UNIVERSITA .
ouci Sy Machine Learning n

DI PADOVA
2024/20
25 LERI?[?IR(F;ICIQL INTELLIGENCE, M
AND CONTROL RES‘EQS((Z:I:"(':FEOUP

ik T

g e
y CYOJUN wanfD

Al
o anrrt al

ol w0 A

oo e BT
[

Lecture #24
Neqral Networks
Training

Gian Antonio Susto

Before Starting 1/2: clarifications on ROC curve

In many approaches (logistic
regression, SVM, ...) we can derive a
distance from the decision
boundary, a probability of being
classified to one class or another...

1.00

075

0.50

025

0.00

1\1‘} 1|

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate
TP

TP + FN

TPR =

- False Positive Rate

FP
FP + TN

FPR =

1.0 =

o ¢ ——PERFECT CLASSIFIER

7/
w 0.8 //»
i P
(0 4 //
Woge= A
= ’ 17\Q
A R
Q Ao
D
e ouy= 50
W ,/QX\Q
D e
& p
O2m= //’
’
7/
/’
R
0.0=| “
] 1] 1 [1
0.0 0.2 oy 0.6 0.8 \.O

FALSE POSITIVE RATE

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate
TP

TPR =
R TP + FN

- False Positive Rate

FP

FPR =

FP + TN

o ~§—PERFECT CLASSIFIER

//
e
//
w 0-8 - ,/)
- 7
< -,
(0 4 R
W oL = ’
2 0.6 //‘(\(’Q-
E ,/‘75\
4 ,/ \,?‘
0 /(\ (-’
e oy= 50
W /’Q«‘\Q
D s
(14 PR
— 7
O2m= IR
7’
Ve
7’
R
o.o - 7
1] 1 [1 1
0.0 0.2 o4y 0.6 0.8 \.O

FALSE POSITIVE RATE

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate
TP

TPR =
R TP + FN

- False Positive Rate

FP

FPR =

FP + TN

0=

o —PERFECT CLASSIFIER

7
w 0-8 - //)
| .
(0 4 P
W 0.6 e
> " Vg €¢
[/’5\“\
3 -
D
o ouy= 0
w //?\‘\Q
D S
¢ -
O2m= ,/'
’
7/
/
R
0.
]] [1 1
0.0 0.2 o4y 0.6 0.8 \.O0

FALSE POSITIVE RATE

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate
TP

TPR =
R TP + FN

- False Positive Rate

FP
FP + TN

FPR =

If a classifier always classifies data as
positives:

-TPR=1(as FN =0)
-FPR=1(as TN =0)

0= o ——PERFECT CLASSIFIER
R
///
w 0.8 - //;
- IR
< -,
(0 4 R
- 7/
2 06 /Q\@Q'
V2! ,/ \,?‘
Q 50
Qo O.u - // O(\
W //Q\\XQ
D s
9‘_ .
02= //
/’
7’
7’
R
0.0 - 7
] | | 1 1 1
0.0 0.2 o.4 0.6 0.8 \.O0

FALSE POSITIVE RATE

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate

TP
TPR = TP + FN 10| ® ~——PERFECT CLASSIFIER
- False Positive Rate Eos-
FP £
FPR = 5
FP + TN & o=
3
" 02=
o.0¢| ~

1 [1 1
o4y 0.6 0.8 \.O
FALSE POSITINE RATE

Before Starting 1/2: clarifications on ROC curve

Scenario: A dataset with 100 people (50 positives, 50
- True Positive Rate negatives)

TPR = P - CASE #01(Threshold = 0.8, ie 20% are predicted as
TP + FN P,TP=10,FP =10, TN = 40, FN = 40)

TPR =10/(10+40) = 0,2 & FPR =10/(10+40) = 0,2

- CASE #02 (Threshold = 0.5, ie 50% are predicted as
FP P, TP = 25, FP = 25 TN = 25 FN = 25)

FP + TN TPR = 25/(25+25) = 0,5 & FPR = 25/(25+25) = 0,5

- False Positive Rate

FPR =

] [1 1
A0 0.2 o4y 0.6 0.8 \.O

FALSE POSITIVE RATE

Before Starting 1/2: clarifications on ROC curve

1 ROC _CURVE
10=| ® ——PERFECT CLASSIFIER » <€Q~,,,—7
ROC
0.8 =
9 w 8
© <
o 7
3
> Wwog=
5 >
G 05 AUC E
O A
(a¥ Q
0 e ou=
=~ Wy
s ;
— 0.2 =
0.0 =
0 0.5 1 1 |] []] |
False Positive Rate 00 02 ou 06 08 0

