## LESSON 9

Classical pathway of complement activation

Lectin pathway of complement activation

Regulation of complement cascade

Diseases

### Classical pathway of complement activation start with the binding by C1complex to antibodies linked to a multivalent antigen



### C1q recognizes antigen-antibody complexes



#### C1 is constituted by:

C1q (6 subunits) > recognition
C1r (2 subunits) > enzymatic activity
C1s (2 subunits) > enzymatic activity

#### C1r<sub>2</sub>-C1s<sub>2</sub> tetramer

C1r and C1s are **inactive** when the complex is not bound to Ig

C1r and C1s are **activated** when the complex is bound to Ig

### C1q recognizes antigen bound IgG and IgM



IgM activate C1 more efficiently due to their pentameric structure (each IgM can bind 2 C1q)

# Activated C1 mediate the proteolysis of C4 and C2



Assembly of C3 convertase

#### **Different nomenclature!!!**

### Assembly of the C5 convertase



#### Assembly of C5 convertase

#### Alternative pathway C3bBbC3b



# Lectin pathway of complement activation



**Triggered by collectins and ficolins** 

Similar in structure to C1 **MBL** recognising mannose residues

Upon recognition, **MASP1** and **MASP2** get activated by proteolysis, and can cleave C4 and C2 (as in the classical pathway)

# Regardless of the activation pathway...

- 1. Lysis (MAC)
- Opsonisation complement recognition by phagocytes (C3b/C4b CR1, CR3 and CR4)
- 3. Support humoral response of B lymphocytes to respond to antigen (C3d, iC3b through CR2)
- 4. Inflammation (C3a and C5a lead to release of histamine by mast cells and/or basophils and act on vascular endothelium)
- 5. Destruction of immune complexes in the liver and spleen (CR1 on erythrocytes)

# CR1 on erythrocytes allows the removal of immune complexes



#### Immune complex = antigen antibody complex

Can have deposition of complement

In the liver specialized macrophages called Kupffer cells express CR1, CR3, CR4 and CRIg, which capture immune complexes transported by erythrocytes

### Vintage version



# Regulation of complement activity

1. Protect autologous cells

2. Limit in time complement activation

| Receptor                                 | Structure                                   | Distribution                                        | Interacts With | Function                                                                                     |
|------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|
| C1 inhibitor (C1 INH)                    | 104 kD                                      | Plasma protein; conc.<br>200 μg/mL                  | C1r, C1s       | Serine protease inhibitor; binds to C1r<br>and C1s and dissociates them from<br>C1q          |
| Factor I                                 | 88-kD dimer of<br>50- and 38-kD<br>subunits | Plasma protein; conc.<br>35 μg/mL                   | C4b, C3b       | Serine protease; cleaves C3b and C4b<br>by using factor H, MCP, C4BP, or<br>CR1 as cofactors |
| Factor H                                 | 150 kD; multiple<br>CCPRs                   | Plasma protein; conc.<br>480 μg/mL                  | C3b            | Binds C3b and displaces Bb<br>Cofactor for factor I–mediated<br>cleavage of C3b              |
| C4-binding protein<br>(C4BP)             | 570 kD; multiple<br>CCPRs                   | Plasma protein; conc.<br>300 μg/mL                  | C4b            | Binds C4b and displaces C2<br>Cofactor for factor I–mediated<br>cleavage of C4b              |
| Membrane cofactor<br>protein (MCP, CD46) | 45–70 kD; four<br>CCPRs                     | Leukocytes, epithelial<br>cells, endothelial cells  | C3b, C4b       | Cofactor for factor I–mediated<br>cleavage of C3b and C4b                                    |
| Decay-accelerating<br>factor (DAF)       | 70 kD; GPI linked,<br>four CCPRs            | Blood cells, endothelial<br>cells, epithelial cells | C4b2a, C3bBb   | Displaces C2a from C4b and Bb from<br>C3b (dissociation of C3 convertases)                   |
| CD59                                     | 18 kD; GPI linked                           | Blood cells, endothelial<br>cells, epithelial cells | C7, C8         | Blocks C9 binding and prevents<br>formation of the MAC                                       |

# C1r, C1s and MASP2 are inactivated by C1 inhibitor



C1 INH deficiency cause a genetic disease called hereditary angioedema

# C3b attached to the cell membrane can be degradated

| Receptor                                 | Structure                                   | Distribution                                        | Interacts With | Function                                                                                     |
|------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|
| C1 inhibitor (C1 INH)                    | 104 kD                                      | Plasma protein; conc.<br>200 μg/mL                  | C1r, C1s       | Serine protease inhibitor; binds to C1r<br>and C1s and dissociates them from<br>C1q          |
| Factor I                                 | 88-kD dimer of<br>50- and 38-kD<br>subunits | Plasma protein; conc.<br>35 μg/mL                   | C4b, C3b       | Serine protease; cleaves C3b and C4b<br>by using factor H, MCP, C4BP, or<br>CR1 as cofactors |
| Factor H                                 | 150 kD; multiple<br>CCPRs                   | Plasma protein; conc.<br>480 μg/mL                  | C3b            | Binds C3b and displaces Bb<br>Cofactor for factor I–mediated<br>cleavage of C3b              |
| C4-binding protein<br>(C4BP)             | 570 kD; multiple<br>CCPRs                   | Plasma protein; conc.<br>300 μg/mL                  | C4b            | Binds C4b and displaces C2<br>Cofactor for factor I–mediated<br>cleavage of C4b              |
| Membrane cofactor<br>protein (MCP, CD46) | 45–70 kD; four<br>CCPRs                     | Leukocytes, epithelial<br>cells, endothelial cells  | C3b, C4b       | Cofactor for factor I–mediated<br>cleavage of C3b and C4b                                    |
| Decay-accelerating<br>factor (DAF)       | 70 kD; GPI linked,<br>four CCPRs            | Blood cells, endothelial cells, epithelial cells    | C4b2a, C3bBb   | Displaces C2a from C4b and Bb from<br>C3b (dissociation of C3 convertases)                   |
| CD59                                     | 18 kD; GPI linked                           | Blood cells, endothelial<br>cells, epithelial cells | C7, C8         | Blocks C9 binding and prevents<br>formation of the MAC                                       |

