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50% of the course is done!
Up until now we have seen:

- Preprocessing (statistics,
visualizations)

- Supervised learning (regression,
classification)

- ‘Meta’ concepts such as:
optimization of a loss function,
underfitting vs overfitting,

- ML programming in Python



What’s next? Revised course outline

WEEK 07

2025-04-07 #19: Unsupervised Learning. Anomaly
Detection

2025-04-10 #20: Clustering. K-Means Clustering.
Evaluating clustering performance

2025-04-11 #21 (Lab 07): Anomaly Detection &
Clustering

WEEK 08

2025-04-14 #22: Support Vector Machines (SVM),
Linear and kernel-based approaches, ROC & AUC
2025-04-17 #23: Introduction to Neural Networks
(NNs), Activation functions, Perceptrons

WEEK 09
2025-04-24 #24: Training of NNs #01

WEEK 10
2025-04-28 #25: Training of NNs #02

WEEK 11

2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01

WEEK 12

2025-05-13 #29: Fairness in ML
2025-05-15 Programming Mock
Exam discussion

2025-05-16 #30 (Lab 09): NN #02

WEEK 13
%%25—05—19 Recap session with

S
2025-05-22 #31: Real-world
Applications and MLOps (Industrial
Guest Lecture)
2025-05-23 #32 (Lab 10): Recap
LAB

WEEK 14

2025-05-26 #33: XAl #01
2025-05-29 #34: XAl #02
2025-05-30 #35 (Lab 10): XAl

WEEK 15

2025.06-06 Buffersiot




What’s next? Revised course outline

WEEK 12
2025-05-13 #29: Fairness in ML
0 Programming Moc
Exam discussi

2025-04-07 #19: Unsupervised Learning. Anomaly
Detection

2025-04-10 #20: Clustering. K-Means Clustering. o e By the ond of this week
Evaluating clustering performance : : : ’
, yoU’ll have the basic tools
2025-04-11 #21 (Lab 07): Anomaly Detection & WEEK 13
Clusterin ( ) 4 2025-05-19 Recap session with to complete an end-to-
= TAs end ML feasibility

WEEK 08 2025.-O5j22 #31: Real-world assessment!
2025-04-14 #22: Support Vector Machines (SVM), Applications and MLOps (Industrial
Linear and kernel-based approaches, ROC & AUC Guest Lecture)

2025-04-17 #23: Introduction to Neural Networks 52%5_05_23 #32 (Lab 10): Recap

Early next week we'll

provide you with a
(NNs), Activation functions, Perceptrons programming ‘mock’

WEEK 14

WEEK 09 2025-05-26 #33: XAl #01 exam: solutions will be
2025-04-24 #24: Training of NNs #01 2025-05-29 #34: XAl #02 given and discussed in
WEEK 10 2025-05-30 #35 (Lab 10): XAl one month

2025-04-28 #25: Training of NNs #02 WEEK 15

: hat’ ?

2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01




What’s next? Revised course outline

WEEK 12
2025-05-13 #29: Fairness in ML
025-05-T5 Programming Moc
Exam discussion

+19: Unsupervised Learning.
Anomaly Detection
2025-04-10 #20: Clustering. K-Means Clustering
Evaluating clustering performance

We will go back to

2025-04-11 #21 (Lab 07): Anomaly Detection & | WEEK 13 supervised learning soon:
Clustering 2025-05-19 Recap session with next week we'll talk
. TAS about Support Vector

2025-05-22 #31: Real-world Machines: this topic will
épplical_tions agwd MLOps (Industrial | be relevant only for the

S e vest Lecture ;

QL , 2025-05-23 #32 (Lab 10):Recap | tneoretic part of the

2025-04-17 #23: Introduction to Neural LAB exam:

Networks (NNs), Activation functions,

Perceptrons WEEK 14 :
2025-05-26 #33: XAl #01

WEEK 09 2025-05-29 #34: XAl #02

2025-04-24 #24: Training of NNs #01 2025-05-30 #35 (Lab 10): XAl

WEEK 10 WEEK 15

2025-04-28 #25: Training of NNs #02 Mhat’s next?

