UNIVERSITA Machine Learning n m CO
DEGLI STUDI

DI PADOVA 2 O 2 4 2 0 2 5 ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

agaenhaekl
o anlarbraEseh
‘ """7’;”"’;/' Qi OV ) muw»
.33

By o

el foul

f

Lecture #20
Unsupervised
Learning &
Clustering

Gian Antonio Susto




Recap: some vunsupervised learning tasks

- .(:lusterin%: finding grOUpS Unlabeleddata‘ : Clustereddata. :
into data (today!) )y B o
. R L S
- Dimensionality reductions: 2!« L 34
reduce the number of oy
features I T S
- Density estimation: estimate o

the probability distribution
that generates the data

- Association rule learning

- Topic modelling (for text
data)

- Anomaly/Outlier detection
(monday/today!)




Recap: Anomaly/Outlier Detection

What is an anomaly/outlier?

‘An outlier is an observation that ] < f
deviates so much from other g ’
observations as to arouse ey :
suspicion that it was generated | |WHAT IS AN

by a different mechanism’[1]

«ANOMALY? ‘
-

In a dataset — by definition -
outliers should be few!

[1] D. M. Hawkins, Identification of outliers, vol. 11., Springer, 1980



Recap: Multivariate Unsupervised Anomaly Detection

Many approaches for tabular data (data
where rows are observations and
columns are variables) [2]:

- Density-based methods (e.g. LOF,
DBSCAN)

- Distance-based methods (e.g. kNN)
- Clustering-based methods (e.g. CBLOF)
- Neural Networks (e.g. Autoencoder)

- |Isolation Forest “

2 hours ago Now

Equipment view (high-level)

Violation severity

[2] PyOD (Python library for detecting
outlying objects)
https://pyod.readthedocs.io/en/latest/



https://pyod.readthedocs.io/en/latest/

. An ensemble approach:
Recap: Isolation Forest anomaly score computed as

mean of the depth over the
various isolation trees

[Forest

g
Scores () ()  sess ses [Tree
Qutlier
Normal uncommon  _|
samples 0.5
f

Normal common
samples




Recap: California housing dataset

Top 10 Anomalies in Green (MedInc vs AveRooms)

Average Rooms (AveRooms)
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Recap: California housing dataset

PCA Projection - Top 10 Anomalies in Green
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Principal Component 2
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Recap: California housing dataset

PCA Projection - Top 10 Anomalies in Green

400 A Normal
¥ Top 100 Anomalies
4= Top 10 Anomalies

X

PCA is not ideal for Anomaly Detection:
- PCA looks for directions of maximum
variance, assuming important info

lies there. =

. ) X
But anomalies are rare — they don’t
contribute much to overall variance,
so PCA tends to ignore them. 8
0
10'00 20'00 30b0 40b0 50b0 60'00

Principal Component 1



Oversampling PCA: osPCA

|dea:

- principal directions represent
normal” attributes

- outliers change directions of
principal components

To make it effective, each data
sample, when checked if it changed
the direction of the first PC, is

oversampled (replicated many times)

Lee, Yuh-Jye, Yi-Ren Yeh, and Yu-Chiang Frank
Wang. "Anomaly detection via online oversampling
principal component analysis.”, 2013.
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Univariate Control Chart vs Unsupervised AD

To enable Decision Making information should be:

Y complete of
x concise J

« interpretable x

Equipment view (high-level)
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I’'ve got the Anomaly Score: now, what?

Equipment view (high-level)

Thanks to the Anomaly
score users are alerted
of potential anomalous
situation, however it is

up to them to discover
potential troubles

It would be nice to ease
the Root Cause Analysis
to provide additional
information, like feature
rankings...

