
Lecture #24
Neural Networks
Training
Gian Antonio Susto

Machine Learning
2024/2025

In many approaches (logistic
regression, SVM, …) we can derive a
distance from the decision
boundary, a probability of being
classified to one class or another…

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate

- False Positive Rate

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate

- False Positive Rate

In this case:

- TPR = 1 (0 false negatives, ie all
TP or TN)!

- FPR = 0 (0 false positives)

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate

- False Positive Rate

If a classifier always classifies data as
negatives:

- TPR = 0 (as TP = 0)

- FPR = 0 (as FP = 0)

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate

- False Positive Rate

If a classifier always classifies data as
positives:

- TPR = 1 (as FN = 0)

- FPR = 1 (as TN = 0)

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate

- False Positive Rate

A random classifier will have TPR =
FPR since positives and negatives
are assigned randomly

Before Starting 1/2: clarifications on ROC curve

- True Positive Rate

- False Positive Rate

A random classifier will have TPR =
FPR since positives and negatives
are assigned randomly

Scenario: A dataset with 100 people (50 positives, 50
negatives)

- CASE #01 (Threshold = 0.8, ie 20% are predicted as
P, TP = 10, FP = 10, TN = 40, FN = 40)

TPR = 10/(10+40) = 0,2 & FPR = 10/(10+40) = 0,2

- CASE #02 (Threshold = 0.5, ie 50% are predicted as
P, TP = 25, FP = 25, TN = 25, FN = 25)

TPR = 25/(25+25) = 0,5 & FPR = 25/(25+25) = 0,5

Before Starting 1/2: clarifications on ROC curve

Before Starting 1/2: clarifications on ROC curve

Before Starting 2/2: on the role of C in SVM

SVM solves a convex optimization problem (linearly separable case):

Subject to

If it is not separable, we allow some "slack”

(errors) by introducing variables ξ:

Subject to

Before Starting 2/2: on the role of C in SVM

Here we allow the classifier to
have some misclassification

Here we try to have all historical
data point correctly classified

Before Starting 2/2: on the role of C in SVM

Here we allow the classifier to
have some misclassification

Here we try to have all historical
data point correctly classified

Before Starting 2/2: on the role of C in SVM

C high

- Low regularization

- The model penalizes misclassifications
heavily

- Tries to classify every point correctly
(even noisy points)

- Margin becomes narrower to avoid
errors

- Risk of overfitting

Here we allow the classifier to
have some misclassification

Here we try to have all historical
data point correctly classified

Before Starting 2/2: on the role of C in SVM

C low

- High regularization

- Allows some classification errors to
achieve a wider margin

- Focuses more on simplicity and
generalization

- Risk of underfitting, but better
performance on noisy data

Basics of Deep Learning (with some recap)

MIT Introduction to Deep Learning http://introtodeeplearning.com

Activation function

The building block of Neural Networks (NN): the neuron

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

Activation functions

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

Feedforward (Single Layer) Neural Network

So-called Vanilla Neural
Network
T. Hastie, R. Tibshirani, J. Friedman The Elements of Statistical Learning

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

From Neural Network to Deep Learning architecture

From 1 Layer to ‘many’ layers

http://introtodeeplearning.com/

From Neural Network to Deep Learning architecture

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

21

One of the advantages of DL is to do
‘embedded’ both the feature extraction
and the modeling part

I. Goodfellow, Y. Bengio, A. Courville. Deep learning. MIT press, 2016.

L. Fridman MIT Deep Learning https://deeplearning.mit.edu/

https://deeplearning.mit.edu/

One of the advantages of DL is to do ‘embedded’ both
the feature extraction and the modeling part

One of the advantages of DL is to do ‘embedded’ both
the feature extraction and the modeling part

We are calling these, ‘learned features’

Handcrafted Features vs Learned Features

Handcrafted features are manually designed by
humans based on domain knowledge and
intuition.

Pros:

- Simple, interpretable

- Work well when you have strong domain
expertise

Cons:

- Limited expressiveness — can’t capture
complex patterns

- Often task-specific — poor generalization

- Require manual effort, which doesn't scale

Learned features are automatically extracted by a neural
network during training — the network learns how to
represent the data in a way that is useful for the task.

Pros:

- Can learn very complex patterns

- Adapt to the specific data and task

- Scale well to large datasets and varied problems

Cons:

- Less interpretable (but explainability tools help)

- Require more data and compute

- Can overfit if not properly regularized

Multi-output DL are particularly relevant in some cases

The learned features may be
relevant for multiple objectives!

Some benefits:

- Efficiency (one model, one
training process)

- Shared knowledge (task can
benefit from each other’s
learned representations)

- Regularization (learning multiple
tasks may prevent overfitting)

Multi-output DL are particularly relevant in some cases

The learned features may be
relevant for multiple objectives!

