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Chapter 6.3 Hidden Units



Recap: Activation functions

Beside introducing non-
linearities, it is important for 
Activation functions to have 
an easy way to compute the 
gradients (we need this in 
backpropagation)



Recap: Sigmoid Simple interpretation (probability)

Issues:

- Vanishing gradient problem: gradient becomes 
increasily small as the absolute value of the 
input increases (it is a problem in 
backpropagation)

- No zero-centered output (zig-zagging 
dynamics in the gradient updates)

- Exp function can be expensive to compute
G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in 
Pattern Recognition Applications



Recap: Tanh

Zero-centered

Issues:

- Vanishing gradient problem

- Exp function can be expensive to 
computeG. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in 

Pattern Recognition Applications



Recap: ReLU

Simple implementation

Does not saturate (in + region we have no 
vanishing gradient)

Faster convergence of SGD than sigmoid/tanh

Issues:

- Not zero-centered

- Gradient is zero for negative values: dead 
ReLU (as much as 40% of the network never 
activate if the learning rate is too high)

G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in 
Pattern Recognition Applications



Recap: ReLU – Intuition

ReLU gives neural networks the power to ‘fold’ the input space.

This lets them transform complex, tangled data into something 
that even a straight line can separate.



1 hidden layer

2 hidden layers



Leaky ReLU, Parametric ReLU, Randomized Leaky ReLU

Very easy to compute

Does not saturate (in + 
region)

Faster convergence than 
sigmoid/tanh

Does not die!

In the Parametric ReLU 
(PReLU) the parameter 
alpha is learned along with 
the other network 
parameters

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/


Leaky ReLU, Parametric ReLU, Randomized Leaky ReLU

Alpha is chosen at random 
in a given range in training 
and it is then fixed in test

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/


TLDR: Activations

Main issues with activation functions:
• Vanishing gradients
• Non-centered on zero outputs
• Costly computations

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/


https://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function


In practice:
- prefer ReLU. Use slightly positive initial bias to avoid 

dead Relu issue.
- Try out Leaky ReLU/PRelu
- No sigmoid!

Which activation?
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First idea: all weights equals to 0

Initialization



First idea: all weights equals to 0… not a great idea! All the neurons will 
output the same thing (we will get the same gradients), but we would 
like the neurons to learn different things!

Initialization



Second idea: all weights small random numbers

(with small theta)

Initialization



Initialization

It just works with small networks… 

Second idea: all weights small random numbers

(with small theta)



F.-F. Li et A. Convolutional Neural Networks for Visual Recognition 
http://cs231n.stanford.edu/ 

A 10-layer NN with 500 neurons per 
layer: let us see the mean and std of 
the activations (output) for each layer

Std shrinks over 
time: vanishing 
gradient!

http://cs231n.stanford.edu/


Second idea: all weights small random numbers

(with big theta, ie. 1)

Initialization



F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

Weights are big 
and the neurons 
are always 
saturating (with 
tanh or sigmoid)

http://cs231n.stanford.edu/


F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

Weights are big 
and the neurons 
are always 
saturating (with 
tanh or sigmoid)

How to make it 
right?

http://cs231n.stanford.edu/


In principle: Glorot (a.k.a. Xavier) initialization (default in Keras, e.g.) can be a good 
starting point. 

With Glorot initialization, you keep the weights in the right range (not too small, not 
too big).

Weights are chosen from a Gaussian distribution with zero mean and variance that is 
associated with the number of nodes at that layer (n_IN) and number of neurons the 
result is fed to (n_OUT)

Initialization

-X. Glorot, Y. Bengio Understanding the difficulty of training deep feedforward neural networks. In 
Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 
249-256), 2010 



F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

http://cs231n.stanford.edu/


F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

Do not work well 
with ReLU…

We try He 
initialization 
instead!

