UNIVERSITA Machine Learning n m CO
DEGLI STUDI

DI PADOVA 2 O 2 4 2 0 2 5 ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

agaenhaekl
Lk
(n an mdk
T puae/iad ganrd 1D o)
.33

By o

i) fo0l 1

Lecture #25
Neural Networks
Training —Part/I

Gian Antonio Susto

1. Activation functions
2. Weight Initialization
3. Batch Normalization
4. Optimization

5. Learning Rate

6. Regularization

- - ‘, " ’ h - . . > <> o " ‘\\,
“Spoctacular! A Must ScolTER\

1. Activation functions
2. Weight Initialization
3. Batch Normalization
4. Optimization

5. Learning Rate

6. Regularization

EP LEARNIN
oodfellow, Yoshua Bengio,

Chapter 6.3 Hidden Units

Spectacular' A Must Se ee!;

Recap: Activation functions

Beside introducing non-
linearities, it is important for
Activation functions to have
an easy way to compute the
gradients (we need this in

backpropagation)
Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (ReLU)
0.8 —'gftz;) 1 5 : S% 4 Ag(zz)) 1
0.6 3 ‘
- —
0.4 2
0.2 e 1
ol——" ' = 1 — 0 .
5 0 5 5 0 5 5 0 5
1 e? —e™?
g(z)= g(z)= g(z) = max (0, z)

1+ e~% e+ e *

, 1, 0
g'(z)=g=A-92) g'(z)=1-g(2)* g (z) = {0, ocher?vise

Recap: Sigmoid Simple interpretation (probability)

Issues:

1 | |——Sigmoid Function

— Gradient - Vanishing gradient problem: gradient becomes
increasily small as the absolute value of the
input inCreases (it is a problem in
backpropagation)

05

- No zero-centered output (zig-zagging
0 . |] dynamics in the gradient up ate%

-10 -5 0 5 10

- Exp function can be expensive to compute

G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in
Pattern Recognition Applications

1
1+ e~2

g(z)=

9'(z)=g(2)(1-yg()

Recap: Tanh

‘] -

05

0

-05 |

-1

——Tanh Function
——Gradient

-10

G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in
Pattern Recognition Applications

-5

e
J\Z) =
9(2) g

g' ()= 1-g(2)?

0

Z

5

10

Zero-centered

Issues:
- Vanishing gradient problem

- Exp function can be expensive to
compute

Recap: ReLU

I ——RelLU Function
——Gradient

1.5+

’] L

05

0

1 1 1
-10 -5 0 5
G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in
Pattern Recognition Applications

g(z) =max(0,2)

Mg = | v A B L
9 i i otherwise

10

Simple implementation

Does not saturate (in + region we have no
vanishing gradient)

Faster convergence of SGD than sigmoid/tanh

Issues:

Not zero-centered

Gradient is zero for negative values: dead
RelLU (as much as 40% of the network never
activate if the learning rate is too high)

Recap: ReLU — Intuition

RelLU gives neural networks the power to ‘fold’ the input space.

This lets them transform complex, tangled data into something
that even a straight line can separate.

Feature 2

Feature 2

1 hidden layer

2 hidden layers

ReLU NN with 1 neuron(s)

-1 0 1 2
Feature 1

RelLU NN with (10, 10) neurons

-1 0 1 2
Feature 1

Feature 2

Feature 2

ReLU NN with 3 neuron(s)

-1 0 1 2
Feature 1

ReLU NN with (20, 20) neurons

-1 0 1 2
Feature 1

Feature 2

Feature 2

ReLU NN with 10 neuron(s)

ReLU NN with 20 neuron(s)

3t 3k
X X x X
2t s X X 2r o X X
1r X 1f X
of & gﬁ‘% X 2 of X)ﬁ‘% X
)i‘ X)&xxx{‘ %} X% E o X)&xxx{ % X%
-1r XXX x »f: 2 -1F x x*¥ x »i(%
AHEF o SRR W
2t Al —-2F »X
2 -1 o0 1 2 3 2 -1 o0 1 2
Feature 1 Feature 1
RelLU NN with (50, 50) neurons RelLU NN with (100, 100) neurons
3t 3k
2 0 x)?‘)*x 2r 0% x*‘)*x
Xog0y X *ogShsc 0 X
1f X &X 1k X &X
A e v e e
Or X)8()()&ix)&{ &§Xx :l(B; OF X)&x &%x&{ &§xx
X x X 0% w X x %% X6k 0
KR B e KR B e
-2 X —2F 20X
3 2 -1 o0 1 2 3 2 -1 o0 1 2
Feature 1 Feature 1

Leaky RelLU, Parametric ReLU, Randomized Leaky RelLU

R — [——

ReLU

https://isaacchanghau.github.io/post/activation_functions/

——————p

|
Leaky ReLU/PReLU

g(z) =0.01z,(z < 0)