Violation severity
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Depth-based Isolation Forest n mco

ARTIFICIAL INTELLIGENCE, MACHINE

Feature Importance (DIFFI) [2]

PAST a
DIFF| is an eXplainable Artificial s el
Intelligente ()?AI) approach — -’ m—
designed for the Isolation Forest e
----- —
PIFFI provides a variable ranking & = — I
or:

- Global Explainability (ie. what
variables are important for

the whole Isolation Foreset
model) I
- Local Explainability (ie. what 2 RTINSy
variables are important fora &
particular prediction) £ I‘ ‘
o mennanalantaadlnll, I Ew
S e of Newnnln I" il 'I I'I"'

9 f10f11f12f13f14 f15f16f17
Feature ID

[2] Carletti, M., Terzi, M., & Susto, G. A. (2023). Interpretable Anomaly Detection with DIFFI: Depth-based feature importance of Isolation Forest. Engineering
Applications of Artificial Intelligence, 779,105730.



Depth-based Isolation Forest n mCO

Feature Importance (DIFFI) [2] e a5 LONTSL RESEARH S
DIFFI provides a variable ranking that:
& Iolaton Frest T~ - Does not require true labels (other
— - jﬁg cﬁl& {S :} F ’} XAl approaches do!)
g m ® - Low computational cost
$ - No tuning

Selection of best
predictions

; ' IDEA: mark a feature as "important" if
- itinduces isolation of outliers at small

o [M o Jq— e “ depths (i.e. near the root)

o - At the same time, does not contribute
to the isolation of inliers

[2] Carletti, M., Terzi, M., & Susto, G. A. (2023). Interpretable Anomaly Detection with DIFFI: Depth-

based feature importance of Isolation Forest. Engineering Applications of Artificial
Intelligence, 779,105730. : :
For technical details




Dashboards Ride Monitoring with Anomaly Detection n Boss Statwolf

Y QR E

Timeframe

£ All Time S WO a %L OX
HH /2N Y
Capacity

Capacity is measured in number of cycles.
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Why detecting anomalies? For monitoring of a
productive solution (3/3)

Once we deploy a Machine

Learning model in production, is Deploy
not over!

For example, we should monitor if = .’L ,’1 ’:‘g

the underlying data are consistent 3 2

with what we had in training 3 OPS &
"QQ\.

Anomaly Detection can be useful
for monitoring! If we have outliers,
we can avoid trusting a single
prediction or we can start with re-
train

This is part of MLOps (Machine
Learning operations) principles

P €rformance
Monitor




How to evaluate an Unsupervised Anomaly
Detection system if we are in unsupervised
settings?

- That’s the true drawback of
unsupervised approaches!

bat* % e ' N7
- If you can't get ground truth labels, try " !’l- 53 ) 1" I AT (%
to get approximate labels or |nS|ghts S b N o

(i) Domain experts: Ask them to review
top Nanomalies ﬂagged by your model.
Are they meaningful?

(ii) Known anomaly cases: Use events like
system failures, alerts, or log anomalies as
partial [abels.

(i) Synthetic injection: Add known
anomalies to the dataset (e.g. noise, out-
of-distribution points) and check if your
model finds them.




What is clustering?

Clustering is a type of
unsupervised learning where the
goal is to group similar data
points together based on their
features — without using any
labels or predefined categories.

What clustering does:

- Finds patterns or structure in
your data

- Organizes data into clusters:
groups where members are
more similar to each other
than to members of other
groups




Why Clustering? As preprocessing step (1/2)

When data is heterogeneous or
complex, clustering may be a good
ideal

Local/multiple models:

- One model per cluster may o

dramatically increase performances! ¢ -
Drawlbacks: AR
- More complexity to handle

- We are reducing the amount of data
for each model, which can lead to
lower performances if data are few ,
INn number Ao

Feature2
(]

Feature1



Why Clustering? As the final objective (2/2)

In many cases, clustering is
a fundamental task by
itself:

- Digital
marketing/adverting
(customer
segmentation)

- Document organization
(topic modelling)

-  Web & user analytics T+ =4 Ty
(website user behaviour) 2 e T
i @ ;::4 + =
- Manufacturing (more : 2 : 3
later) 8 =L La ",




Unsupervised learning: either the final
task or a preprocessing step!

Modelling

+ Definition Conversion « Quality Feature Extraction + On-line

« Expected Impact . Parsmg + Reconciliation . Bwldmg implementation

 Evaluation metric « Aggregation « Missing data handling + Evaluation/  Business outcome
« Alignment « Denoising Comparison * Improvement

» Qutlier detection

As already seen with anomaly detection, also clustering is relevant
both for pre-processing and as the final goal of a Machine Learning
project!



