

UNIVERSITÀ  
DEGLI STUDI  
DI PADOVA

Machine Learning  
2024/2025

**AMCO**  
ARTIFICIAL INTELLIGENCE, MACHINE  
LEARNING AND CONTROL RESEARCH GROUP

# Lecture #17 Ensemble Tree- based Approaches

Gian Antonio Susto

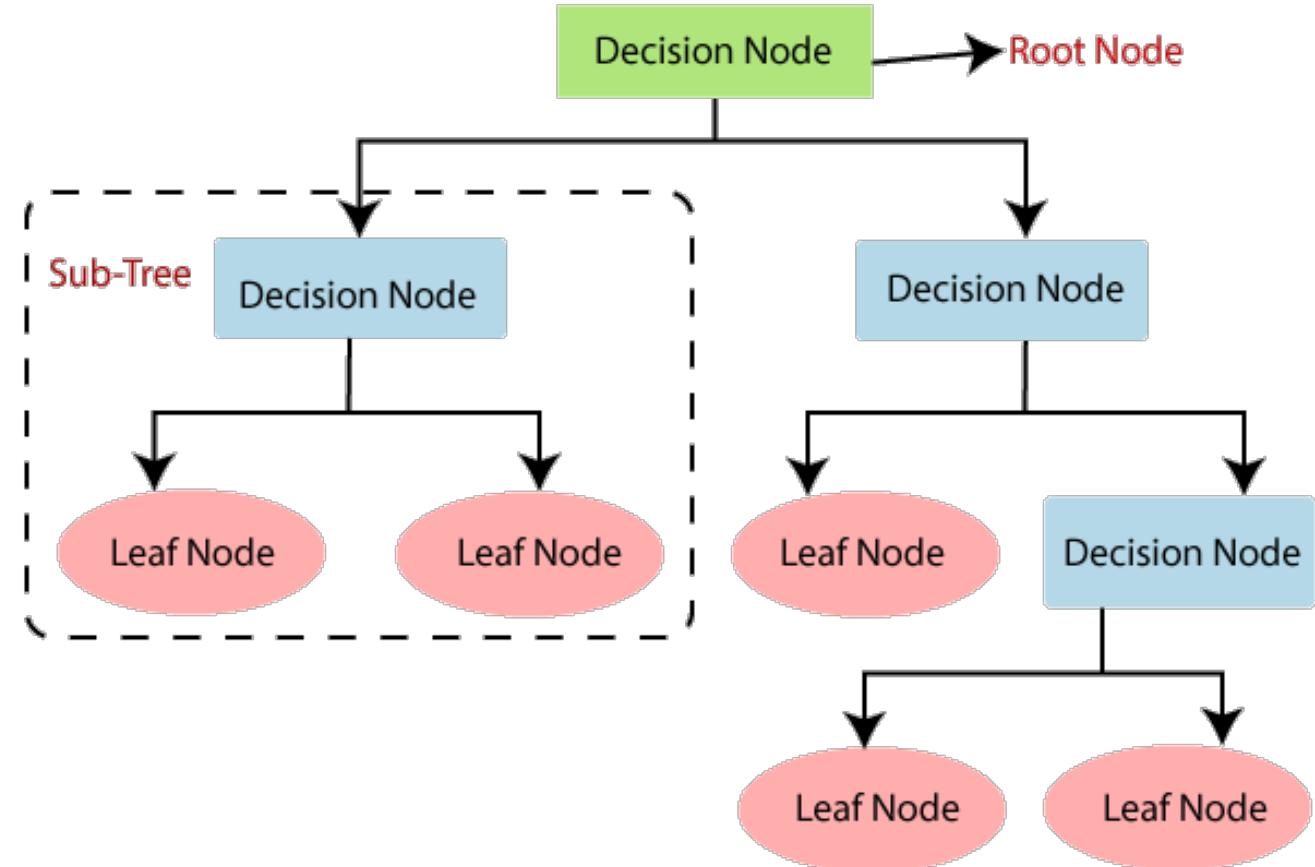




# Recap: the Decision Tree

At the heart is the **decision tree**, a structure that mimics human decision-making by splitting data into branches based on feature values.

Each **internal node** of the tree represents **a decision based on a feature**, each **branch** represents the outcome of that decision, and each **leaf node** corresponds to a **prediction or outcome**.



# Recap: Gini Index / Entropy / Information Gain

The Gini Index (or Gini Impurity) is a measure of how impure or mixed a dataset is.

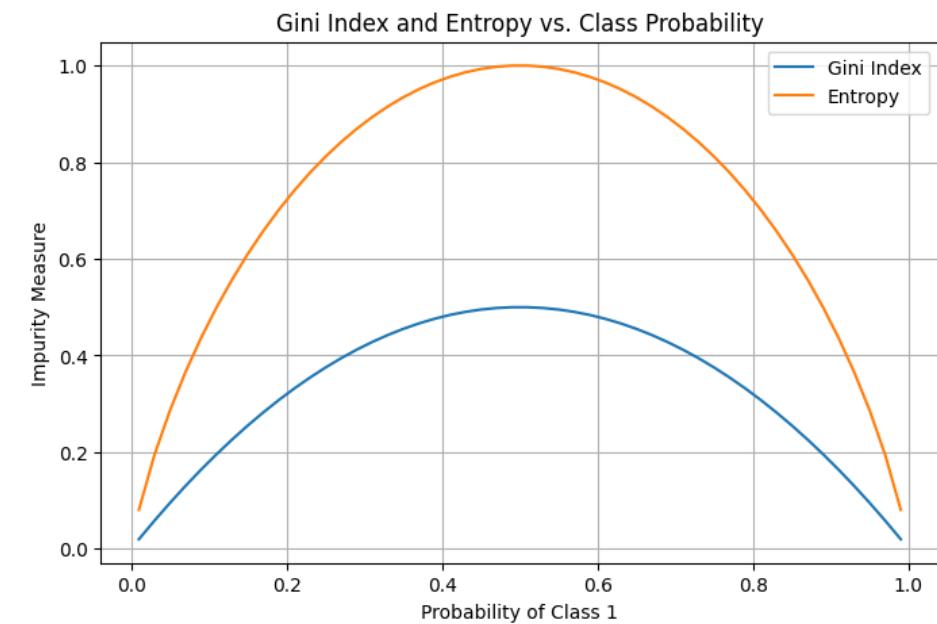
For a dataset  $S$  with  $c$  classes:

$$Gini(S) = 1 - \sum_{i=1}^C p_i^2$$

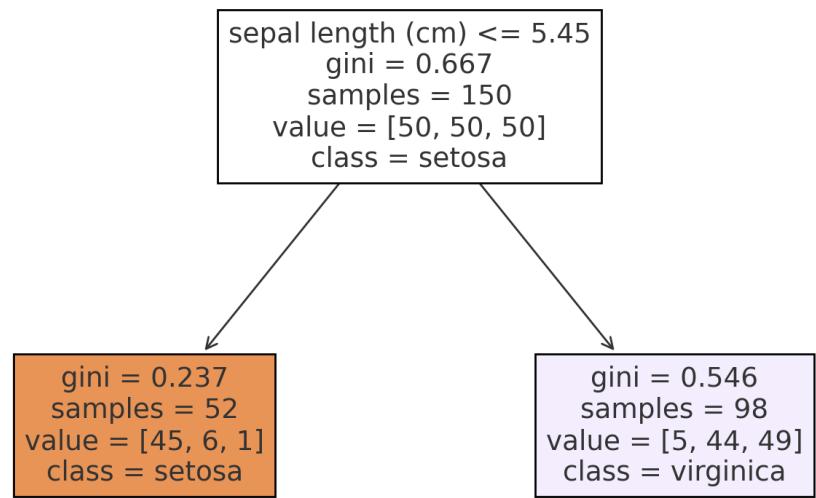
$$Gini_{split} = \frac{n_{left}}{n} \cdot Gini(left) + \frac{n_{right}}{n} \cdot Gini(right)$$

$$Entropy(S) = - \sum_{i=1}^c p_i \log_2(p_i)$$

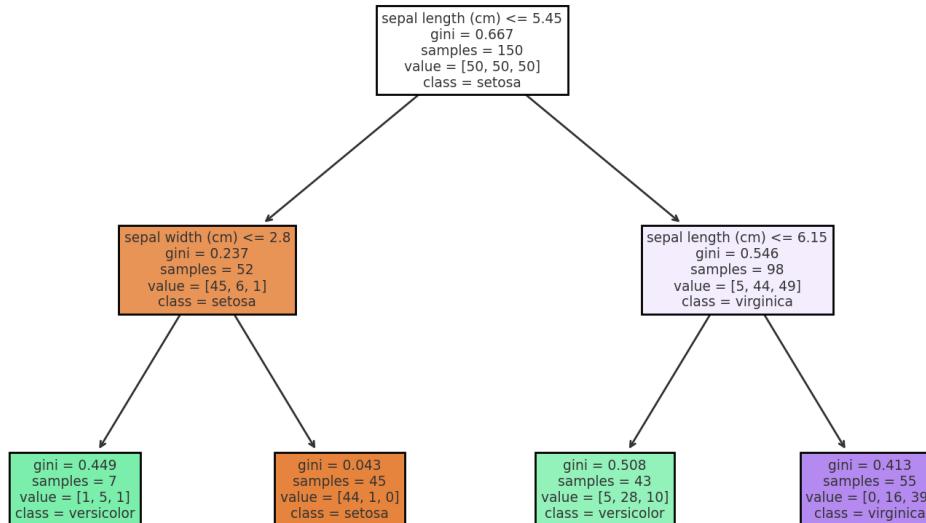
$$IG(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot Entropy(S_v)$$



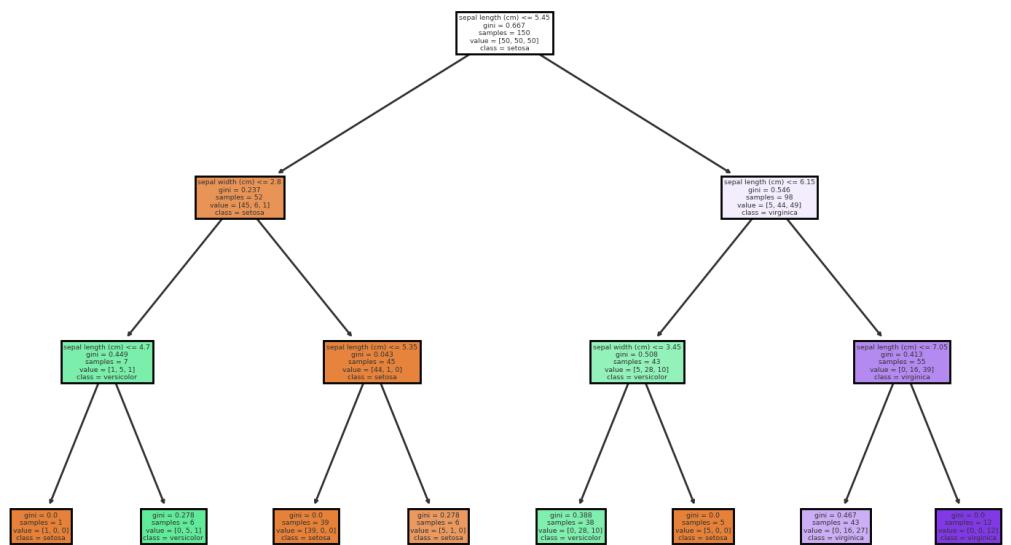
max\_depth = 1



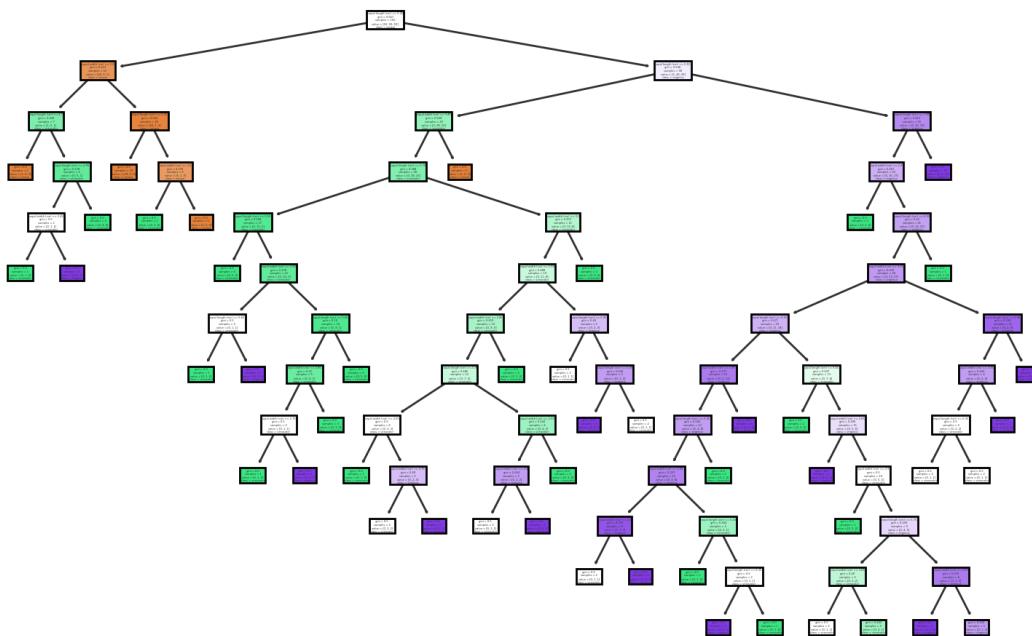
max\_depth = 2

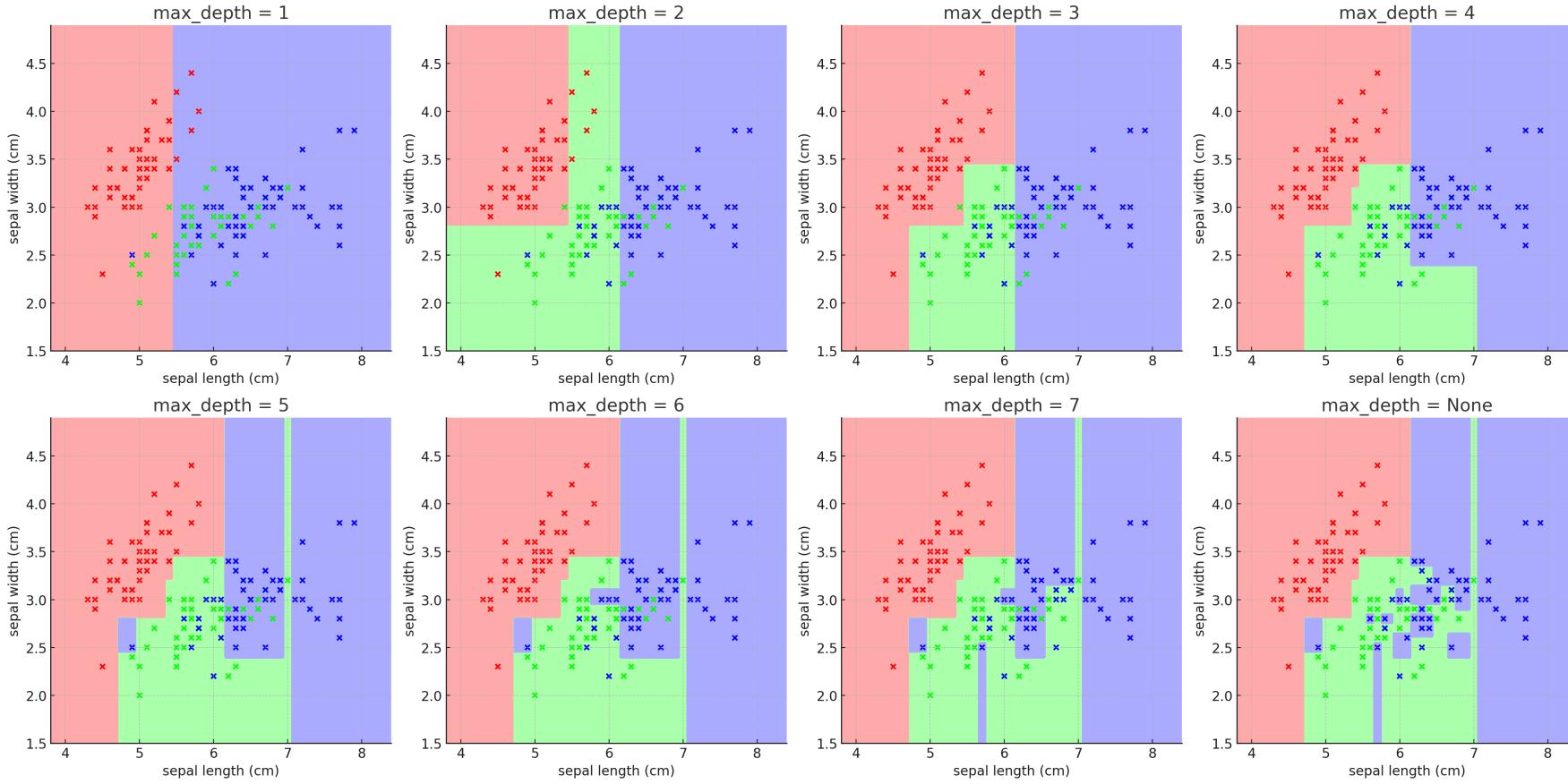


```
max_depth = 3
```

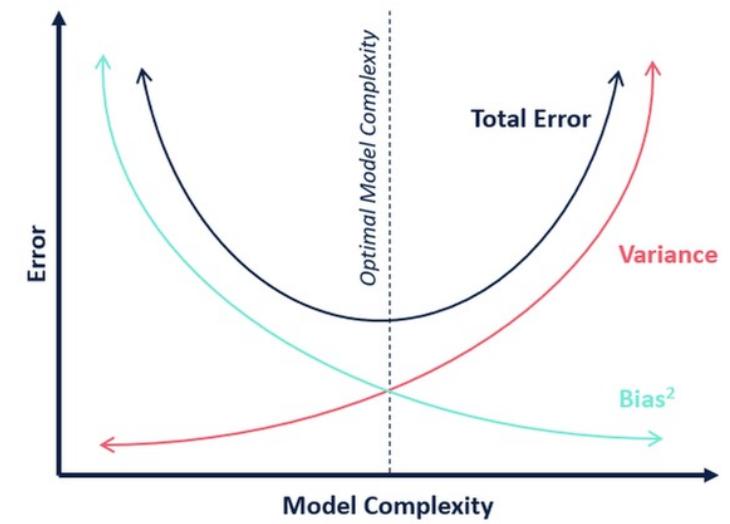


max\_depth = None (full tree)

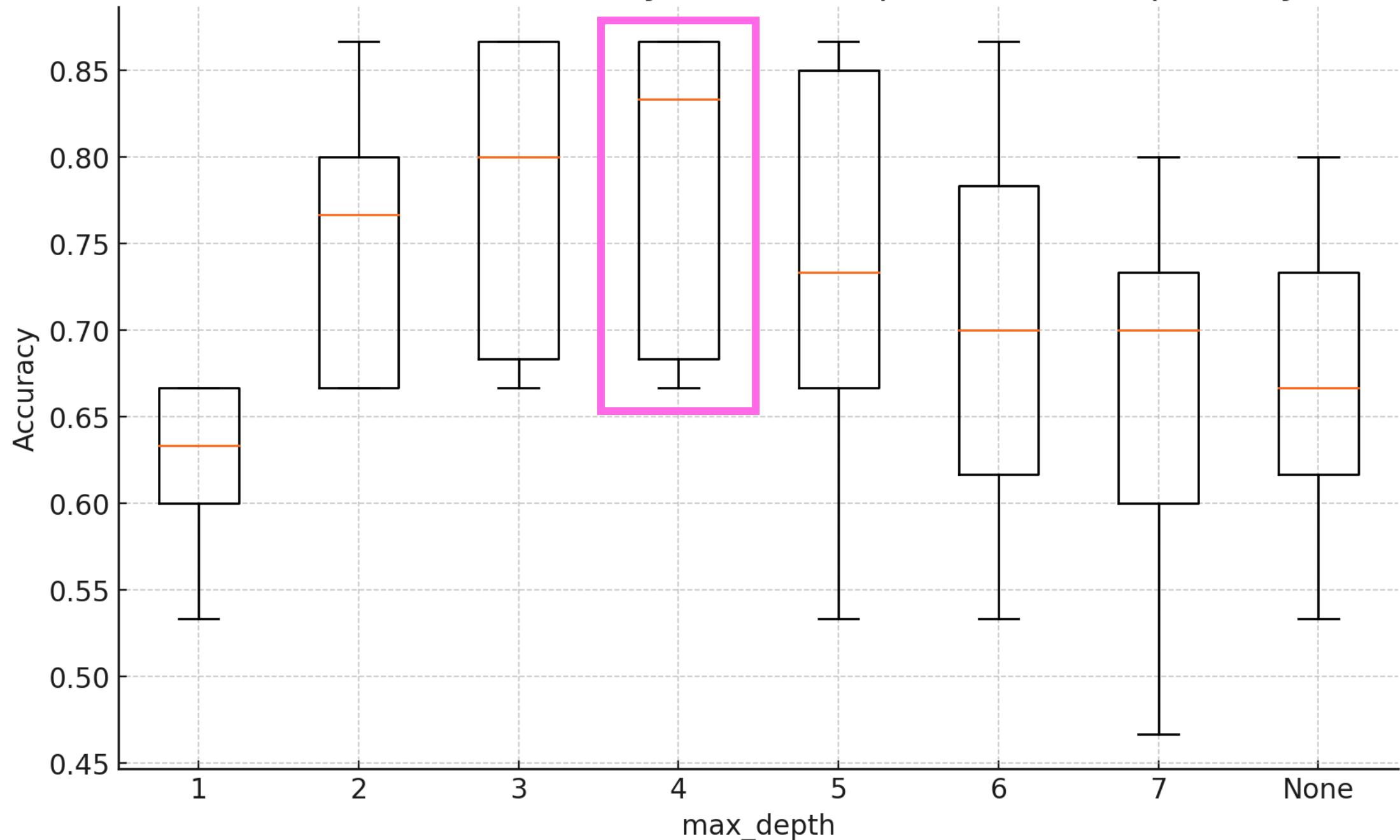




Don't we see a similar behaviour that we had with other algorithms?