WEEK 11

2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent
NNs

2025-05-09 #28 (Lab 08): NN #01



What’s next? Revised course outline

WEEK 12

2025-04-07 #19: Unsupervised Learning. Anomaly

rogrammlng Moc

Detection U

2025-04-10 #20: Clustering. K-Means Clustering. S Elnke] ; . Basics of Neural
Evaluating clustering performance Networks / Deep
2025-04-11 #21 (Lab 07): Anomaly Detection & YVELR 1D i i -
i ( ) Y 2025-05-19 Recap session with Learning will be provided.

Clustering TAS

g 2025-05-22 #31: Real-world . For the programming
2025-04-14 #22: Support Vector Machines (SVM), Applications and MLOps (Industrial - | part of NNs we will mainly
Linear and kernel based approaches, ROC & AUC ggfgf&f_g%%?z (Lab 10): R use libraries where the

025-04-1/ % Neural Networks LAB a -necap basic blocks of a NN are

(NNs), Activation functions, Perceptrons WEEK 14 already implemented!
WEEK 09 o 2025-05-26 #33: XAl #01
2025-04-24 #24: Training of NNs #071 2025-05-29 #34. XAl #02

WEEK 10 2025-05-30 #35 (Lab 10): XAl
2025-04-28 #25: Training of NNs #02 WEEK 15

_0c_ : hat’ ?

2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01




What’s next? Revised course outline

0 0 H29: +alrne N M
025-05-15 Programming Moc

2025-04-07 #19: Unsupervised Learning. Anomaly
Detection

2025-04-10 #20: Clustering. K-Means Clustering.
Evaluating clustering performance

2025-04-11 #21 (Lab 07): Anomaly Detection & WEEK 13
Clustering ( ) 4 2025-05-19 Recap session with

TAS

2025-05-22 #31: Real-world
Applications and MLOps (Industrial
Guest Lecture)

: 2025-05-23 #32 (Lab 10): Recap Explainability and
(NNs), Actlvat|on funct|ons Perceptrons LAB Fairness will be covered!
WEEK 14 :

Exam di ion
9 0 o #30 D 09): NN #0

WEEK 09

2025-04-24 #24: Training of NNs #01

WEEK 10
2025-04-28 #25: Training of NNs #02 WEEK 15

: hat’ ?

2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01




What’s next? Revised course outline

0 0 F29: +airne N M
025-05-15 Programming Moc
Exam di ion

+19: Unsupervised Learning.
Anomaly Detection
2025-04-10 #20: Clustering. K-Means Clustering
Evaluating clustering performance
2025-04-11 #21 (Lab 07): Anomaly Detection &
Clusterlng

(SVM) Llnear and kernel-based approaches Apphca’uons and MLOps (Industrial

: 2025-05-23 #32 Lab 10): Reca :
2025-04-17 #23: Introduction to Neural LAB ( ) 2 We will have a recap for

Networks (NNs), Activation functions, WEEK 12 the theory and one for

Perceptrons Tt
WEEK 09 2025 0529 #34- ‘(AI 02

2025-04-24 #24: Training of NNs #01

the programming part of
the exam

2025-05-30 #35 (Lab 10): XAl
WEEK 10 WEEK 15

2025-04-28 #25: Training of NNs #02 Mhat’s next?

WEEK 11

2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01




What’s next? Revised course outline

0 0 H29: +3lrne N M
025-05-15 Programming Moc

#19: Unsupervised Learning.
Anomaly Detection
2025-04-10 #20: Clustering. K-Means Clustering
Evaluating clustering performance
2025-04-11 #21 (Lab 07): Anomaly Detection & WEEK 13
Clusterlng 2025-05-19 Recap session with

Exam di ion

(SVM) Llnear and kernel- based approaches

2025 05 23 #32 (Lab 10): Recap
LAB

WEEK14

2025 0559 #34° XAl #02
2025-05-30 #35 (Lab 10): XAl

2025—04—17 #23: Introduction to Neural
Networks (NNs), Activation functions,
Perceptrons

WEEK 09
2025-04-24 #24: Training of NNs #01

WEEK 10
2025-04-28 #25: Training of NNs #02

WEEK 11

2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01

Finally, two lectures on:

- Real world
applications

- What’s nextin Al

You will be not evaluated
on these two, but these
lectures will provide you
with a broaden view of

the areal




Supervised Unsupervised
Learning Learning

| St : -‘ ‘ﬁ. . e normal data
A T
Setup: Observation of the Setup: Observation of the
environment environment
Data: (x,y) Data: x (no labels)
Task: learn a map from inputs x Task: Discover the underlyin
to outputsy structure or distribution in"data

without labels



Some unsupervised learning tasks
Clustering: finding groups into data

(lecture 20)

