
Lecture #19
Unsupervised
Learning &
Anomaly
Detection
Gian Antonio Susto

Machine Learning
2024/2025

Up until now we have seen:

- Preprocessing (statistics,
visualizations)

- Supervised learning (regression,
classification)

- ‘Meta’ concepts such as:
optimization of a loss function,
underfitting vs overfitting,

- ML programming in Python

50% of the course is done!

WEEK 07
2025-04-07 #19: Unsupervised Learning. Anomaly
Detection
2025-04-10 #20: Clustering. K-Means Clustering.
Evaluating clustering performance
2025-04-11 #21 (Lab 07): Anomaly Detection &
Clustering

WEEK 08
2025-04-14 #22: Support Vector Machines (SVM),
Linear and kernel-based approaches, ROC & AUC
2025-04-17 #23: Introduction to Neural Networks
(NNs), Activation functions, Perceptrons

WEEK 09
2025-04-24 #24: Training of NNs #01

WEEK 10
2025-04-28 #25: Training of NNs #02

WEEK 11
2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01

What’s next? Revised course outline
WEEK 12
2025-05-13 #29: Fairness in ML
2025-05-15 Programming Mock
Exam discussion
2025-05-16 #30 (Lab 09): NN #02
WEEK 13
2025-05-19 Recap session with
TAs
2025-05-22 #31: Real-world
Applications and MLOps (Industrial
Guest Lecture)
2025-05-23 #32 (Lab 10): Recap
LAB
WEEK 14
2025-05-26 #33: XAI #01
2025-05-29 #34: XAI #02
2025-05-30 #35 (Lab 10): XAI
WEEK 15
2025-06-05 #36: ML, what’s next?
2025-06-06 Buffer slot
WEEK 16
2025-06-09 Buffer slot
2025-06-12 Buffer slot

WEEK 07
2025-04-07 #19: Unsupervised Learning. Anomaly
Detection
2025-04-10 #20: Clustering. K-Means Clustering.
Evaluating clustering performance
2025-04-11 #21 (Lab 07): Anomaly Detection &
Clustering

WEEK 08
2025-04-14 #22: Support Vector Machines (SVM),
Linear and kernel-based approaches, ROC & AUC
2025-04-17 #23: Introduction to Neural Networks
(NNs), Activation functions, Perceptrons

WEEK 09
2025-04-24 #24: Training of NNs #01

WEEK 10
2025-04-28 #25: Training of NNs #02

WEEK 11
2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01

What’s next? Revised course outline
WEEK 12
2025-05-13 #29: Fairness in ML
2025-05-15 Programming Mock
Exam discussion
2025-05-16 #30 (Lab 09): NN #02
WEEK 13
2025-05-19 Recap session with
TAs
2025-05-22 #31: Real-world
Applications and MLOps (Industrial
Guest Lecture)
2025-05-23 #32 (Lab 10): Recap
LAB
WEEK 14
2025-05-26 #33: XAI #01
2025-05-29 #34: XAI #02
2025-05-30 #35 (Lab 10): XAI
WEEK 15
2025-06-05 #36: ML, what’s next?
2025-06-06 Buber slot
WEEK 16
2025-06-09 Buber slot
2025-06-12 Buber slot

By the end of this week,
you’ll have the basic tools
to complete an end-to-
end ML feasibility
assessment!

Early next week we’ll
provide you with a
programming ‘mock’
exam: solutions will be
given and discussed in
one month

WEEK 07
2025-04-07 #19: Unsupervised Learning.
Anomaly Detection
2025-04-10 #20: Clustering. K-Means Clustering.
Evaluating clustering performance
2025-04-11 #21 (Lab 07): Anomaly Detection &
Clustering
WEEK 08
2025-04-14 #22: Support Vector Machines
(SVM), Linear and kernel-based approaches,
ROC & AUC
2025-04-17 #23: Introduction to Neural
Networks (NNs), Activation functions,
Perceptrons
WEEK 09
2025-04-24 #24: Training of NNs #01
WEEK 10
2025-04-28 #25: Training of NNs #02
WEEK 11
2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent
NNs
2025-05-09 #28 (Lab 08): NN #01