FALSE POSITIVE RATE

Before Starting 2/2: on the role of Cin SVM

Hard margin Soft margin

(@] @]
-~ ”~
-~ -~
Decision ’© Decision . ’©
boundary PR e boundary > @ o
7’ [5] 1) ” e ®

® Class1 () Supportvector

® C(Class2 © Sample violating constraint

Before Starting 2/2: on the role of Cin SVM

SVM solves a convex optimization problem ():
.1 5 ,
131;1 §||W|| Subject to yi(w-z; +b) >1 Vi
sz
If , we allow some "slack” -
(errors) by introducing variables &:

O =
min - ||wl/? 4+ C ; y=1
win o [w|? +C Y ¢ D

Subjectto y;(w-x; +b) >1—-&, & >0

Feature 2

Before Starting 2/2: on the role of Cin SVM

Blobs (linear + noisy) - C=0.01 Blobs (linear + noisy) - C=1

Blobs (linear + noisy) - C=100

777

Class 0
Class 1

Feature 2
Feature 2

Feature 1 Feature 1

Feature 1

4

Here we try to have all historical
data point correctly classified

Here we allow the classifier to
have some misclassification

Feature 2

Before Starting 2/2: on the role of Cin SVM

r + noisy) - C=1

C high

- Low regularization

: x/, X %x" ’;
heavily %é’*’”&x,&g]
% x X v ’&
- Tries to classify every point correctly /
(even noisy points) 1 2

- Margin becomes narrower to avoid

Feature 2

Blobs (linear + noisy) - C=100

RO
Class 0
%77 Class 1

Feature 1

errors

- Risk of overfitting

4

Here we try to have all historical
data point correctly classified

Feature 2

Before Starting 2/2: on the role of Cin SVM

Blobs (linear + noisy) - C=0.01
//, 3_

Feature 2
o

Blobs (linea

Feature 1

Here we allow the classifier to
have some misclassification

C low
High regularization

Allows some classification errors to
achieve a wider margin

Focuses more on simplicity and
generalization

Risk of underfitting, but better
performance on noisy data

Basics of Deep Learning (with some recap)

The building block of Neural Networks (NN): the neuron

Activation function

0

LT
xz/’

Wm

y=g wet+tX"W)

X1 W1
:]andW = [:]
xm Wm

<)

where: X =

Xm

Inputs ~ Weights Sum Non-Linearity Output

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Activation functions

03f

08

07F
06
03
04
0
Linear Activation functions produce linear Non-linearties allow us to approximate
decisions no matter the network size arbitrarily complex functions

MIT /Introduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Feedforward (Single Layer) Neural Network

w® w®
7 Y So-called Vanilla Neural
%, Network
g(fz) ~ T. Hastie, R. Tibshirani, J. Friedman The Elements of Statistical Learning
Z2 Y1
X2
7 ~
> 9(:3) }'2
Xm
VA
A gea,)
Inputs Hidden Final Output

_ @ 9 2 ! 2
= Wo,i +Z _1x1]l Yi = g(w(gl) Z 1ZJ](l))
j=

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

From Neural Network to Deep Learning architecture

41
X1
)
X2 X ><
Z3
Xm
Zq,
Inputs Hidden

%

Output

MIT /ntroduction to Deep Learning http://introtodeeplearning.co

From 1 Layer to ‘many’ layers

Zka
X1
Zk,2 V1
X, X X X X
Zk,3 V2
xm
Zk,dy
Inputs Hidden Output

dg—1
_ K (k)
Zki = Wo; + Z X g(zk_l,j) Wi
]:

http://introtodeeplearning.com/

From Neural Network to Deep Learning architecture

a6 o ,
6.5 1 1 T 1 T T T
96.0 —J
96.0 .
e —
: —
O
™
—
O -
Q.
p—
> -
&
<
S
O -~
S
7 _
-
| | |