Average Severity

Unlabeled data

Clustered data
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Some unsupervised learning tasks

- Clustering: finding groups into data
(lecture 20) g /\

- Dimensionality reductions: reduce
the number of features

Dimensionality
reduction




Some unsupervised learning tasks

- Clustering: finding groups into data
(lecture 20) ﬁ,

- Dimensionality reductions: reduce
the number of features

- Density estimation: estimate the
probability distribution that
generates the data




Some uvunsupervised learning tasks

- Clustering: finding groups into data e <ot i ik
(lecture 20) — L -

- Dimensionality reductions: reduce i @
the number of features > ']

- Density estimation: estimate the Transackion & "7
probability distribution that . *
generates the data @f | Occurrence Frequency=3

- Association rule learning Frequent Tfemsets ~ @owcm



Some unsupervised learning tasks

- Clustering: finding groups into data

(lecture 20)

- Dimensionality reductions: reduce

the number of features

- Density estimation: estimate the

probability distribution that
generates the data

- Association rule learning

Minimum Support=3

I-l-em se-l- DO'I'ClSe'I'
|2
Transaction ) E?

| l | Occurrence Frequency=3

Frequent Itemsets
Customers Who Bought Echo (2nd Generation) - Smart speaker with
' . > )
$34.99 /prime $19.99 sprime $39 99 prime $47.99 prime
| Add to Cart

£°J DataCamp

Page 1 of 5
Alex... Also Bought

< -

Echo Connect - requires...

S Wi-Fi Plug... tekcity 4 Pack Volts:




Some uvunsupervised learning tasks

Clustering: finding groups into data
(lecture 20)

Dimensionality reductions: reduce
the number of features

Density estimation: estimate the
probability distribution that
generates the data

Association rule learning

eeeeeeee

(N

Topic modelling (for text data)

Online feedbacks Topic Modelling Algorithm

Topic 2

Topic Identification Distributed to relevant teams



Some unsupervised learning tasks

- Clustering: finding groups into data
(lecture 20)

- Dimensionality reductions: reduce
the number of features

- Density estimation: estimate the
probability distribution that
generates the data

- Association rule learning

- Topic modelling (for text data)
- Anomaly/Outlier detection (today!)



Anomaly/Outlier Detection

What is an anomaly/outlier?

‘An outlier is an observation that ‘ ‘ Q

deviates so much from other
observations as to arouse . —
suspicion that it was generated {WHAT IS AN

by a different mechanism’[1] » <ANOMALY? ‘

In a dataset — by definition -
outliers should be few!

[1] D. M. Hawkins, Identification of outliers, vol. 11., Springer, 1980



Why detecting anomalies? Preprocessing (1/3)

With Outliers Outliers removed

Outliers can be data entry mistakes A much better fit!
or measurement errors that can ,
skew results _ b .
S / S
%y
/
As a pre-processing step, anomaly o / -
detection is a data cleaning step ) ! -
that dramatically improve g ! 5
performances! 8 , S
ol % ,
o _| ’Z{* o _| ** //
*’#x **ﬁ
***i * *;ﬁé
o - **I o - A%




Why detecting anomalies? Preprocessing (1/3)

With Outliers Outliers removed

Outliers can be data entry mistakes A much better fit!
or measurement errors that can ,
skew results . o i}

S . 2 ]

/
As a pre-processing step, anomaly - / -
detection is a data cleaning step ) ! -
that dramatically improve 5 ! 5
performances! S - / S -
%/ % ,

This procedure should be handled ° Ll ° o
carefully: by taking out difficult 5 I ;*%
data we always improve o *%' o | A%

performances! ]



Why detecting anomalies? Preprocessing (1/3)

When removing outliers makes sense
(not cheating):

(i) They are errors or noise

1. Example: A sensor was faulty, or someone
typed "2000" instead of "200".

2. Removing these helps your model focus
on meaningful data.

(ii) You're preparing data for a model that
assumes normality

1. Example: Linear regression can be badly
influenced by extreme values.

2. Outlier removal improves robustness.
(iii) You’re analyzing a population and
want to avoid skewing

1. If you’re looking at “typical behavior” (e.g.,
average customer purchase), outliers can
distort the picture.

X When removing outliers is cheating:

(i) Youremove them just toimprove
performance metrics

1. Example: Removing hard cases from a
test set so your model looks better.

2. That’s data leakage and cheating.

(ii) The outliers are the thing you care
about!