Many approaches for clustering!

MiniBatch Affinity Spectral Agglomerative Gaussian

Weareseeing2 2o s S50 o B S o s R
approaches: O) () (O} (0) {0) {0} {O) (O} (O} (O (O]
- K-means g g S g S g - S

- Hierarchical | {?‘J {Q} mj {Q) {Qj {QJ {‘?‘J {Qj f‘i}j @
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K-means

- Let’s suppose in this example, that we already know that we are looking for 2
clustersin the data

- How will you end up with a clustering as represented here? Ideas?

ABefore k-means After k-means
.’ .. e
& 3.‘2.,,
.i?!i.. L .. 0..
° . ';-f’z &,
R RO
LI T
q ... °




K-means

- Let’s suppose in this example, that we already know that we are looking for 2
clustersin the data

- How will you end up with a clustering as represented here? Ideas?

Before k-means After k-means
(x . Ces e, - - If we know the
I ‘centroids’ of the
’-‘,, . 2 clusters, we
l_.,..;l . : could assign each
: § o2 | data point to the
TR R | | closest centroids!
R LTS = g U
BaeR L e ;
Lo e B ~ L
JEEREM A
> >




1 2 3

K-means

Randomly select - Each object assigned to - Cluster centers updation depending
K-Clusters (K= 2) similar centroid randomly on renewed cluster mean
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Steps of K-Means Clustering

1. Choose K (hyperparameter): decide the number of clusters K
you want to find

2. Initialize Centroids: randomly select K data points as the initial
centroids (cluster centers)

3. Assign Points to Nearest Centroid
- For each data point, compute the distance to all centroids.

- Assign the point to the closest centroid (based on Euclidean or
another distance)

4. Update Centroids: recalculate each centroid as the mean of all
points assigned to that cluster

5. Repeat 3-4 until: ‘convergence’ / max number of iterations



‘Convergence’ in clustering

We need to define a metric: Mean Within-Cluster Mean Squared

Error
1 K
_ o 2
MSEWithin — N E E sz ,Uk||
k=1 z;€C}

- N = total number of data points

- K = number of clusters

- C;, = set of pointsin cluster k

- x; = a data point in cluster ¢,

- 1 = centroid (mean) of cluster C,,



Total Within Cluster Sum of Squares:

KMeans lteration:
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K-means of Iris dataset
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K-means of Iris dataset
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How many clusters? #01 Elbow method

As you increase K:

1.

The Mean Within-Cluster
MSE (or inertia) decreases
— because adding more

clusters always makes the
fit tighter.

However, after a certain
point, the gain becomes
marginal: the clusters stop
adding real value and just
overfit the data.

The "elbow" point in the
MSE vs. K plot is where the
improvement starts to level
oft — like an arm bending at
the elbow.

Mean Within-Cluster MSE
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How many clusters? #02 Gap Statistics

Unlike the elbow method

(which relies on visual N=200, K=3
heuristics), the gap statistic
compares your clustering

result to what you’d expect
from random data. .
“Is the clustering we observe
better than what we would

e ot el 0
. :7::?.!.
' whs i

) }f,:‘t.’f .

. L . o %
o .8 et . -
..c. g.")"‘ . -
e W, 0, ' o
| - f

expect if the data had no real
structure?”




1. Foreach K (e.g., from 1to 10):

e Run K-Means on your real data and compute the within-cluster dispersion

Wy.:

K

Wi=3"3 o — il

i=1 zeC;

Generate reference datasets:

o Create synthetic datasets with the same shape and bounds as your

original data, but randomly distributed.