http://cs231n.stanford.edu/


F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

K. He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet 
Classification https://arxiv.org/pdf/1502.01852.pdf

A ReLU is zero 
for half of its 
input, so you 
need to double 
the size of 
weight variance 
to keep the 
signal’s variance 
constant…

http://cs231n.stanford.edu/
https://arxiv.org/pdf/1502.01852.pdf


Initialization

Proper initialization is an active area of research…
• Understanding the difficulty of training deep feedforward neural networks by Glorot and 

Bengio, 2010
• Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013
• Random walk initialization for training very deep feedforward networks, by Sussillo and
Abbott, 2014
• Delving deep into rectifiers: Surpassing human-level performance on ImageNet
Classification, by He et al., 2015
• Data-dependent Initializations of Convolutional Neural Networks, by Krähenbühl et al., 2015
• All you need is a good init, by Mishkin and Matas, 2015
• Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019
• The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and 

Carbin, 2019

Keep it simple: start with ReLU and He initialization!
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Data Normalization

One of the most important 
task in Machine Learning… 
but a forgotten one



Batch Normalization

J. Jordan https://www.jeremyjordan.me/batch-normalization/ 

Consider a simple neural network with two inputs. The first input value, x1, varies from 
0 to 1 while the second input value, x2, varies from 0 to 0.01. 
Since the network is tasked with learning how to combine these inputs through a 
series of linear combinations and nonlinear activations, the parameters associated 
with each input will also exist on different scales. 

Unnormalized input Normalized input

https://www.jeremyjordan.me/batch-normalization/


1. Preprocessing: just helps the first 
layer

2. This is why we prefer zero-mean 
activations functions

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

Batch Normalization

http://cs231n.stanford.edu/


Batch Normalization

F. Doukkali https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c 

https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c


Batch Normalization

S. Ioffe, C. Szegedy Batch Normalization: Accelerating Deep Network Training by Reducing 
Internal Covariate Shift https://arxiv.org/abs/1502.03167

• 𝜇! and 𝜎"# are batch-specific;

• 𝛾 and 𝛽	 are learnt by the BN 
layer (shared across batches)

• Reduces the strong 
dependence on initialization

• Allows higher learning rates

https://arxiv.org/abs/1502.03167
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Chapter 8 Optimization for Training Deep Models



Optimization with SGD

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

If the loss changes quickly from one direction to another we get very 
slow progresses along shallow dimensions and  jitters along steep 
directions

http://cs231n.stanford.edu/


Optimization with SGD

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

http://cs231n.stanford.edu/


Optimization with SGD: Momentum

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
Sutskever et al, On the importance of initialization and momentum in deep learning, ICML 2013 

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

velocity

http://cs231n.stanford.edu/


Optimization with SGD: Nesterov Momentum (Optional)

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
Nesterov,  A method of solving a convex programming problem with convergence rate O(1/k^2), 1983

http://cs231n.stanford.edu/


Optimization with SGD: Nesterov Momentum (Optional)

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


Optimization: AdaGrad

Duchi et al, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

This helps to accelerate movements with coordinates where the 
gradient is small and decelerate over the coordinates where the 
gradient is high

http://cs231n.stanford.edu/


Optimization: AdaGrad

Duchi et al, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

The problem is that over time (during the training) the update gets 
smaller and smaller 

http://cs231n.stanford.edu/


Optimization: AdaGrad & RMSProp

Basu, Amitabh, et al. "Convergence guarantees for rmsprop and adam in non-convex optimization and 
their comparison to nesterov acceleration on autoencoders." arXiv preprint arXiv:1807.06766 (2018).

