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Up until now we have seen:

- Preprocessing (statistics, 
visualizations)

- Supervised learning (regression, 
classification)

- ‘Meta’ concepts such as: 
optimization of a loss function, 
underfitting vs overfitting, 

- ML programming in Python

50% of the course is done!
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By the end of this week, 
you’ll have the basic tools 
to complete an end-to-
end ML feasibility 
assessment!

Early next week we’ll 
provide you with a 
programming ‘mock’ 
exam: solutions will be 
given and discussed in 
one month
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We will go back to 
supervised learning soon: 
next week we’ll talk 
about Support Vector 
Machines: this topic will 
be relevant only for the 
theoretic part of the 
exam!
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Basics of Neural 
Networks / Deep 
Learning will be provided.

For the programming 
part of NNs we will mainly 
use libraries where the 
basic blocks of a NN are 
already implemented! 
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Explainability and 
Fairness will be covered! 
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We will have a recap for 
the theory and one for 
the programming part of 
the exam
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Finally, two lectures on:
- Real world 

applications
- What’s next in AI

You will be not evaluated 
on these two, but these 
lectures will provide you 
with a broaden view of 
the area!
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Supervised 
Learning

Setup: Observation of the 
environment

Data: (x,y)

Task: learn a map from inputs x 
to outputs y

Unsupervised 
Learning

Setup: Observation of the 
environment

Data: x (no labels)

Task: Discover the underlying
structure or distribution in data 

without labels



Some unsupervised learning tasks
- Clustering: finding groups into data 

(lecture 20)

- Dimensionality reductions: reduce 
the number of features

- Density estimation: estimate the 
probability distribution that 
generates the data

- Association rule learning

- Topic modelling (for text data)

- Anomaly/Outlier detection (today!)
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Anomaly/Outlier Detection

What is an anomaly/outlier?

‘An outlier is an observation that 
deviates so much from other 
observations as to arouse 
suspicion that it was generated 
by a different mechanism’ [1]Too

In a dataset – by definition –
outliers should be few! many to 
handle!

[1] D. M. Hawkins, Identi4cation of outliers, vol. 11., Springer, 1980



Why detecting anomalies? Preprocessing (1/3)

Outliers can be data entry mistakes 
or measurement errors that can 
skew results

As a pre-processing step,  anomaly 
detection is a data cleaning step 
that dramatically improve 
performances!

This procedure should be handled 
carefully: by taking out di?cult
data we always improve 
performances!
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Why detecting anomalies? Preprocessing (1/3)
✅When removing outliers makes sense 
(not cheating):
(i) They are errors or noise

1. Example: A sensor was faulty, or someone 
typed "2000" instead of "200".

2. Removing these helps your model focus 
on meaningful data.

(ii) You're preparing data for a model that 
assumes normality

1. Example: Linear regression can be badly 
influenced by extreme values.

2. Outlier removal improves robustness.

(iii) You’re analyzing a population and 
want to avoid skewing

1. If you’re looking at “typical behavior” (e.g., 
average customer purchase), outliers can 
distort the picture.

❌When removing outliers is cheating:

(i) You remove them just to improve 
performance metrics

1. Example: Removing hard cases from a 
test set so your model looks better.

2. That’s data leakage and cheating.

(ii) The outliers are the thing you care 
about!

1. Example: Fraud detection, disease 
diagnosis, equipment failure.

2. Removing them defeats the whole point 
— you'd miss the rare but critical events.
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Not always an easy decision:
- Domain expertise may be necessary!
- Keep track of such choices! 



Why detecting anomalies? As the final objective (2/3)

In many domains, detecting 
anomalies is a fundamental 
task by itself:
- Fraud detection
- Diagnostic tools for 

manufacturing
- Cybersecurity
- Transactions on digital 

marketing



Unsupervised learning: either the final 
task or a preprocessing step!

We will see, both with anomaly detection and clustering that 
unsupervised learning tasks can be part of a pre-processing pipeline 
and as the final goal of a Machine Learning project!



Anomaly/Outlier Detection: any ideas?



Anomaly/Outlier Detection: any ideas?