3 4 5) 6 7 8 9 10 11

Goodfellow, lan, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

One of the advantages of DL isto do

‘embedded’ both the feature extraction

and the modeling part

Machine Learning

e — & — 1737 1l

Input Feature extraction Classification Output

Deep Learning

Input Feature extraction + Classification

Output

L. Fridman MIT Deep Learning https://deeplearning.mit.edu/

Output
Output Output MSTPIEIfrom
features
Additional
Outout Mapping from Mapping from layers of more
P features features abstract
features
Hand- Hand- Simple
designed designed Features P
features
program features
Input Input Input Input
) Deep
Rule-based Clasele learning

systems

machine
learning

Representation

learning

|. Goodfellow, Y. Bengio, A. Courville. Deep learning. MIT press, 2016.

21

https://deeplearning.mit.edu/

One of the advantages of DL is to do ‘embedded’ both
the feature extraction and the modeling part

‘ 5 . - -~ Softmax
ol L. /57 v IR IFulh Connected Layer
'. : " : '-.-" T LB [-wd ;'1 ' L anger
_______________________ FJE.E[T.;J _I ™ disgust
o fear
S = Q%@ ® happiness
" il
4. ® sadness
.) ™ surprise
convolution Layer convolution Layer
™ neutral

One of the advantages of DL is to do ‘embedded’ both
the feature extraction and the modeling part

‘ 5 . - -~ Softmax
ol L. /57 v IR IFulh Connected Layer
'. : " : '-.-" T LB [-wd ;'1 ' L anger
_______________________ FJE.E[T.;J _I ™ disgust
o fear
S = Q%@ ® happiness
" il
4. ® sadness
.) ™ surprise
convolution Layer convolution Layer
™ neutral

We are calling these, ‘learned features’

Handcrafted Features vs Learned Features

Input Feature e?action Clas:-;,iﬁcation 7 Output Input Feature exraction'Classiﬁcation Output
Handcrafted features are manually designed by Learned features are automatically extracted by a neural
humans based on domain knowledge and network during training — the network learns how to
intuition. represent the data in away that is useful for the task.

Pros: Pros:

- Simple, interpretable - Canlearn very complex patterns

- Work well when you have strong domain - Adaptto the specific data and task

expertise - Scale well to large datasets and varied problems
Cons: Cons:
- Limited expressiveness — can’t capture - Lessinterpretable (but explainability tools help)

complex patterns

- Often task-specific — poor generalization - Require more data and compute

: fit if not | larized
- Require manual effort, which doesn't scale Canoverfit if not properly regularize

Multi-output DL are particularly relevant in some cases

The learned features may be
51 relevant for multiple objectives!

3 Some benefits:

Inputs signals
XMYNAVYY |
sjeusdis sindinQ

- % - Efficiency (one model, one
el = N v . [— ; training process)

s N b - Shared knowledge (task can
benefit from each other’s
learned representations)

- Regularization (learning multiple
tasks may prevent overfitting)

Multi-output DL are particularly relevant in some cases

The learned features may be
51 relevant for multiple objectives!

3 Some benefits:

Inputs signals
X MYNAYVY |
sjeusdis sindinQ

- B Efficiency (one model, one
.................... R P — training process)

, Input layer : First hldden Second Output layer E

layer | . hidden layer

| layer @ | hiddenlayer - Shared knowledge (task can

. benefit from each other’s
For example, with O outputs, a learned representations)
rearession loss could simplv be

- Regularization (learning multiple
Loy = Z Z (yo) tasks may prevent overfitting)

1=1 o=1

Deep Learning Training

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:
x _ : l " 0). i
W' = argv{/nmn Zizlﬁ(f(x(); W),y())

W* = argmin J (W)
w

Wy, Wqp) ° SRE
J(wo, wr) ¢ S

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:
x _ : l " 0). i
W' = argv{/mnn EizlL(f(x(); W),y())

W* = argmin J (W) Algorithm
w

. Initialize weights randomly ~N'(0, 04)

2. Loop until convergence:

3. aJw)

ow
B Update weights, W « W — 1

Compute gradient,
J(wo, wq)

(W)
ow

i, . Return weights

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Loss functions may be quite complex...