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

http://cs231n.stanford.edu/


Optimization with SGD: RMSProp

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


Optimization with SGD: RMSProp

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

AdaGrag gets stuck 
here

http://cs231n.stanford.edu/


Optimization: Adam (almost)

Kingma and Ba, Adam: A method for stochastic optimization, ICLR 2015

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

http://cs231n.stanford.edu/


Optimization: Adam (real)

- Kingma and Ba, Adam: A method for stochastic optimization, ICLR 2015
- http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
- F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ 

http://ruder.io/optimizing-gradient-descent/index.html
http://cs231n.stanford.edu/


Optimization with SGD: Adam

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

TLDR: Start with 
ADAM!

http://cs231n.stanford.edu/


Another experiment

Data generated from:

A NN with 3 hidden layers -> 128 units per layer



Another experiment



Another experiment
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Chapter 4.3 Gradient-Based Optimization



Learning rate

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

- SGD, SGD+Momentum, 
Adagrad, RMSProp, Adam all 
have learning rate as a 
hyperparameter

http://cs231n.stanford.edu/


Learning rate

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

- SGD, SGD+Momentum, 
Adagrad, RMSProp, Adam all 
have learning rate as a 
hyperparameter

- An interesting and common 
strategy is to employ time-
varying learning rate

http://cs231n.stanford.edu/


Learning rate

- F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
- Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

- Reduce learning rate at a few fixed 
points.

- E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

http://cs231n.stanford.edu/


Learning rate

Goyal et al, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, arXiv 2017

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

Linear

Inverse Sqrt.

Linear Warmup

http://cs231n.stanford.edu/
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Chapter 7 Regularization for Deep Learning



-MIT Introduction to Deep Learning http://introtodeeplearning.com

The Problem of Overfitting and Regularization

http://introtodeeplearning.com/


Regularization #0: Lasso

-T. Hastie, R. Tibshirani, J. Friedman The Elements of Statistical 
Learning https://web.stanford.edu/~hastie/Papers/ESLII.pdf 

Regularization is a paradigm in Machine 
Learning that allow to have a good trade-off 
between accuracy on training data and 
model complexity enabling generalization

In the case of LASSO this is achieved by a 
dedicated loss function and by tuning the 
hyperparameter

https://web.stanford.edu/~hastie/Papers/ESLII.pdf


Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving

http://introtodeeplearning.com/
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Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving
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Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving
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Regularization #1: Early stopping

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A simple approach is to take a look at a testing dataset and stop even 
if the loss on the training is still improving

http://introtodeeplearning.com/


Regularization #2: Drop Out

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A popular approach is to set-up some activations equals to 0 during 
training

http://introtodeeplearning.com/


Regularization #2: Drop Out

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A popular approach is to set-up some activations equals to 0 during 
training

Typically, 50% of activations are 
dropped 

http://introtodeeplearning.com/


Regularization #2: Drop Out

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A popular approach is to set-up some activations equals to 0 during 
training

Typically, 50% of activations are 
dropped 

Dropout make the model not rely 
too much on a single node

http://introtodeeplearning.com/


Regularization #2: Drop Out

-MIT Introduction to Deep Learning http://introtodeeplearning.com

A popular approach is to set-up some activations equals to 0 during 
training

Typically, 50% of activations are 
dropped 

Dropout make the model not rely 
too much on a single node

One way to remember it….

http://introtodeeplearning.com/


Regularization #2: Drop Out

How is that a good idea?

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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=> Summarizing…



How to train a NN: some tips for your first try

- Scale your input data (preprocessing)
- Use ReLU
- Use He Inizialization
- Use Batch Normalization
- Use ADAM
- Babysit the learning process

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


How to train a NN: some tips for your first try

- Scale your input data (preprocessing)
- Use ReLU
- Use He Inizialization
- Use Batch Normalization
- Use ADAM
- Babysit the learning process
- Hyperparameter Optimization 

(network architecture, learning rate 
and decay schedule, presence of 
regularizathion, more sophisticated 
activation functions, ...)

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

http://cs231n.stanford.edu/


Lot of things not covered today… what about a summary?

New optimization approaches:
- Variants and Enhancements of Adam (AdamW, AMSGrad, AdaBelief) 
- Novel Optimizers (Adafactor, MADA) 
- Adaptive Learning Rate Methods (AdaMax, Nadam)
- Memory-Efficient Techniques (Adafactor)

New initialization approaches:
- ZerO, Sylvester Solvers, AutoInit, Linear Product Structure (LPS), …

…
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Thank you!

Gian Antonio Susto 
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