What’s next? Revised course outline
WEEK 12
2025-05-13 #29: Fairness in ML
2025-05-15 Programming Mock
Exam discussion
2025-05-16 #30 (Lab 09): NN #02
WEEK 13
2025-05-19 Recap session with
TAs
2025-05-22 #31: Real-world
Applications and MLOps (Industrial
Guest Lecture)
2025-05-23 #32 (Lab 10): Recap
LAB
WEEK 14
2025-05-26 #33: XAI #01
2025-05-29 #34: XAI #02
2025-05-30 #35 (Lab 10): XAI
WEEK 15
2025-06-05 #36: ML, what’s next?
2025-06-06 Buffer slot
WEEK 16
2025-06-09 Buffer slot
2025-06-12 Buffer slot

We will go back to
supervised learning soon:
next week we’ll talk
about Support Vector
Machines: this topic will
be relevant only for the
theoretic part of the
exam!

WEEK 07
2025-04-07 #19: Unsupervised Learning. Anomaly
Detection
2025-04-10 #20: Clustering. K-Means Clustering.
Evaluating clustering performance
2025-04-11 #21 (Lab 07): Anomaly Detection &
Clustering

WEEK 08
2025-04-14 #22: Support Vector Machines (SVM),
Linear and kernel-based approaches, ROC & AUC
2025-04-17 #23: Introduction to Neural Networks
(NNs), Activation functions, Perceptrons

WEEK 09
2025-04-24 #24: Training of NNs #01

WEEK 10
2025-04-28 #25: Training of NNs #02

WEEK 11
2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01

What’s next? Revised course outline
WEEK 12
2025-05-13 #29: Fairness in ML
2025-05-15 Programming Mock
Exam discussion
2025-05-16 #30 (Lab 09): NN #02
WEEK 13
2025-05-19 Recap session with
TAs
2025-05-22 #31: Real-world
Applications and MLOps (Industrial
Guest Lecture)
2025-05-23 #32 (Lab 10): Recap
LAB
WEEK 14
2025-05-26 #33: XAI #01
2025-05-29 #34: XAI #02
2025-05-30 #35 (Lab 10): XAI
WEEK 15
2025-06-05 #36: ML, what’s next?
2025-06-06 Buber slot
WEEK 16
2025-06-09 Buber slot
2025-06-12 Buber slot

Basics of Neural
Networks / Deep
Learning will be provided.

For the programming
part of NNs we will mainly
use libraries where the
basic blocks of a NN are
already implemented!

WEEK 07
2025-04-07 #19: Unsupervised Learning. Anomaly
Detection
2025-04-10 #20: Clustering. K-Means Clustering.
Evaluating clustering performance
2025-04-11 #21 (Lab 07): Anomaly Detection &
Clustering

WEEK 08
2025-04-14 #22: Support Vector Machines (SVM),
Linear and kernel-based approaches, ROC & AUC
2025-04-17 #23: Introduction to Neural Networks
(NNs), Activation functions, Perceptrons

WEEK 09
2025-04-24 #24: Training of NNs #01

WEEK 10
2025-04-28 #25: Training of NNs #02

WEEK 11
2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01

What’s next? Revised course outline
WEEK 12
2025-05-13 #29: Fairness in ML
2025-05-15 Programming Mock
Exam discussion
2025-05-16 #30 (Lab 09): NN #02
WEEK 13
2025-05-19 Recap session with
TAs
2025-05-22 #31: Real-world
Applications and MLOps (Industrial
Guest Lecture)
2025-05-23 #32 (Lab 10): Recap
LAB
WEEK 14
2025-05-26 #33: XAI #01
2025-05-29 #34: XAI #02
2025-05-30 #35 (Lab 10): XAI
WEEK 15
2025-06-05 #36: ML, what’s next?
2025-06-06 Buffer slot
WEEK 16
2025-06-09 Buffer slot
2025-06-12 Buffer slot