1. Example: Fraud detection, disease
diagnosis, equipment failure.

2. Removing them defeats the whole point
— you'd miss the rare but critical events.




Why detecting anomalies? Preprocessing (1/3)

When removing outliers makes sense
(not cheating):

(i) They are errors or noise

1. Example: A sensor was faulty, or someone
typed "2000" instead of "200".

2. Removing these helps your model focus
on meaningful data.

(ii) You're preparing data for a model that
assumes normality

1. Example: Linear regression can be badly
influenced by extreme values.

2. Outlier removal improves robustness.
(iii) You’re analyzing a population and
want to avoid skewing

1. If you’re looking at “typical behavior” (e.g.,
average customer purchase), outliers can

distort the picture.

X When removing outliers is cheating:

(i) Youremove them just to improve
performance metrics

1. Example: Removing hard cases from a
test set so your model looks better.

2. That’s data leakage and cheating.

(ii) The outliers are the thing you care
about!

1. Example: Fraud detection, disease
diagnosis, equipment failure.

2. Removing them defeats the whole point
— you'd miss the rare but critical events.

Not always an easy decision:

- Domain expertise may be necessary!
- Keep track of such choices!




Why detecting anomalies? As the final objective (2/3)

In many domains, detecting
anomalies is a fundamental
task by itself:

- Fraud detection

- Diagnostic tools for
manufacturing

- Cybersecurity

- Transactions on digital
marketing




Unsupervised learning: either the final
task or a preprocessing step!

@

Modelling

« Definition Conversion * Quality « Feature Extraction + On-line

+ Expected Impact . Parsmg + Reconciliation * Building implementation

 Evaluation metric « Aggregation « Missing data handling « Evaluation/  Business outcome
« Alignment + Denoising Comparison * Improvement

» Qutlier detection

We will see, both with anomaly detection and clustering that
unsupervised learning tasks can be part of a pre-processing pipeline
and as the final goal of a Machine Learning project!



Anomaly/Outlier Detection: any ideas?



Anomaly/Outlier Detection: any ideas?

- Visualizations and statistics may ® < Anomaly
be helpfull

- For example, in boxplot outliers
are plotted as individual points

beyond the "whiskers”, aka 1.5 x
IQR from Q1 and Q3

Value

Time
Interquartile Range
(IQR)
Outliers —— Outliers OUTLIERS H
"Minimum" "Maximum" @ ®
- H *

(Q1 - 1.5*IQR) Q1 Median Q3 (Q3 + 1.5*%IQR) ® ®

(25th Percent ile) (75th Percentile) . .
Q9 PPN

®
: @

4 3 2 1 0 1 2 3 4 ®




‘On-line’ anomaly detection: univariate control

charts!

- Anapproach used in many industries
are univariate control charts (CC)

- A control chart is a time series plot
with:

(i) A center line, the expected process
mean.

(i) An upper control limit (UCL) and
lower control limit (LCL), thresholds that
define the "normal" range of variation.

- Typically done on variables and Key
Process Indicators (KPIs), quantifiable
measures describing a process
’goodness’)

Sample Value

___________________________ Upper Control Limit

Average Output

ey Lower Control Limit

Time sequence

Computed statistically:

- Mean u,,STD o,

- Upper control limit UCL = u, + A * o,
- Lower control limit LCL = u,, — A * o,



‘On-line’ anomaly detection: univariate control
charts!