- Visualizations and statistics may 
be helpful! 

- For example, in boxplot outliers 
are plotted as individual points 
beyond the "whiskers”, aka 1.5 x 
IQR from Q1 and Q3



‘On-line’ anomaly detection: univariate control 
charts!
- An approach used in many industries 

are univariate control charts (CC)
- A control chart is a time series plot 

with:

(i) A center line, the expected process 
mean.
(ii) An upper control limit (UCL) and 
lower control limit (LCL), thresholds that 
define the "normal" range of variation.

- Typically done on variables and Key 
Process Indicators (KPIs), quantifiable 
measures describing a process 
’goodness’)

Computed statistically:
- Mean 𝜇!, STD 𝜎!
- Upper control limit UCL = 	𝜇! + 𝐴	 ∗ 𝜎!
- Lower control limit LCL = 	𝜇! − 𝐴	 ∗ 𝜎!
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define the "normal" range of variation.
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- Upper control limit UCL = 	𝜇! + 𝐴	 ∗ 𝜎!
- Lower control limit LCL = 	𝜇! − 𝐴	 ∗ 𝜎!If we choose A = 3 (‘3 sigma’) 

and we have a gaussian variable, 
99.73% of data will be ‘inlier’   



Problems with this approach? (1/2)

- Monitoring complexity increases 
with the number of control charts! 

- Shift from a manageable to an 
overwhelming situation: increasing 
risks of cognitive overload and false 
alarms



Problems with this approach? (2/2)



Problems with this approach? (2/2)

Univariate approaches 
are unable to capture 
multivariate anomalies!



Multivariate control 
charts: Hotelling’s 𝑇!

𝑇" is like a multivariate z-score: it 
measures how far the observation is 
from the mean, considering 
correlations
We monitor if a data point is a 
multivariate outlier if: 𝑇" > UCL



Multivariate control 
charts: Hotelling’s 𝑇!

With Gaussian data, UCL is typically 
computed:  

- p number of variables in the dataset
- α how strict you want to be 

(common values are 0.05 or 0.01)
- χ2 is the chi-squared distribution (a 

value you look up on ‘tables’)
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Multivariate control 
charts: Hotelling’s 𝑇!

With Gaussian data, UCL is typically 
computed:  

- p number of variables in the dataset
- α how strict you want to be 

(common values are 0.05 or 0.01)
- χ2 is the chi-squared distribution (a 

value you look up on ‘tables’)



Limitations of Hotelling’s 𝑇!

Variables in real world problems are 
hardly Gaussian and hardly unimodal 
(has only one peak or one mode)
1. Too many to handle!
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Multivariate Unsupervised Anomaly Detection 

Multivariate Unsupervised AD 
approaches provide ‘anomaly scores’: 
unique quantitative indicators able to 
represent the degree of ‘outlierness’ of 
complex systems with many variables 
1. No labelled data are required 
2. Dozens/Hundreds of sensors 

variables can be considered at the 
same time 

3. No need for gaussian/unimodal 
distributions



Multivariate Unsupervised Anomaly Detection 

[2] PyOD (Python library for detecting 
outlying objects) 
https://pyod.readthedocs.io/en/latest/ 

Many approaches for tabular data (data 
where rows are observations and 
columns are variables) [2]:

- Density-based methods (e.g. LOF, 
DBSCAN)

- Distance-based methods (e.g. kNN)
- Clustering-based methods (e.g. CBLOF)
- Neural Networks (e.g. Autoencoder)
- Isolation Forest
- ...

https://pyod.readthedocs.io/en/latest/


Isolation Forest [3]
- Efficient algorithm that 

outperforms other AD 
methods in several domains 
[4]

- Based on a partitioning 
procedure (that creates 
isolation trees) and on the idea 
that outlier and inlier are 
differently affected by such 
procedure

- An ensemble approach: 
anomaly score computed as 
mean of the depth over the 
various isolation trees

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.

Isolation of an inlier

4 splits!

Isolation of an outlier

Only 1 split!