Explainability and
Fairness will be covered!

d

d

WEEK 07
2025-04-07 #19: Unsupervised Learning.
Anomaly Detection
2025-04-10 #20: Clustering. K-Means Clustering.
Evaluating clustering performance
2025-04-11 #21 (Lab 07): Anomaly Detection &
Clustering
WEEK 08
2025-04-14 #22: Support Vector Machines
(SVM), Linear and kernel-based approaches,
ROC & AUC
2025-04-17 #23: Introduction to Neural
Networks (NNs), Activation functions,
Perceptrons
WEEK 09
2025-04-24 #24: Training of NNs #01
WEEK 10
2025-04-28 #25: Training of NNs #02
WEEK 11
2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01

What’s next? Revised course outline
WEEK 12
2025-05-13 #29: Fairness in ML
2025-05-15 Programming Mock
Exam discussion
2025-05-16 #30 (Lab 09): NN #02
WEEK 13
2025-05-19 Recap session with
TAs
2025-05-22 #31: Real-world
Applications and MLOps (Industrial
Guest Lecture)
2025-05-23 #32 (Lab 10): Recap
LAB
WEEK 14
2025-05-26 #33: XAI #01
2025-05-29 #34: XAI #02
2025-05-30 #35 (Lab 10): XAI
WEEK 15
2025-06-05 #36: ML, what’s next?
2025-06-06 Buffer slot
WEEK 16
2025-06-09 Buffer slot
2025-06-12 Buffer slot

We will have a recap for
the theory and one for
the programming part of
the exam

d

d

WEEK 07
2025-04-07 #19: Unsupervised Learning.
Anomaly Detection
2025-04-10 #20: Clustering. K-Means Clustering.
Evaluating clustering performance
2025-04-11 #21 (Lab 07): Anomaly Detection &
Clustering
WEEK 08
2025-04-14 #22: Support Vector Machines
(SVM), Linear and kernel-based approaches,
ROC & AUC
2025-04-17 #23: Introduction to Neural
Networks (NNs), Activation functions,
Perceptrons
WEEK 09
2025-04-24 #24: Training of NNs #01
WEEK 10
2025-04-28 #25: Training of NNs #02
WEEK 11
2025-05-05 #26: Convolutional Neural Networks
2025-05-08 #27: Autoencoders & Recurrent NNs
2025-05-09 #28 (Lab 08): NN #01

What’s next? Revised course outline
WEEK 12
2025-05-13 #29: Fairness in ML
2025-05-15 Programming Mock
Exam discussion
2025-05-16 #30 (Lab 09): NN #02
WEEK 13
2025-05-19 Recap session with
TAs
2025-05-22 #31: Real-world
Applications and MLOps (Industrial
Guest Lecture)
2025-05-23 #32 (Lab 10): Recap
LAB
WEEK 14
2025-05-26 #33: XAI #01
2025-05-29 #34: XAI #02
2025-05-30 #35 (Lab 10): XAI
WEEK 15
2025-06-05 #36: ML, what’s next?
2025-06-06 Buber slot
WEEK 16
2025-06-09 Buber slot
2025-06-12 Buber slot

Finally, two lectures on:
- Real world

applications
- What’s next in AI

You will be not evaluated
on these two, but these
lectures will provide you
with a broaden view of
the area!

d

d

Supervised
Learning

Setup: Observation of the
environment

Data: (x,y)

Task: learn a map from inputs x
to outputs y

Unsupervised
Learning

Setup: Observation of the
environment

Data: x (no labels)

Task: Discover the underlying
structure or distribution in data

without labels

Some unsupervised learning tasks
- Clustering: finding groups into data

(lecture 20)

- Dimensionality reductions: reduce
the number of features

- Density estimation: estimate the
probability distribution that
generates the data

- Association rule learning

- Topic modelling (for text data)

- Anomaly/Outlier detection (today!)