- Anapproach used in many industries
are univariate control charts (CC)

- Acontrol chart is a time series plot 7 Average Ot
. o_ . o \ / ¢
with: /

——————————————————————————— Lower Control Limit

___________________________ Upper Control Limit

Sample Value
N J
[ ]
®

(i) A center line, the expected process
Mean. Time sequence

(i) An upper control limit (UCL) and o
lower control limit (LCL), thresholds that ~ Computed statistically:
define the "normal" range of variation. Mean ., STD o,

- Upper control limit UCL = u, + A * o,
Lower control limit LCL = u,, — A * g,

- Typlcally done on variables and Key
Procg D \ntifialhle
meadli we choose A = 3 (‘3 S|gma ’)

fe[elel and we have a gaussian variable,
99.73% of data will be ‘inlier’




Problems with this approach? (1/2)

The Curse of Many Control Charts

100

Upper C°’!§(9!_L,i""1iﬁ,,ﬁ—
® sof
]
4
]

CenterL E
5
@ 60
> [I'Cognitive overload
8
o
E 401
o
O
o
£
S
c 20
o
= Monitoring Complexity

Manageable (0-10)
Challenging (10-25)
Of Overwhelming (>25)
0 10 20 30 40 50

Number of Control Charts

- Monitoring complexity increases
with the number of control charts!

- Shift from a manageable to an
overwhelming situation: increasing
risks of cognitive overload and false
alarms




Problems with this approach? (2/2)

50

40 |
= 30}
T 20|

10 |

I 00 I
I ©20% i |
I e & O
| % O(g Ol_
| O o |
| OOO@OO*
| 85) |
| 5 &
| (@O .@O |
CL. X UCL

ucL,

O

O
Q
)

‘Inlier’ (normal)
observation in
univariate control
charts



Problems with this approach? (2/2)

UCL
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40 f
— 30|
oc 20
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e s A = I UCH ————————————
I I
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e R s
O . 5
| © 9} e ARl Univariate approaches
& i iminiul s ) Ml ninbubnivinbwiniubuink Ji} <1< Unable to capture
e i S \\ " zgun fg LU Multivariate anomalies!
N\

2% | 1 .
' O@O & o 30 ¢ .. i
: Q Oocgo ¢ : OUtIler
I G500 I (anomalous)

O ' . .
P e | observation in the
LCL. X UCL

multivariate control
chart



Multivariate control
charts: Hotelling’s T

T2

i (Xz' — i)TS_l(xi — )_C)

S,xp = cov(X) =

T? is like a multivariate z-score: it
measures how far the observation is
from the mean, considering
correlations

We monitor if a data pointis a
multivariate outlier if: T2 > UCL

PC2 (19.2% expl.var)

Outl

iers marked using SPE/dmodX method and Hotelling T2.

0
PC1 (36.1% expl.var)

Hotelling T?

60

200

500

400

300




Multivariate control With Gaussian data, UCL is typically

. ina’ 2 computed:
charts: Hotelling’s T UCL =2, _,
2 _ (x; — i)TS_l(x- _ %) - pnumber of variables in the dataset
0 2 ¢ - a how strict you want to be

(common values are 0.05 or 0.01)

1 _ _ . . L
S,xp = cov(X) = (X - X)T(X —X) - x2isthe chi-squared distribution (a
n—1 value you look up on ‘tables’)

T? is like a multivariate z-score: it —

o Hotelling T
measures how far the observation is 60 oteTing
from the mean, considering 50
correlations 40 -

30 | -

We monitor if a data pointis a 20 :
multivariate outlier if: T? > UCL 10 !

0 100 200 300 400 500 600

700



Probability Density

Chi-Squared Distributions for Different Degrees of Freedom (p)

T T T T T

1 | R

U s WN -

Probability Density

0.20F

o
=
]

o
_
o

0.05F

0.00F

10

15
X

20

25

30

Chi-Squared Distribution with p = 3 and Various a

Chiz PDF (p=3)

With Gaussian data, UCL is typically
computed: )
UCL — Xp,l—a

pnumber of variables in the dataset

a how strict you want to be
(common values are 0.05 or 0.01)

x2 is the chi-squared distribution (a
value you look up on ‘tables’)

UCL («=0.05) = 7.81
UCL (a=0.01) = 11.34
UCL (a=0.001) = 16.27

20

25

30



Limitations of Hotelling’s T2

Variables in real world problems are
hardly Gaussian and hardly unimodal
(has only one peak or one mode)

0.1

0.08 -

0.51 0.06 -

0.04 -

0.02 -

-0.02

Real manufacturing datal

0.03

I
0.04

I
0.05

1
0.07

Il
0.08
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0.09

|
0.1



Multivariate Unsupervised Anomaly Detection

Multivariate Unsupervised AD
approaches provide ‘anomaly scores’
unigue quantitative indicators able to
represent the degree of ‘outlierness’ of
complex systems with many variables