9(2) = 2,(2 2 0)

az, (z <0)
Ziz 20)

Very easy to compute

Does not saturate (in +
region)

Faster convergence than
sigmoid/tanh

Does not diel

In the Parametric ReLU
(PReLU) the parameter
alpha is learned along with
the other network
parameters

https://isaacchanghau.github.io/post/activation_functions/

Leaky RelLU, Parametric ReLU, Randomized Leaky RelLU

|
o

Yi

R — [——

ReLU

https://isaacchanghau.github.io/post/activation_functions/

——————p

Yi = a;T;

Leaky ReﬂU/PReLU
g(z) =0.01z,(z < 0)
9(z) = z,(2 2 0)

9(z) = az,(z < 0)
g(z) = %, (Z > O)

Yji = @jiTyi

[
|
[
|
[
[
Randomized Leaky ReLU

Alphais chosen at random
In a given ran?.e In training
|

and it is then fixed in test

https://isaacchanghau.github.io/post/activation_functions/

TLDR: Activations

Main issues with activation functions:

« Vanishing gradients
* Non-centered on zero outputs
« Costly computations

Yi = T4

yi =0

Yi = a:%;

Yii = @5iTji

S — -—— -

|
ReLU Leaky ReLU/PReLU Randomized Leaky ReLU

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/

Nune Mot e Equatice. Lecrvative (wen reupect 10 3) o wwege o Order . . | Approarates iderety newr the ongn ¢
oty S | #er=e fisr-1 o) |
ey s | ma={8 &2t rin={¢ Wa2t o1 -
gt (. Sren ce Sl o) e | S = ety = £le) = fladl1 ~ fia) w.1) c
- HEe i “')"‘""7'_::::-:; Sz =1-fz) {-1,1) c~
= [o NG
o fiz) = simh (2} = nf + T fiay= ﬁ'lﬁ PR P
sy P gy 11112 g ﬂfl-ﬁ f&)-m {-1,1) o
e x ? 1 1
e == |- re-(7s) (=) |-
. 5 3
Irnrsos segisee rct e ceat (Speu) _-+/ ﬂt):{;’m :::: f(rl-{{‘a‘w) amsd) (-é.w) o
E<4 1 far==0
1 " 2220
- | s Je-% c0cac20 P - -
Ty —— _,-/ Nz) .+é —i8sa <t x) ¥3 {-1,1)
-1 iz < -20
s S AR ro={8 EI50 G
[T —— L —L ﬂ&)={m)_’d ::::;: f(&l={'_u”mlvl’(‘i,‘) g;:::;: =00, 00} (o]
Liusdy recifnnt lmenr sl (Lusky ook 7)1 /l ﬂll={2m' z:;g f(c)={?m ::;g {=0%,) Lo
Prrarmadens: ractfied wese unt 0 Netu)1 /' ![o.l)={:' ::;3 f(a,s):{? :";;: {=n0, 00p o vexfia>0 Yea e -1
Farakammirsat ooy recifbed iese unt (H1od L) 1 /l ![u.x):{:' ::;3“ f(a;s)={7 :;;g {=0e, 00} c
Exgrormnind brsser ure (ELUf 9 _,/ !(au)={:('.'" ::E: fLloz) = {"““" ::E: {—a,00} {2 'Ihl °|=' vaflo>0| wanl<azl Yu War =1
_yJole 1) frz<0
=X
Scabend sopormniad s urel (SELU RS fas {' forz 20 f(n.a):l{‘]'"') ::;: {=Aa,) c*
wih A = L0507 wc cx = 167326
htwlr-4) Brrse
w forr=t
EITpR T ————— "“‘“"""{:,“,_” ::;;“' !;.,,,,.(c)-{x furty <z <t {0500} o
Ly m, b, 0, e e Co LU
FRIr———— Je) = max{0, x) + tq max(0, - + &) Sla) = Hizg) - iqa(--rm“' {=nc, 0} o
-l ~
sl e fio= 17— 0,0} e~
o eriy 4 ﬂa}:—”;;"n He -t) €™
Sagmment Lumse Lrel (S U2 (axa U5 s Swntr R Hr) =z-alz)" £(x) = fiz) +afe)(n = fe)) = = -028,00) |C™ Appruseraien KerityZ
2 Sl Geaco — sxa<0
Saltspenaetant 1 foz)={a fora ~0 no.a)={ Rl e -m) [~ Yaaifa =0
= ia frax0 a2
s o
2t g™ | e = s £,y = § s (et (5)t (501 - 1) [t0.1) c
Sncacsd /’\\/‘V fiz) = sinfz) 1(x) = conix) 1,1 c
for = 0 forz =0
Snc _\/\/. ﬂl):{l_.:_.! h:f: ’(r]:{g_%'_) h:#o f= =20704,0) | ™
. SN | A= Iie) = -2ee” 0,11 c

https://en.wikipedia.org/wiki/Activation function

https://en.wikipedia.org/wiki/Activation_function

Which activation?