H. Li et al. Visvalizing the Loss Landscape of Neural NetsNIPS 2018

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:

1 n . .
w* = argmin—z: L(f(xO;w),y®)
w Niedi=1

W* = argmin J (W) Algorithm (Gradient Descent)
74

. Initialize weightd randomly ~N (0, 02)

aJW)
ow

| &2 Update weights, W « W

5. Return weights Learning Rate

3.

Compute gradient,
J(wo, wq)

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

To cope with complex loss functions and to optimize
training the following algorithm is generally sophisticated

Algorithm (Gradient Descent)
. Initialize weightsfrandomly ~N'(0, %)
2. Loop until convergence:

aJW)
ow

3.

Compute gradient,

4 Update weights, W « W](W)

5. Return weights Learnlng Rate

Stochastic Gradient Descent

Algorithm
| Initialize weights randomly ~N (0, 02)

2. Loop until convergence:

3. Compute gradient, LA
ow
4. Update weights W « W —n aja(z)

5. Return weights o e

Can be very burdensome
to compute...
Average over all samples
in the dataset!

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~V' (0, %)

2. Loop until convergence:

5 Pick single data point i
4. .. [:

Compute gradient, =i o
2. Update weights, W « W — 1 aja(uu/,) I e
6. Return weights

Easy to compute but
very noisy
(stochastic)!

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~V'(0, %)

2. Loop until convergence:

L7 Pick batch of B data points ”
4. Compute gradient, 2 (W) Zk —1 9] SSIV)
. Update weights, W « W —n 2 (WD— g

6. Return weights

Fast to compute and a much better
estimate of the true gradient!

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Stochastic Gradient Descent: Mini-batches

The set of Bdata points is called mini-batch

Mini-batches allow to accurated estimation of
gradient, smoother convergence, larger learning
rates

Mini-batches lead to fast training: computation
can be parallelized and significant speed
increases can be obtained on GPUs

In large architectures, smart choices related to ‘simple’
things can have a huge impact

This little maneuver is gonna cost us 51 years

Loss functions may be quite complex...

H. Li et al. Visvalizing the Loss Landscape of Neural NetsNIPS 2018

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:
x _ : l " 0). i
W' = argv{/nmn Eizlﬁ(f(x(); W),y())

W* = argmin J (W) Algorithm
w

. Initialize weights randomly ~N'(0, 04)

2. Loop until convergence:

3. aJw)

ow
B Update weights, W « W — 1

Compute gradient,
J(wo, wq)

(W)
ow

i, . Return weights

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

How to compute the gradient: backpropagation

Backpropagation is about understanding how changing the
weights and biases in a network changes the cost function.

W1 W)
X [I » (W)

A

Let’s consider a simple NN with one node: how the final loss is
affected by changes in w, ?

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

How to compute the gradient: backpropagation

Let’s consider a simple NN with one node: how the final loss is
affected by changesin w;

X > Zl P 5; >](W)

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

How to compute the gradient: backpropagation

Let’s consider a simple NN with one node: how the final loss is
affected by changesin w;

Wq W
X >z >y > J(W)
We can apply the chain rule: agw) N
dw, '
y = f(u) dy df du
= g(z) dr du dz

How to compute the gradient: backpropagation

Let’s consider a simple NN with one node: how the final loss is
affected by changesin w;

We can apply the chain rule: 3] (W) 3J (W) * 09

y = f(u) by df du | "2 oy 0w

= g(x) dz du dz

How to compute the gradient: backpropagation

This simple network is characterized also by the weigth Wy

W1 | %%
x bz e D e (W)

We can apply the chain rule:

y= 5w dy df du ojw) _oJWw) 0y
0W1

u = g(z) dz du dz — ay
I — f

ow,
Apply chain rule! Apply chain rule!

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

How to compute the gradient: backpropagation

This simple network is characterized also by the weigth Wq
W1 w
X S— 7, * y #

We can apply the chain rule:
vt o _aa | W) OJW) 99 9z
621 0W1

dwy

u = g(z) dz du dz - 65;
I D

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

How to compute the gradient: backpropagation

This simple network is characterized also by the weigth Wq

X e—— 7, DR) ——

We can apply the chain rule:

y = f(u) ay daf aw | OJ(W) dJ (W) § ﬂ 0z

We also have to keep
. into account the non-
024 ow, linear transformations

u = g(z) dz du dz = .
dwy ay

e m— s (ACTivations)! In that
case, we need to apply
z1 =o(x-wi) (activation) againthe chainrule!