1. No labelled data are required

2. Dozens/Hundreds of sensors
variables can be considered at the
same time L !ﬂm !

3. No need for gaussian/unimodal
distributions

Equipment view (high-level)

Violation severity

A AT YAWY AV an [N TP AN Y S ANUAEY
2 hours ago Now



Multivariate Unsupervised Anomaly Detection

Many approaches for tabular data (data
where rows are observations and
columns are variables) [2]:

- Density-based methods (e.g. LOF,
DBSCAN)

- Distance-based methods (e.g. kNN)
- Clustering-based methods (e.g. CBLOF)
- Neural Networks (e.g. Autoencoder)

- |Isolation Forest “

TV AWY A an [T\ ALY S ANUAE
2 hours ago Now

Equipment view (high-level)

Violation severity

[2] PyOD (Python library for detecting
outlying objects)
https://pyod.readthedocs.io/en/latest/



https://pyod.readthedocs.io/en/latest/

Isolation Forest [3]

- Efficient algorithm that
outperforms other AD
methods in several domains

Isolation of an inlier Isolation of an outlier [4]
i B 1 ( ) - Basedona éoartitioning
ol | . procedure (that creates
BT o o5 ° Isolation trees) and on the idea
G o o that outlier and inlier are
N differently affected by such
Lo | [T o procedure
) éllslplits! ’ ) Only 1 split! ’

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.



The Isolation Tree *‘(‘

Isolation Forest, is an Anomaly Detection method, based on
partitioning
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Isolation Forest, is an Anomaly Detection method, based on
partitioning



The Isolation Tree *‘(‘

Isolation Forest, is an Anomaly Detection method, based on
partitioning




The Isolation Tree *‘(‘

Isolation Forest, is an Anomaly Detection method, based on
partitioning




The Isolation Tree

solating an outlier - Efficient algorithm that
outperforms other AD
: - methods in several domains
Dofee . " [4]
.. ARY .. - Based on a partitioning
o T - procedure {’)chat creates
o8 ° : Isolation trees) and on the idea
°° . ° o that outlier and inlier are
. ° differently affected by such

procedure

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.



The Isolation Tree

/e

b

(a) Isolating x;

O
g
X
>
M
@ a %
o
.
..

(b) Isolating z,

Efficient algorithm that
outperforms other AD
methods in several domains

[4]

Based on a partitioning
procedure {’)chat creates
isolation trees) and on the idea
that outlier and inlier are
differently affected by such
procedure

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.



The Isolation Tree

- Efficient algorithm that
outperforms other AD

methods in several domains
[4]
Gt el R - Based on a partitioning
o LT procedure gchat creates
A PR R . S I Isolation trees) and on the idea
M S S that outlier and inlier are
S ik it il differently affected by such
l procedure
‘ X0 At each iteration, both the
(a) Isolating z; (b) Isolating z,

choice of the variable and

the choice of the split
value is random!

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.



The Isolation Tree: Why So Much Randomness?

Because the goal is not to learn a precise model
— it's to separate anomalies from the rest Aspect Why Random?
quickly. Here's how randomness helps:

To avoid bias and

1. Anomalies Are Easier to Isolate Feature

: explore all
: : | . .
Ovutliers are rare and very different from normal selection  Gimensions
data — so random splits are more likely to , o
isolate them early in the tree (i.e., shallow depth). Splitvalue  To simplify and
selection speed up isolation

2. No Need to Find “Good?” Splits

Unlike decision trees, which aim for optimal
splits (e.g., Gini or entropy) iForest is only
concerned with how many spllts it takes to
isolate a point. So random is fine — even ideal.




The Isolation Tree: Why So Much Randomness?

Because the goal is not to learn a precise model
— it's to separate anomalies from the rest Aspect Why Random?
quickly. Here's how randomness helps:

To avoid bias and

1. Anomalies Are Easier to Isolate Feature explore all
. : lecti . |
Outliers are rare and very different from normal selection  Jimensions
data — so random splits are more likely to , o
isolate them early in the tree (i.e., shallow depth). Splitvalue  To simplify and
. ) selection speed up isolation

2. No Need to Find “Good” Splits

To make
Unlike decision trees, which aim for optimal Multiole randomness
splits (e.g., Gini or entropy), iForest is only frees statistically
concerned with how many spllts it takes to meaningful

isolate a point. So random is fine — even ideal.
3. Ensemble Averaging Smooths Noise

By using many trees with different random
splits, we average out the randomness and get a
robust anomaly score.