In practice:
- prefer ReLU. Use slightly positive initial bias to avoid

dead Relu issue.
- Try out Leaky ReLU/PRelu
- No sigmoid!

1. Activation functions
2. Weight Initialization
3. Batch Normalization
4. Optimization

5. Learning Rate

6. Regularization

= -Spectacﬁ_q.lﬁth! AMust See! 8L -~.:_f"\

Initialization

First idea: all weights equals to O

Initialization

First idea: all weights equals to O... not a great idea! All the neurons will
output the same thing (we will get the same gradients), but we would
like the neurons to learn different things!

Initialization

Second idea: all weights small random numbers

~N'(0,0%) (with small theta)

Initialization

Second idea: all weights small random numbers

(with small theta)

It just works with small networks...

input layer had mean 0.000927 and std ©.998388

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

layer
layer
layer
layer
layer
layer
layer
layer
layer
layer

1

HOONOWULAEWN

had
had
had
had
had
had
had
had
had

mean
mean
mean
mean
mean
mean
mean
mean
mean

-9.000117 and std 0.213081
-0.000001 and std 0.047551
-0.000002 and std 0.010630
0.000001 and std 0.002378
0.000002 and std 0.000532
-0.000000 and std 0.000119
0.000000 and std 0.000026
-0.000000 and std 0.000006
0.000000 and std 0.000001
© had mean -0.000000 and std ©.000000

layer mean

O O 5

A 10-layer NN with 500 neurons per

layer: let us see the mean and std of

the activations (output) for each layer

layer std

05 10-10-0600 05

3

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition
http://cs231n.stanford.edu/

10-10-05 00 05 10-10-0500 05 10-10-0500 05

Std shrinks over
time: vanishing
gradient!

http://cs231n.stanford.edu/

Initialization

Second idea: all weights small random numbers

~N'(0,0%) (with big theta, ie. 1)

input layer had mean 0.001806 and std 1.001311

hidden layer 1 had mean -0.060430 and std ©0.981879
hidden layer 2 had mean -0.060849 and std 0.981649
hidden layer 3 had mean 0.008566 and std 0.981601
hidden layer 4 had mean 0.006483 and std 0.981755
hidden layer 5 had mean -0.060682 and std 0.981614
hidden layer 6 had mean -0.060401 and std ©0.981560
hidden layer 7 had mean -0.060237 and std 0.981520
hidden layer 8 had mean -0.060448 and std ©0.981913
hidden layer 9 had mean -0.060899 and std 0.981728
hidden layer 10 had mean 0.060584 and std ©.981736
0 0005 - layer mean 000045 layer std
e) B
0000 {) 0004 A
0,000 ; 001035
""""" 01030
00025
100 *
- 2 3 000020
i A] A . , 000018 .
\ / YR o N /
006l N\ 5 X / 00010 =
%] \ k. 0.0t
-0 0008 N \ ‘ 040 o
-0.0010 00100
1 2 -] g 9 1 - s 8
250000 40 24550 o0 =50 =300 500 2= =50 255900
200000 200400 00 200900 200000 200400 D000 20 20000 200400
150000 150 Q0 1500 150 150900 150900 150 1500 150400
10000 100 00 0000 100 10000 100Q00 10 10080 100400
S0000 Sut\cc- oo sofoo S0g00 sofoo sogoo S0g00 s o sofoo
—C 0-05 00 05 1-3-:';2-'2'5:'3 03 !ZIEEC-O‘: 00 05 1-3312-‘3523 05 ZI—CEC-OSCO CSICE’.C-O’:C‘ 05 10-10-05) 05 10~ I‘JE'

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu

Weights are big
and the neurons
are always

saturating (with
tanh or sigmoid)

http://cs231n.stanford.edu/

input layer had mean 0.001806@ and std 1.001311
hidden layer 1 had mean -0.060430 and std ©0.981879
hidden layer 2 had mean -0.060849 and std 0.981649
hidden layer 3 had mean 0.008566 and std 0.981601
hidden layer 4 had mean 0.006483 and std ©.981755
hidden layer 5 had mean -0.060682 and std 0.981614
hidden layer 6 had mean -0.060401 and std ©0.981560
hidden layer 7 had mean -0.060237 and std 0.981520
hidden layer 8 had mean -0.060448 and std ©0.981913
hidden layer 9 had mean -0.060899 and std 0.981728
hidden layer 10 had mean 0.060584 and std ©.981736