Isolation Forest, is an Anomaly Detection method, based on 
partitioning

The Isolation Tree
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The Isolation Tree
- Efficient algorithm that 

outperforms other AD 
methods in several domains 
[4]

- Based on a partitioning 
procedure (that creates 
isolation trees) and on the idea 
that outlier and inlier are 
differently affected by such 
procedure

- An ensemble approach:mean
of the depth over the various 
isolation trees

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.



- Efficient algorithm that 
outperforms other AD 
methods in several domains 
[4]

- Based on a partitioning 
procedure (that creates 
isolation trees) and on the idea 
that outlier and inlier are 
differently affected by such 
procedure

- An ensemble approach:mean
of the depth over the various 
isolation trees

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.

At each iteration, both the 
choice of the variable and 
the choice of the split 
value is random!

The Isolation Tree



Because the goal is not to learn a precise model 
— it's to separate anomalies from the rest 
quickly. Here's how randomness helps:
1. Anomalies Are Easier to Isolate
Outliers are rare and very different from normal 
data → so random splits are more likely to 
isolate them early in the tree (i.e., shallow depth).
2. No Need to Find “Good” Splits
Unlike decision trees, which aim for optimal 
splits (e.g., Gini or entropy), iForest is only 
concerned with how many splits it takes to 
isolate a point. So random is fine — even ideal.
3. Ensemble Averaging Smooths Noise
By using many trees with different random 
splits, we average out the randomness and get a 
robust anomaly score.

The Isolation Tree: Why So Much Randomness?

Aspect Why Random?

Feature 
selection

To avoid bias and 
explore all 
dimensions

Split value 
selection

To simplify and 
speed up isolation

Multiple 
trees

To make 
randomness 
statistically 
meaningful
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selection

To simplify and 
speed up isolation

Multiple 
trees

To make 
randomness 
statistically 
meaningful



Isolation Forest
An ensemble approach: 
anomaly score computed as 
mean of the depth over the 
various isolation trees



Isolation Forest: step-by-step
1. Subsampling the Data
- From the full dataset, randomly sample a subset of data points (e.g. 256 

points)
- This is done to reduce computation and improve generalization.

2. Build Isolation Trees (iTrees)
For each sampled subset, build a binary tree recursively with these rules:
✅ At each node:
- Randomly select a feature (column)
- Randomly select a split value between the min and max of that feature in 

the current data.
🚫 Stop splitting when:
- The node has only one data point, or
- A max depth is reached (usually ⌈log₂(n)⌉, where n is sample size)
➡ Result: Each path from root to leaf isolates a data point.



Isolation Forest: step-by-step

3. Repeat and Build a Forest
- Build many trees (typically 100), 

each on a different random sample
- The randomness ensures diverse 

ways to isolate points
4. Compute Path Lengths
- For each data point in the original 

dataset:
- Send it down every tree.
- Record the number of splits 

needed to isolate it (i.e., how deep 
it ends up in each tree).



Isolation Forest: step-by-step

5. Calculate Anomaly Score
- For each point, compute the average path length across all 

trees.
- Convert that to an anomaly score using: 

- 𝐸(ℎ(𝑥)) is the average path length for point 𝑥,
- c 𝑛 	is the average path length of an unsuccessful search in a 

Binary Search Tree (a normalization factor).



Isolation Forest: step-by-step

5. Calculate Anomaly Score
- For each point, compute the average path length across all 

trees.
- Convert that to an anomaly score using: 

- 𝐸(ℎ(𝑥)) is the average path length for point 𝑥,
- c 𝑛 	is the average path length of an unsuccessful search in a 

Binary Search Tree (a normalization factor).

We need to compare path lengths 
across datasets of different sizes. 
A short path in a small dataset is not 
the same as a short path in a big one. 
So, we normalize each path length 
using c(n) to make the anomaly score 
comparable.