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

We can apply the chain rule:

How to compute the gradient: backpropagation

y =7 dy _df du
, u=g(z) dr du dz
Let’s consider an example with sigmoid activation ’
o(z) = 1 z1 =o(x-w;) (activation) : 4 w, ;
_Z .
1+e y = z1 -ws (linear output)

1

L = 5(3? — y)2 (loss)

We can apply the chain rule:

How to compute the gradient: backpropagation

Vot dy_df

Let’s consider an example with sigmoid activation v o) o @

1 z1 =o(x-w;) (activation) i w, A
O'(Z) _ x Pz, e —— AN
1+e* " :
y = z1 -ws (linear output)
1 A 2
L=2(g—y) (loss)

With x=1, w1 = 0.5, w2=-1, y=T:
zy =0(x-w;) =0(1.0-0.5) = 0(0.5) = 0.622

§ =21 - ws = 0.622 - (—1.0) = —0.622

1 1
L=_(j- y)? = 5 (0622 — 1)? = 5(—1.622)2 ~ 1.315

We can apply the chain rule:

How to compute the gradient: backpropagation

y=f(u) dy df du
u=g(z) dr du dz
W1 W)

dL _dL dj
dw2 - d’g d’wz

L =§—y=—0622—1=—1622
ﬂ = 21 = 0.622

dws

dL

= —1.622-0.622 =~ —1.009
d’w2

How to compute the gradient: backpropagation

dL dL dy dz
dwq B dy dz; dw;

Breaking it down:

dL _
© g — —1.622

dy __ _
o E—'LUZ— 1.0

5 %za'(w-wl)-w:zl(l—zl)-w

Using:
e 21 = 0.622
« 0/(2) =0(2)(1 —0(2)) =~ 0.622- (1 — 0.622) ~ 0.235

Then:

92 _ 935.1.0 — 0.235
dw1
dL

= (—1.622) - (—1.0) - 0.235 ~ 0.381
dw; (—1.622) - (—1.0) - 0.235 ~ 0.38

We can apply the chain rule:

y = f(u) dy df du

u=g(z) dz du dz

dL _dL dj
dw2 - dg d’wz

How to compute the gradient: backpropagation

This simple network is characterized also by the weigth

W
2, —

We can apply the chain rule:

y=f(u) @_df du

u=g(x) dz du dz

oj(w) _ oJ(W)

MIT /ntroduction to Deep Learning http://introtodeeplearning.co

W1

- Jw)

You can have
a look here for
the math:

http://neuraln

etworksandde

eplearning.co

m/chap2.html

http://introtodeeplearning.com/
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html

When dealing with NN training, we are
dealing with a ‘beast’

Stochastic Gradient Descent and Back-

propagation have been there for decades,
pbut we weren’t able to properly train such
architectures!

When dealing with NN training, we are
dealing with a ‘beast’

Stochastic Gradient Descent and Back-

propagation have been there for decades,
pbut we weren’t able to properly train such
architectures!

1. Activation functions
2. Weight Initialization
3. Batch Normalization
4. Optimization

5. Learning Rate

6. Regularization

- - ‘, " ’ h - . . > <> o " ‘\\,
“Spoctacular! A Must ScolTER\

1. Activation functions
2. Weight Initialization
3. Batch Normalization
4. Optimization

5. Learning Rate

6. Regularization

EP LEARNIN
oodfellow, Yoshua Bengio,

Chapter 6.3 Hidden Units

Spectacular' A Must Se ee!;

Activation functions

Beside introducing non-
linearities, it is important for
Activation functions to have
an easy way to compute the
gradients (we need this in

backpropagation)
Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (ReLU)
0.8 —'gftz;) 1 5 : S% 4 Ag(zz)) 1
0.6 3 ‘
- —
0.4 2
0.2 e 1
ol——" ' = 1 — 0 .
5 0 5 5 0 5 5 0 5
1 e? —e™?
g(z)= g(z)= g(z) = max (0, z)

1+ e~% e+ e *

, 1, 0
g'(z)=g=A-92) g'(z)=1-g(2)* g (z) = {0, ocher?vise

Sigmoid Simple interpretation (probability)

Issues:

1 | |——Sigmoid Function

— Gradient - Vanishing gradient problem: gradient becomes
increasily small as the absolute value of the
input inCreases (it is a problem in
backpropagation)

05

- No zero-centered output (zig-zagging
0 . |] dynamics in the gradient updates

-10 -5 0 5 10

- Exp function can be expensive to compute

G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in
Pattern Recognition Applications

1

)= et

9'(z)=g(2)(1-yg()

Tanh

05

0

-05 |

-1

I ——Tanh Function

——Gradient

-10

G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in
Pattern Recognition Applications

-5

e
J\Z) =
9(2) g

g' ()= 1-g(2)?