Some unsupervised learning tasks
- Clustering: finding groups into data

(lecture 20)

- Dimensionality reductions: reduce
the number of features

- Density estimation: estimate the
probability distribution that
generates the data

- Association rule learning

- Topic modelling (for text data)

- Anomaly/Outlier detection (today!)

Some unsupervised learning tasks
- Clustering: finding groups into data

(lecture 20)

- Dimensionality reductions: reduce
the number of features

- Density estimation: estimate the
probability distribution that
generates the data

- Association rule learning

- Topic modelling (for text data)

- Anomaly/Outlier detection (today!)

Some unsupervised learning tasks
- Clustering: finding groups into data

(lecture 20)

- Dimensionality reductions: reduce
the number of features

- Density estimation: estimate the
probability distribution that
generates the data

- Association rule learning

- Topic modelling (for text data)

- Anomaly/Outlier detection (today!)

Some unsupervised learning tasks
- Clustering: finding groups into data

(lecture 20)

- Dimensionality reductions: reduce
the number of features

- Density estimation: estimate the
probability distribution that
generates the data

- Association rule learning

- Topic modelling (for text data)

- Anomaly/Outlier detection (today!)

Some unsupervised learning tasks
- Clustering: finding groups into data

(lecture 20)

- Dimensionality reductions: reduce
the number of features

- Density estimation: estimate the
probability distribution that
generates the data

- Association rule learning

- Topic modelling (for text data)

- Anomaly/Outlier detection (today!)

Some unsupervised learning tasks
- Clustering: finding groups into data

(lecture 20)

- Dimensionality reductions: reduce
the number of features

- Density estimation: estimate the
probability distribution that
generates the data

- Association rule learning

- Topic modelling (for text data)

- Anomaly/Outlier detection (today!)

Anomaly/Outlier Detection

What is an anomaly/outlier?

‘An outlier is an observation that
deviates so much from other
observations as to arouse
suspicion that it was generated
by a different mechanism’ [1]Too

In a dataset – by definition –
outliers should be few! many to
handle!

[1] D. M. Hawkins, Identi4cation of outliers, vol. 11., Springer, 1980

Why detecting anomalies? Preprocessing (1/3)

Outliers can be data entry mistakes
or measurement errors that can
skew results

As a pre-processing step, anomaly
detection is a data cleaning step
that dramatically improve
performances!

This procedure should be handled
carefully: by taking out di?cult
data we always improve
performances!

Why detecting anomalies? Preprocessing (1/3)

Outliers can be data entry mistakes
or measurement errors that can
skew results

As a pre-processing step, anomaly
detection is a data cleaning step
that dramatically improve
performances!

This procedure should be handled
carefully: by taking out difficult
data we always improve
performances!

Why detecting anomalies? Preprocessing (1/3)
✅When removing outliers makes sense
(not cheating):
(i) They are errors or noise

1. Example: A sensor was faulty, or someone
typed "2000" instead of "200".

2. Removing these helps your model focus
on meaningful data.

(ii) You're preparing data for a model that
assumes normality

1. Example: Linear regression can be badly
influenced by extreme values.

2. Outlier removal improves robustness.

(iii) You’re analyzing a population and
want to avoid skewing

1. If you’re looking at “typical behavior” (e.g.,
average customer purchase), outliers can
distort the picture.

❌When removing outliers is cheating:

(i) You remove them just to improve
performance metrics

1. Example: Removing hard cases from a
test set so your model looks better.

2. That’s data leakage and cheating.

(ii) The outliers are the thing you care
about!