004 layer mean ooocas F2-B18e-i layer std
000¢ - k¢
f e o by
0 { 008040]
3 }
000035 |
00¢0,
Q03¢
0000
) 00025 .
00 A
00 A :
~ e
04 \ /-..7-
] \ y’ . j 000015 "
0 "'\ / R \ /
\ I \ / \ } 0l T
N\ "‘ . :'
a8 \ f \ |/
JUT b . Jiv -
e
000 00w
1 2 - s g 9 ¥ 1 2 s
250000 ca ol) a0 25390 500 0 700 255900
0) X))0 20) X e o 00RO 15 20080 200800
1) 1500 150Q0 1 } 1 10 00 150900 1500 150400
100000 10000 1) A) 100 o 00 100900 10080 100800
D000 Sljnlcfl R00 {) SOR00) 0) SOROO Sg00 SOROoO
-1.0-05 00 05 19-1.0-0500 05 10-10-05 00 05 10-10-0500 05 310-10-0500 05 10-1.0-0.5 00 ¢ -13-0.5 00 10-1 5 10-10-0 10~

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

Weights are big
and the neurons
are always

saturating (with
tanh or sigmoid)

How to make it
right?

http://cs231n.stanford.edu/

Initialization

In principle: Glorot (a.k.a. Xavier) initialization (default in Keras, e.g.) can be a good
starting point.

With Glorot initialization, you keep the weights in the right range (not too small, not
too big).

Weights are chosen from a Gaussian distribution with zero mean and variance that is
associated with the number of nodes at that layer (n_IN) and number of neurons the

result is fed to (n_OUT)
2

Tin + N out

Var(W;) =

-X. Glorot, Y. Bengio Understanding the difficulty of training deep feedforward neural networks. In
Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp.
249-256), 2010

input layer had mean 0.001800 and std 1.001311

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

layer
layer
layer
layer
layer
layer
layer
layer
layer
layer

had
had
had
had
had
had
had
had
had

HOOONOWULEWN-

mean
mean
mean
mean
mean
mean
mean
mean
mean

©.001198 and std ©0.627953
-0.000175 and std 0.486051
0.000055 and std 0.407723
-0.000306 and std 0.357108
0.000142 and std ©0.320917
-0.000389 and std 0.292116
-0.000228 and std 0.273387
-0.000291 and std 0.254935
©.000361 and std ©.239266

layer mean

© had mean 0.000139 and std ©.2286008

yer std

F-F. LietA

51

7\,,(0% 1

Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu

20400

http://cs231n.stanford.edu/

input layer had mean 0.000501 and std ©.999444

hidden layer 1 had mean 0.398623 and std 0.582273
hidden layer 2 had mean 0.272352 and std 0.403795
hidden layer 3 had mean 0.186076 and std 0.276912
hidden layer 4 had mean 0.136442 and std 0.198685
hidden layer 5 had mean 0.099568 and std 0.140299
hidden layer 6 had mean 0.072234 and std 0.103280
hidden layer 7 had mean 0.049775 and std 0.072748
hidden layer 8 had mean 0.035138 and std 0.051572
hidden layer 9 had mean 0.025404 and std 0.038583
hidden layer 10 had mean 0.018408 and std 0.026076
i layer mean Sy layer std
\\)
035 "'-\
\ 5
030 \
R .
\
\\
20 M 03 ;
N -
e \\
k3 02 -
10 . g
e, % .
005 P el 5 . :
""'--&---1 T ——— -l
e 1 3 4 S 6 8 :]~ 1 2 3 B S € 8 9
300000 23400 3400 a0 300 40 L3400 Seadh
100000 %0400 350400 34 i
250000 250400 ~ 3 o P K 00400
22 i 300400 200400 sl
200000 001 200400 y . 300400
- . | 50000 250400 e, o 00400
150000 150400 150400 200¢00 200400
15000 15040 e b 5 20040
150000 150400 o
100000 100000 100400 | B ol 15000
nit by ™ 100000 10040 o, b
i 10040 100400
S0000 <0400 0400 sodoo 3300 sodoo sod00 ”
;; Q o - . - 0 Q 0 Q Q Q0
000510152025300 510152025300005101520253000051015202530000510152025300005101520253000051015202530000510152025300005101520253000051015202530

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

Do not work well
with RelLU...

