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In many approaches (logistic 
regression, SVM, …) we can derive a 
distance from the decision 
boundary, a probability of being 
classified to one class or another…

Before Starting 1/2:  clarifications on ROC curve



- True Positive Rate

- False Positive Rate
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- True Positive Rate

- False Positive Rate

In this case:

- TPR = 1 (0 false negatives, ie all 
TP or TN)!

- FPR = 0 (0 false positives)

Before Starting 1/2:  clarifications on ROC curve



- True Positive Rate

- False Positive Rate

If a classifier always classifies data as 
negatives:

- TPR = 0 (as TP = 0)

- FPR = 0 (as FP = 0)
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- True Positive Rate

- False Positive Rate

If a classifier always classifies data as 
positives:

- TPR = 1 (as FN = 0)

- FPR = 1 (as TN = 0)

Before Starting 1/2:  clarifications on ROC curve



- True Positive Rate

- False Positive Rate

A random classifier will have  TPR = 
FPR since positives and negatives 
are assigned randomly
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- True Positive Rate

- False Positive Rate

A random classifier will have  TPR = 
FPR since positives and negatives 
are assigned randomly

Scenario: A dataset with 100 people (50 positives, 50 
negatives)

- CASE #01 (Threshold = 0.8, ie 20% are predicted as 
P, TP = 10, FP = 10, TN = 40, FN = 40)

TPR = 10/(10+40) = 0,2 & FPR = 10/(10+40) = 0,2

- CASE #02 (Threshold = 0.5, ie 50% are predicted as 
P, TP = 25, FP = 25, TN = 25, FN = 25)

TPR = 25/(25+25) = 0,5 & FPR = 25/(25+25) = 0,5 

Before Starting 1/2:  clarifications on ROC curve
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Before Starting 2/2: on the role of C in SVM



SVM solves a convex optimization problem (linearly separable case):

Subject to

If it is not separable, we allow some "slack”

(errors) by introducing variables ξ:

Subject to

Before Starting 2/2: on the role of C in SVM



Here we allow the classifier to 
have some misclassification 

Here we try to have all historical 
data point correctly classified
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Here we allow the classifier to 
have some misclassification 

Here we try to have all historical 
data point correctly classified

Before Starting 2/2: on the role of C in SVM

C high

- Low regularization

- The model penalizes misclassifications 
heavily

- Tries to classify every point correctly 
(even noisy points)

- Margin becomes narrower to avoid 
errors

- Risk of overfitting



Here we allow the classifier to 
have some misclassification 

Here we try to have all historical 
data point correctly classified

Before Starting 2/2: on the role of C in SVM

C low

- High regularization

- Allows some classification errors to 
achieve a wider margin

- Focuses more on simplicity and 
generalization

- Risk of underfitting, but better 
performance on noisy data



Basics of Deep Learning (with some recap)



MIT Introduction to Deep Learning http://introtodeeplearning.com

Activation function

The building block of Neural Networks (NN): the neuron

http://introtodeeplearning.com/
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Activation functions

http://introtodeeplearning.com/


MIT Introduction to Deep Learning http://introtodeeplearning.com

Feedforward (Single Layer) Neural Network

So-called Vanilla Neural 
Network
T. Hastie, R. Tibshirani, J. Friedman The Elements of Statistical Learning

http://introtodeeplearning.com/


MIT Introduction to Deep Learning http://introtodeeplearning.com

From Neural Network to Deep Learning architecture

From 1 Layer to ‘many’ layers

http://introtodeeplearning.com/


From Neural Network to Deep Learning architecture

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
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One of the advantages of DL is to do 
‘embedded’ both the feature extraction 
and the modeling part

I. Goodfellow, Y. Bengio, A. Courville. Deep learning. MIT press, 2016.

L. Fridman MIT Deep Learning https://deeplearning.mit.edu/  

https://deeplearning.mit.edu/


One of the advantages of DL is to do ‘embedded’ both 
the feature extraction and the modeling part



One of the advantages of DL is to do ‘embedded’ both 
the feature extraction and the modeling part

We are calling these, ‘learned features’



Handcrafted Features vs Learned Features

Handcrafted features are manually designed by 
humans based on domain knowledge and 
intuition.

Pros:

- Simple, interpretable

- Work well when you have strong domain 
expertise

Cons:

- Limited expressiveness — can’t capture 
complex patterns

- Often task-specific — poor generalization

- Require manual effort, which doesn't scale

Learned features are automatically extracted by a neural 
network during training — the network learns how to 
represent the data in a way that is useful for the task.

Pros:

- Can learn very complex patterns

- Adapt to the specific data and task

- Scale well to large datasets and varied problems

Cons:

- Less interpretable (but explainability tools help)

- Require more data and compute

- Can overfit if not properly regularized 



Multi-output DL are particularly relevant in some cases

The learned features may be 
relevant for multiple objectives!

Some benefits: 

- Efficiency (one model, one 
training process)

- Shared knowledge (task can
benefit from each other’s 
learned representations)

- Regularization (learning multiple 
tasks may prevent overfitting)



Multi-output DL are particularly relevant in some cases

The learned features may be 
relevant for multiple objectives!