1. Example: Fraud detection, disease
diagnosis, equipment failure.

2. Removing them defeats the whole point
— you'd miss the rare but critical events.

Why detecting anomalies? Preprocessing (1/3)
✅When removing outliers makes sense
(not cheating):
(i) They are errors or noise

1. Example: A sensor was faulty, or someone
typed "2000" instead of "200".

2. Removing these helps your model focus
on meaningful data.

(ii) You're preparing data for a model that
assumes normality

1. Example: Linear regression can be badly
influenced by extreme values.

2. Outlier removal improves robustness.

(iii) You’re analyzing a population and
want to avoid skewing

1. If you’re looking at “typical behavior” (e.g.,
average customer purchase), outliers can
distort the picture.

❌When removing outliers is cheating:

(i) You remove them just to improve
performance metrics

1. Example: Removing hard cases from a
test set so your model looks better.

2. That’s data leakage and cheating.

(ii) The outliers are the thing you care
about!

1. Example: Fraud detection, disease
diagnosis, equipment failure.

2. Removing them defeats the whole point
— you'd miss the rare but critical events.

Not always an easy decision:
- Domain expertise may be necessary!
- Keep track of such choices!

Why detecting anomalies? As the final objective (2/3)

In many domains, detecting
anomalies is a fundamental
task by itself:
- Fraud detection
- Diagnostic tools for

manufacturing
- Cybersecurity
- Transactions on digital

marketing

Unsupervised learning: either the final
task or a preprocessing step!

We will see, both with anomaly detection and clustering that
unsupervised learning tasks can be part of a pre-processing pipeline
and as the final goal of a Machine Learning project!

Anomaly/Outlier Detection: any ideas?

Anomaly/Outlier Detection: any ideas?

- Visualizations and statistics may
be helpful!

- For example, in boxplot outliers
are plotted as individual points
beyond the "whiskers”, aka 1.5 x
IQR from Q1 and Q3

‘On-line’ anomaly detection: univariate control
charts!
- An approach used in many industries

are univariate control charts (CC)
- A control chart is a time series plot

with:

(i) A center line, the expected process
mean.
(ii) An upper control limit (UCL) and
lower control limit (LCL), thresholds that
define the "normal" range of variation.

- Typically done on variables and Key
Process Indicators (KPIs), quantifiable
measures describing a process
’goodness’)

Computed statistically:
- Mean 𝜇!, STD 𝜎!
- Upper control limit UCL = 	𝜇! + 𝐴	 ∗ 𝜎!
- Lower control limit LCL = 	𝜇! − 𝐴	 ∗ 𝜎!

‘On-line’ anomaly detection: univariate control
charts!
- An approach used in many industries

are univariate control charts (CC)
- A control chart is a time series plot

with:

(i) A center line, the expected process
mean.
(ii) An upper control limit (UCL) and
lower control limit (LCL), thresholds that
define the "normal" range of variation.

- Typically done on variables and Key
Process Indicators (KPIs), quantifiable
measures describing a process
’goodness’)

Computed statistically:
- Mean 𝜇!, STD 𝜎!
- Upper control limit UCL = 	𝜇! + 𝐴	 ∗ 𝜎!
- Lower control limit LCL = 	𝜇! − 𝐴	 ∗ 𝜎!If we choose A = 3 (‘3 sigma’)

and we have a gaussian variable,
99.73% of data will be ‘inlier’

Problems with this approach? (1/2)

- Monitoring complexity increases
with the number of control charts!

- Shift from a manageable to an
overwhelming situation: increasing
risks of cognitive overload and false
alarms

Problems with this approach? (2/2)

Problems with this approach? (2/2)

Univariate approaches
are unable to capture
multivariate anomalies!

Multivariate control
charts: Hotelling’s 𝑇!

𝑇" is like a multivariate z-score: it
measures how far the observation is
from the mean, considering
correlations
We monitor if a data point is a
multivariate outlier if: 𝑇" > UCL

Multivariate control
charts: Hotelling’s 𝑇!

