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Lecture #22

Support Vector
Machines (SVM)

Gian Antonio Susto




Disclaimer: SVM and exam

Support Vector Machines will
only be evaluated on the
theoretic part of the exam!




Let’s go back to supervised classification!

We are considering a binary classification problem
(red vs class)

Our classifier has defined a which
determines the decision between the two classes.



Let’s go back to supervised classification!

We are considering a binary etassification problem

(red vs class)

Our classifier has Ined a which
determinest ecision between the two classes.

A new data point arrives: does the current boundary
seems like a good idea?

Kudos to Joshua Starmer!



Let’s go back to supervised classification!

O~ O-@———@ O DO—

We may aim at a decision boundary
that is at middle of the two data
points we see at middle of the two
classes!

Kudos to Joshua Starmer!



The Maximal Margin Classifier

—O- - —

“Margin | Margin
The distance between the A maximal margin classifier is a
boundary observations type of linear classifier that aims to
and the threshold is called find the decision boundary (or
the margin (in this hyperplane) that maximizes the
example, the margin on margin between two classes

the left and on the right
are the same)

Kudos to Joshua Starmer!



The Maximal Margin Classifier

&P ed-@® o0 CCOCDO—

Unfortunately, maximal margin
classifier are really sensitive
about outliers: what if we get
the blue data point to be

classified? @

Kudos to Joshua Starmer!
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' sensitive to historical data
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Moving beyond the Maximal Margin Classifier

DDA CDO—

We can choose a threshold
that allow misclassification in
training!

This will allow us to properly
classify the blue data point,

more in general to tune the

bias/variance tradeoff!

Kudos to Joshua Starmer!



Moving beyond the Maximal Margin Classifier

O CDO—

We can choose a threshold
that allow misclassification in

training!

This will allow us to properly This second threshold may
classify the blue data point, reduce variance at the
more in general to tune the expenses of some bias!

bias/variance tradeoff!

Kudos to Joshua Starmer!



Soft Margin & Support Vector Classifier

If we allow misclassification
S000) Q< X )— Iintraining, the distance
between the correctly
classified observations ‘at
the boundaries’ is the soft
margin

The ‘boundary’ data points (the ones that defines the solutions) are
called support vectors -> with Soft Margins, we are calling this solution

Support Vector Classifier!

Kudos to Joshua Starmer!



Soft Margin & Support Vector Classifier

If we allow misclassification
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margin
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The ‘boundary’ data points (the ones that defines the solutions) are
called support vectors -> with Soft Margins, we are calling this solution
Support Vector Classifier!

Kudos to Joshua Starmer!



Soft Margin & Support Vector Classifier

If we allow misclassification
S000) Q< X )— Iintraining, the distance
between the correctly
prosennnnnes i classified observations ‘at
I ! the boundaries’ is the soft
margin

= 00,000 | {111 0O—1 Howdowe choose the ‘best’
soft margin?

Ry i Cross-validation!

The ‘boundary’ data points (the ones that defines the solutions) are
called support vectors -> with Soft Margins, we are calling this solution
Support Vector Classifier (SVC)

Kudos to Joshua Starmer!



In 2-dimensional data

Data are linearly separable: | can find a
plane that separates the two classes
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In 2-dimensional data

Hard Margin Soft Margin

+ Class1 (® @ SupportVectors

® C(Class2 0 <= Pointsviolating constraint




In 2-dimensional data

Hard Margin Soft Margin

+ Class1 (® @ SupportVectors

® C(Class2 0 <= Pointsviolating constraint




Notation

The margin is the distance between
the decision boundary (the hyperplane
w-x+b=0) and the closest support
vectors.

. Keyidea: The SVC creates two
parallel hyperplanes:

- W-X+b=+1
- W-X+b=-1

These lie on either side of the decision
boundary and touch the support
vectors. The total marginis the
distance between these two
hyperplanes.

N r—s
N w.x+hb=1

\\
w.x+h=-1 N
N WX+ h=0

The distance from the center
hyperplane to one of the margin lines:



How to find the best hyperplane?
SVM solves a convex optimization problem (
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How to find the best hyperplane?