# Cross-validated Accuracy for Tree Depths (CART, Sepal Only)





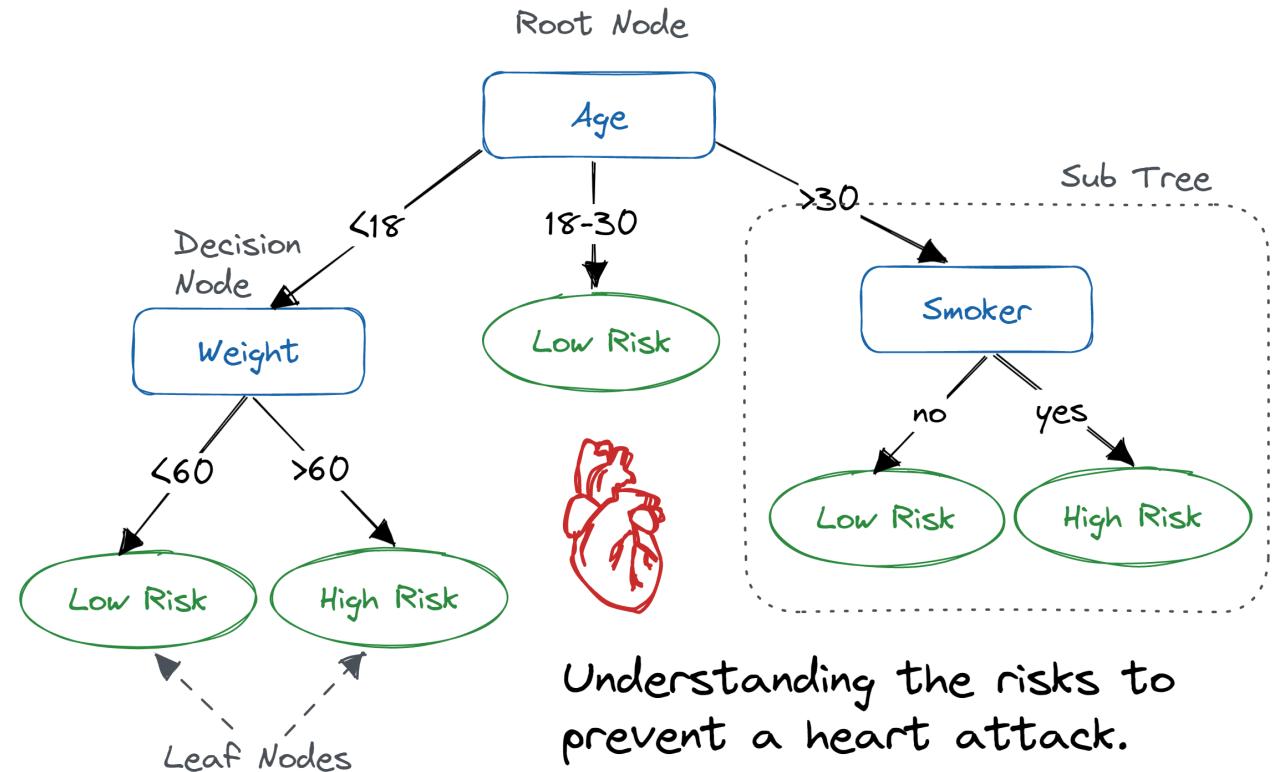
# Recap: Decision Tree

## Advantages

- Easily interpretable
- They require no data normalization
- The classification is almost immediate
- The computational expensive part is done off-line (once)

## Drawbacks

- Really high variance classifiers → Prone to overfitting! Typically, poor generalization performances!

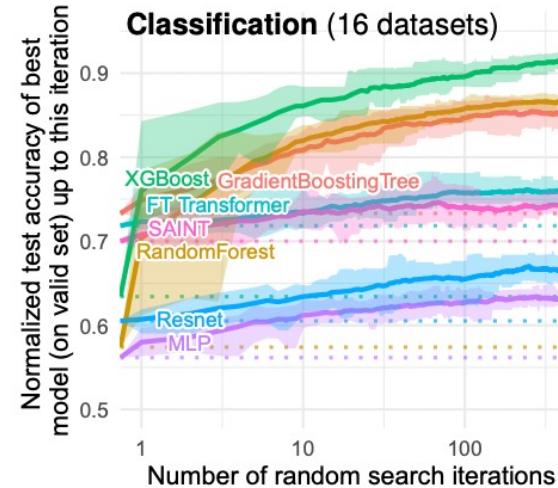


# Recap: tree-based Approaches

Tree-based methods are among the most effective techniques for supervised learning, particularly when working with smaller datasets (with  $n$  fewer than 10,000 samples).

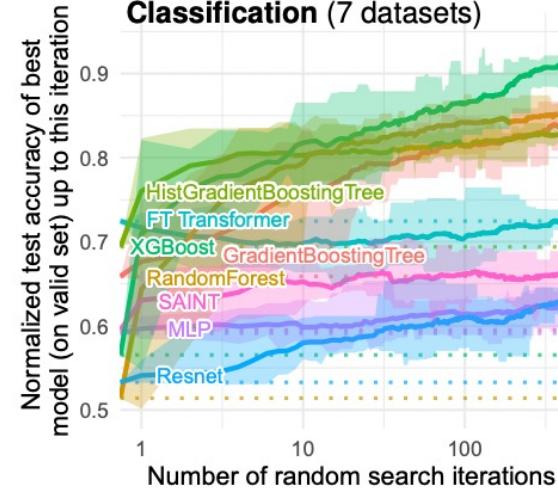
Interestingly, the core concepts behind them are quite straightforward...

## Only numerical features

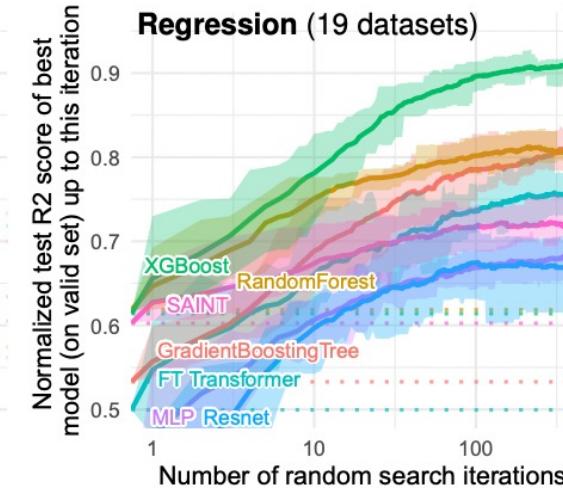


## Both numerical and categorical features

**Classification (7 datasets)**



## Regression (19 datasets)



## Regression (17 datasets)

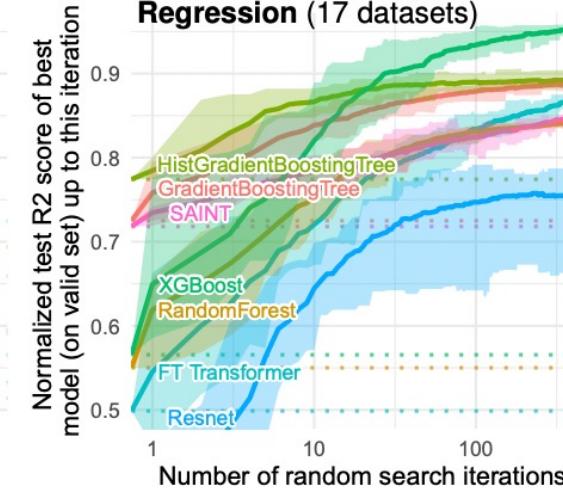


Figure 1: **Benchmark on medium-sized datasets**, top only numerical features; bottom: all features. Dotted lines correspond to the score of the default hyperparameters, which is also the first random search iteration. Each value corresponds to the test score of the best model (on the validation set) after a specific number of random search iterations, averaged on 15 shuffles of the random search order. The ribbon corresponds to minimum and maximum scores on these 15 shuffles.

# Recap: Random Forest (RF)

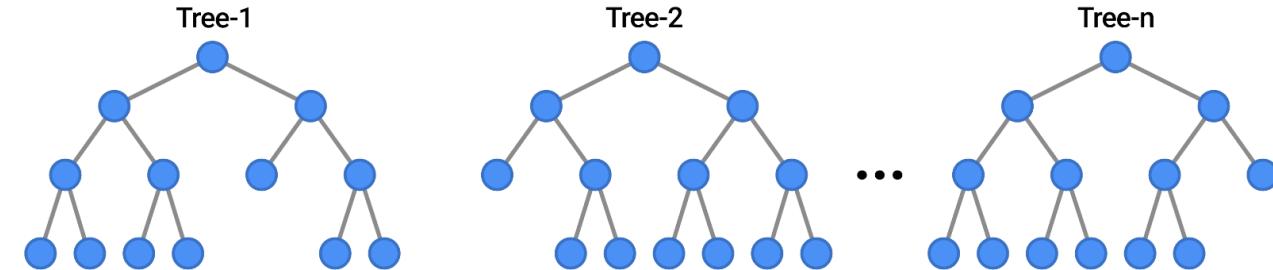
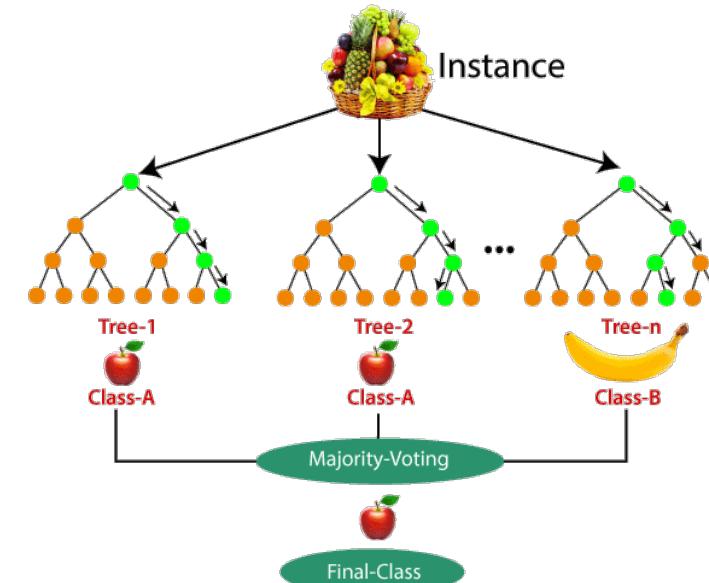


A RF is composed by many ‘weak’ learners (decision trees): we cleverly combine DTs reducing overfitting!

We construct slightly different DTs (more on this later) and, in classification, we decide by a majority-voting (we choose following the mode) the final class. In regression, the final decision is the average.

This is an ‘ensemble’ approach: we combine multiple models (often called base learners or weak learners) to produce a stronger model.

## EXAMPLES





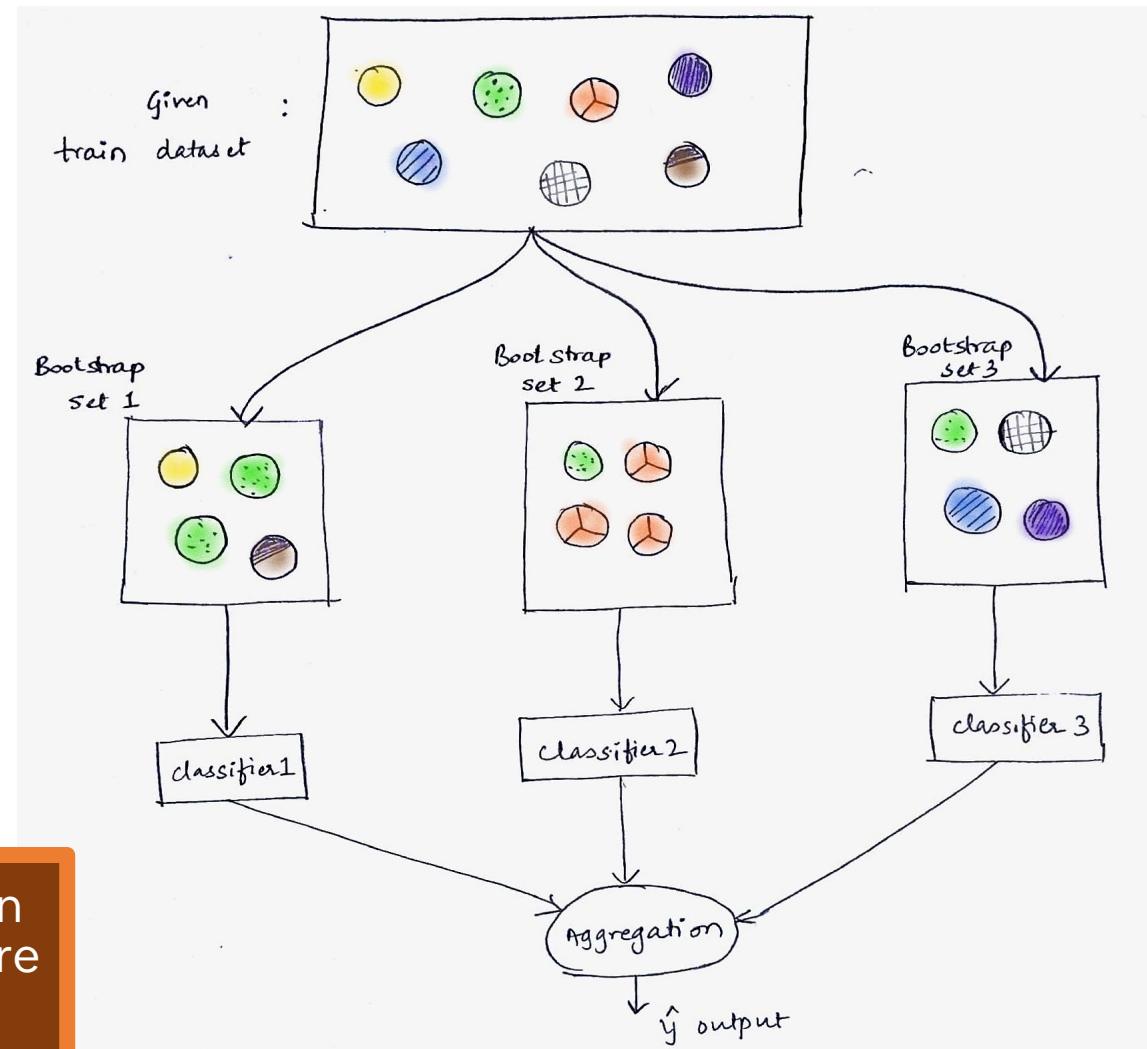
# Recap: How to Build a Random Forest

Let's assume you want to build a forest with  $T$  trees.

For each tree:

- **Sample** the dataset **with replacement** (bootstrap sample). This procedure is called **Bagging (bootstrap aggregating)**.
- Build a decision tree: but at each split, instead of evaluating all features, pick a random subset (e.g.,  $\sqrt{p}$ ). This procedure is called **Feature Bagging**.

The reason for doing this is the correlation of the trees in an ordinary bootstrap sample: if one or a few features are very strong predictors for the response variable (target output), these features will be selected in many of the  $T$  trees, causing them to become correlated.



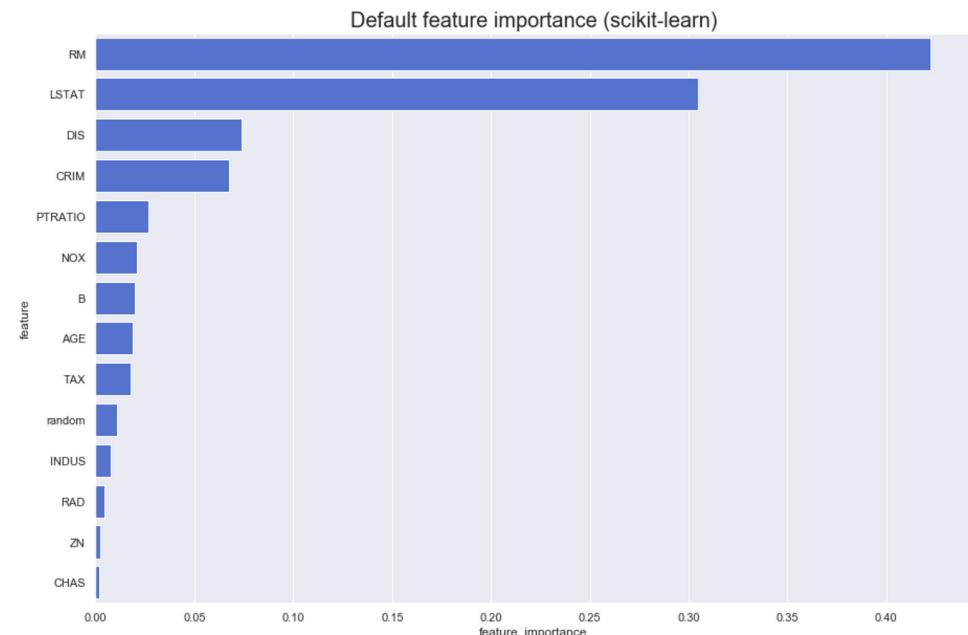
# RF: feature importance

Feature importance reflects how useful or valuable each feature is for making predictions in a model. For decision trees (and ensembles like Random Forests), it's typically based on:

🔍 How much each feature decreases impurity (e.g., Gini index or entropy) when it's used to split the data

📊 Intuition

- If a feature is consistently chosen for important splits (i.e., it helps reduce impurity a lot), it gets high importance.
- Features that are rarely used or don't reduce impurity much get low or zero importance.



# RF: feature importance

Feature importance reflects how useful or valuable each feature is for making predictions in a model. For decision trees (and ensembles like Random Forests), it's typically based on:

🔍 How much each feature decreases impurity (e.g., Gini index or entropy) when it's used to split the data

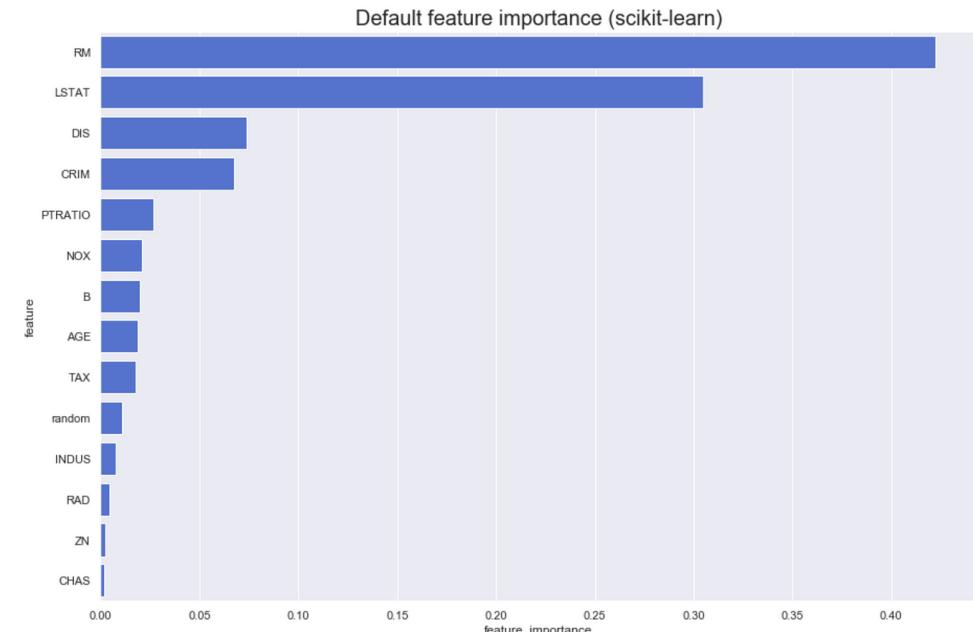
## 📊 Intuition

- If a feature is consistently chosen for important splits (i.e., it helps reduce impurity a lot), it gets high importance.
- Features that are rarely used or don't reduce impurity much get low or zero importance.