With Gaussian data, UCL is typically
computed:

- p number of variables in the dataset
- α how strict you want to be

(common values are 0.05 or 0.01)
- χ2 is the chi-squared distribution (a

value you look up on ‘tables’)

𝑇" is like a multivariate z-score: it
measures how far the observation is
from the mean, considering
correlations
We monitor if a data point is a
multivariate outlier if: 𝑇" > UCL

Multivariate control
charts: Hotelling’s 𝑇!

With Gaussian data, UCL is typically
computed:

- p number of variables in the dataset
- α how strict you want to be

(common values are 0.05 or 0.01)
- χ2 is the chi-squared distribution (a

value you look up on ‘tables’)

Limitations of Hotelling’s 𝑇!

Variables in real world problems are
hardly Gaussian and hardly unimodal
(has only one peak or one mode)
1. Too many to handle!

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Lettura assorbimento

-0.02

0

0.02

0.04

0.06

0.08

0.1

Le
ttu

ra
 a

ss
or

bi
m

en
to

 re
at

tiv
o

Undetected Outliers

Real manufacturing data!

Multivariate Unsupervised Anomaly Detection

Multivariate Unsupervised AD
approaches provide ‘anomaly scores’:
unique quantitative indicators able to
represent the degree of ‘outlierness’ of
complex systems with many variables
1. No labelled data are required
2. Dozens/Hundreds of sensors

variables can be considered at the
same time

3. No need for gaussian/unimodal
distributions

Multivariate Unsupervised Anomaly Detection

[2] PyOD (Python library for detecting
outlying objects)
https://pyod.readthedocs.io/en/latest/

Many approaches for tabular data (data
where rows are observations and
columns are variables) [2]:

- Density-based methods (e.g. LOF,
DBSCAN)

- Distance-based methods (e.g. kNN)
- Clustering-based methods (e.g. CBLOF)
- Neural Networks (e.g. Autoencoder)
- Isolation Forest
- ...

https://pyod.readthedocs.io/en/latest/

Isolation Forest [3]
- Efficient algorithm that

outperforms other AD
methods in several domains
[4]

- Based on a partitioning
procedure (that creates
isolation trees) and on the idea
that outlier and inlier are
differently affected by such
procedure

- An ensemble approach:
anomaly score computed as
mean of the depth over the
various isolation trees

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.

Isolation of an inlier

4 splits!

Isolation of an outlier

Only 1 split!

Isolation Forest, is an Anomaly Detection method, based on
partitioning

The Isolation Tree

Isolation Forest, is an Anomaly Detection method, based on
partitioning

The Isolation Tree

Isolation Forest, is an Anomaly Detection method, based on
partitioning

The Isolation Tree

Isolation Forest, is an Anomaly Detection method, based on
partitioning

The Isolation Tree

- Efficient algorithm that
outperforms other AD
methods in several domains
[4]

- Based on a partitioning
procedure (that creates
isolation trees) and on the idea
that outlier and inlier are
differently affected by such
procedure

- An ensemble approach:
anomaly score computed as
mean of the depth over the
various isolation trees

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.

The Isolation Tree

The Isolation Tree
- Efficient algorithm that

outperforms other AD
methods in several domains
[4]

- Based on a partitioning
procedure (that creates
isolation trees) and on the idea
that outlier and inlier are
differently affected by such
procedure

- An ensemble approach:mean
of the depth over the various
isolation trees

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.

- Efficient algorithm that
outperforms other AD
methods in several domains
[4]

- Based on a partitioning
procedure (that creates
isolation trees) and on the idea
that outlier and inlier are
differently affected by such
procedure

- An ensemble approach:mean
of the depth over the various
isolation trees

[3] Liu et al. (2012). Isolation-based anomaly detection. ACM Trans. on Knowledge Discovery from Data 6(1), 1-39.
[4] Ma et al. (2023) The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies.

At each iteration, both the
choice of the variable and
the choice of the split
value is random!