Isolation Forest: step-by-step

6. Compare the anomaly score with a threshold 𝝉
- If the anomaly score is above a given threshold, we can declare a 

data point anomalous 
- A way to derive the threshold is to consider the contamination: a 

parameter that is a proportion (a float between 0 and 0.5, usually) 
that indicates the expected fraction of outliers in the dataset

- Contamination can be considered a tuning knob between false 
positive (declared anomalies that are ‘normal’ data) and false 
negatives (not declared anomalies that should have been 
segnalated)



Iris dataset



Iris dataset



Wine dataset



California housing dataset



California housing dataset



California housing dataset

PCA is not ideal for Anomaly Detection:
- PCA looks for directions of maximum 

variance, assuming important info 
lies there.

- But anomalies are rare — they don’t 
contribute much to overall variance, 
so PCA tends to ignore them.



Idea: 
- principal directions represent 

“normal” attributes
- outliers change directions of 

principal components

To make it effective, each data 
sample, when checked if it changed 
the direction of the first PC, is 
oversampled (replicated many times)

Lee, Yuh-Jye, Yi-Ren Yeh, and Yu-Chiang Frank 
Wang. "Anomaly detection via online oversampling 
principal component analysis.”, 2013.

Oversampling PCA: osPCA



Univariate Control Chart vs Unsupervised AD

To enable Decision Making information should be:
complete

concise
interpretable



I’ve got the Anomaly Score: now, what?

- Thanks to the Anomaly 
score users are alerted 
of potential anomalous 
situation, however it is 
up to them to discover 
potential troubles

- It would be nice to ease 
the Root Cause Analysis 
to provide additional 
information, like feature 
rankings…



Depth-based Isolation Forest 
Feature Importance (DIFFI) [5]

DIFFI is an eXplainable ArtiOcial 
Intelligente (XAI) approach 
designed for the Isolation Forest

DIFFI provides a variable ranking 
for:

- Global Explainability (ie. what 
variables are important for 
the whole Isolation Foreset
model)

- Local Explainability (ie. what 
variables are important for a 
particular prediction)

[5] Carletti, M., Terzi, M., & Susto, G. A. (2023). Interpretable Anomaly Detection with DIFFI: Depth-based feature importance of Isolation Forest. Engineering 
Applications of Artificial Intelligence, 119, 105730.



Depth-based Isolation Forest 
Feature Importance (DIFFI) [5]

DIFFI provides a variable ranking that:
- Does not require true labels (other 

XAI approaches do!)
- Low computational cost
- No tuning

IDEA: mark a feature as "important" if 
- it induces isolation of outliers at small 

depths (i.e. near the root) 
- At the same time, does not contribute 

to the isolation of inliers

[5] Carletti, M., Terzi, M., & Susto, G. A. (2023). Interpretable Anomaly Detection with DIFFI: Depth-
based feature importance of Isolation Forest. Engineering Applications of ArtiTcial 
Intelligence, 119, 105730.

For technical details



Example #03: Unsupervised Anomaly Detection
- Use case: roller coaster monitoring

[10] E. Anello, M. Chiara, F. Ferro, F. Ferrari, B. Mukaj, A. Beghi, G.A.~Susto 
’Anomaly Detection for the Industrial Internet of Things: an 
Unsupervised Approach for Fast Root Cause Analysis.’ IEEE CCTA 2022



- Once we deploy a Machine 
Learning model in production, is 
not over!

- For example, we should monitor if 
the underlying data are consistent 
with what we had in training

- Anomaly Detection can be useful 
for monitoring! If we have outliers, 
we can avoid trusting a single 
prediction or we can start with re-
train

- This is part of MLOps (Machine 
Learning operations) principles 

Why detecting anomalies? For monitoring of a 
productive solution (3/3)



- That’s the true drawback of 
unsupervised approaches!

- If you can't get ground truth labels, try 
to get approximate labels or insights:

(i) Domain experts: Ask them to review 
top N anomalies flagged by your model. 
Are they meaningful?
(ii) Known anomaly cases: Use events like 
system failures, alerts, or log anomalies as 
partial labels.
(iii) Synthetic injection: Add known 
anomalies to the dataset (e.g. noise, out-
of-distribution points) and check if your 
model finds them.

How to evaluate an Unsupervised Anomaly 
Detection system if we are in unsupervised 
settings?



Thank you!

Gian Antonio Susto 

Machine Learning
2024/2025