We try He
initialization
instead!

http://cs231n.stanford.edu/

input layer had mean 0.000501 and std ©.999444 2

hidden layer 1 had mean 0.562488 and std ©.825232
hidden layer 2 had mean 0.553614 and std ©.827835
hidden layer 3 had mean 0.545867 and std ©.813855 \/ arl [/[/ p—
hidden layer 4 had mean 0.565396 and std ©.826902
hidden layer 5 had mean 0.547678 and std 0.834092 nln
hidden layer 6 had mean ©.587103 and std ©.860035
hidden layer 7 had mean 0.596867 and std ©.870610
hidden layer 8 had mean 0.623214 and std ©.889348 K. He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
hidden layer 9 had mean 0.567498 and std ©.845357 Classification https://arxiv.org/pdf/1502.01852.pdf
hidden layer 10 had mean ©.552531 and std ©.844523

s layer mean = layer std

03 o> w

’
! - p
A ' A RelLU is zero

58 ’ - . \

058 / ; N) .
for half of its

[- : . - °

"/ - INnput, SO you

058 S v, ’
1 2 3 3 5 € 7 8 il 1 2 3 4 5 € 7 8 9 need to dOUble

W T | SN [S N the size of
weight variance
to keep the
signal’s variance

.. | B | .. | ... | ... | ... | B | ... | .. | e ConStant"'

AREIAIESAS S YIIVIES c2nRANEY A SASEAARAALIAY E SEAARAAEIALIE S A AR AREIAIESASZAARAAEI AY 2 Ty AACIAYESAS L A AR AAEIAIESASL2ARAALI AL ESAS TS A
D005101520253000051015202523000051015202530000510152025300005101520253000051025202530000510152025300005101252025300005101520253000051015202530

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
https://arxiv.org/pdf/1502.01852.pdf

Initialization

Proper initialization is an active area of research...

« Understanding the difficulty of training deep feedforward neural networks by Glorot and
Bengio, 2010

« Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by

Saxe et al, 2013

« Random walk initialization for training very deep feedforward networks, by Sussillo and

Abbott, 2014

« Delving deep into rectifiers: Surpassing human-level performance on ImageNet

Classification, by He et al., 2015

« Data-dependent Initializations of Convolutional Neural Networks, by Krahenbuhl et al., 2015

« Allyou need is a good init, by Mishkin and Matas, 2015

« Fixup Initialization: Residval Learning Without Normalization, Zhang et al, 2019

« The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and
Carbin, 2019

Keep it simple: start with ReLU and He initialization!

1. Activation functions
2. Weight Initialization
3. Batch Normalization
4. Optimization

5. Learning Rate

6. Regularization

= -Spectacﬁ_q.lﬁth! AMust See! 8L -~.:_f"\

Data Normalization

One of the most important
task in Machine Learning... " o ' 2o
but a forgotten one ' If you forgot, then
| think | forgot something. Witewasn'timportant. |
7
i
\ data
~ ...nhormalization
P
A
Yeah, you're riglht. ™

imgflp_com

Batch Normalization

Consider a simple neural network with two inputs. The first input value, x,, varies from
O to 1 while the second input value, x,, varies from 0 to 0.01.

Since the network is tasked with learning how to combine these inputs through a
series of linear combinations and nonlinear activations, the parameters associated
with each input will also exist on different scales.

Unnormalized input 1 Normalized input

(NS D (@))

1

Gradient of larger parameter Both parameters can be
dominates the update updated in equal proportions

J. Jordan https://www.jeremyjordan.me/batch-normalization/

https://www.jeremyjordan.me/batch-normalization/

Batch Normalization

original data zero-centered data normalized data
10 10
. A
- o / I
. o
Y
1§ %

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

1. Preprocessing: just helps the first
layer

2. This is why we prefer zero-mean
activations functions

http://cs231n.stanford.edu/

Batch Normalization

Input layer Hidden layers

%4704 00"
) L9l el e
s o ala/ €

a 4 a 4

(1) (2) (3) (4) (5) (6)

F. Doukkali https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c

Input layer Hidden layers Output layer

the inputs to the following layer, so
why not normalize these values?

N7 NN
0@

D@ @

(1) (2) (3) (4) (5) (6)

.9

a,

https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c

Batch Normalization

Parameters to be leamed: ~, /3
OUtPUt: {U! - BN*%(’:)}

m

I =
1=1

m

. 1 , .
o e L3 (@i - up)?

m “
1=1

~ J‘!. - /llﬁ‘
.I‘i <_

Vot e
Y; — A."?i + g = BN*‘..."} (.I',‘)

Input: Values of x overa mini-batch: B = {z; ,.}:

| .
B — — Z T; // mini-batch mean

// mini-batch vanance

// normalize

// scale and shift

Algorithm 1: Batch Normalizing Transform, applied to

activation x over a mini-batch.