This is a 'eXplainable Artificial Intelligence (XAI)' approach.

It is a 'global' approach: provide us with info on the whole model structure

Any idea how can this information be exploited?



# RF: feature importance - Derivation

Let's consider the Gini impurity, and we have a decision tree:

1. At every split, the algorithm calculates how much that split reduces impurity:

$$\Delta Gini = Gini(\text{parent}) - \left( \frac{n_{left}}{n} \cdot Gini(\text{left}) + \frac{n_{right}}{n} \cdot Gini(\text{right}) \right)$$

2. The contribution of a feature is the sum of all impurity decreases where that feature was used to split:

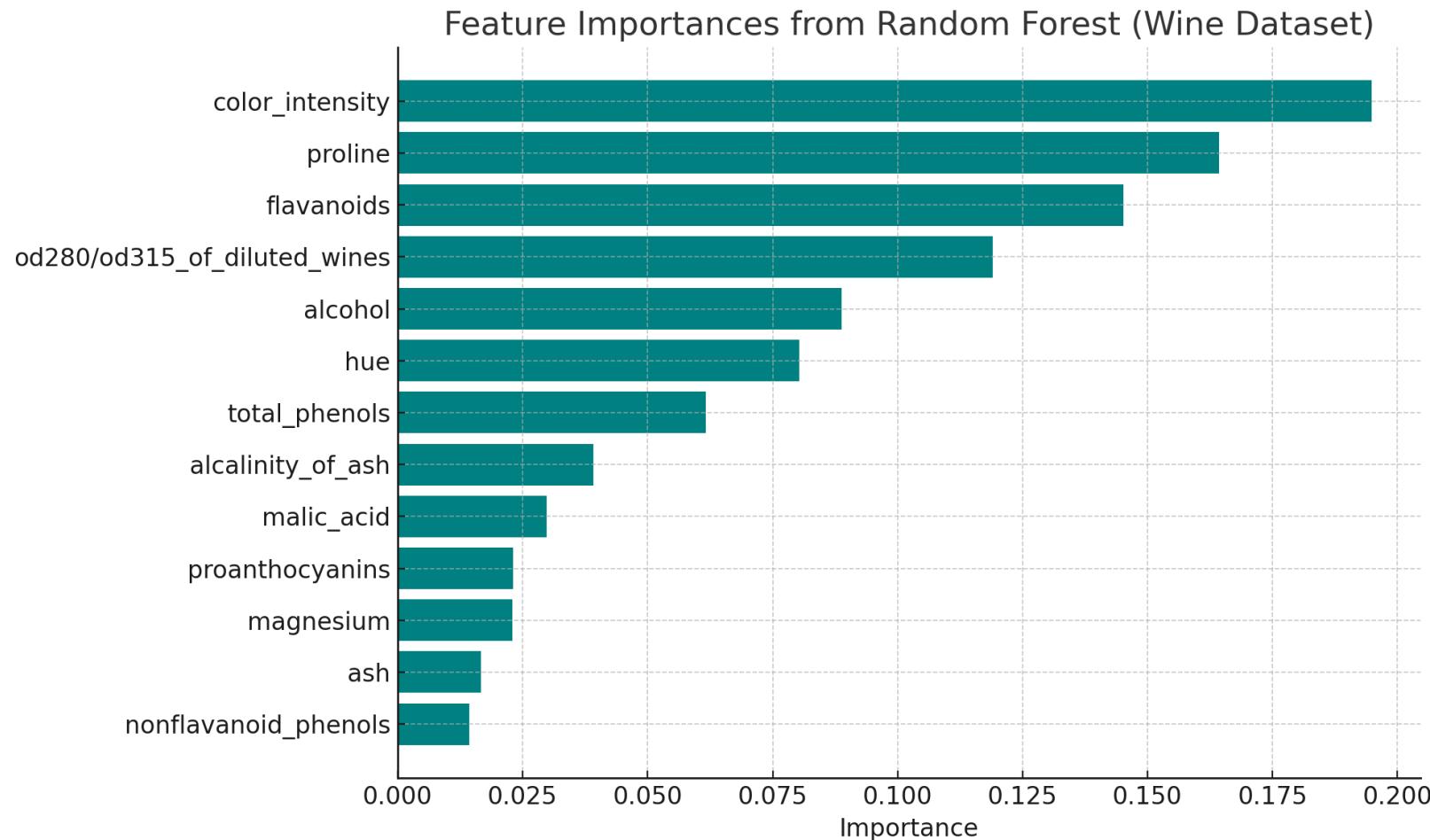
$$Importance(\text{feature}) = \sum_{\text{nodes using feature}} \Delta Gini$$

3. In a Random Forest, we average this importance over all the trees in the forest.
4. (Optional) the importances are normalized so they sum to 1:

$$\text{Normalized Importance} = \frac{\text{Raw Importance}}{\sum \text{Raw Importances}}$$



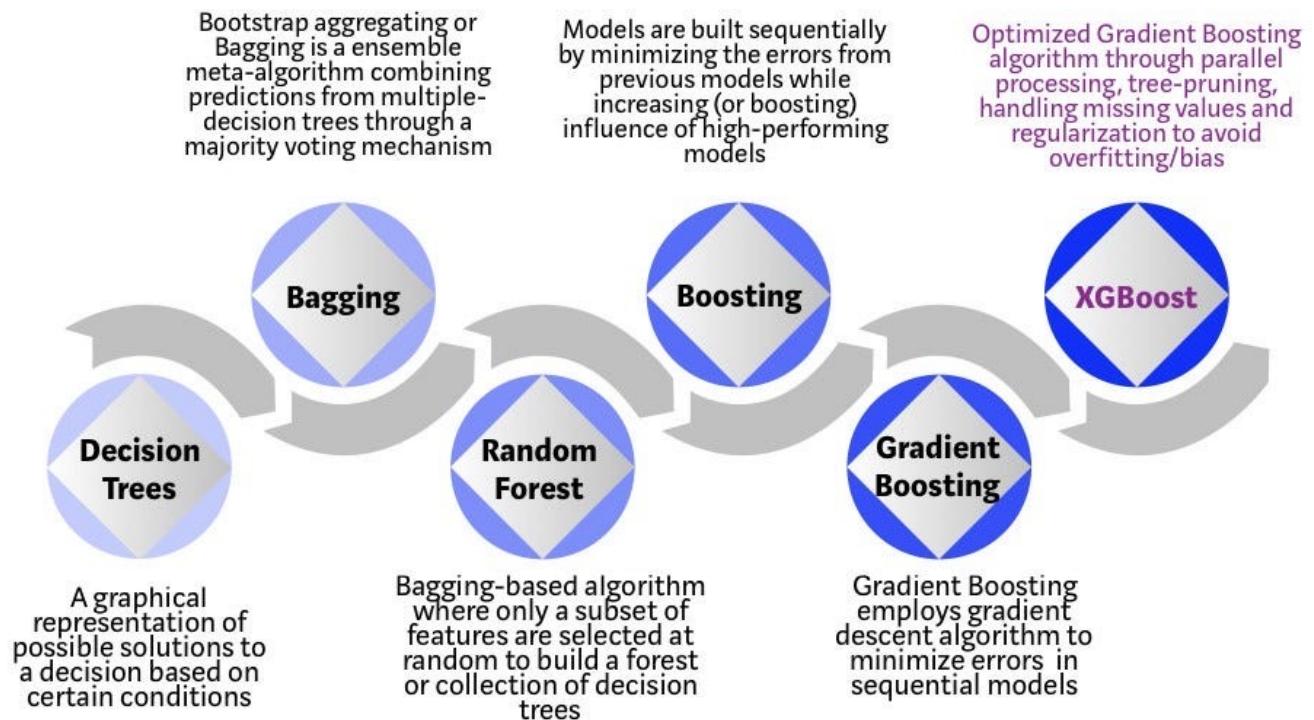
# On the wine dataset



# RF is not the only tree-based ensemble approach!

Many approaches in the literature! All these methods aim to overcome the overfitting problem of individual decision trees by:

- ✓ Building multiple trees
- ✓ Imposing constraints (on data, features, model structure, or learning process)
- ✓ Combining their outputs to produce more robust and generalizable predictions



# RF is not the only tree-based ensemble approach!

Many approaches in the literature! All these methods aim to overcome the overfitting problem of individual decision trees by:

- ✓ Building multiple trees
- ✓ Imposing constraints (on data, features, model structure, or learning process)
- ✓ Combining their outputs to produce more robust and generalizable predictions

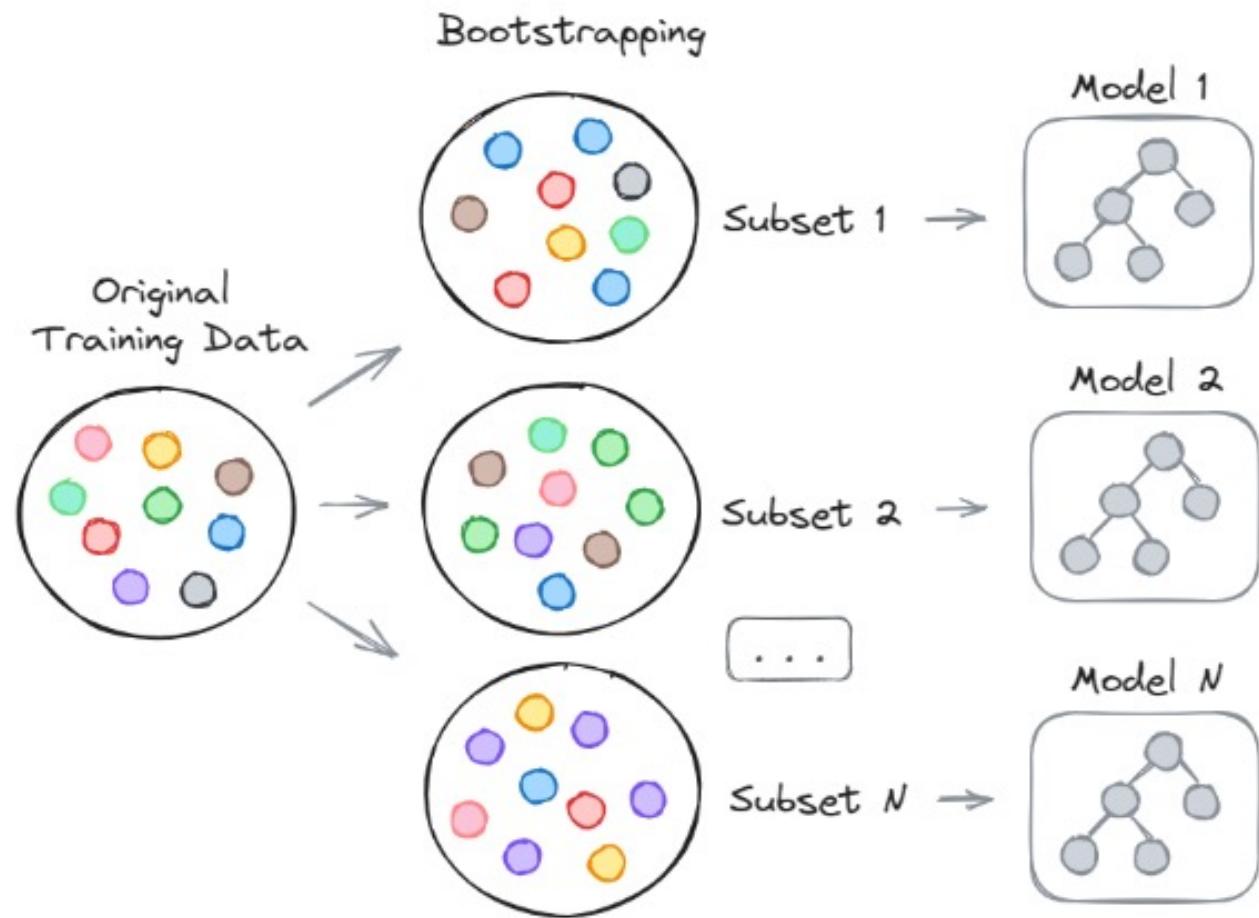
What varies between methods:

| Dimension           | Examples of Constraints or Strategies                                                          |
|---------------------|------------------------------------------------------------------------------------------------|
| How trees are built | Independently (Bagging), Sequentially (Boosting)                                               |
| Data sampling       | Random subsets of rows (Bagging), Weighted sampling (AdaBoost), Full data with residuals (GBM) |
| Feature usage       | All features (Bagging), Random subset per split (Random Forest)                                |
| Tree complexity     | Deep trees (Random Forest), Shallow trees/stumps (AdaBoost), Controlled depth (GBM variants)   |
| Loss optimization   | Classification error (AdaBoost), Gradient of loss (GBM, XGBoost), Log-loss or custom losses    |
| Regularization      | No regularization (RF), Explicit penalties (XGBoost), Leaf-wise constraints (LightGBM)         |

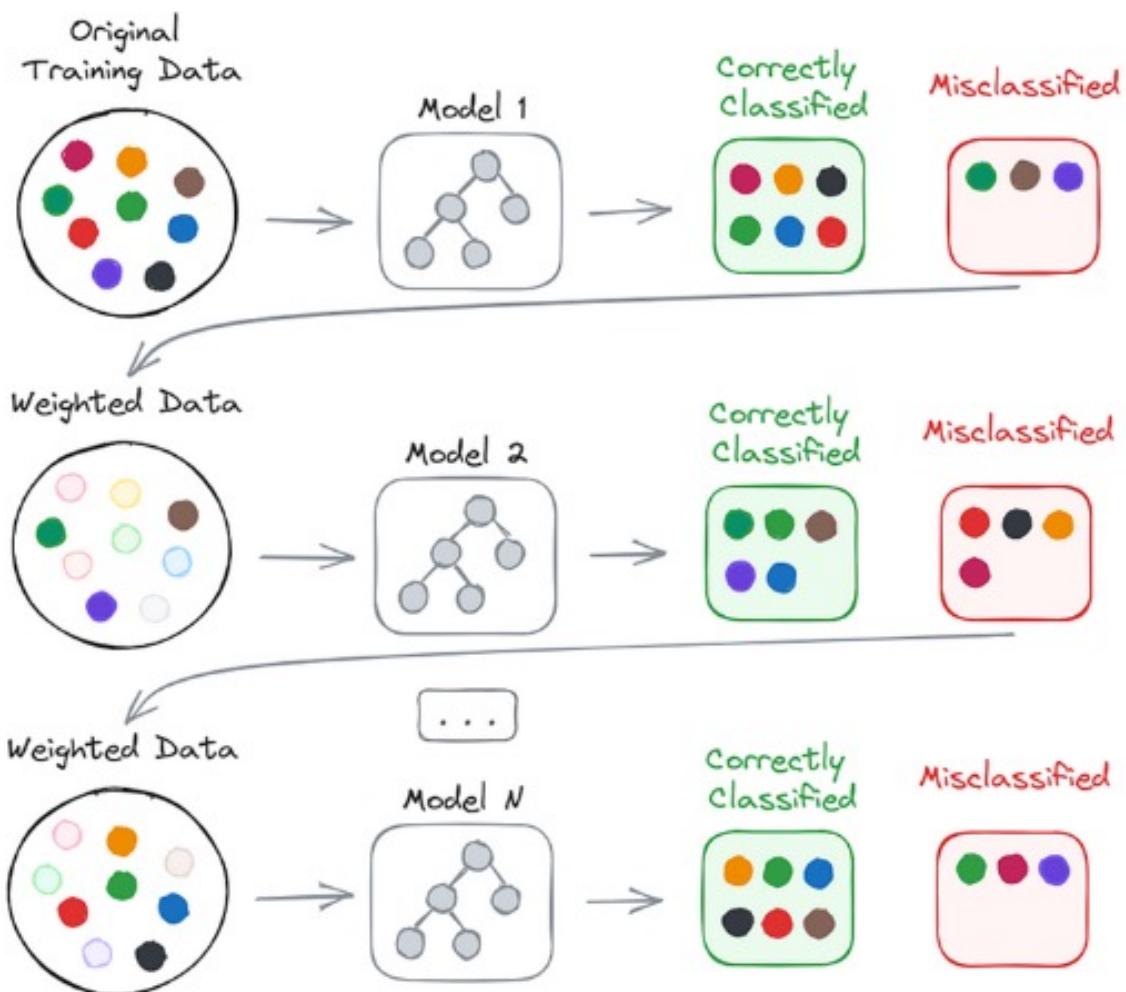
| Method            | Core Idea                                      | Model Combination             | Key Traits                                                         |
|-------------------|------------------------------------------------|-------------------------------|--------------------------------------------------------------------|
| Bagging           | Train trees on random data subsets             | Averaging / Voting            | Reduces variance, parallelizable, robust to overfitting            |
| Random Forest     | Bagging + random feature selection             | Averaging / Voting            | Strong baseline, good generalization                               |
| Boosting          | Sequential models to fix previous errors       | Weighted sum                  | Reduces bias, sensitive to noise                                   |
| AdaBoost          | Focus on misclassified samples via reweighting | Weighted sum                  | Simple, uses weak learners (e.g., stumps), effective on clean data |
| Gradient Boosting | Fit to loss function gradients                 | Weighted sum                  | Flexible loss functions, can overfit without tuning                |
| XGBoost           | Regularized GBM with pruning and optimizations | Weighted sum                  | Fast, regularized, handles missing values                          |
| LightGBM          | Histogram-based GBM, leaf-wise growth          | Weighted sum                  | Very fast, memory-efficient, great for large-scale problems        |
| CatBoost          | Categorical-feature-friendly GBM               | Weighted sum                  | Handles categoricals natively, avoids overfitting                  |
| Stacked Ensemble  | Combine diverse models with meta-learner       | Meta-model (e.g., regression) | Very flexible, risk of overfitting without proper cross-validation |

| Method            | Core Idea                                      | Model Combination             | Key Traits                                                         |
|-------------------|------------------------------------------------|-------------------------------|--------------------------------------------------------------------|
| Bagging           | Train trees on random data subsets             | Averaging / Voting            | Reduces variance, parallelizable, robust to overfitting            |
| Random Forest     | Bagging + random feature selection             | Averaging / Voting            | Strong baseline, good generalization                               |
| Boosting          | Sequential models to fix previous errors       | Weighted sum                  | Reduces bias, sensitive to noise                                   |
| AdaBoost          | Focus on misclassified samples via reweighting | Weighted sum                  | Simple, uses weak learners (e.g., stumps), effective on clean data |
| Gradient Boosting | Fit to loss function gradients                 | Weighted sum                  | Flexible loss functions, can overfit without tuning                |
| XGBoost           | Regularized GBM with pruning and optimizations | Weighted sum                  | Fast, regularized, handles missing values                          |
| LightGBM          | Histogram-based GBM, leaf-wise growth          | Weighted sum                  | Very fast, memory-efficient, great for large-scale problems        |
| CatBoost          | Categorical-feature-friendly GBM               | Weighted sum                  | Handles categoricals natively, avoids overfitting                  |
| Stacked Ensemble  | Combine diverse models with meta-learner       | Meta-model (e.g., regression) | Very flexible, risk of overfitting without proper cross-validation |

# Bagging



# Boosting

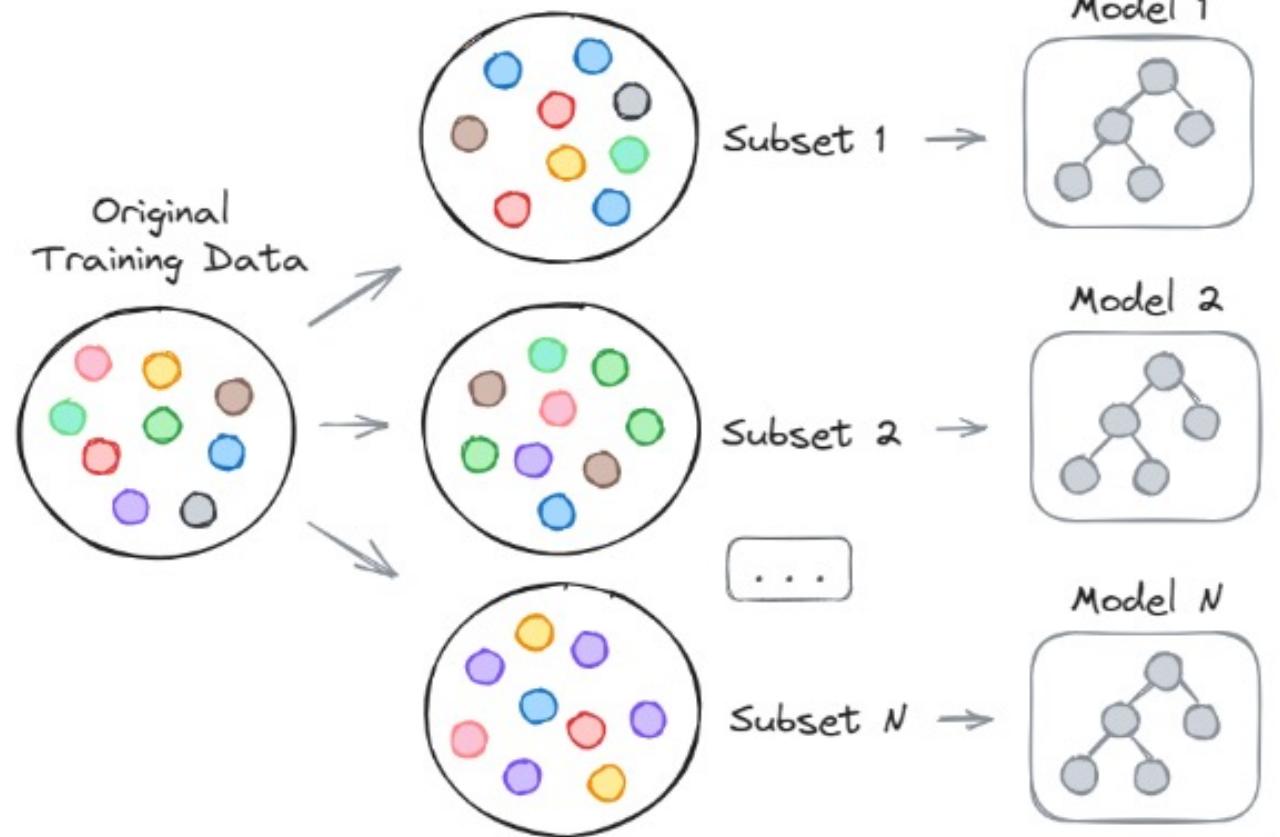


# Bagging

We'll see it in the context of Regression!

