
- Use ReLU
- Use He Inizialization
- Use Batch Normalization
- Use ADAM
- Babysit the learning process
- Hyperparameter Optimization 

(network architecture, learning rate 
and decay schedule, presence of 
regularizathion, more sophisticated 
activation functions, ...)

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

http://cs231n.stanford.edu/


Lot of things not covered today… what about a summary?

New optimization approaches:
- Variants and Enhancements of Adam (AdamW, AMSGrad, AdaBelief) 
- Novel Optimizers (Adafactor, MADA) 
- Adaptive Learning Rate Methods (AdaMax, Nadam)
- Memory-Efficient Techniques (Adafactor)

New initialization approaches:
- ZerO, Sylvester Solvers, AutoInit, Linear Product Structure (LPS), …

…



Credits
Reference Material (used for this presentation):
- F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
- MIT Introduction to Deep Learning http://introtodeeplearning.com
- I. Changhau Activation Functions in Neural Networks https://isaacchanghau.github.io/post/activation_functions/
- H. Li et al. Visualizing the Loss Landscape of Neural Nets NIPS 2018
- X. Glorot, Y. Bengio Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international 

conference on artificial intelligence and statistics (pp. 249-256), 2010
- F. Doukkali https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
- K. He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification https://arxiv.org/pdf/1502.01852.pdf
- J. Jordan https://www.jeremyjordan.me/batch-normalization/
- S. Ioffe, C. Szegedy Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 

https://arxiv.org/abs/1502.03167
- Sutskever et al, On the importance of initialization and momentum in deep learning, ICML 2013 
- Nesterov,  A method of solving a convex programming problem with convergence rate O(1/k^2), 1983
- Duchi et al, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011
- Basu, Amitabh, et al. Convergence guarantees for rmsprop and adam in non-convex optimization and their comparison to nesterov acceleration 

on autoencoders. arXiv preprint arXiv:1807.06766 (2018)
- Kingma and Ba, Adam: A method for stochastic optimization, ICLR 2015
- S. Ruder http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
- Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
- Goyal et al, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, arXiv 2017
- Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

http://cs231n.stanford.edu/
http://introtodeeplearning.com/
https://isaacchanghau.github.io/post/activation_functions/
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://arxiv.org/pdf/1502.01852.pdf
https://www.jeremyjordan.me/batch-normalization/
https://arxiv.org/abs/1502.03167
http://ruder.io/optimizing-gradient-descent/index.html


Thank you!

Gian Antonio Susto 

Machine Learning
2024/2025