S. loffe, C. Szegedy Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift https://arxiv.org/abs/1502.03167

u, and oz? are batch-specific;

y and are learnt by the BN
layer (shared across batches)

Reduces the strong
dependence on initialization

Allows higher learning rates

https://arxiv.org/abs/1502.03167

1. Activation functions
2. Weight Initialization
3. Batch Normalization
4. Optimization

5. Learning Rate

6. Regularization

EP LEARNIN
oodfellow, Yoshua Bengio,

Spectacular' A Must Se ee!;

Chapter 8 Optimization for Training Deep Models

Optimization with SGD

If the loss changes quickly from one direction to another we get very
slow progresses along shallow dimensions and jitters along steep
directions

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Optimization with SGD

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Optimization with SGD:

SGD

while True:
dx = compute_gradient(x)
X == learning_rate * dx

Momentum velocity

SGD#AMomentum
= pv; + V f(z4)

Til]l = Lf — OVt

vX = 0

while True:
dx = compute_gradient(x)
vX = rho *x vx + dx
X —= learning_rate *x vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

Sutskever et al, On the importance of initialization and momentum in deep learning,ICML 2013

http://cs231n.stanford.edu/

Optimization with SGD: Nesterov Momentum (Optional)

Momentum update:

Velocity

actual step

Gradient

Combine gradient at current point with
velocity to get step used to update weights

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
Nesterov, A method of solving a convex programming problem with convergence rate O(1/k*2),1983

Nesterov Momentum

Gradient
Velocity

actual step

“‘Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

http://cs231n.stanford.edu/

Optimization with SGD: Nesterov Momentum (Optional)

—— SGD+Momentum

wmmmms Nesterov

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Optimization: AdaGrad

grad_squared = 0

while True:
dx = compute_gradient(x)
Igrad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

This helps to accelerate movements with coordinates where the
gradient is small and decelerate over the coordinates where the
gradient is high

Duchi et al, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

F.-F. Li et A. Convolutional Neural Networks for Visual Recognitionhttp://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Optimization: AdaGrad

grad_squared = 0

while True:
dx = compute_gradient(x)
Igrad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

The problem is that over time (during the training) the update gets
smaller and smaller

Duchi et al, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

F.-F. Li et A. Convolutional Neural Networks for Visual Recognitionhttp://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Optimization: AdaGrad & RMSProp

grad_squared = 0
while True:
AdaGrad dx = compute_gradient(x)
[_grad_squared += dx_* dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + le-7)

grad_squared = 0
while True:

RMS Prop dx_= compute_gradient(x)

Igrad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx

X -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)

Basu, Amitabh, et al. "Convergence guarantees for rmsprop and adam in non-convex optimization and
their comparison to nesterov acceleration on autoencoders." arXiv preprint arXiv:1807.06766 (2018).

F.-F. Li et A. Convolutional Neural Networks for Visual Recognitionhttp://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Optimization with SGD: RMSProp

—— SGD+Momentum

—— RMSProp

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Optimization with SGD: RMSProp

AdaGrag gets stuck

—— SGD+Momentum

—— RMSProp

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Optimization: Adam (almost)

first_moment = 0

second_moment = 0

while True:

dx = compute_gradient(x)
first_moment = betal * first_moment

Momentum

+ (1 - betal) * dx

secona_moment = Deta seconda_moment + = eta X ax

x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7)) AdaGrad / RMSPI’OP

Kingma and Ba, Adam.: A method for stochastic optimization, ICLR 2015

F.-F. Li et A. Convolutional Neural Networks for Visual Recognitionhttp://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Optimization: Adam (real)

first_moment = @

second_moment = 0

for t in range(l1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
e, Y, yp ,p ;;l§l el yp e s y y y y y l, ’llr’l l F@oBP1]llfiol=- --n----

first_unbias = first_moment / (1 - betal ** t)] .

second_unbias = second_moment / (1 - beta2 ** t) Bias correction

X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7)) Nl RMSProp
Bias correction for the fact that Adam with beta1l = 0.9,
firsft and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
estimates start at zero is a great starting point for many models!

- Kingma and Ba, Adam: A method for stochastic optimization, ICLR 2015
- http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
- F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://ruder.io/optimizing-gradient-descent/index.html
http://cs231n.stanford.edu/

Optimization with SGD: Adam

— SGD+Momentum

m—— RMSProp

m— Adam

TLDR; Start with

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/ A D A M !

http://cs231n.stanford.edu/

Another experiment

Data generated from:

y = sin(bx) + 0.5sin(20x) + noise

A NN with 3 hidden layers -> 128 units per layer

Input Linear RelLU Linear RelLU Linear RelLU
1upnits —r ’ 7

| || - . | Output
128 units 128 units 128 units 128 units 128 units 128 units

1 units

MSE Loss

Another experiment

Loss comparison

—— SGD

1.75 - —— SGD+Momentum
—— RMSProp

1.50 - Adam

1.25 -

1.00 -

0.75 - ,

0.50 -

0.25 1 A —

0 50 100 150 200 250

Epoch

Another experiment

Predictions after Training

o
2 o
o
o3
1 32 28\e
o » '.Q \ @
w0
v W \d
04 \ © ° Ir °® ‘~
p ® o ‘\
i \ *A oo\
‘s, £o(7$ e
T \ % ’
/g
-1 1 ’ {\// S o . aFa
e 0% = True Data
X Pt % SGD Prediction
?° a : ° — SGD+Momentum Prediction
2 . . — RMSProp Prediction
° — Adam Prediction
-3 -2 -1 0 2 3