Run K-Means on the random data and compute their

ref
Wret,

Compute the Gap Statistic for each K:

Gap(K) = E[log W] — log W},

The higher the gap, the better your clustering is compared to random data.
Choose the smallest K such that:
Gap(K) > Gap(K + 1) — sg+1

where sk 1 is the standard deviation of the reference dispersions.
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A real-world applications of k-means

- Manufacturing case study seen
on Monday

- Once derived the clusters, a
classification tool could be put in
place

0.08 -
0.06 -
0.04 -

0.02

_002 | | | | |
0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1




Hierarchical Clustering

- Hierarchical clustering builds a tree of clusters, called a
dendrogram, by either:

- Agglomerative (bottom-up): start with each data

point as its own cluster and merge them step by step.

- Divisive (top-down): start with one big cluster and
split it step by step.
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Hierarchical Clustering

exXas

- Hierarchical clustering builds a tree of clusters, called a e onca

dendrogram, by either:
- Agglomerative (bottom-up): start with each data
point as its own cluster and merge them step by step.

- Divisive (top-down): start with one big cluster and gF
split it step by step.

Vermont
ldaho

Montana

Nebraska

Minnesota

Agglomerative (bottom-up Waconsin

lowa
New Hampshire

1) Start: Each point is its own cluster. Veora —

2) Compute distances between all clusters (initially Kertucky —J

New Jersey

Connecticut

Delavware
between all points) Massachusets 2}?
3) Merge the two closest clusters. Rhode Isiand

Missour -

Oregon

4) Update distances between clusters. Washigon

5) Repeat until all points are merged into one big cluster. o



Alabama
Louisiana :

Hierarchical Clustering IR
- Hierarchical clustering builds a tree of clusters, called a ”%?
dendrogram, by either: M::lagg“
- Agglomerative (bottom-up): start with each data el
point as its own cluster and merge them step by step. c°2’i° 33
- Divisive (top-down): start with one big cluster and Westvegna 1]
split it step by step. \ Distance Between Clusters
(Linkage Methods):
Agglomerative (bottom-up -Single linkage: shortest distance
1) Start: Each point is its own cluster. between points in two clusters.
2) Compute distances between all clusters (init et LEIER L Te SR ETRdg IS fe Bl eclg[elch
between all points) *Average linkage: average distance.
3) Merge the two closest clusters. ‘Ward's method: minimizes variance

within clusters.

4) Update distances between clusters. S
5) Repeat until all points are merged into one big cluster. oo ‘

Pennsyivania
Hawaii
Utah



Hierarchical Clustering

- Hierarchical clustering builds a tree of clusters, called a
dendrogram, by either:

- Agglomerative (bottom-up): start with each data
point as its own | 5 h
MV A dendrogramis a tree-like dlagram

SJoljiEs that shows the merging process.

You can "cut" the tree at a certain

INelo|lelnls 15t level to decide how many clusters
1) Start: Each p@ASiiil®

2) Compute distances between all clusters (initially
between all points)

3) Merge the two closest clusters.
4) Update distances between clusters.
5) Repeat until all points are merged into one big cluster.

Narth Carolina
Mississippi
South Carolna

Alabama

Louisiana
Georgia

Tennessee

III nois
New York
Flonda
Arnzona
Michigan

Maryland
New Mexico

Alaska
Colorado
California 3:"
Nevada

Soulh Dako:

West Virginia
North Dakota
Vermont

Idaho

Montana
Nebraska
Minnesota
Wisconsin
Maine
lowa
New Hampshire

Virginia
Wyoming 3

Arkansas
Kentucky :

EJ.eLa'..aare —l

Massachusetis

New Jersey
Connecticut
Rhode Island

Missoun -
Oregon
Washington
Oklahoma
Indiana
Kansas
Ohio
Pennsyivania
Hawali
Utah




Hierarchical Clustering %
- Hierarchical clustering builds a tree of clusters, called a ”““’ét?
dendrogram, by either: ry‘*‘
- Agglomerative (bottom-up): start with each data il
point as its own u 33
- Divisive (t A dendrogram is a tree like dlagram :

1) Start: Each p@ases want.

2) Compute distances between all clusters (initjg
between all points)

Not scalable to very large datasets
Sensitive to outliers

Computationally expensive (esp.
5) Repeat until all points are merged into one b IS Ward’s)

3) Merge the two closest clusters.
4) Update distances between clusters.
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Thank you!

Gian Antonio Susto




