
Lecture #22
Support Vector 
Machines (SVM)
Gian Antonio Susto 

Machine Learning
2024/2025



Disclaimer: SVM and exam 

Support Vector Machines will 
only be evaluated on the 
theoretic part of the exam!



We are considering a binary classification problem 
(red vs green class)

Our classifier has defined a decision boundary which 
determines the decision between the two classes.

Let’s go back to supervised classification!



We are considering a binary classification problem 
(red vs green class)

Our classifier has defined a decision boundary which 
determines the decision between the two classes.

A new data point arrives: does the current boundary 
seems like a good idea? 

Let’s go back to supervised classification!

Kudos to Joshua Starmer!



We may aim at a decision boundary 
that is at middle of the two data 
points we see at middle of the two 
classes! 

Let’s go back to supervised classification!

Kudos to Joshua Starmer!



The distance between the 
boundary observations 
and the threshold is called 
the margin (in this 
example, the margin on 
the left and on the right 
are the same)

The Maximal Margin Classifier

Kudos to Joshua Starmer!

A maximal margin classifier is a 
type of linear classifier that aims to 
find the decision boundary (or 
hyperplane) that maximizes the 
margin between two classes

Margin Margin



The Maximal Margin Classifier

Kudos to Joshua Starmer!

Unfortunately, maximal margin 
classifier are really sensitive
about outliers: what if we get 
the blue data point to be 
classified?



The Maximal Margin Classifier

Kudos to Joshua Starmer!

Unfortunately, maximal margin 
classifier are really sensitive
about outliers: what if we get 
the blue data point to be 
classified? This first threshold is really 

sensitive to historical data 
(overfitting, high variance!)

How to cope with this? Ideas?



The Maximal Margin Classifier

Kudos to Joshua Starmer!

Unfortunately, maximal margin 
classifier are really sensitive
about outliers: what if we get 
the blue data point to be 
classified? This first threshold is really 

sensitive to historical data 
(overfitting, high variance!)

How to cope with this? Ideas?



Moving beyond the Maximal Margin Classifier

Kudos to Joshua Starmer!

We can choose a threshold 
that allow misclassification in 
training!

This will allow us to properly 
classify the blue data point, 
more in general to tune the 
bias/variance tradeoff! 



Kudos to Joshua Starmer!

We can choose a threshold 
that allow misclassification in 
training!

This will allow us to properly 
classify the blue data point, 
more in general to tune the 
bias/variance tradeoff! 

This second threshold may 
reduce variance at the 
expenses of some bias!

Moving beyond the Maximal Margin Classifier



Kudos to Joshua Starmer!

Soft Margin & Support Vector Classifier

The ‘boundary’ data points (the ones that defines the solutions) are 
called support vectors -> with Soft Margins, we are calling this solution
Support Vector Classifier! 

If we allow misclassification 
in training, the distance 
between the correctly 
classified observations ‘at 
the boundaries’ is the soft 
margin



Kudos to Joshua Starmer!

If we allow misclassification 
in training, the distance 
between the correctly 
classified observations ‘at 
the boundaries’ is the soft 
margin

How do we choose the ‘best’ 
soft margin?

Soft Margin & Support Vector Classifier

The ‘boundary’ data points (the ones that defines the solutions) are 
called support vectors -> with Soft Margins, we are calling this solution
Support Vector Classifier! 



Kudos to Joshua Starmer!

If we allow misclassification 
in training, the distance 
between the correctly 
classified observations ‘at 
the boundaries’ is the soft 
margin

How do we choose the ‘best’ 
soft margin?

Cross-validation!

Soft Margin & Support Vector Classifier

The ‘boundary’ data points (the ones that defines the solutions) are 
called support vectors -> with Soft Margins, we are calling this solution
Support Vector Classifier (SVC)



In 2-dimensional data
Data are linearly separable: I can find a 
plane that separates the two classes

Data are not linearly separable: I cannot 
find a plane to separate the two classes



In 2-dimensional data



In 2-dimensional data

MarginMargin MarginMargin



The margin is the distance between 
the decision boundary (the hyperplane 
w⋅x+b=0) and the closest support 
vectors.