) An ensemble approach:
Isolation Forest anomaly score computed as

mean of the depth over the
various isolation trees

[Forest

g
Scores ses sas [Tree
Qutlier
Normal uncommon  _|
samples 0.5
f

Normal common
samples




Isolation Forest: step-by-step

1. Subsampling the Data

- Fro.rT% t)he full dataset, randomly sample a subset of data points (e.g. 256
points

- Thisis done to reduce computation and improve generalization.

2. Build Isolation Trees (iTrees)

For each sampled subset, build a binary tree recursively with these rules:
At each node:

- Randomly select a feature (column)

- Randomly select a split value between the min and max of that feature in
the current data.

O Stop splitting when:

- The node has only one data point, or

- A max depth is reached (usually [logz(n)], where n is sample size)
Result: Each path from root to leaf isolates a data point.




Isolation Forest: step-by-step

iForest

3. Repeat and Build a Forest , ! \

iTree iTree iTree

- Build many trees (typically 100), o Qe
each on a different random sample Arozay

- The randomness ensures diverse
ways to isolate points

4. Compute Path Lengths

- For each data point in the original
dataset:

- Send it down every tree.

- Record the number of splits
needed to isolate it (i.e., how deep
it ends up in each tree).

Potential Anomaly

Normal Instance



Isolation Forest: step-by-step

5. Calculate Anomaly Score

- For each point, compute the average path length across all
trees.

- Convert that to an anomaly score using:
_ E(h(=))

s(x,n) =2 <

- E(h(x)) is the average path length for point x,

- c¢(n) is the average path length of an unsuccessful search in a
Binary Search Tree (a normalization factor).

2n — 1 11 1
(n=1) H(n) =1+ + 5+ o+

c(n)=2H(n —1) — -



Isolation Forest: step-by-step

5. Calculate Anomaly Score We need to compare path lengths
- For each point, compute the aver&EUsEEleEIEREERel e IyiEicl|er et
trees. A short path in a small dataset is not
the same as a short path in a big one.
- Convert that to an anomaly score So, we normalize each path length
_ E(h(x)) using c(n) to make the anomaly score
s(x,n) =2 <@ comparable.

- E(h(x)) is the average path length for point x,

- c¢(n) is the average path length of an unsuccessful search in a
Binary Search Tree (a normalization factor).

2n — 1 11 1
n = 1) H(n) =145+ 5+ +

c(n)=2H(n—1) — -



Isolation Forest: step-by-step

6. Compare the anomaly score with a threshold t

If the anomaly score is above a given threshold, we can declare a
data point anomalous

A way to derive the threshold is to consider the contamination: a
parameter that is a proportion (a float between 0 and 0.5, usually)
that indicates the expected fraction of outliers in the dataset

Contamination can be considered a tuning knob between false
positive (declared anomalies that are ‘normal’ data) and false
negatives (not declared anomalies that should have been
segnalated)



Iris dataset
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Iris dataset

Anomaly Scores on Iris Dataset
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Wine dataset

Isolation Forest Anomalies (Wine Dataset)
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California housing dataset

Top 10 Anomalies in Green (MedInc vs AveRooms)
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California housing dataset

PCA Projection - Top 10 Anomalies in Green
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California housing dataset

PCA Projection - Top 10 Anomalies in Green

400 A Normal
¥ Top 100 Anomalies
4= Top 10 Anomalies

X

PCA is not ideal for Anomaly Detection:
- PCA looks for directions of maximum
variance, assuming important info

lies there. =

. ) X
But anomalies are rare — they don’t
contribute much to overall variance,
so PCA tends to ignore them. 8
0
10'00 20'00 30b0 40b0 50b0 60'00

Principal Component 1



Oversampling PCA: osPCA

|dea:

- principal directions represent
normal” attributes

- outliers change directions of
principal components

To make it effective, each data
sample, when checked if it changed
the direction of the first PC, is

oversampled (replicated many times)

Lee, Yuh-Jye, Yi-Ren Yeh, and Yu-Chiang Frank
Wang. "Anomaly detection via online oversampling
principal component analysis.”, 2013.
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Univariate Control Chart vs Unsupervised AD

To enable Decision Making information should be:

Y complete of
x concise J

« interpretable x

Equipment view (high-level)
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I’'ve got the Anomaly Score: now, what?