# Boosting

## Bootstrapping



Original  
Training Data

Model 1

Model 2

Model N

Prediction

Residual

Weighted Data

Model 1

Model 2

Model N

Prediction

Residual

Weighted Data

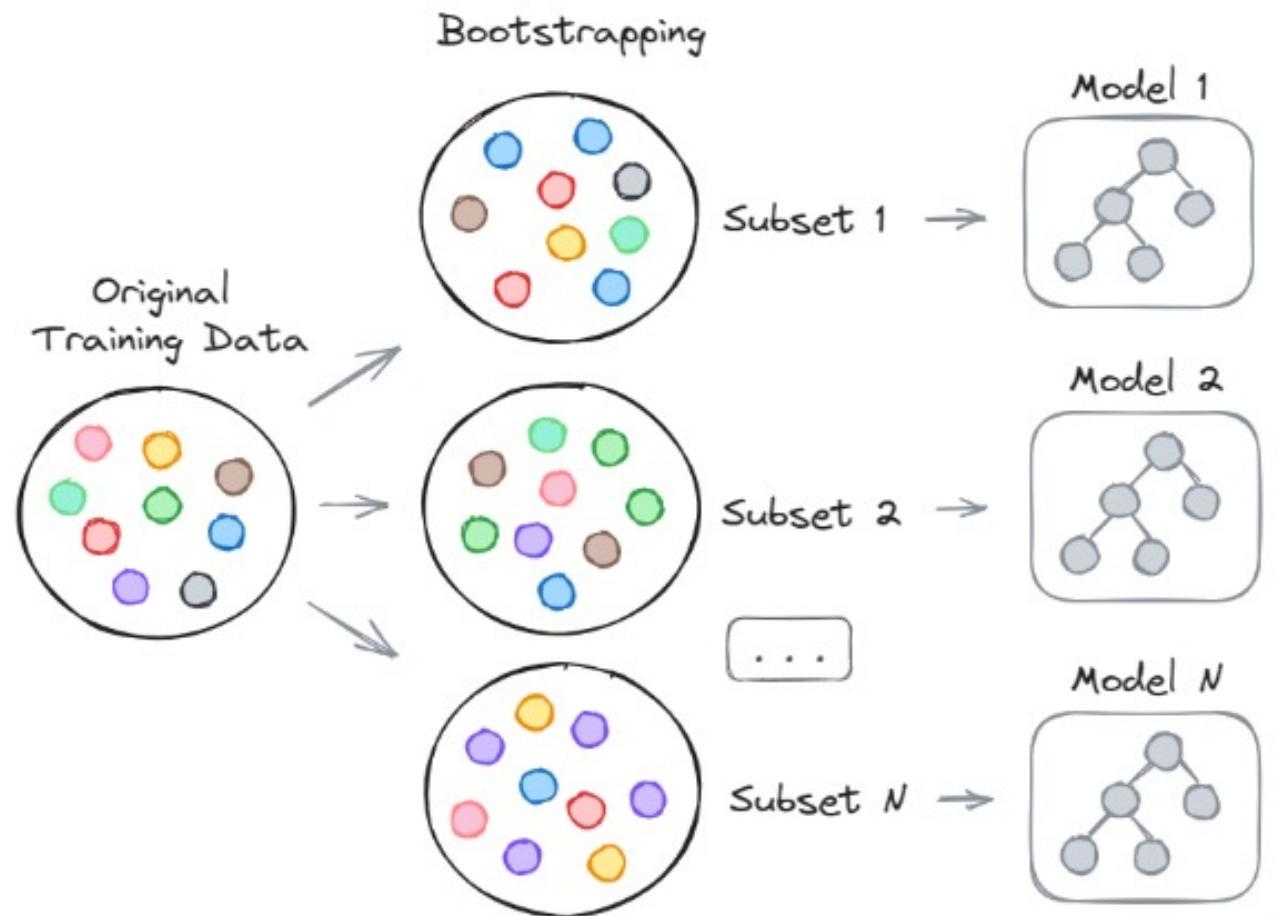
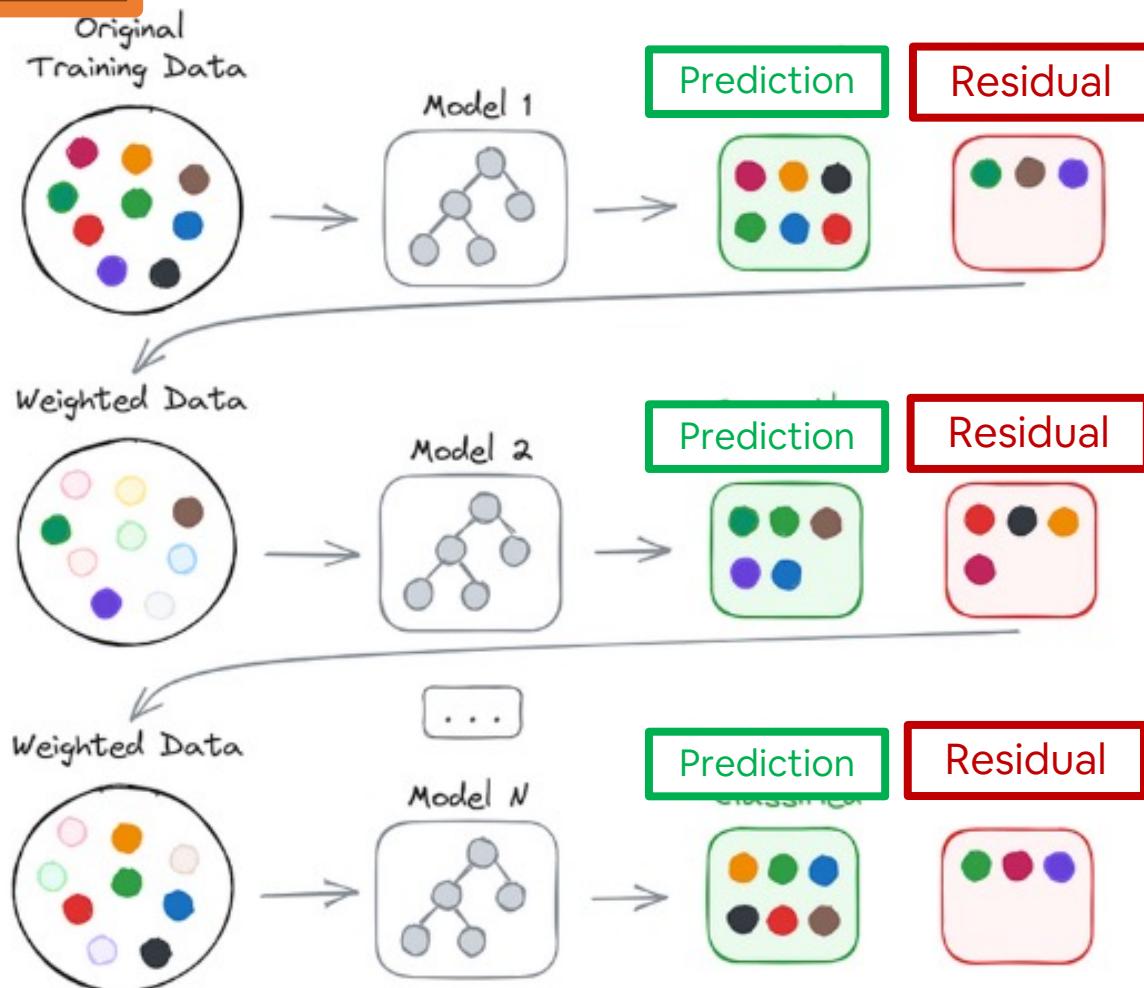
Prediction

Residual

# Bagging

We'll see it in the context of Regression!

# Boosting



Does this approach remind you of something we have seen in the past?

# Why is it called gradient boosting?

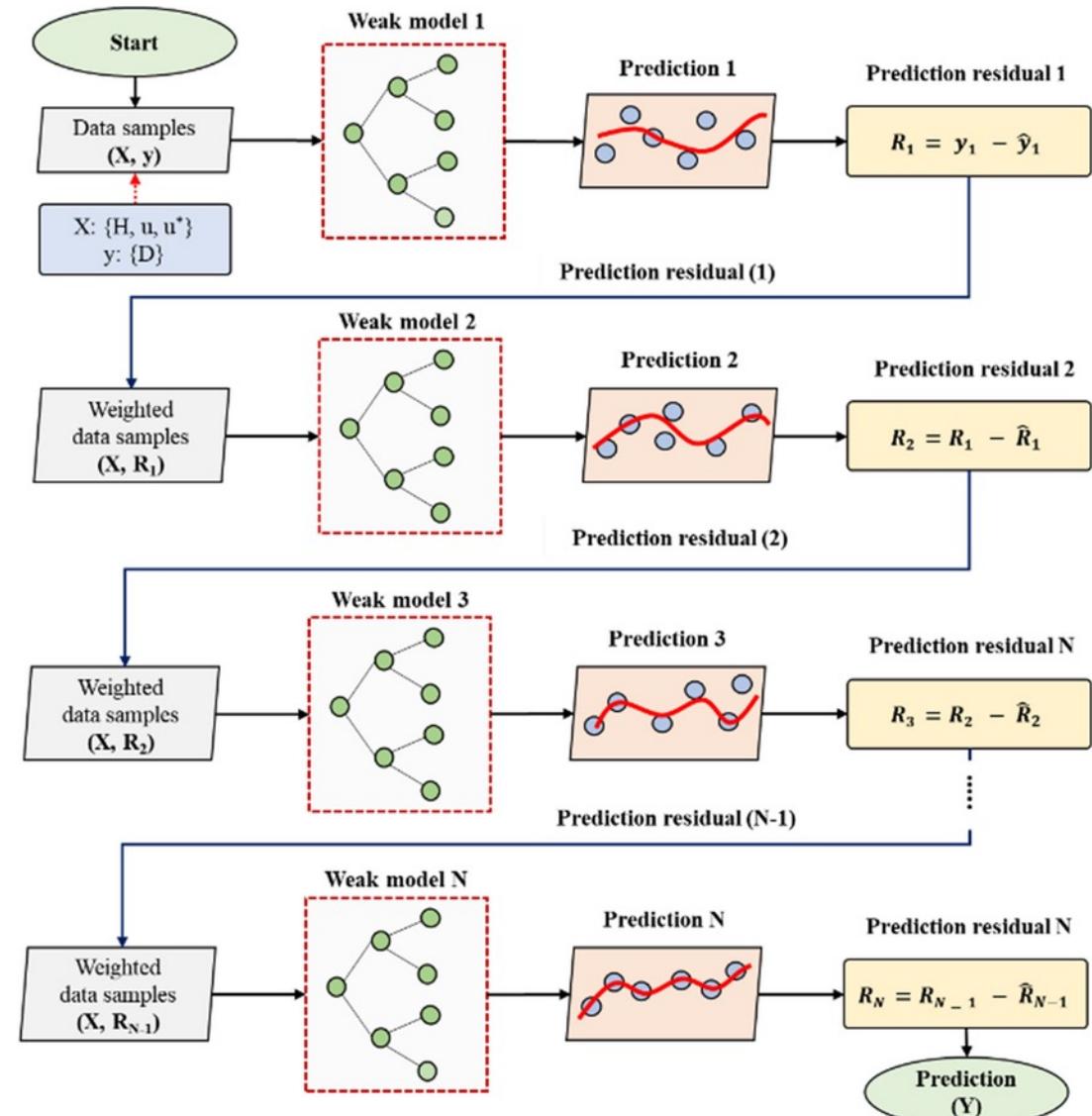
## ◆ Boosting

Boosting is a method that builds a **strong learner** (accurate model) by combining many **weak learners** (typically decision trees with few splits). The idea is to train models **sequentially**, each one trying to **correct** the errors of the previous ones.

## ◆ Gradient

‘Gradient’ refers to the use of gradient descent, a mathematical optimization technique. In the context of gradient boosting, it’s used to minimize a loss function (like MSE or log loss) by fitting new models to the negative gradients of the loss function — which are essentially the residual errors.

In other words, each new tree is trained to predict the gradient of the loss function with respect to the current model’s predictions



Average Weight

71.2

| Height (m) | Favorite Color | Gender | Weight (kg) |
|------------|----------------|--------|-------------|
| 1.6        | Blue           | Male   | 88          |
| 1.6        | Green          | Female | 76          |
| 1.5        | Blue           | Female | 56          |
| 1.8        | Red            | Male   | 73          |
| 1.5        | Green          | Male   | 77          |
| 1.4        | Blue           | Female | 57          |

So let's start by plugging in **71.2** for the **Predicted Weight...**

**(Observed Weight - Predicted Weight)**

Average Weight

71.2



| Height (m) | Favorite Color | Gender | Weight (kg) |
|------------|----------------|--------|-------------|
| 1.6        | Blue           | Male   | 88          |
| 1.6        | Green          | Female | 76          |
| 1.5        | Blue           | Female | 56          |
| 1.8        | Red            | Male   | 73          |
| 1.5        | Green          | Male   | 77          |
| 1.4        | Blue           | Female | 57          |

The errors that the previous tree made are the differences between the **Observed Weights**

**(Observed Weight - Predicted Weight)**

## Average Weight

71.2

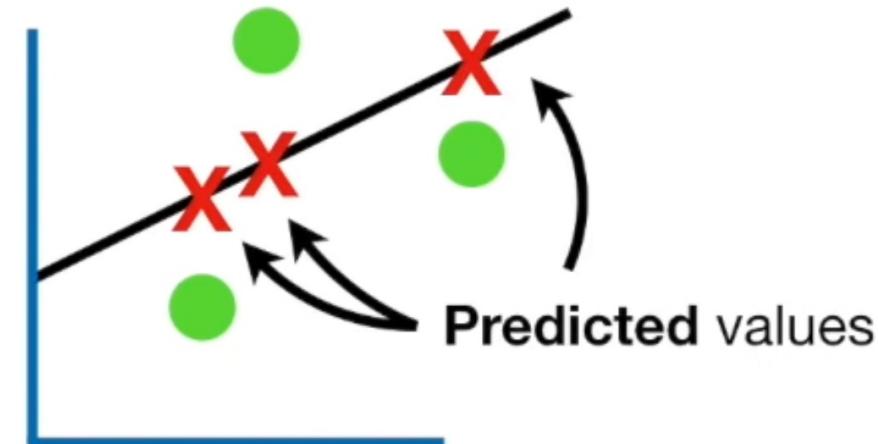
| Height (m) | Favorite Color | Gender | Weight (kg) | Residual |
|------------|----------------|--------|-------------|----------|
| 1.6        | Blue           | Male   | 88          | 16.8     |
| 1.6        | Green          | Female | 76          |          |
| 1.5        | Blue           | Female | 56          |          |
| 1.8        | Red            | Male   | 73          |          |
| 1.5        | Green          | Male   | 77          |          |
| 1.4        | Blue           | Female | 57          |          |

Average Weight

71.2

**NOTE:** The term **Pseudo Residual** is based on **Linear Regression**, where the difference between the **Observed** values and the **Predicted** values results in **Residuals**.

| Height (m) | Favorite Color | Gender | Weight (kg) | Residual |
|------------|----------------|--------|-------------|----------|
| 1.6        | Blue           | Male   | 88          | 16.8     |
| 1.6        | Green          | Female | 76          |          |
| 1.5        | Blue           | Female | 56          |          |
| 1.8        | Red            | Male   | 73          |          |
| 1.5        | Green          | Male   | 77          |          |
| 1.4        | Blue           | Female | 57          |          |



Average Weight

71.2

| Height (m) | Favorite Color | Gender | Weight (kg) | Residual |
|------------|----------------|--------|-------------|----------|
| 1.6        | Blue           | Male   | 88          | 16.8     |
| 1.6        | Green          | Female | 76          |          |
| 1.5        | Blue           | Female | 56          |          |
| 1.8        | Red            | Male   | 73          |          |
| 1.5        | Green          | Male   | 77          |          |
| 1.4        | Blue           | Female | 57          |          |

Average Weight

71.2

| Residual |
|----------|
| 16.8     |
| 4.8      |
| -15.2    |
| 1.8      |
| 5.8      |
| -14.2    |



After computing the residuals, we build a tree that aims to predict the residuals!

We'll do the same procedure later, different times...

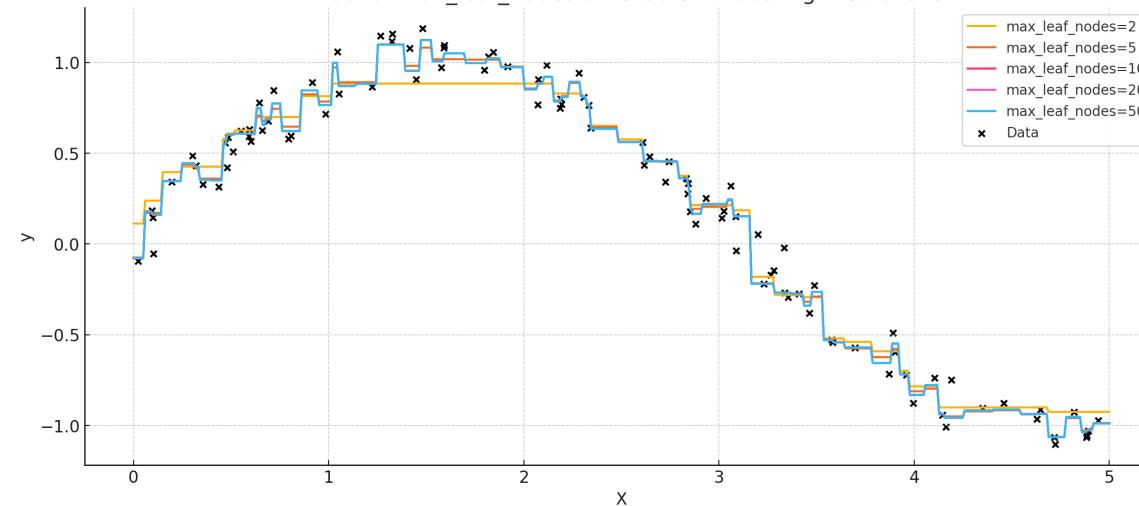
| Height (m) | Favorite Color | Gender | Score (100) | Residual |
|------------|----------------|--------|-------------|----------|
| 1.6        | Blue           | Male   | 88          | 16.8     |
| 1.6        | Green          | Female | 76          | 4.8      |
| 1.5        | Blue           | Female | 56          | -15.2    |
| 1.8        | Red            | Male   | 73          | 1.8      |
| 1.5        | Green          | Male   | 77          | 5.8      |
| 1.4        | Blue           | Female | 57          | -14.2    |



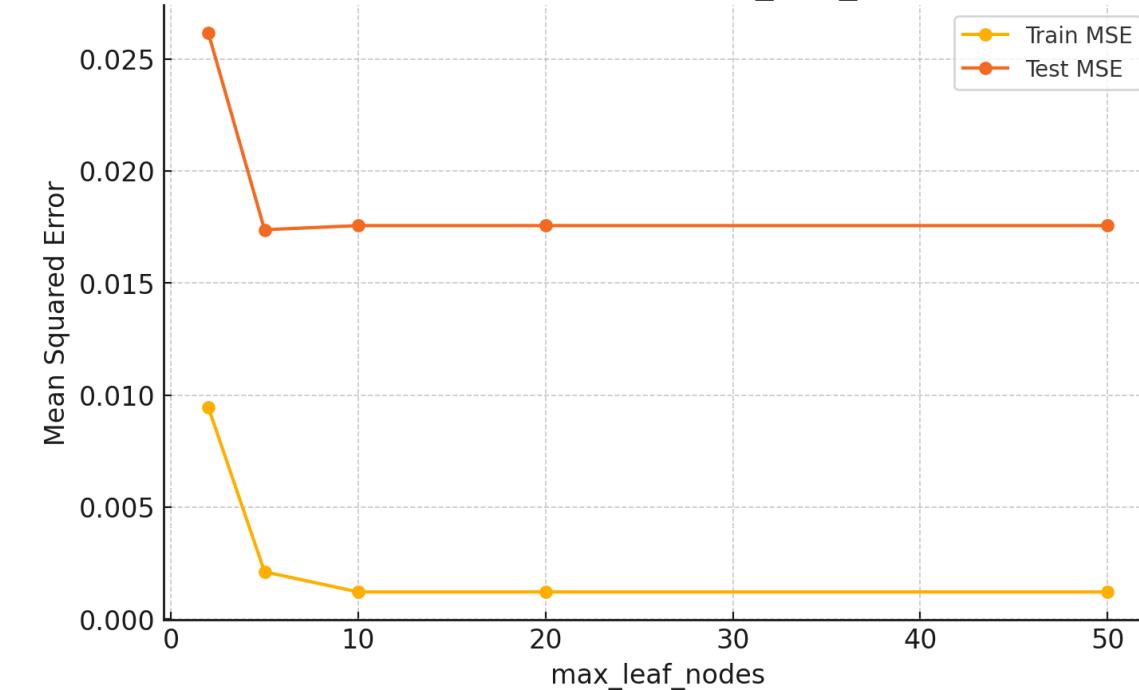
Our regression tree has a constrain: the max amount of leaves! In this example 4!