Some benefits: 

- Efficiency (one model, one 
training process)

- Shared knowledge (task can
benefit from each other’s 
learned representations)

- Regularization (learning multiple 
tasks may prevent overfitting)

For example, with O outputs, a 
regression loss could simply be



Deep Learning Training



MIT Introduction to Deep Learning http://introtodeeplearning.com

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:

http://introtodeeplearning.com/
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Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:

http://introtodeeplearning.com/


H. Li et al. Visualizing the Loss Landscape of Neural Nets NIPS 2018

Loss functions may be quite complex…



MIT Introduction to Deep Learning http://introtodeeplearning.com

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:

(Gradient Descent)

Learning Rate

http://introtodeeplearning.com/


(Gradient Descent)

Learning Rate

To cope with complex loss functions and to optimize 
training the following algorithm is generally sophisticated



Stochastic Gradient Descent

MIT Introduction to Deep Learning http://introtodeeplearning.com

Can be very burdensome 
to compute… 

Average over all samples 
in the dataset!

http://introtodeeplearning.com/


Stochastic Gradient Descent

MIT Introduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/


Stochastic Gradient Descent

MIT Introduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/


Stochastic Gradient Descent: Mini-batches

The set of B data points is called mini-batch

Mini-batches allow to accurated estimation of 
gradient, smoother convergence, larger learning 
rates

Mini-batches lead to fast training: computation 
can be parallelized and significant speed 
increases can be obtained on GPUs



In large architectures, smart choices related to ‘simple’ 
things can have a huge impact



H. Li et al. Visualizing the Loss Landscape of Neural Nets NIPS 2018

Loss functions may be quite complex…



MIT Introduction to Deep Learning http://introtodeeplearning.com

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:

http://introtodeeplearning.com/


Backpropagation is about understanding how changing the 
weights and biases in a network changes the cost function.

MIT Introduction to Deep Learning http://introtodeeplearning.com

Let’s consider a simple NN with one node: how the final loss is 
affected by changes in       ? 

How to compute the gradient: backpropagation

http://introtodeeplearning.com/
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Let’s consider a simple NN with one node: how the final loss is 
affected by changes in 

?

How to compute the gradient: backpropagation
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MIT Introduction to Deep Learning http://introtodeeplearning.com

This simple network is characterized also by the weigth 

How to compute the gradient: backpropagation

http://introtodeeplearning.com/
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MIT Introduction to Deep Learning http://introtodeeplearning.com

This simple network is characterized also by the weigth 

How to compute the gradient: backpropagation

We also have to keep 
into account the non-
linear transformations 
(activations)! In that 
case, we need to apply 
again the chain rule!

http://introtodeeplearning.com/


Let’s consider an example with sigmoid activation 

How to compute the gradient: backpropagation



Let’s consider an example with sigmoid activation 

How to compute the gradient: backpropagation

With x=1, w1 = 0.5, w2=-1, y=1:



How to compute the gradient: backpropagation



How to compute the gradient: backpropagation



MIT Introduction to Deep Learning http://introtodeeplearning.com

This simple network is characterized also by the weigth 

How to compute the gradient: backpropagation

You can have 
a look here for 
the math: 
http://neuraln
etworksandde
eplearning.co
m/chap2.html

http://introtodeeplearning.com/
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html


When dealing with NN training, we are 
dealing with a ‘beast’

Stochastic Gradient Descent and Back-
propagation have been there for decades, 
but we weren’t able to properly train such 
architectures!

In past recent years we have developed 
many tricks to ‘tame the beast’



When dealing with NN training, we are 
dealing with a ‘beast’

Stochastic Gradient Descent and Back-
propagation have been there for decades, 
but we weren’t able to properly train such 
architectures!

In past recent years we have developed 
many tricks to ‘tame the beast’



1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization 



1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization 

Chapter 6.3 Hidden Units



Activation functions

Beside introducing non-
linearities, it is important for 
Activation functions to have 
an easy way to compute the 
gradients (we need this in 
backpropagation)



Sigmoid Simple interpretation (probability)

Issues:

- Vanishing gradient problem: gradient becomes 
increasily small as the absolute value of the 
input increases (it is a problem in 
backpropagation)

- No zero-centered output (zig-zagging 
dynamics in the gradient updates)

- Exp function can be expensive to compute
G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in 
Pattern Recognition Applications



Tanh

Zero-centered

Issues:

- Vanishing gradient problem

- Exp function can be expensive to 
computeG. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in 

Pattern Recognition Applications



ReLU

Simple implementation

Does not saturate (in + region we have no 
vanishing gradient)

Faster convergence of SGD than sigmoid/tanh

Issues:

- Not zero-centered

- Gradient is zero for negative values: dead 
ReLU (as much as 40% of the network never 
activate if the learning rate is too high)

G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in 
Pattern Recognition Applications



ReLU: Intuition

ReLU gives neural networks the power to ‘fold’ the input space.

This lets them transform complex, tangled data into something 
that even a straight line can separate.



1 hidden layer

2 hidden layers



Leaky ReLU, Parametric ReLU, Randomized Leaky ReLU

Very easy to compute

Does not saturate (in + 
region)

Faster convergence than 
sigmoid/tanh

Does not die!

In the Parametric ReLU 
(PReLU) the parameter 
alpha is learned along with 
the other network 
parameters

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/


Leaky ReLU, Parametric ReLU, Randomized Leaky ReLU

Alpha is chosen at random 
in a given range in training 
and it is then fixed in test

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/


TLDR: Activations

Main issues with activation functions:
• Vanishing gradients
• Non-centered on zero outputs
• Costly computations

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/


https://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function


In practice:
- prefer ReLU. Use slightly positive initial bias to avoid 

dead Relu issue.
- Try out Leaky ReLU/PRelu
- No sigmoid!

Which activation?



Thank you!

Gian Antonio Susto 
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