Equipment view (high-level)

Thanks to the Anomaly
score users are alerted
of potential anomalous
situation, however it is
up to them to discover
potential troubles

It would be nice to ease
the Root Cause Analysis
to provide additional
information, like feature
rankings...

Violation severity
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Depth-based Isolation Forest n mco

ARTIFICIAL INTELLIGENCE, MACHINE

Feature Importance (DIFFI) [5]

PAST a
DIFFIis an eXplainable Artificial s E g s =
Intelligente ()E)AI) approach — -’ m—
designed for the Isolation Forest e
----- —
PIFFI provides a variable ranking & = — I
or:

- Global Explainability (ie. what
variables are important for

the whole Isolation Foreset
model) I
- Local Explainability (ie. what 2 RTINSy
variables are important fora &
particular prediction) £ I‘ ‘
o mennanalantaadlnll, I Ew
S e of Newnnln I" il 'I I'I"'

9 f10f11f12f13f14 f15f16f17
Feature ID

[5] Carletti, M., Terzi, M., & Susto, G. A. (2023). Interpretable Anomaly Detection with DIFFI: Depth-based feature importance of Isolation Forest. Engineering
Applications of Artificial Intelligence, 779,105730.



Depth-based Isolation Forest n mCO

Feature Importance (DIFFI) [5] e a5 LONTSL RESEARH S
DIFFI provides a variable ranking that:
& Iolaton Frest T~ - Does not require true labels (other
© @
— - jﬁg cﬁl& {@ .} F ’} XAl approaches do!)
g m ® - Low computational cost
$ - No tuning

Selection of best
predictions

; ' IDEA: mark a feature as "important" if
- itinduces isolation of outliers at small

DIFFI scores .
{Dept,, . J«- T " depths (i.e. near the root)

o - At the same time, does not contribute
to the isolation of inliers

[5] Carletti, M., Terzi, M., & Susto, G. A. (2023). Interpretable Anomaly Detection with DIFFI: Depth-

based feature importance of Isolation Forest. Engineering Applications of Artificial
Intelligence, 7719,105730. : :
For technical details




Dashboards Ride Monitoring with Anomaly Detection n Boss Statwolf

Y QR E

Timeframe

£ All Time S WO a %L OX
HH /2N Y
Capacity

Capacity is measured in number of cycles.
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Total Cycles @ Performed Cycles @ Stopped Cycles @ Estop Cycles @

Total Hourly Capacity
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Values
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® performed (unigue_cycles)

Duration

Duration is the sum of Working Time, Stopped Time, Downtime and Waiting Time.



Why detecting anomalies? For monitoring of a
productive solution (3/3)

Once we deploy a Machine

Learning model in production, is Deploy
not over!

For example, we should monitor if = .’L ,’1 ’:‘g

the underlying data are consistent 3 2

with what we had in training 3 OPS &
"QQ\.

Anomaly Detection can be useful
for monitoring! If we have outliers,
we can avoid trusting a single
prediction or we can start with re-
train

This is part of MLOps (Machine
Learning operations) principles

P €rformance
Monitor




How to evaluate an Unsupervised Anomaly
Detection system if we are in unsupervised
settings?

- That’s the true drawback of
unsupervised approaches!

bat* % e ' N7
- If you can't get ground truth labels, try " !’l- 53 ) 1" I AT (%
to get approximate labels or |nS|ghts S b N o

(i) Domain experts: Ask them to review
top Nanomalies ﬂagged by your model.
Are they meaningful?

(ii) Known anomaly cases: Use events like
system failures, alerts, or log anomalies as
partial [abels.

(i) Synthetic injection: Add known
anomalies to the dataset (e.g. noise, out-
of-distribution points) and check if your
model finds them.




ppclI STUD Machine Learning n m C O
DEGLI STUDI

DI PADOVA 2024/2025 e LN e

= . ik T

o ke
ok o0 A 4 mu.n,jmmnfh

oo e m:

o anrrt s

Thank you!

Gian Antonio Susto