SVM solves a convex optimization problem ( ):
.1 5 ,
I?vllfl 9 |w| Subject to yi(w-z; +b) >1 Vi

A
X,

If , we allow some "slack”

(errors) by introducing variables &:

min —||W||2 +C ) ¢

wbé 2

Subjectto y;(w-x; +b) >1—-&, & >0




How to find the best hyperplane?

SVM solves a convex optimization problem ( ):
1 2 .
mLi §||W|| Subjectto  Yi(w-z; +b) >1 Vi
X2A
If , we allow some "slack” o _
=1 o
(errors) by introducing variables &: : )
® ]
®
min - ||wl||* + C ; y=-1
min || | ) & N D
Subjectto yi(w-z; +b)>1-&, & >0 wil

(linearly inseparable case) X1

=>» ¢ allows some points to be inside or on the wrong side of the margin

= Cisthe regularization parameter controlling how much you care about errors
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On the Iris Dataset

Iris dataset: only virginica and versicolour, only petal length and width!

Cc=0.01 C=0.1 cC=1 C=10 C =100
CV Accuracy = 0.95 CV Accuracy = 0.94 CV Accuracy = 0.94 CV Accuracy = 0.93 CV Accuracy = 0.94

x  virginica \
Support Vectors ) r
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2 3 4 5 6 7 2 3 4 5 6
Petal length (cm) Petal length (cm) Petal length (cm) Petal length (cm) Petal length (cm)

Here we allow the classifier to Here we try to have all historical
have some misclassification data point correctly classified



Can we solve it with Gradient Descent?

Yes! We can rewrite the SVC problem using a loss function, like the hinge loss:
1
Loss = _|w|®+ C ) max(0,1 — y;(w - z; + b))
2
This is called the primal form of SVM with hinge loss, and we can apply gradient
descent to minimize it.

However, Gradient Descent is not the best choice for solving SVC:

- There are more efficient algorithms for SVCs like SMO (Sequential Minimal
Optimization)

- SVC is convex, so specialized solvers (e.g., quadratic programming) can find the
solution faster and exactly

- Gradient descent may be slow, especially for large or high-dimensional datasets



Moving beyond linear decision boundaries

What to do if data look like this?

Or like this?




Moving beyond linear decision boundaries

What to do if data look like this?
-0 0—@—Coed)—9-01-0—

Or like this?

A hyperplane cannot be fit in
this case, unless we are
‘transforming’ the data
somehow... what if we add
another dimension?




In higher _
dimensions

Let’s consider for example the
square of the original data: we
make a basis extension.

In this new two-dimensional
space, the data are linearly
separablel




In higher _
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square of the original data: we o
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In higher dimensions

We can do the same thing fora p = 2, 3, ... dimensional problem!

separating
hyperplane



Computing basis expansion

Compute the basis expansion can be quite complex. Let’s imagine you have p =2
T = |T1, To]

Now you want to transform it with a quadratic (degree-2) polynomial mapping.
The explicit transformation might look like:

P(x) = [5131@27[581%2,[%1,\/_332, 1]

So, we are now dealing with a 6-dimensional problem!



Computing basis expansion

Compute the basis expansion can be quite complex. Let’s imagine you have p =2
T = |T1, To]

Now you want to transform it with a quadratic (degree-2) polynomial mapping.
The explicit transformation might look like:

P(x) = [mlamzvfw1327fwla\/_m2a 1]

So, we are now dealing with a 6-dimensional problem!

‘Easy’ with 2 features... but imagine you have 1,000 feaéures and want a degree-3
polynomial. You’d end up with millions of dimensions! &



Support Vector Machines: the Kernel

Trick

If instead of computing the whole function, we exploit the so-called kernel trick, by
just computing — through a kernel function K — the dot product between 2 data

points. Some examples:

- Linear kernel K(w w)

- Polynomial kernel

K(z,

L

z') =

(v-z'2’

r)?