The Isolation Tree

Because the goal is not to learn a precise model
— it's to separate anomalies from the rest
quickly. Here's how randomness helps:
1. Anomalies Are Easier to Isolate
Outliers are rare and very different from normal
data → so random splits are more likely to
isolate them early in the tree (i.e., shallow depth).
2. No Need to Find “Good” Splits
Unlike decision trees, which aim for optimal
splits (e.g., Gini or entropy), iForest is only
concerned with how many splits it takes to
isolate a point. So random is fine — even ideal.
3. Ensemble Averaging Smooths Noise
By using many trees with different random
splits, we average out the randomness and get a
robust anomaly score.

The Isolation Tree: Why So Much Randomness?

Aspect Why Random?

Feature
selection

To avoid bias and
explore all
dimensions

Split value
selection

To simplify and
speed up isolation

Multiple
trees

To make
randomness
statistically
meaningful

Because the goal is not to learn a precise model
— it's to separate anomalies from the rest
quickly. Here's how randomness helps:
1. Anomalies Are Easier to Isolate
Outliers are rare and very different from normal
data → so random splits are more likely to
isolate them early in the tree (i.e., shallow depth).
2. No Need to Find “Good” Splits
Unlike decision trees, which aim for optimal
splits (e.g., Gini or entropy), iForest is only
concerned with how many splits it takes to
isolate a point. So random is fine — even ideal.
3. Ensemble Averaging Smooths Noise
By using many trees with different random
splits, we average out the randomness and get a
robust anomaly score.

The Isolation Tree: Why So Much Randomness?

Aspect Why Random?

Feature
selection

To avoid bias and
explore all
dimensions

Split value
selection

To simplify and
speed up isolation

Multiple
trees

To make
randomness
statistically
meaningful

Isolation Forest
An ensemble approach:
anomaly score computed as
mean of the depth over the
various isolation trees

Isolation Forest: step-by-step
1. Subsampling the Data
- From the full dataset, randomly sample a subset of data points (e.g. 256

points)
- This is done to reduce computation and improve generalization.

2. Build Isolation Trees (iTrees)
For each sampled subset, build a binary tree recursively with these rules:
✅ At each node:
- Randomly select a feature (column)
- Randomly select a split value between the min and max of that feature in

the current data.
🚫 Stop splitting when:
- The node has only one data point, or
- A max depth is reached (usually ⌈log₂(n)⌉, where n is sample size)
➡ Result: Each path from root to leaf isolates a data point.

Isolation Forest: step-by-step

3. Repeat and Build a Forest
- Build many trees (typically 100),

each on a different random sample
- The randomness ensures diverse

ways to isolate points
4. Compute Path Lengths
- For each data point in the original

dataset:
- Send it down every tree.
- Record the number of splits

needed to isolate it (i.e., how deep
it ends up in each tree).

Isolation Forest: step-by-step

5. Calculate Anomaly Score
- For each point, compute the average path length across all

trees.
- Convert that to an anomaly score using:

- 𝐸(ℎ(𝑥)) is the average path length for point 𝑥,
- c 𝑛 	is the average path length of an unsuccessful search in a

Binary Search Tree (a normalization factor).

Isolation Forest: step-by-step

5. Calculate Anomaly Score
- For each point, compute the average path length across all

trees.
- Convert that to an anomaly score using:

- 𝐸(ℎ(𝑥)) is the average path length for point 𝑥,
- c 𝑛 	is the average path length of an unsuccessful search in a

Binary Search Tree (a normalization factor).

We need to compare path lengths
across datasets of different sizes.
A short path in a small dataset is not
the same as a short path in a big one.
So, we normalize each path length
using c(n) to make the anomaly score
comparable.