In practice, from 8 to 32

Effect of max\_leaf\_nodes on Gradient Boosting Predictions



Train/Test Error vs max\_leaf\_nodes



Gender=F

Height<1.6

Color not Blue

-14.2, -15.2

4.8

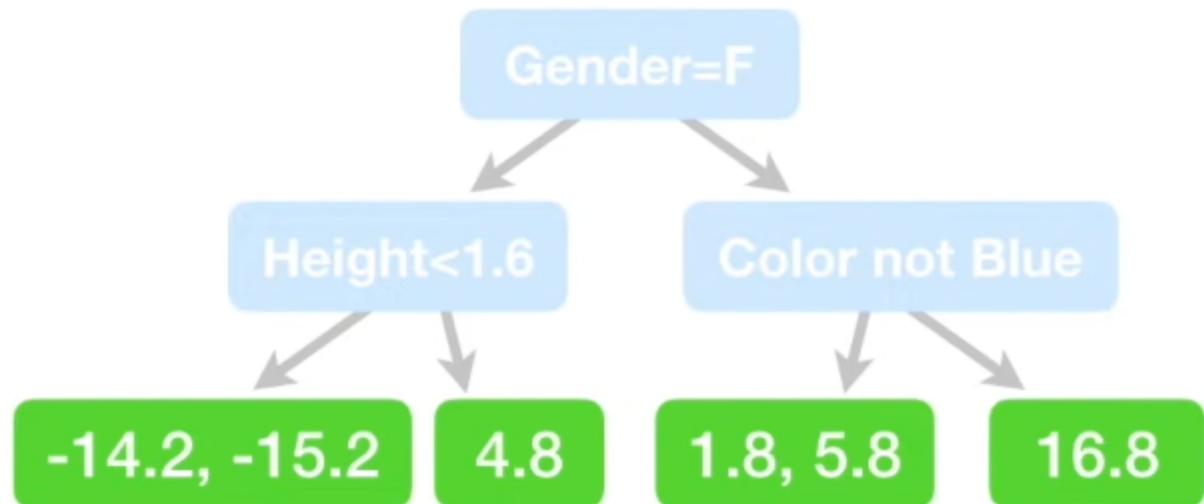
1.8, 5.8

16.8

Our regression tree has a constrain:  
the max amount of leaves! In this  
example 4!

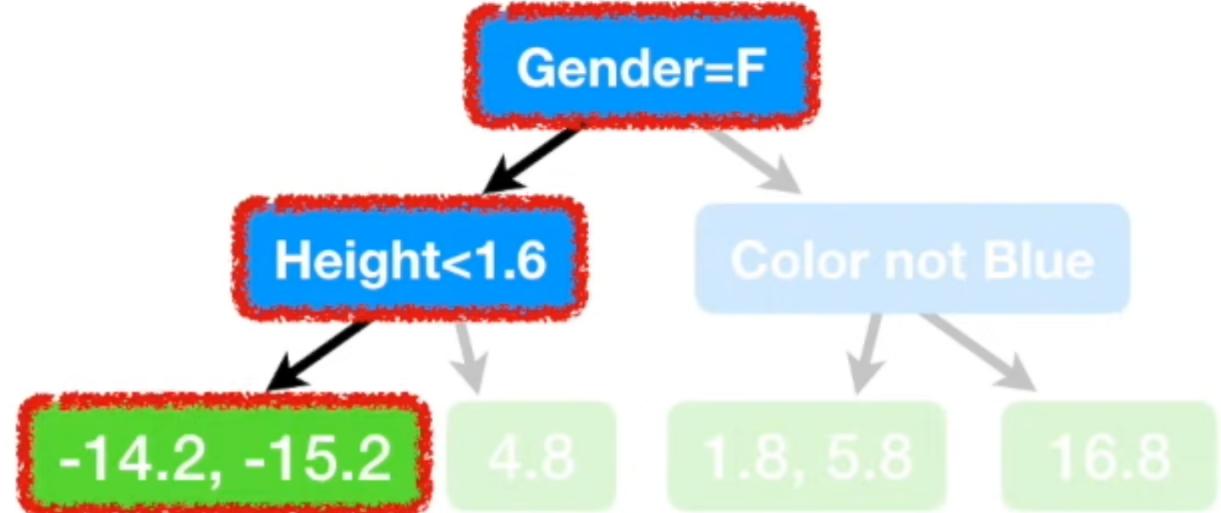
In practice, from 8 to 32

| Height (m) | Favorite Color | Gender | Residual |
|------------|----------------|--------|----------|
| 1.6        | Blue           | Male   | 16.8     |
| 1.6        | Green          | Female | 4.8      |
| 1.5        | Blue           | Female | -15.2    |
| 1.8        | Red            | Male   | 1.8      |
| 1.5        | Green          | Male   | 5.8      |
| 1.4        | Blue           | Female | -14.2    |



By restricting the total number of leaves, we get fewer leaves than **Residuals.**

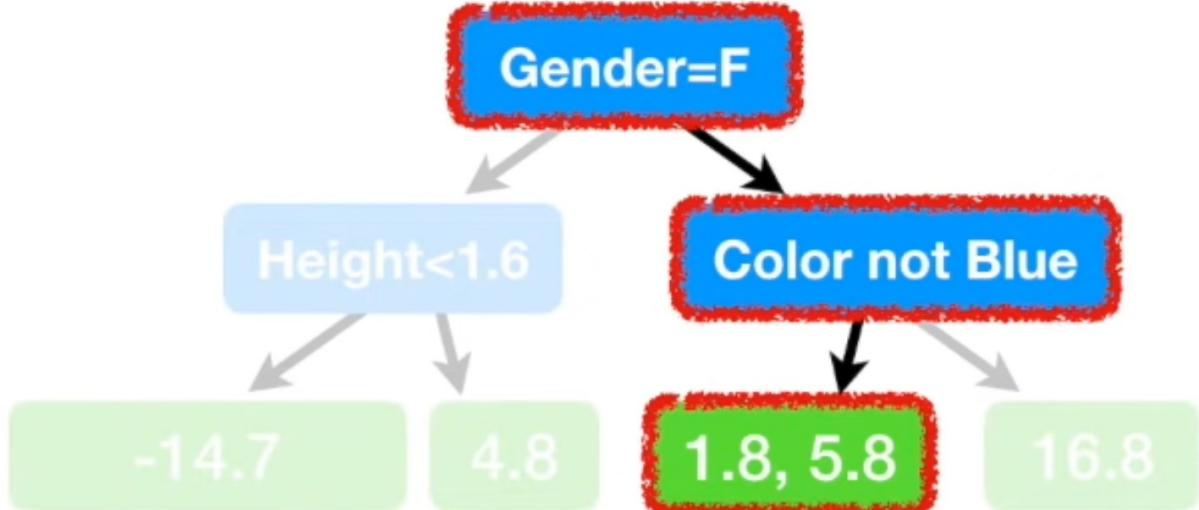
| Height (m) | Favorite Color | Gender | Weight (kg) | Residual |
|------------|----------------|--------|-------------|----------|
| 1.6        | Blue           | Male   | 56          | 16.8     |
| 1.6        | Green          | Female | 78          | 4.8      |
| 1.5        | Blue           | Female | 56          | -15.2    |
| 1.8        | Red            | Male   | 73          | 1.8      |
| 1.5        | Green          | Male   | 77          | 5.8      |
| 1.4        | Blue           | Female | 57          | -14.2    |



So we replace these residuals with their average.

$$\frac{(-14.2 + -15.2)}{2} = -14.7$$

| Height (m) | Favorite Color | Gender | Weight (kg) | Residual |
|------------|----------------|--------|-------------|----------|
| 1.6        | Blue           | Male   | 88          | 16.8     |
| 1.6        | Green          | Female | 76          | 4.8      |
| 1.5        | Blue           | Female | 56          | -15.2    |
| 1.8        | Red            | Male   | 73          | 1.8      |
| 1.5        | Green          | Male   | 77          | 5.8      |
| 1.4        | Blue           | Female | 57          | -14.2    |



So we replace these residuals with their average.

$$\frac{1.8 + 5.8}{2} = 3.8$$

Average Weight

71.2

+

Gender=F

Male=M

Color not Blue

16.8

$$\text{Predicted Weight} = 71.2 + 16.8 = 88$$

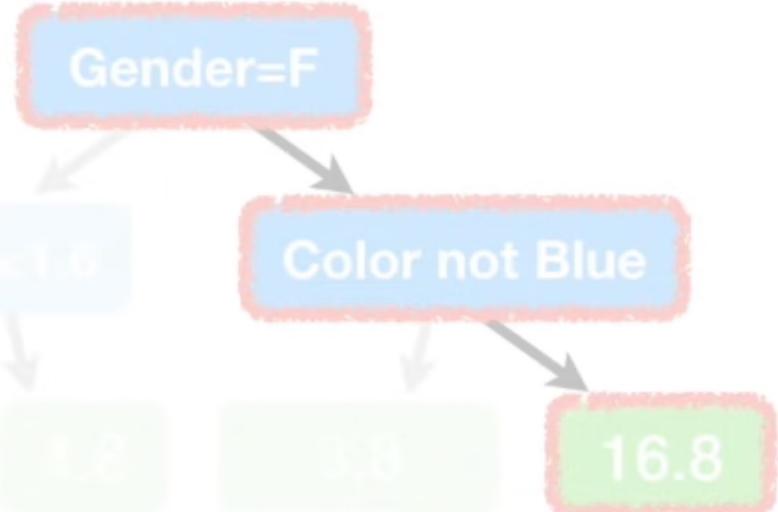
| Height (m) | Favorite Color | Gender | Weight (kg) |
|------------|----------------|--------|-------------|
| 1.6        | Blue           | Male   | 88          |

...which is the same as  
the **Observed Weight**.

Average Weight

71.2

+



**Predicted Weight** = 71.2 + 16.8 = 88

| Height<br>(m) | Favorite<br>Color | Gender | Weight<br>(kg) |
|---------------|-------------------|--------|----------------|
| 1.6           | Blue              | Male   | 88             |

**No.** The model fits the **Training Data** too well.

Average Weight

71.2

+

Gender=F

Height=1.6

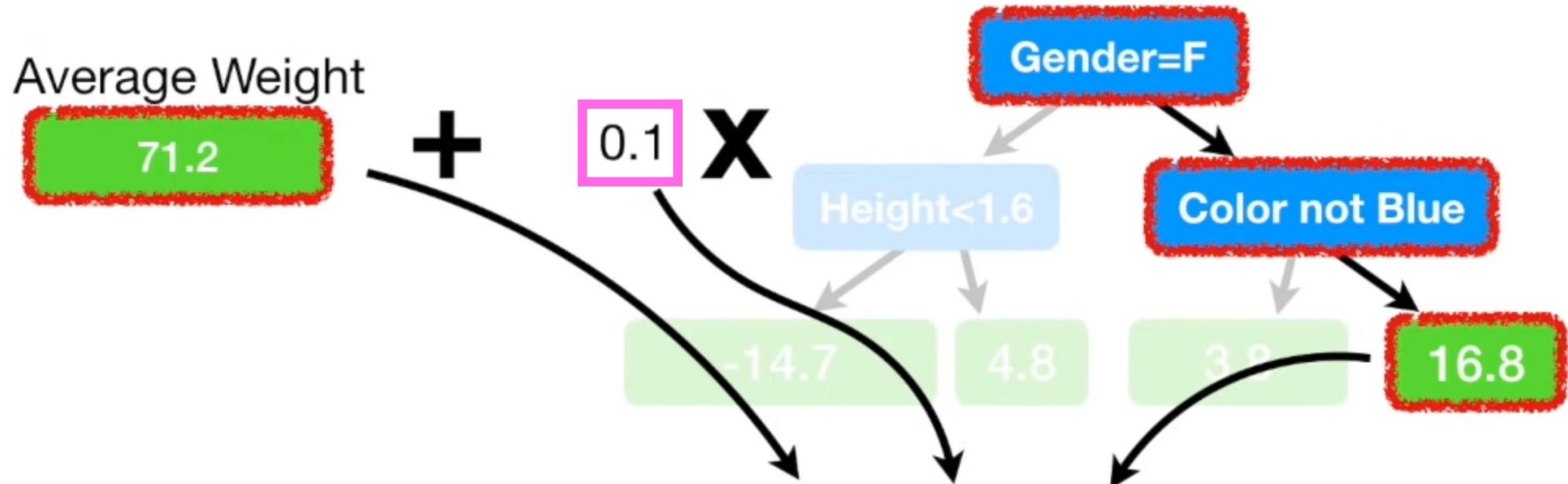
Color not Blue

16.8

**Predicted Weight** = 71.2 + 16.8 = 88

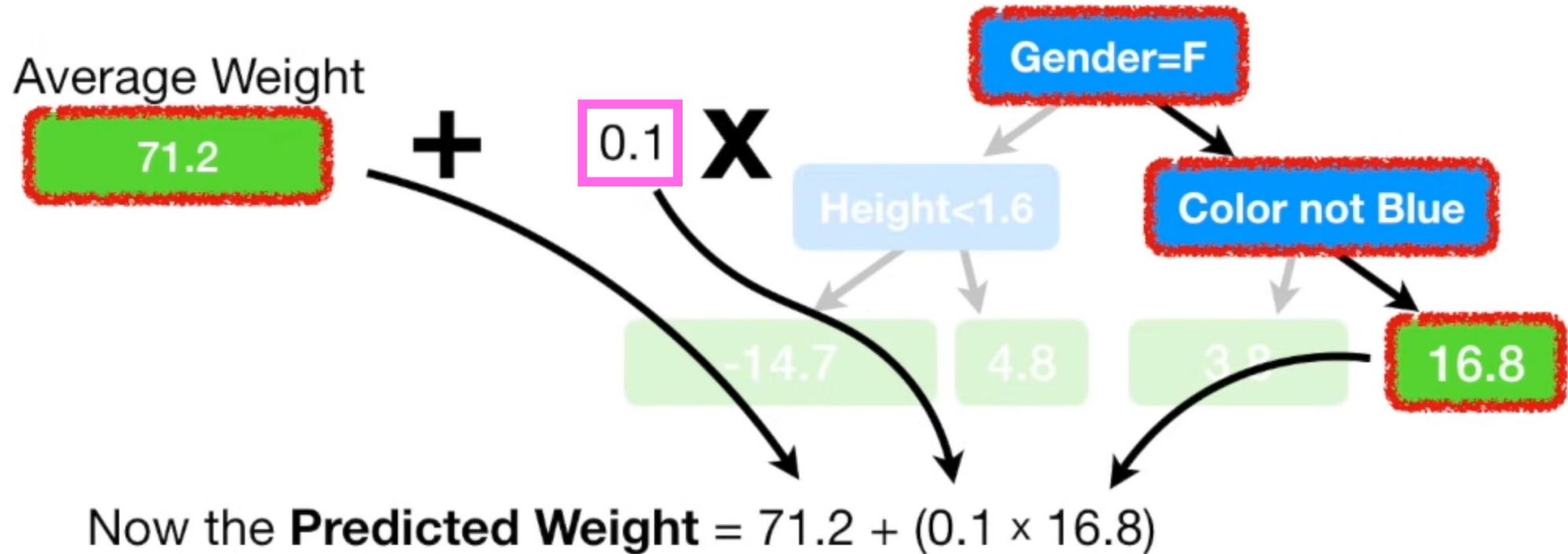
| Height (m) | Favorite Color | Gender | Weight (kg) |
|------------|----------------|--------|-------------|
| 1.6        | Blue           | Male   | 88          |

In other words, we have low **Bias**, but probably very high **Variance**.



Let's use only a 'small' part of the regression tree!  
0.1 here is the learning rate!

| Height (m) | Favorite Color | Gender | Weight (kg) |
|------------|----------------|--------|-------------|
| 1.6        | Blue           | Male   | 88          |



| Height (m) | Favorite Color | Gender | Weight (kg) |
|------------|----------------|--------|-------------|
| 1.6        | Blue           | Male   | 88          |

Average Weight

71.2

+

0.1

X

Gender=F

Height=1.6

Color not Blue

16.8

$$\text{Predicted Weight} = 71.2 + (0.1 \times 16.8) = 72.9$$

| Height (m) | Favorite Color | Gender | Weight (kg) |
|------------|----------------|--------|-------------|
| 1.6        | Blue           | Male   | 88          |

We are losing accuracy on training data with the hope to get better generalization (less overfitting and variance!)