1. Activation functions
2. Weight Initialization
3. Batch Normalization
4. Optimization

5. Learning Rate

6. Regularization

EP LEARNIN
oodfellow, Yoshua Bengio,

Chapter 4.3 Gradient-Based Optimization

Spectacular' A Must Se ee!;

Learning rate

2 - SGD, SGD+Momentum,

loss Adagrad, RMSProp, Adam all
have learning rate as a
hyperparameter

low learning rate

high learning rate

good learning rate

epoch

F.-F. Li et A. Convolutional Neural Networks for Visual Recognitionhttp://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Learning rate

low learning rate

high learning rate

good learning rate
>

epoch

F.-F. Li et A. Convolutional Neural Networks for Visual Recognitionhttp://cs231n.stanford.edu/

SGD, SGD+Momentum,
Adagrad, RMSProp, Adam all
have learning rate as a
hyperparameter

An interesting and common
strategy is to employ time-
varying learning rate

http://cs231n.stanford.edu/

Learning rate

Training Loss

Reduce learning rate

|

-

0 2'0 4b Sb 80 100
Epoch

Reduce learning rate at a few fixed

points.

E.g. for ResNets, multiply LR by 0.1

after epochs 30, 60, and 90.

- F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

- Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

10 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

Learning rate

20 40 60 80
Epoch

o = %ao (1 4 cos(trw/T))

(Y() : Initial learning rate
(x4 : Learning rate at epoch t
T : Total number of epochs

100

http://cs231n.stanford.edu/

10 1

0.8 1

0.6 1

0.4 1

0.2 1

Learning rate

Learning rate

Inverse Sqrt.

.
.

60 80 100

10 A

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

Learning rate

Linear

-
~

0 20 40 60 80 100

Goyal et al, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, arXiv 2017

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

0.6

0.5 -

0.4 -

0.3 1

0.2 1

0.1 1

0.0 1

Learning rate

Linear Warmup

80 100

http://cs231n.stanford.edu/

1. Activation functions
2. Weight Initialization
3. Batch Normalization
4. Optimization

5. Learning Rate

6. Regularization

EP LEARNIN
oodfellow, Yoshua Bengio,

Chapter 7 Regularization for Deep Learning

Spectacular' A Must Se ee!;

The Problem of Overfitting and Regularization

Underfitting - Ideal fit T Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Regularization #0: Lasso

p

N p
e = N Z
/Blabb e argmln{2 E (Z/L — 50 = E : $'ijﬁj)2 -+ A — |ﬁ]\}
J:]:

& i=1

Regularization is a paradigm in Machine
Learning that allow to have a good trade-off
between accuracy on training data and
model complexity enabling generalization

Y

In the case of LASSO this is achieved by a b,
dedicated loss ftyiction and by tuning the
hyperparameter

-T. Hastie, R. Tibshirani, J. Friedman The Elements of Statistical
Learning https://web.stanford.edu/~hastie/Papers/ESLIl.pdf

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Reqgularization #1: Early stopping

A simple approach is to take a look at a testing dataset and stop even
if the loss on the training is still improving

A

Legend

L oss Tésﬁng

T?mnmg

Training Iterations

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #1: Early stopping

A simple approach is to take a look at a testing dataset and stop even
if the loss on the training is still improving

A

Legend

| oss Testing

W?mnmg

Training lterations

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #1: Early stopping

A simple approach is to take a look at a testing dataset and stop even
if the loss on the training is still improving

A

Legend

L oss Tésﬁng

T?mnmg

Training lterations

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #1: Early stopping

A simple approach is to take a look at a testing dataset and stop even
if the loss on the training is still improving

A
Legend
L oss Testing
/ Training
—@

Training lterations

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #1: Early stopping

A simple approach is to take a look at a testing dataset and stop even
if the loss on the training is still improving

A

Legend

Loss / Testing
1?anmg

Training Iterations

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #1: Early stopping

A simple approach is to take a look at a testing dataset and stop even
if the loss on the training is still improving

A

|
|
|
|
|
l
: Legend
|
| .

Loss | Stop training Testing
| herel i
' Training
|

Training Iterations

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #1: Early stopping

A simple approach is to take a look at a testing dataset and stop even
if the loss on the training is still improving

A

Under-fitting Over-fitting

|
|
|
|
|
l
: Legend
|
| .