#### Factor I-mediated cleavage of C3b



MCP, CR1, DAF, C4BP and factor F

Generated fragments are recognized by phagocytes and B Lymphocytes

# C3 and C5 convertases assembly are blocked by several proteins

| Receptor                                 | Structure                                   | Distribution                                        | Interacts With | Function                                                                                     |
|------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|
| C1 inhibitor (C1 INH)                    | 104 kD                                      | Plasma protein; conc.<br>200 μg/mL                  | C1r, C1s       | Serine protease inhibitor; binds to C1r<br>and C1s and dissociates them from<br>C1q          |
| Factor I                                 | 88-kD dimer of<br>50- and 38-kD<br>subunits | Plasma protein; conc.<br>35 μg/mL                   | C4b, C3b       | Serine protease; cleaves C3b and C4b<br>by using factor H, MCP, C4BP, or<br>CR1 as cofactors |
| Factor H                                 | 150 kD; multiple<br>CCPRs                   | Plasma protein; conc.<br>480 μg/mL                  | C3b            | Binds C3b and displaces Bb<br>Cofactor for factor I–mediated<br>cleavage of C3b              |
| C4-binding protein<br>(C4BP)             | 570 kD; multiple<br>CCPRs                   | Plasma protein; conc.<br>300 μg/mL                  | C4b            | Binds C4b and displaces C2<br>Cofactor for factor I–mediated<br>cleavage of C4b              |
| Membrane cofactor<br>protein (MCP, CD46) | 45–70 kD; four<br>CCPRs                     | Leukocytes, epithelial<br>cells, endothelial cells  | C3b, C4b       | Cofactor for factor I–mediated<br>cleavage of C3b and C4b                                    |
| Decay-accelerating<br>factor (DAF)       | 70 kD; GPI linked,<br>four CCPRs            | Blood cells, endothelial cells, epithelial cells    | C4b2a, C3bBb   | Displaces C2a from C4b and Bb from<br>C3b (dissociation of C3 convertases)                   |
| CD59                                     | 18 kD; GPI linked                           | Blood cells, endothelial<br>cells, epithelial cells | C7, C8         | Blocks C9 binding and prevents<br>formation of the MAC                                       |

# C3 and C5 convertases assembly are blocked by RCA proteins

MCP, CRI, DAF, C4BP and factor H



### CD59 blocks the binding of C9 and MAC assembly



\_\_\_\_\_ . . . . . . . . . . . . . .

### Paroxysmal nocturnal hemoglobinuria (PNH)

DAF and CD59 are GPI (glycosylphosphatidylinositol) anchored proteins.

Acquired (somatic) mutations in hematopoietic stem cells in the PIG-A gene (Phosphatidylinositol N-acetylglucosaminyltransferase subunit A) lead to the loss of GPI anchored proteins. The gene is in the X chromosome.

#### COMPLEMENT INDUCED LYSIS OF ERYTHROCYTES

Unregulated complement activation on the surface of erythrocytes. Recurrent intravascular hemolysis that in turn leads to chronic hemolytic anemia and venous thrombosis.

Treatment: Eculizumab inhibits the cleavage of C5 by the C5 convertase (warning: meningococcal infections, as deficit in alternative pathway)

### Pentraxins

A group of structurally homologous pentameric plasma proteins

Famous examples:

- C Reactive Protein (CRP)
- Serum amyloid P (SAP)
- Pentraxin 3 (PTX3)



LIGANDS

Phosphorylcholine

Phosphatidylethanolamine

Bacterial membranes but also human apoptotic cells

## C Reactive Protein (CRP) and SAP

### Marker of inflammation!

Low levels in healthy individuals

High levels in response to inflammation (IL-6 and IL-1) by Phagocytes and DCs

Produced by the liver

Extremely common blood test

CRP, SAP (and others) are acute phase proteins

PTX3 respond to TLR activation and TNF accumulated also in granules of neutrophils

# Pentraxin can initiate complement cascade

CRP, SAP and PTX3 bind to complement subunit C1q

C1q initiates the "classical pathway" of complement activation



### Collectins (MBL, SP-A,SP-D) and Ficolins are structurally similar to C1q



### In summary

| Soluble    |                   |                                                                   |                                                                                                        |
|------------|-------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Pentraxins | Plasma            | C-reactive protein                                                | Microbial phosphorylcholine and phosphatidylethanolamine                                               |
| Collectins | Plasma<br>Alveoli | Mannose-binding<br>lectin<br>Surfactant proteins<br>SP-A and SP-D | Carbohydrates with terminal mannose<br>and fructose<br>Various microbial structures                    |
| Ficolins   | Plasma            | Ficolin                                                           | N-acetylglucosamine and lipoteichoic<br>acid components of the cell walls<br>of gram-positive bacteria |
| Complement | Plasma            | Various complement proteins                                       | Microbial surfaces                                                                                     |