Average Weight

71.2

+

0.1

X

Gender=F

Height<1.6

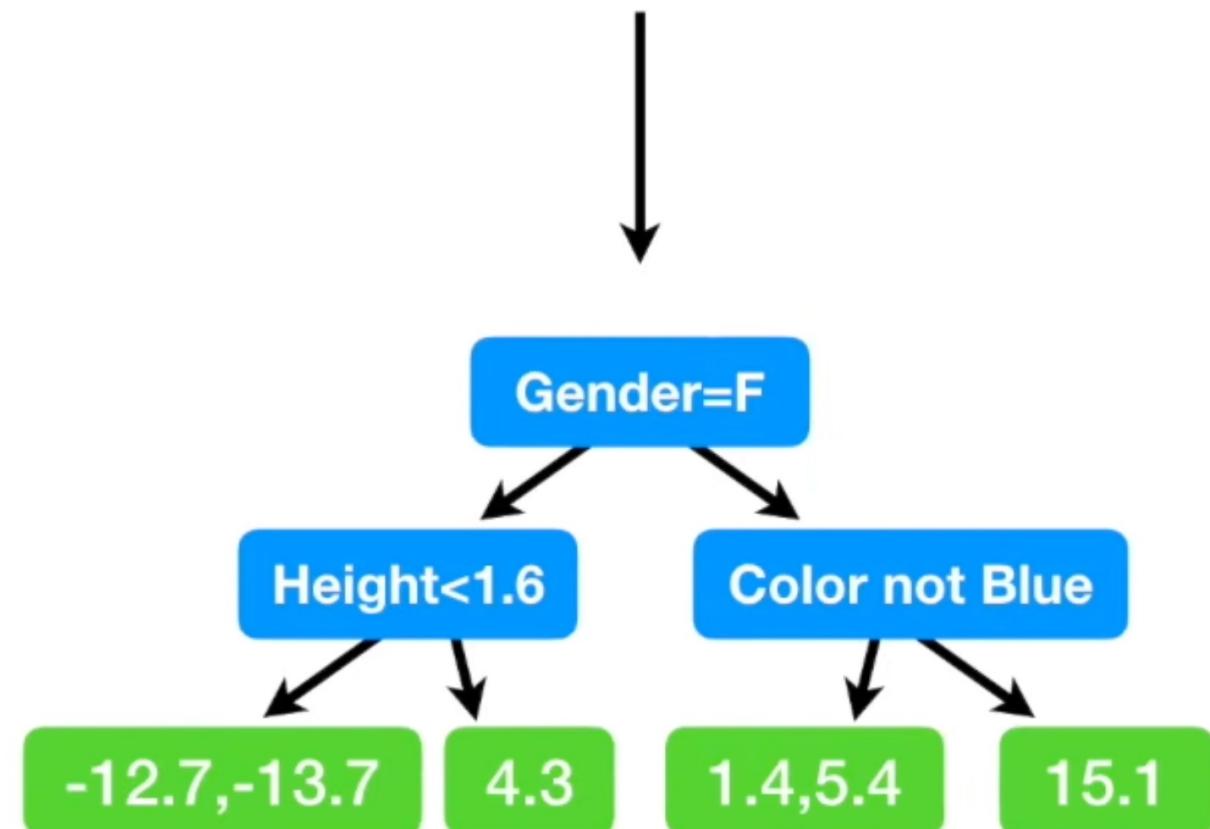
Color not Blue

| Residual | Residual |
|----------|----------|
| 16.8     | 15.1     |
| 4.8      | 4.3      |
| -15.2    | -13.7    |
| 1.8      | 1.4      |
| 5.8      | 5.4      |
| -14.2    | -12.7    |

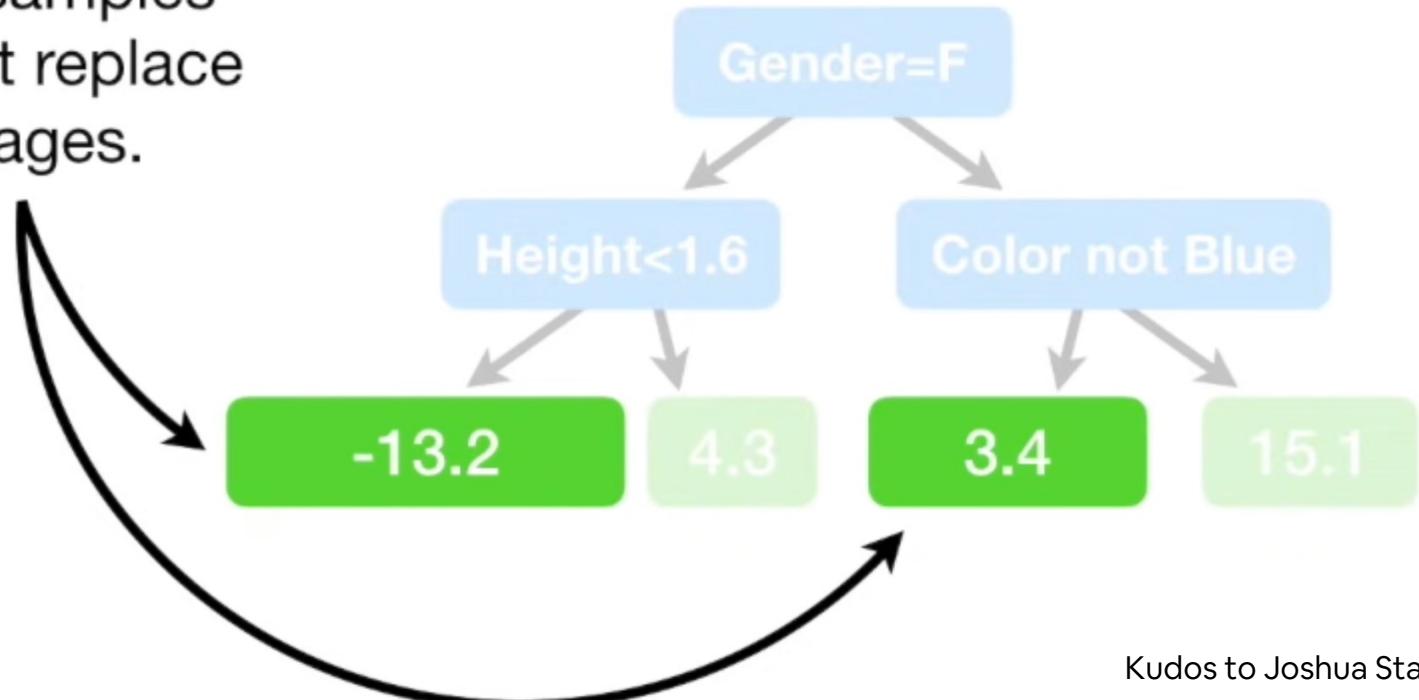
The new **Residuals** are all smaller than before, so we've taken a small step in the right direction.

| Height (m) | Favorite Color | Gender | Weight (kg) | Residual |
|------------|----------------|--------|-------------|----------|
| 1.6        | Blue           | Male   | 88          | 15.1     |
| 1.6        | Green          | Female | 76          | 4.3      |
| 1.5        | Blue           | Female | 56          | -13.7    |
| 1.8        | Red            | Male   | 73          | 1.4      |
| 1.5        | Green          | Male   | 77          | 5.4      |
| 1.4        | Blue           | Female | 57          | -12.7    |

And here's the new tree!

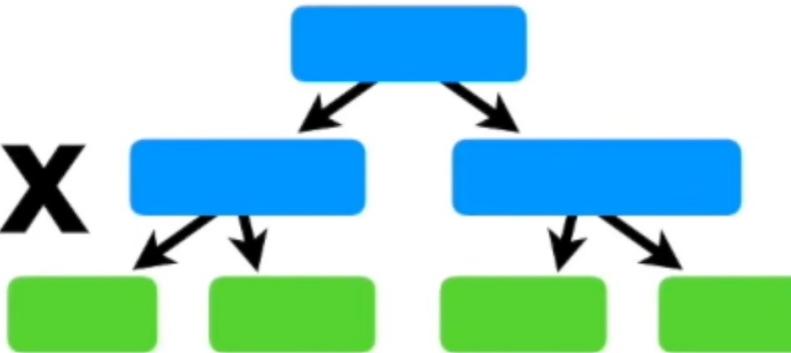


Just like before, since multiple samples ended up in these leaves, we just replace the **Residuals** with their averages.

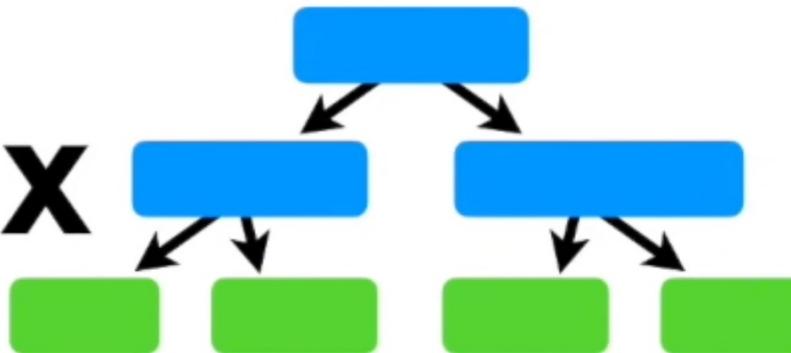


71.2

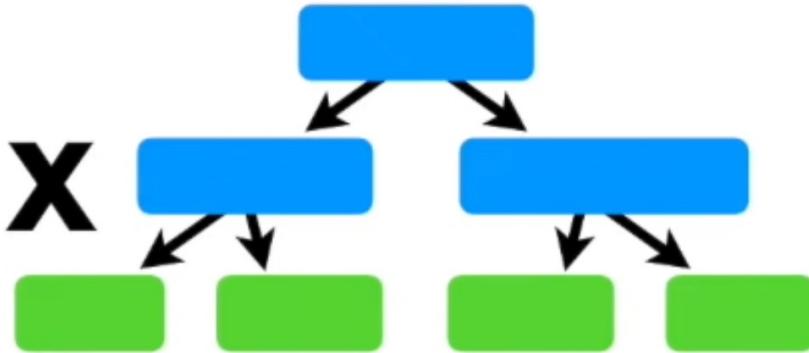
+ 0.1 X



+ 0.1 X

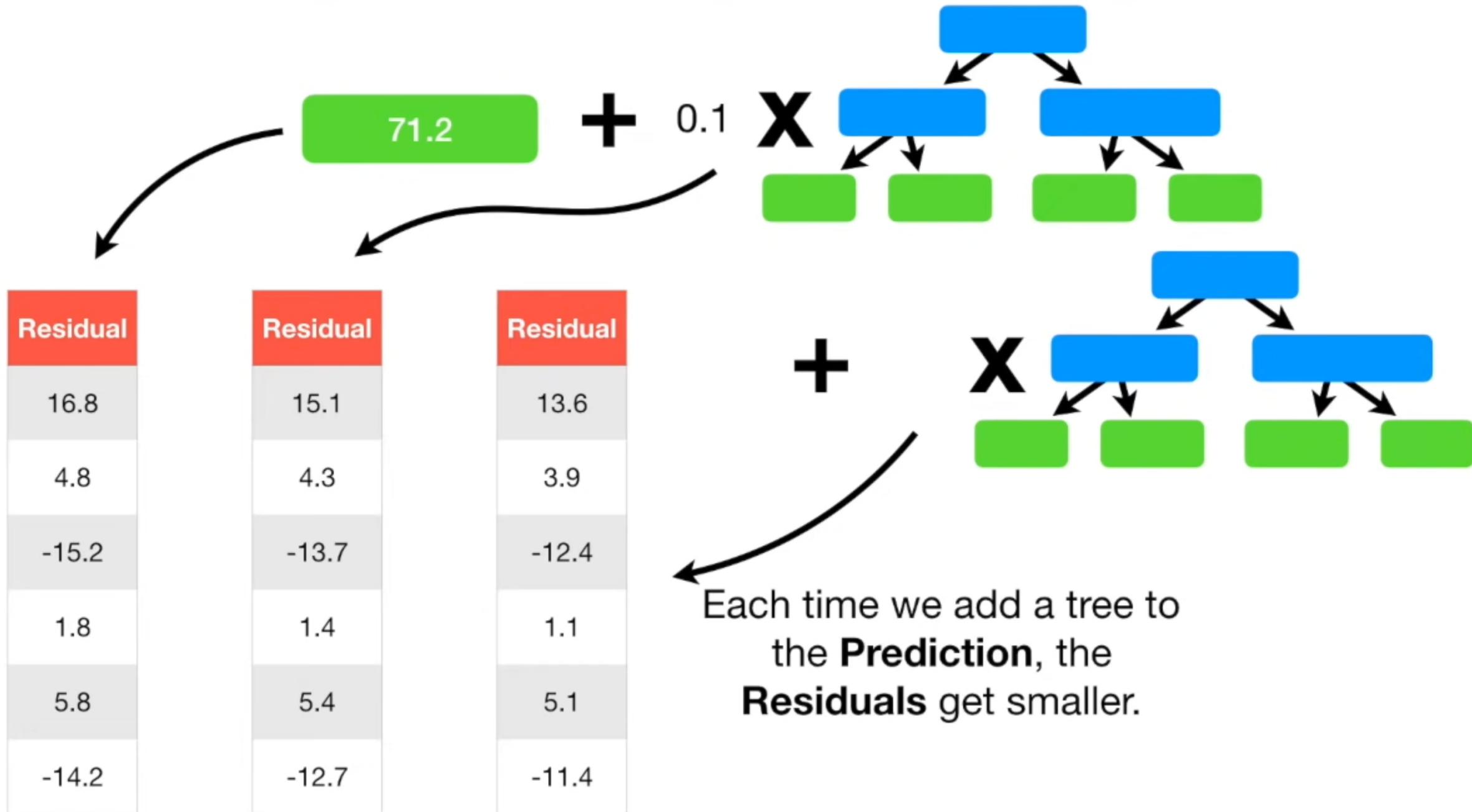


+ 0.1 X



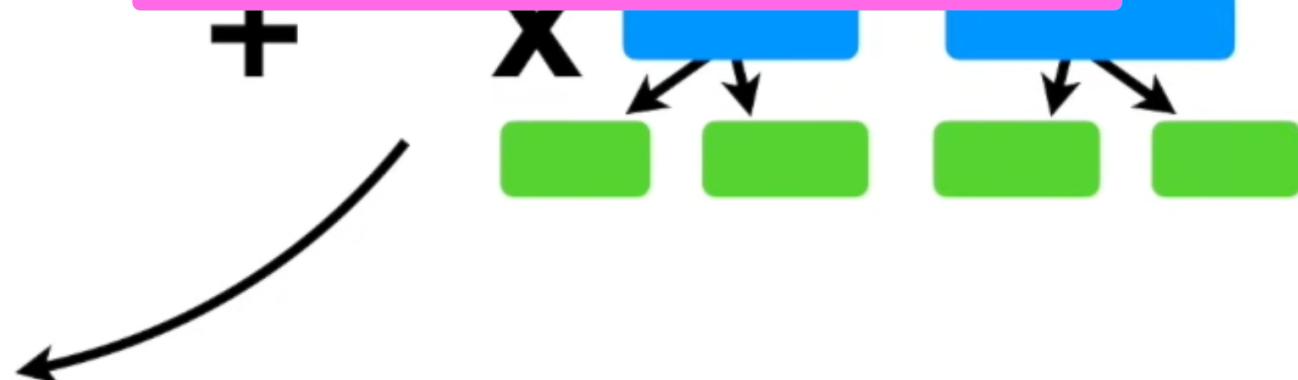
All the trees are scaled by the same learning rate!

...etc...etc...etc...



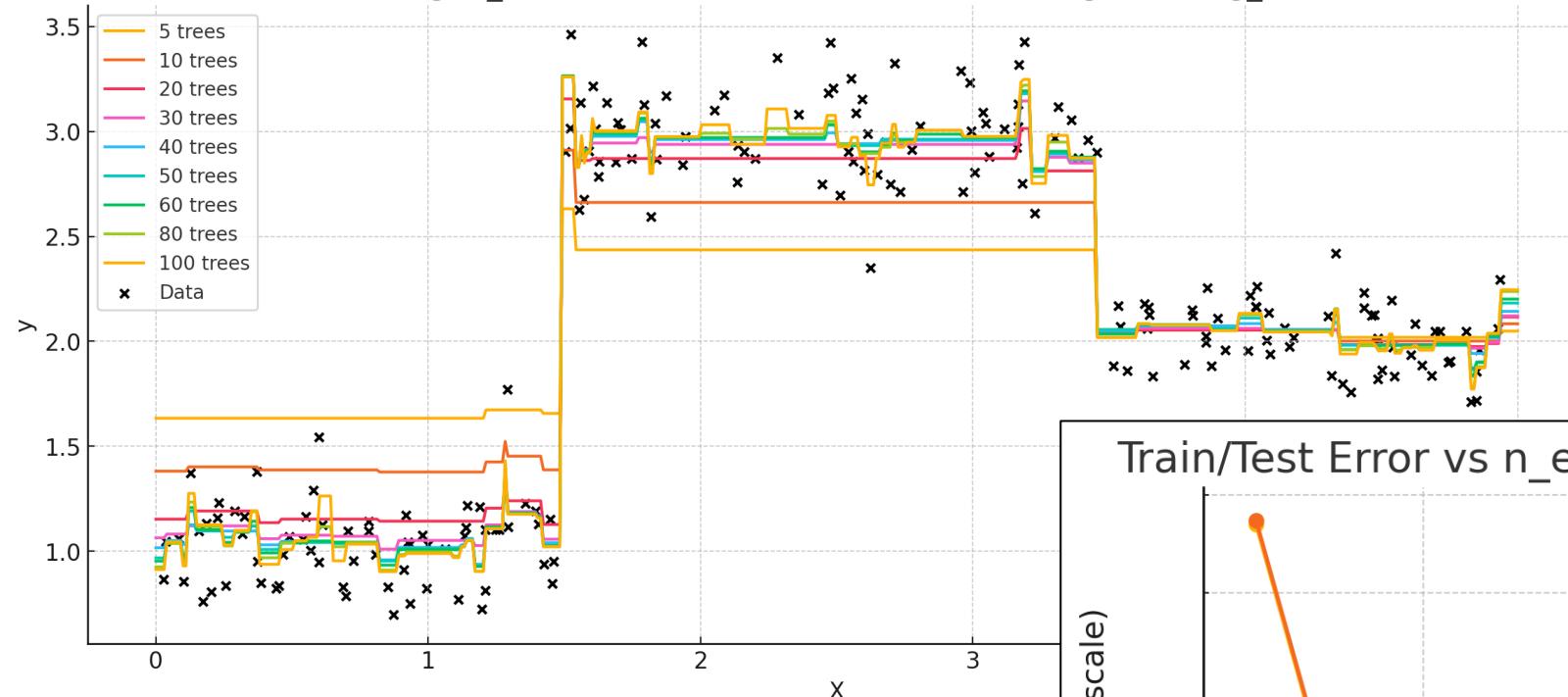


Empirical evidence shows that taking 'lots of small steps' in the right direction results in better predictions with a testing dataset (lower variance)

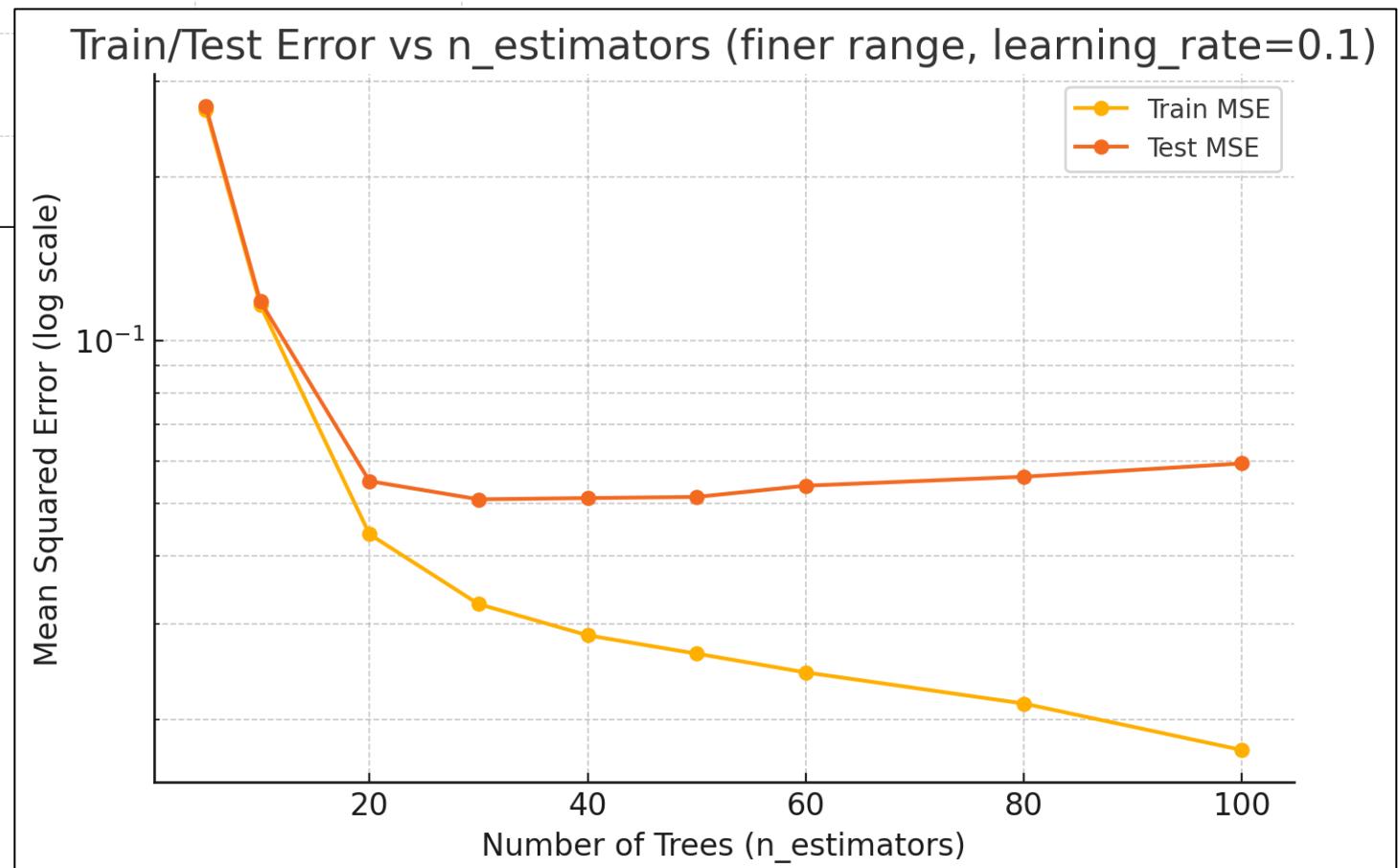


Each time we add a tree to the **Prediction**, the **Residuals** get smaller.