💡 Key idea: The SVC creates two 
parallel hyperplanes:

- w⋅x+b=+1

- w⋅x+b=−1

These lie on either side of the decision 
boundary and touch the support 
vectors. The total margin is the 
distance between these two 
hyperplanes.

Notation

The distance from the center
hyperplane to one of the margin lines:

Total margin width: 



SVM solves a convex optimization problem (linearly separable case):

Subject to

How to find the best hyperplane?



SVM solves a convex optimization problem (linearly separable case):

Subject to

If it is not separable, we allow some "slack”

(errors) by introducing variables ξ:

Subject to

How to find the best hyperplane?



SVM solves a convex optimization problem (linearly separable case):

Subject to

If it is not separable, we allow some "slack”

(errors) by introducing variables ξ:

Subject to

è ξ allows some points to be inside or on the wrong side of the margin

è C is the regularization parameter controlling how much you care about errors

How to find the best hyperplane?



On the Iris Dataset

Iris dataset: only virginica and versicolour, only petal length and width!

Here we allow the classifier to 
have some misclassification 

Here we try to have all historical 
data point correctly classified



Yes! We can rewrite the SVC problem using a loss function, like the hinge loss:

Can we solve it with Gradient Descent?

This is called the primal form of SVM with hinge loss, and we can apply gradient 
descent to minimize it.

However, Gradient Descent is not the best choice for solving SVC:

- There are more efficient algorithms for SVCs like SMO (Sequential Minimal 
Optimization)

- SVC is convex, so specialized solvers (e.g., quadratic programming) can find the 
solution faster and exactly

- Gradient descent may be slow, especially for large or high-dimensional datasets



What to do if data look like this?

Or like this?

Moving beyond linear decision boundaries



What to do if data look like this?

Or like this?

Moving beyond linear decision boundaries

A hyperplane cannot be fit in
this case, unless we are 
‘transforming’ the data 
somehow… what if we add 
another dimension?



Let’s consider for example the 
square of the original data: we 
make a basis extension.

In this new two-dimensional 
space, the data are linearly 
separable!

In higher 
dimensions



Let’s consider for example the 
square of the original data: we 
make a basis extension.

In this new two-dimensional 
space, the data are linearly 
separable!

We can then derive a new 
classifier that properly divides 
data

In higher 
dimensions



We can do the same thing for a p = 2, 3, … dimensional problem!

In higher dimensions



Compute the basis expansion can be quite complex. Let’s imagine you have p = 2

Now you want to transform it with a quadratic (degree-2) polynomial mapping. 
The explicit transformation might look like: 

So, we are now dealing with a 6-dimensional problem!

Easy with 2 features... but imagine you have 1,000 features and want a degree-3 
polynomial. You’d end up with millions of dimensions! 😱

Computing basis expansion 



Compute the basis expansion can be quite complex. Let’s imagine you have p = 2

Now you want to transform it with a quadratic (degree-2) polynomial mapping. 
The explicit transformation might look like: 

So, we are now dealing with a 6-dimensional problem!

‘Easy’ with 2 features... but imagine you have 1,000 features and want a degree-3 
polynomial. You’d end up with millions of dimensions! 😱

Computing basis expansion 



If instead of computing the whole function, we exploit the so-called kernel trick, by 
just computing – through a kernel function K – the dot product between 2 data 
points. Some examples:

- Linear kernel 

- Polynomial kernel 

- Radial Basis Function (RBF) / Gaussian Kernel

- Hyperbolic Tangent Kerneld

When using the Kernel Trick, we are talking about Support Vector Machines (SVM)ns 
of

Support Vector Machines: the Kernel 
Trick



If instead of computing the whole function, we exploit the so-called kernel trick, by 
just computing – through a kernel function K – the dot product between 2 data 
points. Some examples:

- Linear kernel 

- Polynomial kernel 

- Radial Basis Function (RBF) / Gaussian Kernel

- Hyperbolic Tangent Kerneld

When using the Kernel Trick, we are talking about Support Vector Machines (SVM)ns 
of

Support Vector Machines: the Kernel 
Trick

For all these functions:

- If x and x' are very similar, K(x, 
x') is large

- If they're very different, K(x,x′) 
is small or zero



If instead of computing the whole function, we exploit the so-called kernel trick, by 
just computing – through a kernel function K – the dot product between 2 data 
points. Some examples:

- Linear kernel 

- Polynomial kernel 

- Radial Basis Function (RBF) / Gaussian Kernel

- Hyperbolic Tangent Kerneld

When using the Kernel Trick, we are talking about Support Vector Machines (SVM)ns 
of

Support Vector Machines: the Kernel 
Trick

For all these functions:

- If x and x' are very similar, K(x, 
x') is large

- If they're very different, K(x,x′) 
is small or zero

Every kernel function behaves as if it were 
computing a dot product between vectors 
ϕ(x) and ϕ(x′) in some (possibly infinite) 
transformed space:

But you never need to compute ϕ(x) explicitly 
— the kernel function handles it for you!



Kernels comparisons:



Kernels comparisons – Moons Dataset



Kernels comparisons – Moons Dataset
RBF features (in general, 
non-linear ones) can also be 
used in logistic regression!



Kernels comparisons – Circle Dataset



Kernels comparisons – Iris Dataset (binary)



Kernels comparisons – Iris Dataset



SVR tries to find a function (like a 
line or curve) that:

- Stays as close as possible to 
the data points

- Ignores small errors within a 
certain margin (called 
epsilon)

- Keeps the model as flat 
(simple) as possible, like in 
SVM classification.

So instead of separating classes 
with a wide margin, SVR fits a line 
(or surface) with a tube of 
tolerance around it.

Support Vector Regression (SVR)

SVR tries to fit a line (or curve) through the data 
with a "margin of tolerance" (epsilon), and only 
penalizes the points that fall outside that margin. 

Think of it as: a "soft-fit" regression line that 
balances accuracy with simplicity.



Support Vector Regression (SVR)



In many approaches (logistic 
regression, SVM, …) we can derive a 
distance from the decision 
boundary, a probability of being 
classified to one class or another…

Back on binary classification…



In many approaches (logistic 
regression, SVM, …) we can derive a 
distance from the decision 
boundary, a probability of being 
classified to one class or another…

But errors are not the same! We may 
prefer being wrong on one class 
instead of another one (false 
positive may be more acceptable 
than false negatives and vice versa)! 

Back on binary classification…



In many approaches (logistic 
regression, SVM, …) we can derive a 
distance from the decision 
boundary, a probability of being 
classified to one class or another…

But errors are not the same! We may 
prefer being wrong on one class 
instead of another one (false 
positive may be more acceptable 
than false negatives and vice versa)! 

Back on binary classification…

How can we cope with this?



By tuning the decision making on 
the probability/distance/etc… we 
can obtain different 
performances! 

Let’s consider this plot with:

- True Positive Rate

- False Positive Rate

These two metrics are in contrast: 
when a classifier improves in one, 
it lowers its performances in the 
other one!

Back on binary classification…



By tuning the decision making on 
the probability/distance/etc… we 
can obtain different 
performances! 

Let’s consider this plot with:

- True Positive Rate

- False Positive Rate

These two metrics are in contrast: 
when a classifier improves in one, 
it lowers its performances in the 
other one!

Back on binary classification…

Classifiers that only predict one class



By tuning the decision making on 
the probability/distance/etc… we 
can obtain different 
performances! 

Let’s consider this plot with:

- True Positive Rate

- False Positive Rate

These two metrics are in contrast: 
when a classifier improves in one, 
it lowers its performances in the 
other one!

The Receiver Operating Characteristic (ROC) 
Curve

Classifiers that only predict one class

Between the two
‘extremes’, we have 

trade-offs!



A related quantity is the Area 
Under the Curve (AUC): the 
integral of the area under the ROC

Classifiers that only predict one class

Between the two
‘extremes’, we have 

trade-offs!

The Receiver Operating Characteristic (ROC) 
Curve



On the Moons Dataset



On the Moons Dataset



Thank you!

Gian Antonio Susto 

Machine Learning
2024/2025