Some benefits:

- Efficiency (one model, one
training process)

- Shared knowledge (task can
benefit from each other’s
learned representations)

- Regularization (learning multiple
tasks may prevent overfitting)

For example, with O outputs, a
regression loss could simply be

Deep Learning Training

MIT Introduction to Deep Learning http://introtodeeplearning.com

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:

http://introtodeeplearning.com/

H. Li et al. Visualizing the Loss Landscape of Neural Nets NIPS 2018

Loss functions may be quite complex…

MIT Introduction to Deep Learning http://introtodeeplearning.com

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:

(Gradient Descent)

Learning Rate

http://introtodeeplearning.com/

(Gradient Descent)

Learning Rate

To cope with complex loss functions and to optimize
training the following algorithm is generally sophisticated

Stochastic Gradient Descent

MIT Introduction to Deep Learning http://introtodeeplearning.com

Can be very burdensome
to compute…

Average over all samples
in the dataset!

http://introtodeeplearning.com/

Stochastic Gradient Descent

MIT Introduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Stochastic Gradient Descent

MIT Introduction to Deep Learning http://introtodeeplearning.com

http://introtodeeplearning.com/

Stochastic Gradient Descent: Mini-batches

The set of B data points is called mini-batch

Mini-batches allow to accurated estimation of
gradient, smoother convergence, larger learning
rates

Mini-batches lead to fast training: computation
can be parallelized and significant speed
increases can be obtained on GPUs

In large architectures, smart choices related to ‘simple’
things can have a huge impact

H. Li et al. Visualizing the Loss Landscape of Neural Nets NIPS 2018

Loss functions may be quite complex…

MIT Introduction to Deep Learning http://introtodeeplearning.com

Training a Neural Network = Minimizing a Loss

We seek for a set of weights that achieve minimal loss:

http://introtodeeplearning.com/

Backpropagation is about understanding how changing the
weights and biases in a network changes the cost function.

MIT Introduction to Deep Learning http://introtodeeplearning.com

Let’s consider a simple NN with one node: how the final loss is
affected by changes in ?

How to compute the gradient: backpropagation

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

Let’s consider a simple NN with one node: how the final loss is
affected by changes in

?

How to compute the gradient: backpropagation

http://introtodeeplearning.com/

Let’s consider a simple NN with one node: how the final loss is
affected by changes in

We can apply the chain rule:
?

How to compute the gradient: backpropagation

Let’s consider a simple NN with one node: how the final loss is
affected by changes in

We can apply the chain rule:

How to compute the gradient: backpropagation

MIT Introduction to Deep Learning http://introtodeeplearning.com

This simple network is characterized also by the weigth

How to compute the gradient: backpropagation

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

This simple network is characterized also by the weigth

How to compute the gradient: backpropagation

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

This simple network is characterized also by the weigth

How to compute the gradient: backpropagation

We also have to keep
into account the non-
linear transformations
(activations)! In that
case, we need to apply
again the chain rule!

http://introtodeeplearning.com/

Let’s consider an example with sigmoid activation

How to compute the gradient: backpropagation

Let’s consider an example with sigmoid activation

How to compute the gradient: backpropagation

With x=1, w1 = 0.5, w2=-1, y=1:

How to compute the gradient: backpropagation

How to compute the gradient: backpropagation

MIT Introduction to Deep Learning http://introtodeeplearning.com

This simple network is characterized also by the weigth

How to compute the gradient: backpropagation

You can have
a look here for
the math:
http://neuraln
etworksandde
eplearning.co
m/chap2.html

http://introtodeeplearning.com/
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html

When dealing with NN training, we are
dealing with a ‘beast’

Stochastic Gradient Descent and Back-
propagation have been there for decades,
but we weren’t able to properly train such
architectures!

In past recent years we have developed
many tricks to ‘tame the beast’

When dealing with NN training, we are
dealing with a ‘beast’

Stochastic Gradient Descent and Back-
propagation have been there for decades,
but we weren’t able to properly train such
architectures!

In past recent years we have developed
many tricks to ‘tame the beast’

1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization

1. Activation functions

2. Weight Initialization

3. Batch Normalization

4. Optimization

5. Learning Rate

6. Regularization

Chapter 6.3 Hidden Units

Activation functions

Beside introducing non-
linearities, it is important for
Activation functions to have
an easy way to compute the
gradients (we need this in
backpropagation)

Sigmoid Simple interpretation (probability)

Issues:

- Vanishing gradient problem: gradient becomes
increasily small as the absolute value of the
input increases (it is a problem in
backpropagation)

- No zero-centered output (zig-zagging
dynamics in the gradient updates)

- Exp function can be expensive to compute
G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in
Pattern Recognition Applications

Tanh

Zero-centered

Issues:

- Vanishing gradient problem

- Exp function can be expensive to
computeG. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in

Pattern Recognition Applications

ReLU

Simple implementation

Does not saturate (in + region we have no
vanishing gradient)

Faster convergence of SGD than sigmoid/tanh

Issues:

- Not zero-centered

- Gradient is zero for negative values: dead
ReLU (as much as 40% of the network never
activate if the learning rate is too high)

G. Roffo Ranking to Learn and Learning to Rank: On the Role of Ranking in
Pattern Recognition Applications

ReLU: Intuition

ReLU gives neural networks the power to ‘fold’ the input space.

This lets them transform complex, tangled data into something
that even a straight line can separate.

1 hidden layer

2 hidden layers

Leaky ReLU, Parametric ReLU, Randomized Leaky ReLU

Very easy to compute

Does not saturate (in +
region)

Faster convergence than
sigmoid/tanh

Does not die!

In the Parametric ReLU
(PReLU) the parameter
alpha is learned along with
the other network
parameters

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/

Leaky ReLU, Parametric ReLU, Randomized Leaky ReLU

Alpha is chosen at random
in a given range in training
and it is then fixed in test

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/

TLDR: Activations

Main issues with activation functions:
• Vanishing gradients
• Non-centered on zero outputs
• Costly computations

https://isaacchanghau.github.io/post/activation_functions/

https://isaacchanghau.github.io/post/activation_functions/

https://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function

In practice:
- prefer ReLU. Use slightly positive initial bias to avoid

dead Relu issue.
- Try out Leaky ReLU/PRelu
- No sigmoid!

Which activation?

Thank you!

Gian Antonio Susto

Machine Learning
2024/2025