0

Z

5

10

Zero-centered

Issues:
- Vanishing gradient problem

- Exp function can be expensive to
compute

RelLU

I ——RelLU Function
——Gradient

1.5+

’] L

05

0

1 1 1
-10 -5 0 5
G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in
Pattern Recognition Applications

g(z) =max(0,2)

Mg = | v A B L
9 i i otherwise

10

Simple implementation

Does not saturate (in + region we have no
vanishing gradient)

Faster convergence of SGD than sigmoid/tanh

Issues:

Not zero-centered

Gradient is zero for negative values: dead
RelLU (as much as 40% of the network never
activate if the learning rate is too high)

RelLU: Intuition

RelLU gives neural networks the power to ‘fold’ the input space.

This lets them transform complex, tangled data into something
that even a straight line can separate.

Feature 2

Feature 2

1 hidden layer

2 hidden layers

ReLU NN with 1 neuron(s)

-1 0 1 2
Feature 1

RelLU NN with (10, 10) neurons

-1 0 1 2
Feature 1

Feature 2

Feature 2

ReLU NN with 3 neuron(s)

-1 0 1 2
Feature 1

ReLU NN with (20, 20) neurons

-1 0 1 2
Feature 1

Feature 2

Feature 2

ReLU NN with 10 neuron(s)

ReLU NN with 20 neuron(s)

3t 3k
X X x X
2t s X X 2r o X X
1r X 1f X
of & gﬁ‘% X 2 of X)ﬁ‘% X
)i‘ X)&xxx{‘ %} X% E o X)&xxx{ % X%
-1r XXX x »f: 2 -1F x x*¥ x »i(%
AHEF o SRR W
2t Al —-2F »X
2 -1 o0 1 2 3 2 -1 o0 1 2
Feature 1 Feature 1
RelLU NN with (50, 50) neurons RelLU NN with (100, 100) neurons
3t 3k
2 0 x)?‘)*x 2r 0% x*‘)*x
Xog0y X *ogShsc 0 X
1f X &X 1k X &X
A e v e e
Or X)8()()&ix)&{ &§Xx :l(B; OF X)&x &%x&{ &§xx
X x X 0% w X x %% X6k 0
KR B e KR B e
-2 X —2F 20X
3 2 -1 o0 1 2 3 2 -1 o0 1 2
Feature 1 Feature 1

Leaky RelLU, Parametric ReLU, Randomized Leaky RelLU

R — [——

ReLU

https://isaacchanghau.github.io/post/activation_functions/

——————p

|
Leaky ReLU/PReLU

g(z) =0.01z,(z < 0)

9(2) = 2,(2 2 0)

az, (z <0)
Ziz 20)

Very easy to compute

Does not saturate (in +
region)

Faster convergence than
sigmoid/tanh

Does not diel

In the Parametric ReLU
(PReLU) the parameter
alpha is learned along with
the other network
parameters

https://isaacchanghau.github.io/post/activation_functions/

Leaky RelLU, Parametric ReLU, Randomized Leaky RelLU

|
o

Yi

R — [——

ReLU

https://isaacchanghau.github.io/post/activation_functions/

——————p

Yi = a;T;

Leaky ReﬂU/PReLU
g(z) =0.01z,(z < 0)
9(z) = z,(2 2 0)

9(z) = az,(z < 0)
g(z) = %, (Z > O)

Yji = @jiTyi

[
|
[
|
[
[
Randomized Leaky ReLU

Alphais chosen at random
In a given ran?.e In training
|

and it is then fixed in test

https://isaacchanghau.github.io/post/activation_functions/

TLDR: Activations

Main issues with activation functions:

« Vanishing gradients
* Non-centered on zero outputs
« Costly computations

Yi = T4

yi =0

Yi = a:%;