Isolation Forest: step-by-step

6. Compare the anomaly score with a threshold 𝝉
- If the anomaly score is above a given threshold, we can declare a

data point anomalous
- A way to derive the threshold is to consider the contamination: a

parameter that is a proportion (a float between 0 and 0.5, usually)
that indicates the expected fraction of outliers in the dataset

- Contamination can be considered a tuning knob between false
positive (declared anomalies that are ‘normal’ data) and false
negatives (not declared anomalies that should have been
segnalated)

Iris dataset

Iris dataset

Wine dataset

California housing dataset

California housing dataset

California housing dataset

PCA is not ideal for Anomaly Detection:
- PCA looks for directions of maximum

variance, assuming important info
lies there.

- But anomalies are rare — they don’t
contribute much to overall variance,
so PCA tends to ignore them.

Idea:
- principal directions represent

“normal” attributes
- outliers change directions of

principal components

To make it effective, each data
sample, when checked if it changed
the direction of the first PC, is
oversampled (replicated many times)

Lee, Yuh-Jye, Yi-Ren Yeh, and Yu-Chiang Frank
Wang. "Anomaly detection via online oversampling
principal component analysis.”, 2013.

Oversampling PCA: osPCA

Univariate Control Chart vs Unsupervised AD

To enable Decision Making information should be:
complete

concise
interpretable

I’ve got the Anomaly Score: now, what?

- Thanks to the Anomaly
score users are alerted
of potential anomalous
situation, however it is
up to them to discover
potential troubles

- It would be nice to ease
the Root Cause Analysis
to provide additional
information, like feature
rankings…

Depth-based Isolation Forest
Feature Importance (DIFFI) [5]

DIFFI is an eXplainable ArtiOcial
Intelligente (XAI) approach
designed for the Isolation Forest

DIFFI provides a variable ranking
for:

- Global Explainability (ie. what
variables are important for
the whole Isolation Foreset
model)

- Local Explainability (ie. what
variables are important for a
particular prediction)

[5] Carletti, M., Terzi, M., & Susto, G. A. (2023). Interpretable Anomaly Detection with DIFFI: Depth-based feature importance of Isolation Forest. Engineering
Applications of Artificial Intelligence, 119, 105730.

Depth-based Isolation Forest
Feature Importance (DIFFI) [5]

DIFFI provides a variable ranking that:
- Does not require true labels (other

XAI approaches do!)
- Low computational cost
- No tuning

IDEA: mark a feature as "important" if
- it induces isolation of outliers at small

depths (i.e. near the root)
- At the same time, does not contribute

to the isolation of inliers

[5] Carletti, M., Terzi, M., & Susto, G. A. (2023). Interpretable Anomaly Detection with DIFFI: Depth-
based feature importance of Isolation Forest. Engineering Applications of ArtiTcial
Intelligence, 119, 105730.

For technical details

Example #03: Unsupervised Anomaly Detection
- Use case: roller coaster monitoring

[10] E. Anello, M. Chiara, F. Ferro, F. Ferrari, B. Mukaj, A. Beghi, G.A.~Susto
’Anomaly Detection for the Industrial Internet of Things: an
Unsupervised Approach for Fast Root Cause Analysis.’ IEEE CCTA 2022

- Once we deploy a Machine
Learning model in production, is
not over!

- For example, we should monitor if
the underlying data are consistent
with what we had in training

- Anomaly Detection can be useful
for monitoring! If we have outliers,
we can avoid trusting a single
prediction or we can start with re-
train

- This is part of MLOps (Machine
Learning operations) principles

Why detecting anomalies? For monitoring of a
productive solution (3/3)

- That’s the true drawback of
unsupervised approaches!

- If you can't get ground truth labels, try
to get approximate labels or insights:

(i) Domain experts: Ask them to review
top N anomalies flagged by your model.
Are they meaningful?
(ii) Known anomaly cases: Use events like
system failures, alerts, or log anomalies as
partial labels.
(iii) Synthetic injection: Add known
anomalies to the dataset (e.g. noise, out-
of-distribution points) and check if your
model finds them.

How to evaluate an Unsupervised Anomaly
Detection system if we are in unsupervised
settings?

Thank you!

Gian Antonio Susto

Machine Learning
2024/2025