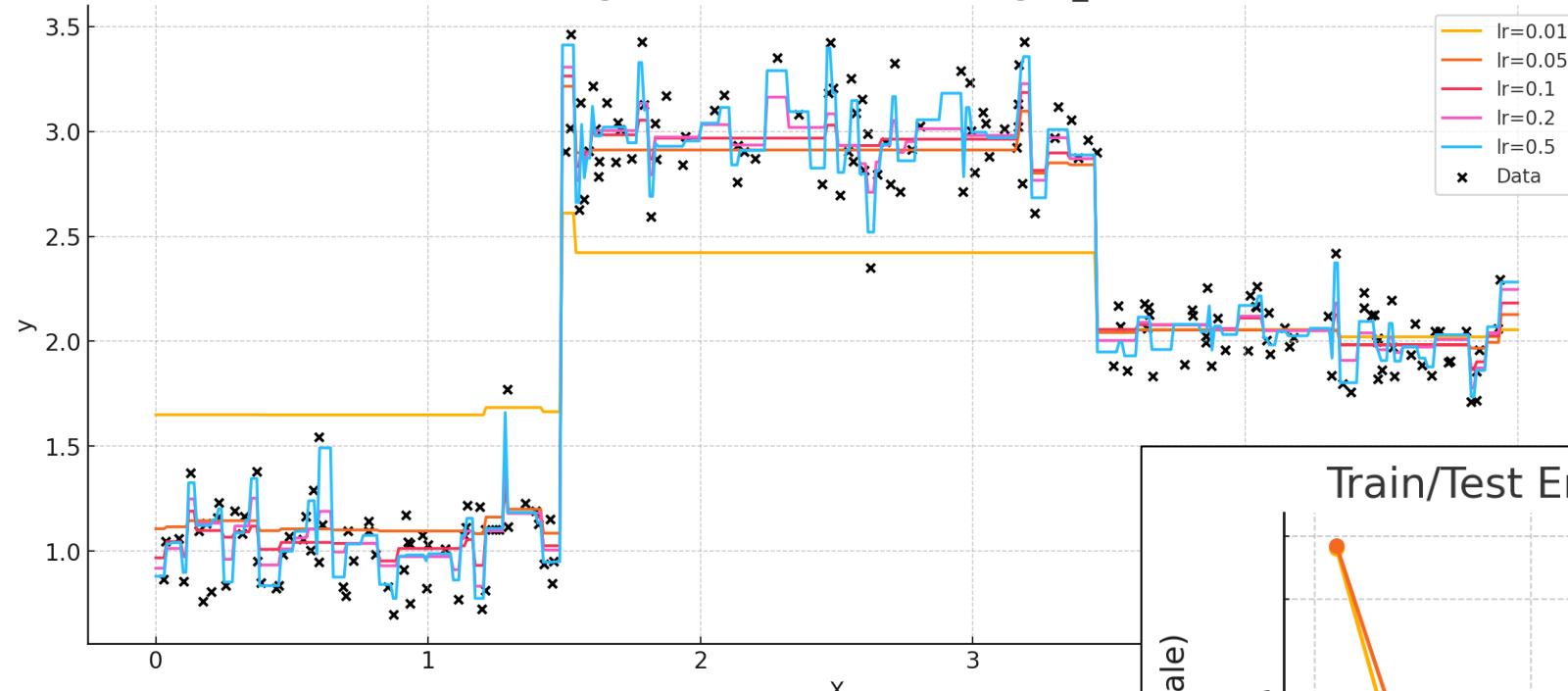
### Finer Tuning: n\_estimators effect on Gradient Boosting (learning\_rate=0.1)



Train/Test Error vs n\_estimators (finer range, learning\_rate=0.1)



Effect of Learning Rate on Gradient Boosting (n\_estimators=50)



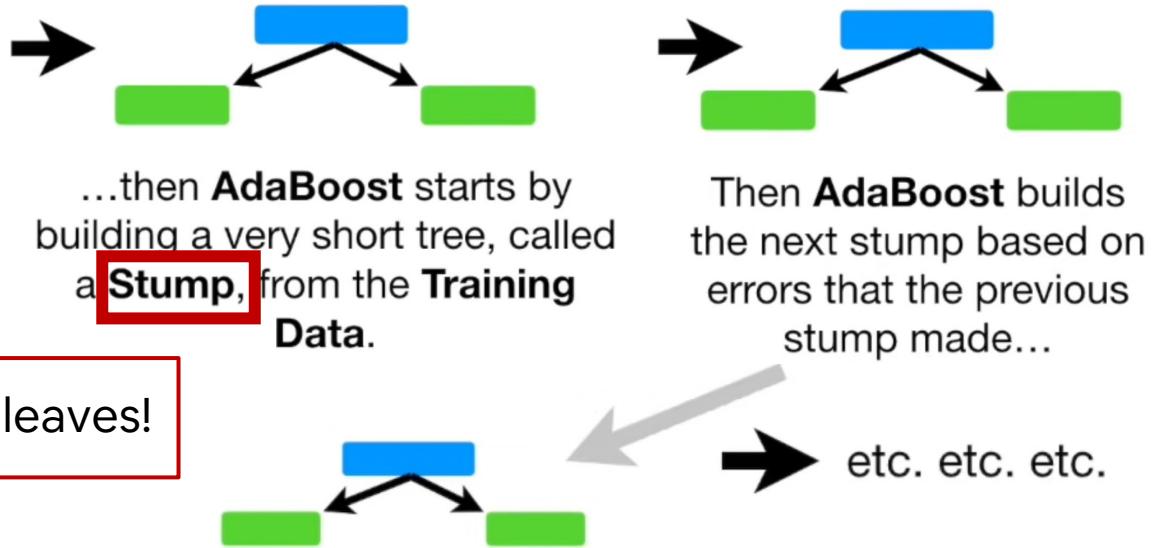
Train/Test Error vs Learning Rate (n\_estimators=50)



| Method            | Core Idea                                      | Model Combination             | Key Traits                                                         |
|-------------------|------------------------------------------------|-------------------------------|--------------------------------------------------------------------|
| Bagging           | Train trees on random data subsets             | Averaging / Voting            | Reduces variance, parallelizable, robust to overfitting            |
| Random Forest     | Bagging + random feature selection             | Averaging / Voting            | Strong baseline, good generalization                               |
| Boosting          | Sequential models to fix previous errors       | Weighted sum                  | Reduces bias, sensitive to noise                                   |
| AdaBoost          | Focus on misclassified samples via reweighting | Weighted sum                  | Simple, uses weak learners (e.g., stumps), effective on clean data |
| Gradient Boosting | Fit to loss function gradients                 | Weighted sum                  | Flexible loss functions, can overfit without tuning                |
| XGBoost           | Regularized GBM with pruning and optimizations | Weighted sum                  | Fast, regularized, handles missing values                          |
| LightGBM          | Histogram-based GBM, leaf-wise growth          | Weighted sum                  | Very fast, memory-efficient, great for large-scale problems        |
| CatBoost          | Categorical-feature-friendly GBM               | Weighted sum                  | Handles categoricals natively, avoids overfitting                  |
| Stacked Ensemble  | Combine diverse models with meta-learner       | Meta-model (e.g., regression) | Very flexible, risk of overfitting without proper cross-validation |

# Adaboost is really similar!

| Height (m) | Favorite Color | Gender | Weight (kg) |
|------------|----------------|--------|-------------|
| 1.6        | Blue           | Male   | 88          |
| 1.6        | Green          | Female | 76          |
| etc...     | etc...         | etc... | etc...      |



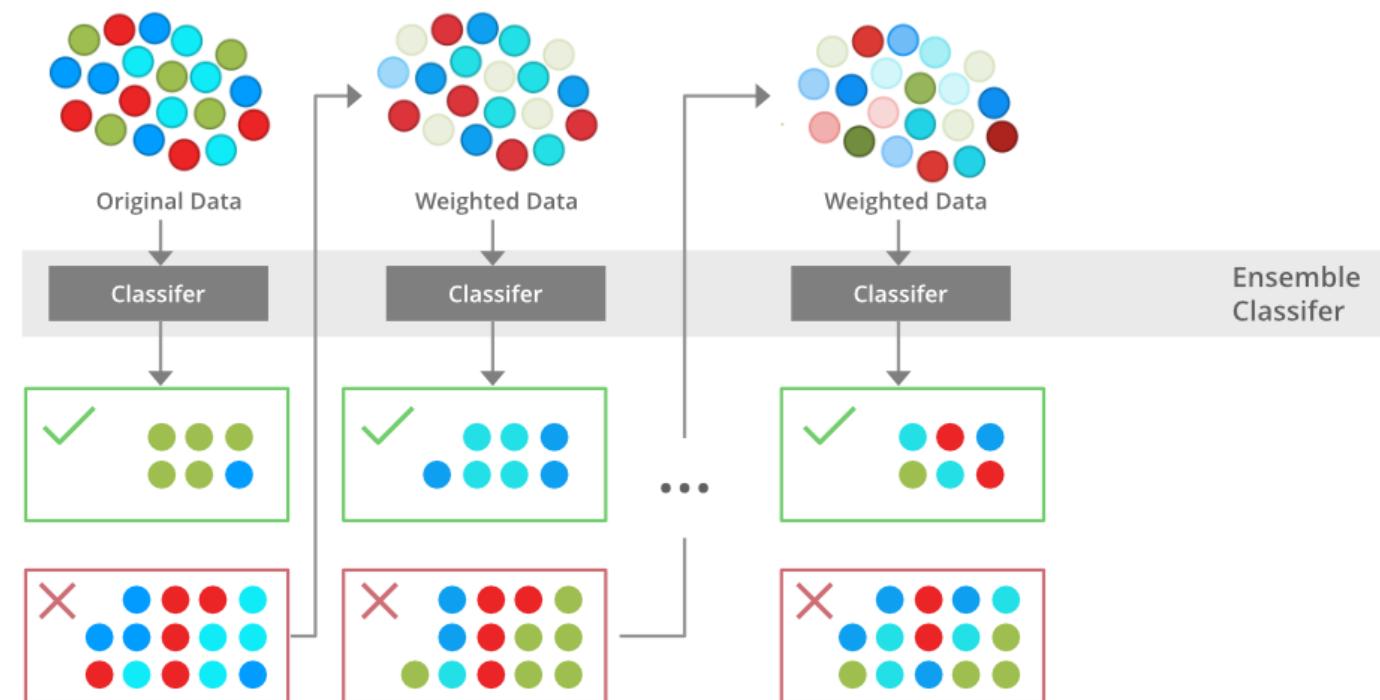
Two main differences:

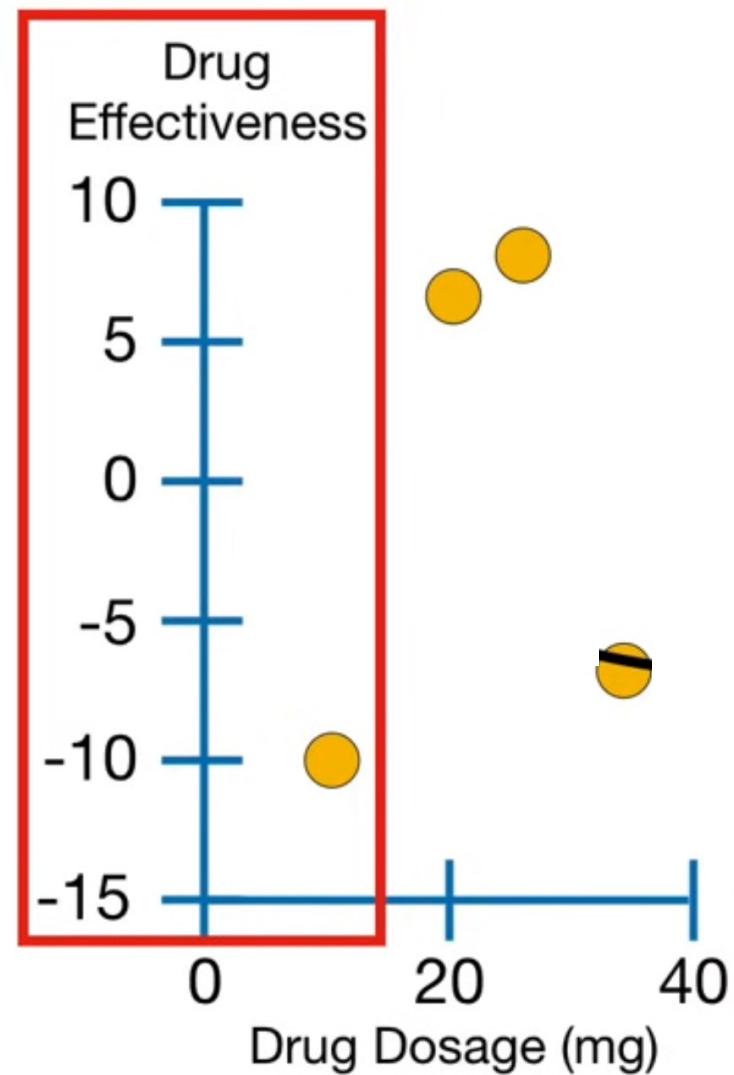
- 1) AdaBoost only have stumps (2 leaves) as trees
- 2) AdaBoost weights differently the trees depending on the weights (Gradient boosting have all the trees scaled by the same factor)

| Method            | Core Idea                                      | Model Combination             | Key Traits                                                         |
|-------------------|------------------------------------------------|-------------------------------|--------------------------------------------------------------------|
| Bagging           | Train trees on random data subsets             | Averaging / Voting            | Reduces variance, parallelizable, robust to overfitting            |
| Random Forest     | Bagging + random feature selection             | Averaging / Voting            | Strong baseline, good generalization                               |
| Boosting          | Sequential models to fix previous errors       | Weighted sum                  | Reduces bias, sensitive to noise                                   |
| AdaBoost          | Focus on misclassified samples via reweighting | Weighted sum                  | Simple, uses weak learners (e.g., stumps), effective on clean data |
| Gradient Boosting | Fit to loss function gradients                 | Weighted sum                  | Flexible loss functions, can overfit without tuning                |
| XGBoost           | Regularized GBM with pruning and optimizations | Weighted sum                  | Fast, regularized, handles missing values                          |
| LightGBM          | Histogram-based GBM, leaf-wise growth          | Weighted sum                  | Very fast, memory-efficient, great for large-scale problems        |
| CatBoost          | Categorical-feature-friendly GBM               | Weighted sum                  | Handles categoricals natively, avoids overfitting                  |
| Stacked Ensemble  | Combine diverse models with meta-learner       | Meta-model (e.g., regression) | Very flexible, risk of overfitting without proper cross-validation |

# XGBoost

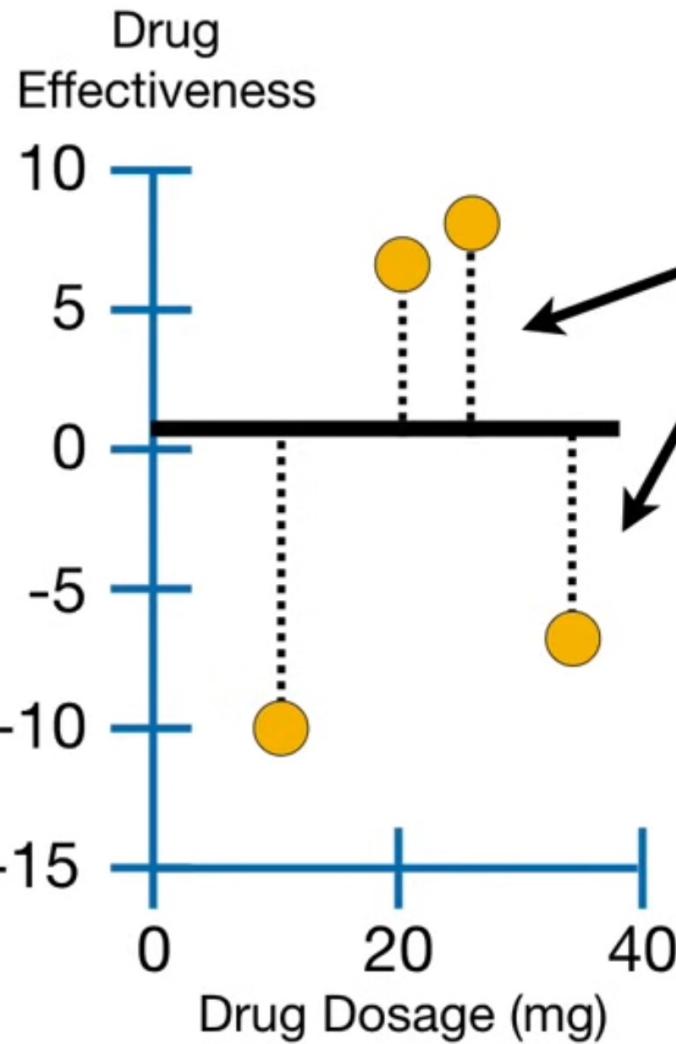
- A state-of-the art approach!
- Full of implementation tricks: we are just scratching the surface!
- It exploits:
  - 1) Boosting (sequential trees)
  - 2) A new way to construct trees, still based on the residuals
  - 3) Regularization!





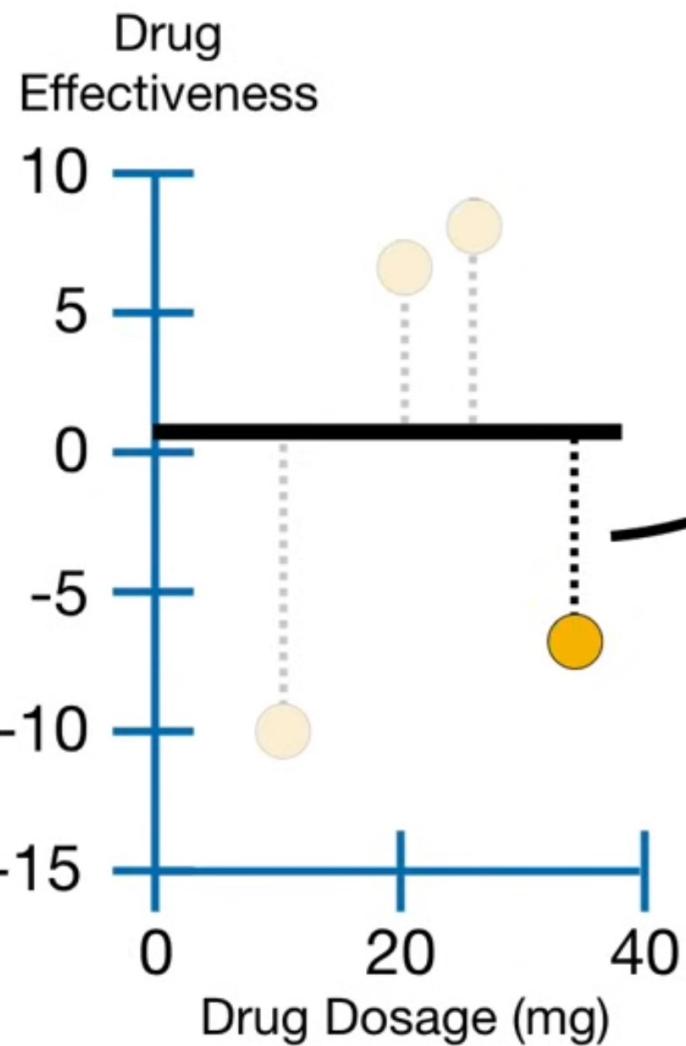
0.5

First prediction: the **mean!** Black thick line...



...and the **Residuals**, the differences between the **Observed** and **Predicted** values, show us how good the initial prediction is.