Loss | Stop training Testing
| herel i
' Training
|

Training Iterations

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #2: Drop Out

A popular approach is to set-up some activations equals to O during
training

Z11 Z21
X1

21,2 2272 41
X2

21,3 223 Y2
X3

Z1,4 224

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #2: Drop Out

A popular approach is to set-up some activations equals to O during
training
Typically, 50% of activations are

dropped
Z21
X1
21,2 V1
X2
2323 V2
X3

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #2: Drop Out

A popular approach is to set-up some activations equals to O during
training
Typically, 50% of activations are
dropped

Dropout make the model not rely
too much on a single node

Z4

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #2: Drop Out

A popular approach is to set-up some activations equals to O during
training
Typically, 50% of activations are
dropped

Dropout make the model not rely
too much on a single node

tf.keras.layers.Dropout(0.5)

One way to remember it....

-MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Reqgularization #2: Drop Out

How is that a good idea?

T

F.-F. Li et A. Convolutional Neural Networks for Visual Recognitionhttp://cs231n.stanford.edu/

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail R

is furry —X—— . cat
" score

has claws +/
mischievous

look

http://cs231n.stanford.edu/

1. Activation functions
2. Weight Initialization
3. Batch Normalization
4. Optimization

5. Learning Rate

6. Regularization

=> Summarizing...

- - ‘, " ’ h - . . > <> o " ‘\\,
“Spoctacular! A Must ScolTER\

How to train a NN: some tips for your first try

- Scale your input data (preprocessing)
- Use RelLU

- Use He Inizialization

- Use Batch Normalization

- Use ADAM

- Babysit the learning process

low learning rate
high learning rate

good learning rate

EEEEE

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

How to train a NN: some tips for your first try

- Scale your input data (preprocessing)

- Use RelLU

- Use He Inizialization

- Use Batch Normalization

- Use ADAM

- Babysit the learning process Grid Layout Random Layou

- Hyperparameter Optimization @O | S 0@0‘? oq

(network architecture, learningrate || e oo |2 Il R
and decay schedule, presence of | o o o |T % e]|Z
regularizathion, more sophisticated || e oo |2 RN

activation functions, ...) g

Important Parameter Important Parameter

F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/
Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

http://cs231n.stanford.edu/

Lot of things not covered today... what about a summary?

New optimization approaches:

- Variants and Enhancements of Adam (AdamW, AMSGrad, AdaBelief)
- Novel Optimizers (Adafactor, MADA)

- Adaptive Learning Rate Methods (AdaMax, Nadam)

- Memory-Efficient Techniques (Adafactor)

New initialization approaches:
- ZerQ, Sylvester Solvers, Autolnit, Linear Product Structure (LPS), ...

Credits

Reference Material (used for this presentation):

- F.-F. Li et A. Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/

- Goodfellow, lan, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

- MIT Introduction to Deep Learning http://introtodeeplearning.com

- l. Changhau Activation Functions in Neural Networks https://isaacchanghau.github.io/post/activation functions/
- H. Li et al. Visualizing the Loss Landscape of Neural Nets NIPS 2018

- X. Glorot, Y. Bengio Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics (pp. 249-256), 2010

- F. Doukkali https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
- K. He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification https://arxiv.org/pdf/1502.01852.pdf
- J. Jordan https://www.jeremyjordan.me/batch-normalization/

- S. loffe, C. Szegedy Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
https://arxiv.org/abs/1502.03167

- Sutskever et al, On the importance of initialization and momentum in deep learning, ICML 2013
- Nesterov, A method of solving a convex programming problem with convergence rate O(1/k*2),1983
- Duchi et al, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011

- Basu, Amitabh, et al. Convergence guarantees for rmsgrop and adam in non-convex optimization and their comparison to nesterov acceleration
on autoencoders. arXiv preprint arXiv:1807.06766 (2018)

- Kingma and Ba, Adam: A method for stochastic optimization, ICLR 2015

- S. Ruder http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
- Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

- Goyal et al, Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, arXiv 2017

- Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

http://cs231n.stanford.edu/
http://introtodeeplearning.com/
https://isaacchanghau.github.io/post/activation_functions/
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://arxiv.org/pdf/1502.01852.pdf
https://www.jeremyjordan.me/batch-normalization/
https://arxiv.org/abs/1502.03167
http://ruder.io/optimizing-gradient-descent/index.html

ppclI STUD Machine Learning n m C O
DEGLI STUDI

DI PADOVA 2024/2025 e LN e

= . ik T

o ke
ok o0 A 4 mu.n,jmmnfh

oo e m:

o anrrt s

Thank you!

Gian Antonio Susto