Yii = @5iTji

S — -—— -

|
ReLU Leaky ReLU/PReLU Randomized Leaky ReLU

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/

Nune Mot e Equatice. Lecrvative (wen reupect 10 3) o wwege o Order . . | Approarates iderety newr the ongn ¢
oty S | #er=e fisr-1 o) |
ey s | ma={8 &2t rin={¢ Wa2t o1 -
gt (. Sren ce Sl o) e | S = ety = £le) = fladl1 ~ fia) w.1) c
- HEe i “')"‘""7'_::::-:; Sz =1-fz) {-1,1) c~
= [o NG
o fiz) = simh (2} = nf + T fiay= ﬁ'lﬁ PR P
sy P gy 11112 g ﬂfl-ﬁ f&)-m {-1,1) o
e x ? 1 1
e == |- re-(7s) (=) |-
. 5 3
Irnrsos segisee rct e ceat (Speu) _-+/ ﬂt):{;’m :::: f(rl-{{‘a‘w) amsd) (-é.w) o
E<4 1 far==0
1 " 2220
- | s Je-% c0cac20 P - -
Ty —— _,-/ Nz) .+é —i8sa <t x) ¥3 {-1,1)
-1 iz < -20
s S AR ro={8 EI50 G
[T —— L —L ﬂ&)={m)_’d ::::;: f(&l={'_u”mlvl’(‘i,‘) g;:::;: =00, 00} (o]
Liusdy recifnnt lmenr sl (Lusky ook 7)1 /l ﬂll={2m' z:;g f(c)={?m ::;g {=0%,) Lo
Prrarmadens: ractfied wese unt 0 Netu)1 /' ![o.l)={:' ::;3 f(a,s):{? :";;: {=n0, 00p o vexfia>0 Yea e -1
Farakammirsat ooy recifbed iese unt (H1od L) 1 /l ![u.x):{:' ::;3“ f(a;s)={7 :;;g {=0e, 00} c
Exgrormnind brsser ure (ELUf 9 _,/ !(au)={:('.'" ::E: fLloz) = {"““" ::E: {—a,00} {2 'Ihl °|=' vaflo>0| wanl<azl Yu War =1
_yJole 1) frz<0
=X
Scabend sopormniad s urel (SELU RS fas {' forz 20 f(n.a):l{‘]'"') ::;: {=Aa,) c*
wih A = L0507 wc cx = 167326
htwlr-4) Brrse
w forr=t
EITpR T ————— "“‘“"""{:,“,_” ::;;“' !;.,,,,.(c)-{x furty <z <t {0500} o
Ly m, b, 0, e e Co LU
FRIr———— Je) = max{0, x) + tq max(0, - + &) Sla) = Hizg) - iqa(--rm“' {=nc, 0} o
-l ~
sl e fio= 17— 0,0} e~
o eriy 4 ﬂa}:—”;;"n He -t) €™
Sagmment Lumse Lrel (S U2 (axa U5 s Swntr R Hr) =z-alz)" £(x) = fiz) +afe)(n = fe)) = = -028,00) |C™ Appruseraien KerityZ
2 Sl Geaco — sxa<0
Saltspenaetant 1 foz)={a fora ~0 no.a)={ Rl e -m) [~ Yaaifa =0
= ia frax0 a2
s o
2t g™ | e = s £,y = § s (et (5)t (501 - 1) [t0.1) c
Sncacsd /’\\/‘V fiz) = sinfz) 1(x) = conix) 1,1 c
for = 0 forz =0
Snc _\/\/. ﬂl):{l_.:_.! h:f: ’(r]:{g_%'_) h:#o f= =20704,0) | ™
. SN | A= Iie) = -2ee” 0,11 c

https://en.wikipedia.org/wiki/Activation function

https://en.wikipedia.org/wiki/Activation_function

Which activation?

In practice:
- prefer ReLU. Use slightly positive initial bias to avoid

dead Relu issue.
- Try out Leaky ReLU/PRelu
- No sigmoid!

ppclI STUD Machine Learning n m C O
DEGLI STUDI

DI PADOVA 2024/2025 e LN e

= . ik T

o ke
ok o0 A 4 mu.n,jmmnfh

oo e m:

o anrrt s

Thank you!

Gian Antonio Susto