- Radial Basis Function (RBF) / Gaussian Kernel K(z,z') = exp (—'y||a: — a:'||2)

- Hyperbolic TangentKernel K(z,z') =tanh(y-z'z' +7)

When using the Kernel Trick, we are talking about Support Vector Machines (SVM)



Support Vector Machines: the Kernel
Trick

If instead of computing the whole function, we exploit the so-called kernel trick, by
just computing — through a kernel function K —the dot product between 2 data
points. Some examples:

- Linear kernel K(a'; T ) aj—l_w

- Polynomialkernel K (z,z") = (v - ! 2+ r)?

- Radial Basis Function (RBF) / Gaussian Kernel K (z,z') = exp (—||z — 2'||°)
- Hyperbolic Tangent Kernel K(z,z') = tanh(y-z 'z +7)
For all these functions:

- If x and x' are very similar, K(x, . :
X'} is large ~ve are talking about Support Vector Machines (SVM)

- If they're very different, K(x,x’)
Is small or zero



Support Vector Machines: the Kernel

T Y | C k Every kernel function behaves as if it were
computing a dot product between vectors

If instead of computing the whole fur ®(X) and @(x’) in some (possibly infinite)

just computing —through a kernel furtransformed space: g, /) — (4(z), (')

points. Some examples: .
But you never need to compute ¢(x) explicitly

- Linearkernel K (z,z') = z'a' — the kernel function handles it for you!

- Polynomial kernel K (z,z') = (v - z' 2 4+ r)?

- Radial Basis Function (RBF) / Gaussian Kernel K (z,z') = exp (—7|/z — g;’”2)
- Hyperbolic Tangent Kernel K(z,z') = tanh(y-z'z' +7)

For all these functions:

- If x and x' are very similar, K(x, . .
x') is large ~ve are talking about Support Vector Machines (SVM)

- If they're very different, K(x,x')
is small or zero



Kernels comparisons:

Moons / linear kernel Moons / poly kernel Moons / rbf kernel Moons / sigmoid kernel
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Kernels comparisons

Logistic Regression
CV Accuracy: 0.86

LogReg + RBF features
CV Accuracy: 0.93

— Moons Dataset

KNN (k=5)
CV Accuracy: 0.95

KNN (k=15)
CV Accuracy: 0.97
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Kernels comparisons

Logistic Regression

CV Accuracy: 0.86

LogReg + RBF features
CV Accuracy: 0.93

- Moon

RBF features (in general,

KNN (k=5)
CV Accuracy: 0.95

‘non-linear ones) can also be
‘used in logistic regression!

KNN (k=15)
CV Accuracy: 0.97
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Kernels comparisons — Circle Dataset

Logistic Regression
CV Accuracy: 0.47

LogReg + RBF features
CV Accuracy: 0.99

KNN (k=5)
CV Accuracy: 0.99

KNN (k=15)
CV Accuracy: 1.00
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CV Accuracy: 0.96 CV Accuracy: 0.98 CV Accuracy: 0.97 CV Accuracy: 0.99
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Kernels comparisons - Iris Dataset (binary)

Logistic Regression
CV Accuracy: 0.74

LogReg + RBF features
CV Accuracy: 0.71

KNN (k=5)
CV Accuracy: 0.69

KNN (k=15)
CV Accuracy: 0.65

x x x x
x x x x
x x X x x X x x X x x X
x x x x x x
xX x X XXX x X %X X X XX x x XX X XX x x x X XXX x
x x x x x x x x x x x x
x xXx XXX X XXX x X X X x X XXX X XXX X X x X x X XXX XXXX x X x X xx XXX X XXX X X xX X
X X XX XXX x X X XX XXX x x X X XX XXX x X X XXXXX X
XXX AXXXX x x xX XX RXAKXXX x x x X XX xXAXXXX x x X XX AXXXX x x
x x x x XX x x x x X x x X x X x x x xX X
x x X x x x X X x x x x X x x x x X x x
x x xX XX x x XXX x x XXX x x XXX x x
x x x x
x x X x x xX x X x
x x x x xX x x x
x
Decision Tree Random Forest Gradient Boosting SVM (RBF Kernel)
CV Accuracy: 0.62 CV Accuracy: 0.61 CV Accuracy: 0.60 CV Accuracy: 0.71
x x x x
x x x x
x XX xX XX X x X x X X
x x x x x x
x x X X X X x x XX X X X x x X X X XX x x X X XXX x
x x x x x x x x x x x x
x xX X XXX X XXX x X XX x X XXX X XXX x X x X x X XXX RXXX x X x X xx XXX X XXX x X x X
X X XX XXX x X X XX XXX x x X X XX XXX x xX X XX XXX x
XXX AxXXXX x x X XX XXXXX x x x xX XX XX XXX x x XXX XX XXX x x
x x x x xX X x x x X X x x x X X x x x xX X
x XX x x x XX x x x X X x x X X X x x
x XXX x x XXX x x XXX x x XXX x x
x x x x
x x x x x x x x x
x x x x x x x x




Kernels comparisons — Iris Dataset

Logistic Regression LogReg + RBF features KNN (k=5) KNN (k=15)
CV Accuracy: 0.81 CV Accuracy: 0.81 CV Accuracy: 0.78 CV Accuracy: 0.79
Decision Tree Random Forest Gradient Boosting SVM (RBF Kernel)

CV Accuracy: 0.73 CV Accuracy: 0.74 CV Accuracy: 0.71 CV Accuracy: 0.81




Support Vector Regression (SVR)

SVR tries to find a function (like a N
. f(x)=wx+b .
line or curve) that: y Objective:

Slack variables

l
. o1 2 X
- Stays as close as possible to Minimize: = |lwl|" + CZ(& +§0)

the data points

Constraints:

yi —wx;—b < e+§;
- Ignores small errors within a ML
certain margin (called

epsilon)

- Keeps the model as flat
(simple) as possible, like in —
SVM classification.

SVR tries to fit a line (or curve) through the data
So instead of separating classes with a "margin of tolerance" (epsilon), and only
with a wide margin, SVR fitsaline  penalizes the points that fall outside that margin.

(or surface) with a tube of
tolerance around it. Think of it as: a "soft-fit" regression line that

balances accuracy with simplicity.



Support Vector Regression (SVR)

SVR (Linear Kernel) SVR (Polynomial Kernel) SVR (RBF Kernel)
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Back on binary classification...

In many approaches (logistic
regression, SVM, ...) we can derive a
distance from the decision
boundary, a probability of being
classified to one class or another...
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Back on binary classification...

In many approaches (logistic
regression, SVM, ...) we can derive a
distance from the decision
boundary, a probability of being
classified to one class or another...

But errors are not the same! We may
prefer being wrong on one class
instead of another one (false
positive may be more acceptable
than false negatives and vice versa)!
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Back on binary classification...

How can we cope with this?

In many approaches (logistic
regression, SVM, ...) we can derive a
distance from the decision
boundary, a probability of being
classified to one class or another...

But errors are not the same! We may
prefer being wrong on one class
instead of another one (false
positive may be more acceptable
than false negatives and vice versa)!

1.00

075

0.50

025

0.00

1)

l\l'}



Back on binary classification...

By tuning the decision making on
the probability/distance/etc... we
can obtain different
performances!

Let’s consider this plot with:
- True Positive Rate

- False Positive Rate

These two metrics are in contrast:

when a classifier improves in one,
it lowers its performances in the
other onel
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Back on binary classification...

By tuning the decision making on
the probability/distance/etc... we
can obtain different
performances!

Let’s consider this plot with:
- True Positive Rate

- False Positive Rate

These two metrics are in contrast:

when a classifier improves in one,
it lowers its performances in the
other onel
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The Receiver Operating Characteristic (ROC)
Curve

the probability/distance/etc... we _

By tuning the decision making on
can obtain different
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performances!
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The Receiver Operating Characteristic (ROC)
Curve
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PCA Component 2

On the Moons Dataset
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PCA Component 2

On the Moons Dataset
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Thank you!

Gian Antonio Susto