Predicted Drug Effectiveness  
0.5



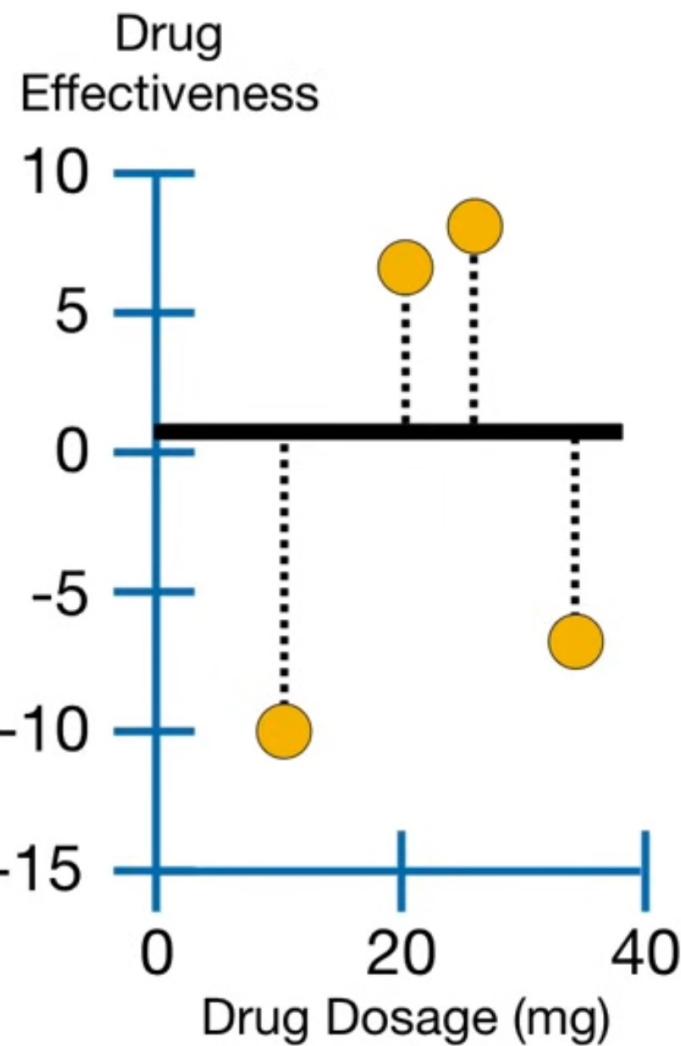
-10.5, 6.5, 7.5, -7.5

Trees here are not the standard regression trees: we also build them starting from residuals

Predicted Drug Effectiveness

0.5

-10.5, 6.5, 7.5, -7.5



$$\text{Similarity Score} = \frac{\text{Sum of Residuals, Squared}}{\text{Number of Residuals} + \lambda}$$

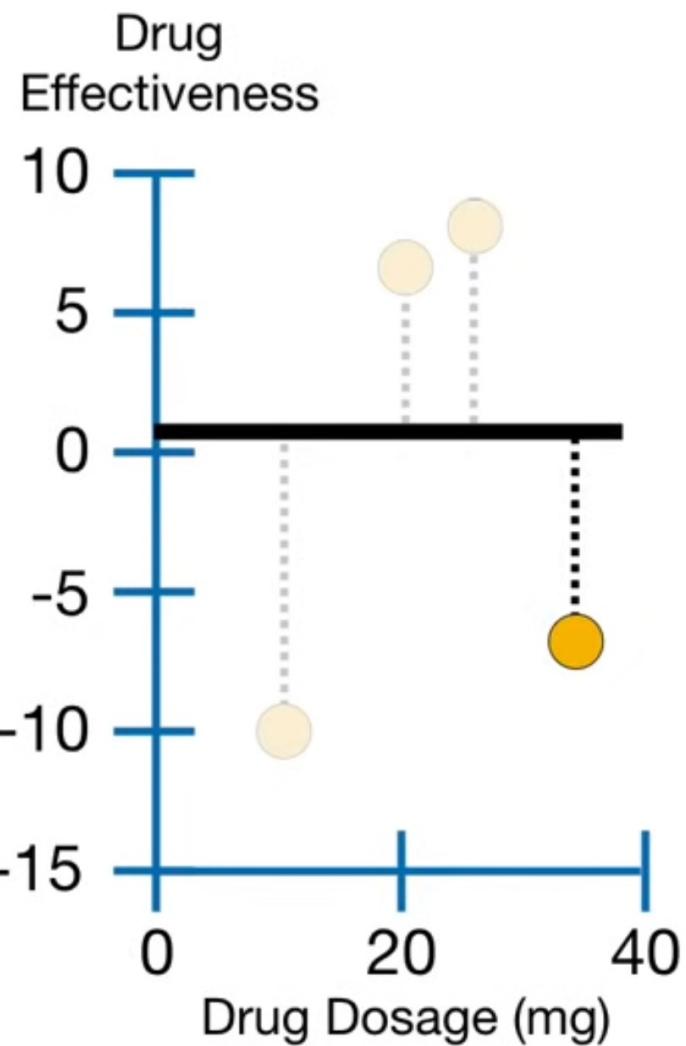


**NOTE:**  $\lambda$  (lambda) is a **Regularization** parameter, and we'll talk more about that later.

Predicted Drug Effectiveness

0.5

-10.5, 6.5, 7.5, -7.5



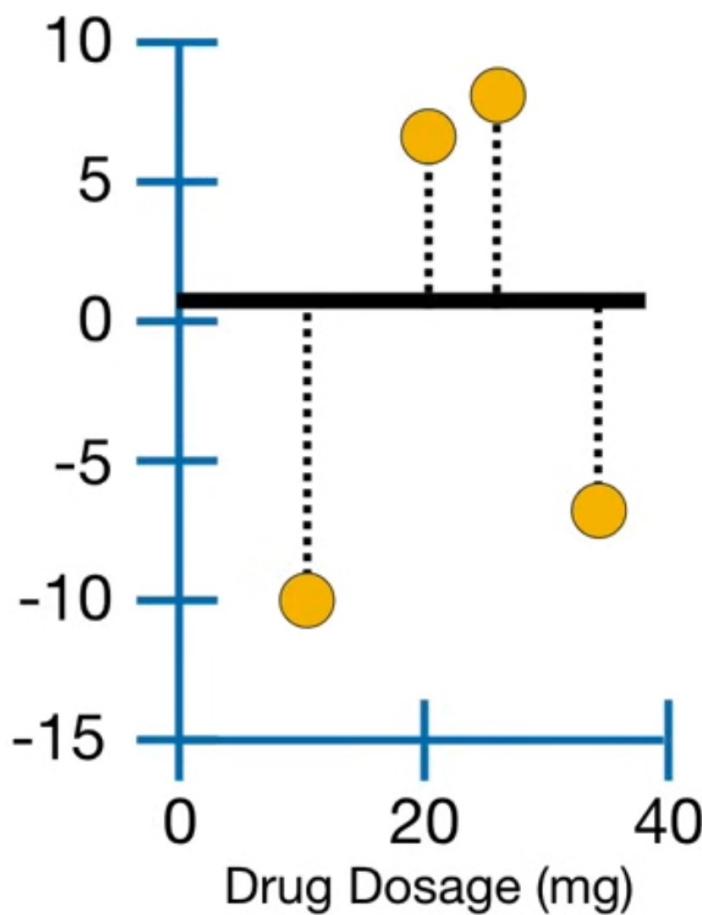
$$\text{Similarity Score} = \frac{(-10.5 + 6.5 + 7.5 + -7.5)^2}{\text{Number of Residuals} + 0} = 4$$

...and since there are 4  
**Residuals** in the leaf, we put a  
4 in the denominator.

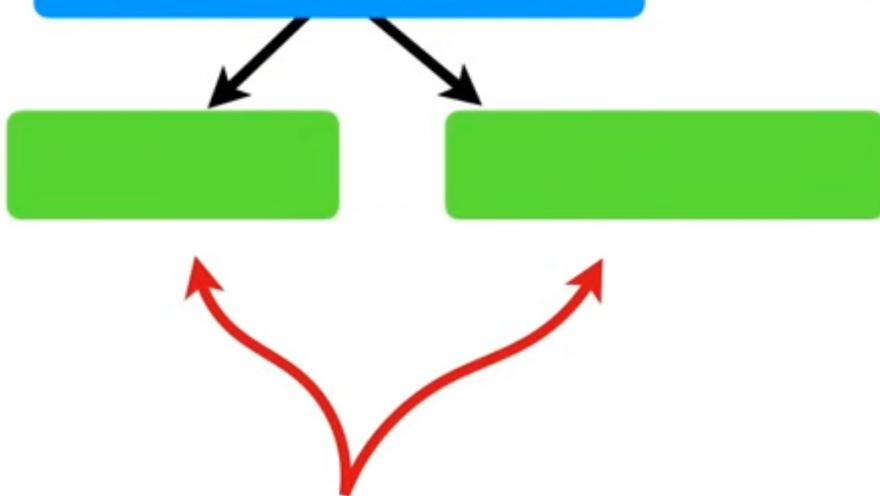
Predicted Drug Effectiveness

0.5

Drug Effectiveness



-10.5, 6.5, 7.5, -7.5 Similarity = 4



Now the question is whether or not we can do a better job clustering similar **Residuals** if we split them into two groups.

Predicted Drug Effectiveness

0.5

Drug Effectiveness



Dosage < 15

-10.5

6.5, 7.5, -7.5

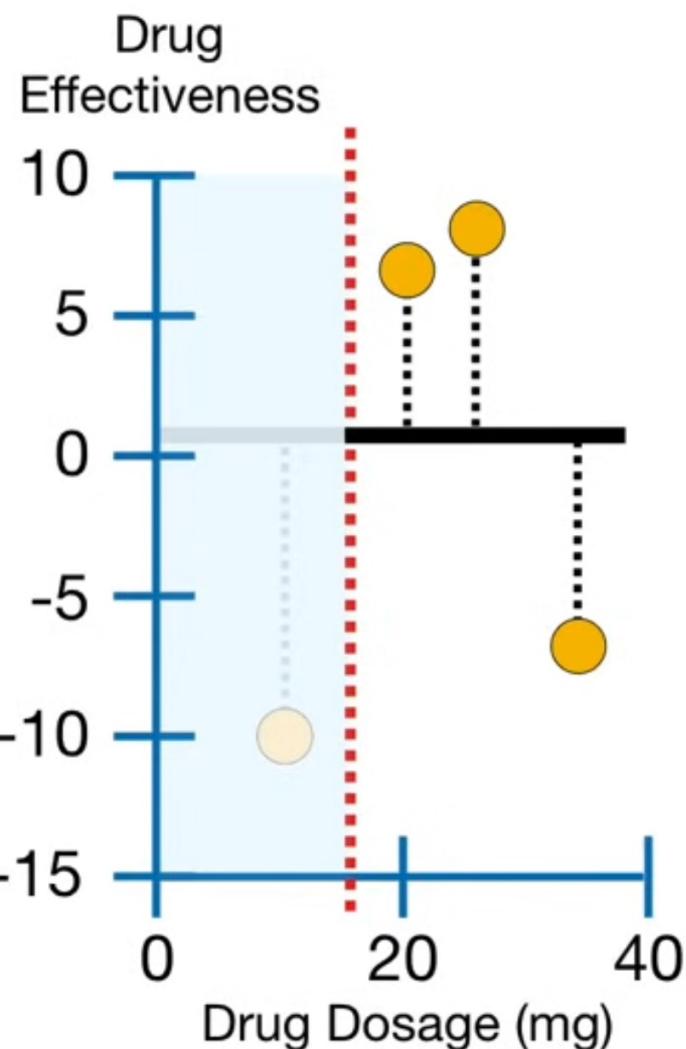
Similarity = 4

$$\text{Similarity Score} = \frac{-10.5^2}{\text{Number of Residuals} + \lambda} = 110.25$$

...and since only one **Residual** went to the leaf on the left, the **Number of Residuals = 1**.

Predicted Drug Effectiveness

0.5



Dosage < 15

-10.5

6.5, 7.5, -7.5

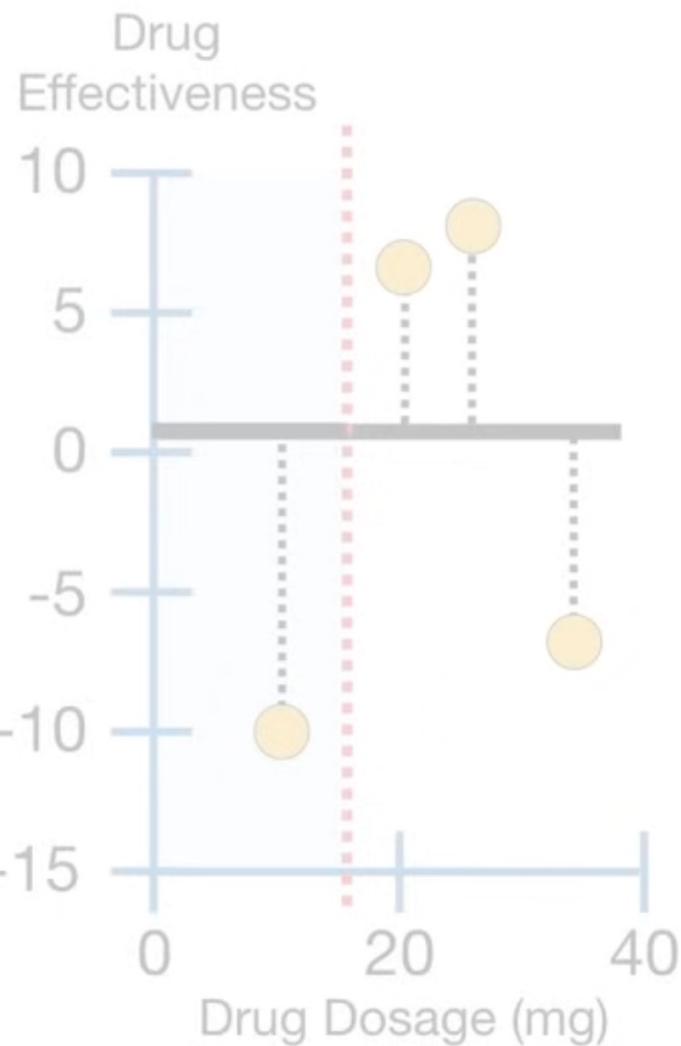
Similarity =  
110.25

$$\text{Similarity Score} = \frac{(6.5 + 7.5 + -7.5)^2}{3 + \lambda}$$

...and just like before,  
let's let  $\lambda = 0$ .

Predicted Drug Effectiveness

0.5



-10.5, 6.5, 7.5, -7.5 Similarity = 4

-10.5

Similarity =  
110.25

6.5, 7.5, -7.5

Similarity =  
14.08

$$\text{Gain} = 110.25 + 14.08 - 4 = 120.33$$

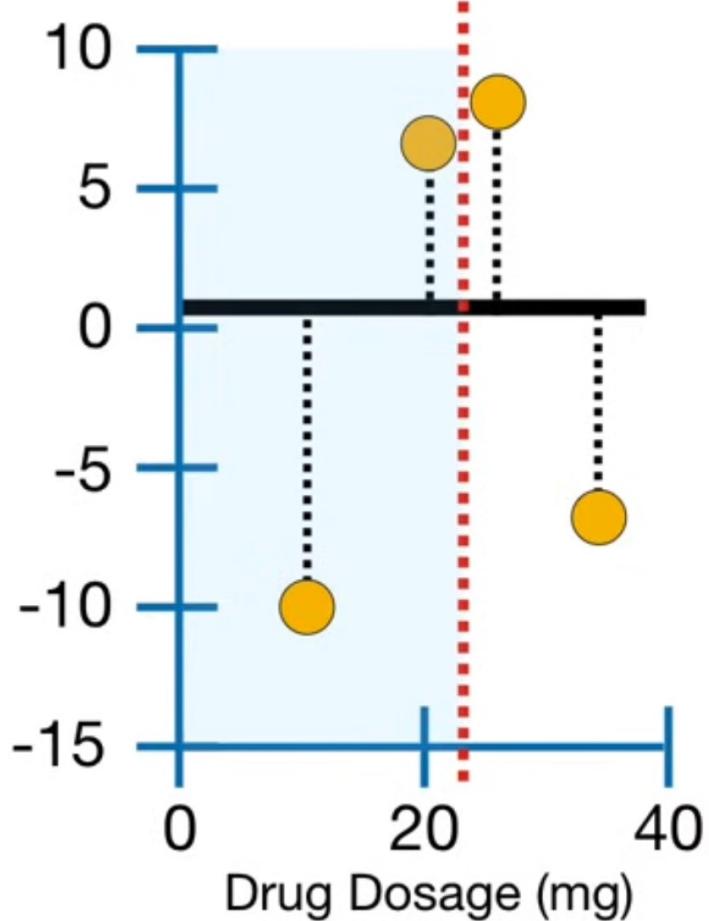
...gives us 120.33.

Gain =  $\text{Left}_{\text{Similarity}} + \text{Right}_{\text{Similarity}} - \text{Root}_{\text{Similarity}}$

Predicted Drug Effectiveness

0.5

Drug Effectiveness



Dosage < 22.5

Similarity = 4

-10.5, 6.5

7.5, -7.5

Similarity = 8

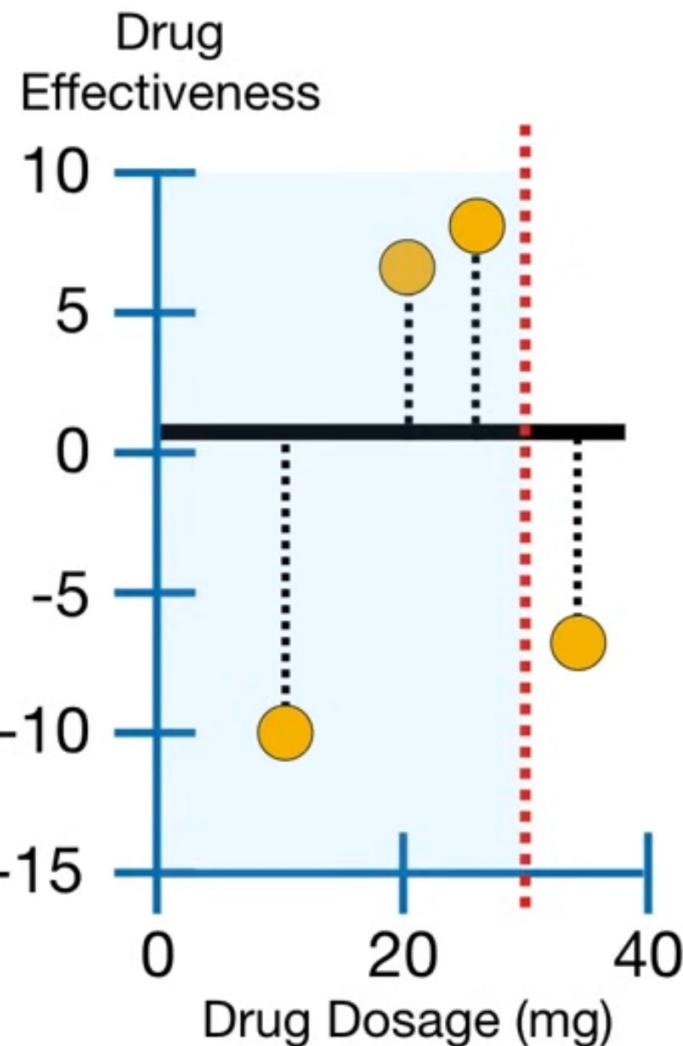
Similarity = 0

$$\text{Gain} = 8 + 0 - 4 = 4$$

Since the **Gain** for **Dosage < 22.5 (Gain = 4)** is less than the **Gain** for **Dosage < 15 (Gain = 120.33)**, **Dosage < 15** is better at splitting the **Residuals** into clusters of similar values.

Predicted Drug Effectiveness

0.5



**Dosage < 30**

-10.5, 6.5, 7.5

-7.5

Similarity = 4.08

Similarity = 56.25

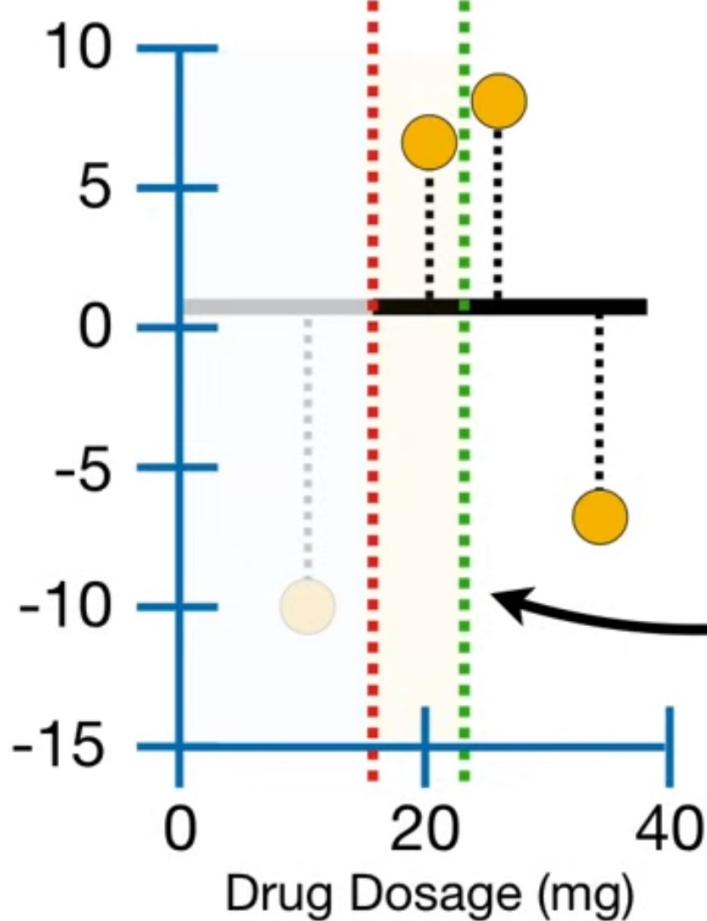
$$\text{Gain} = 4.08 + 56.25 - 4 = 56.33$$

Again, since the **Gain** for **Dosage < 30** (**Gain = 56.33**) is less than the **Gain** for **Dosage < 15** (**Gain = 120.33**), **Dosage < 15** is better at splitting the observations.

Predicted Drug Effectiveness

0.5

Drug Effectiveness



Best split!

Dosage < 15

-10.5

6.5, 7.5, -7.5

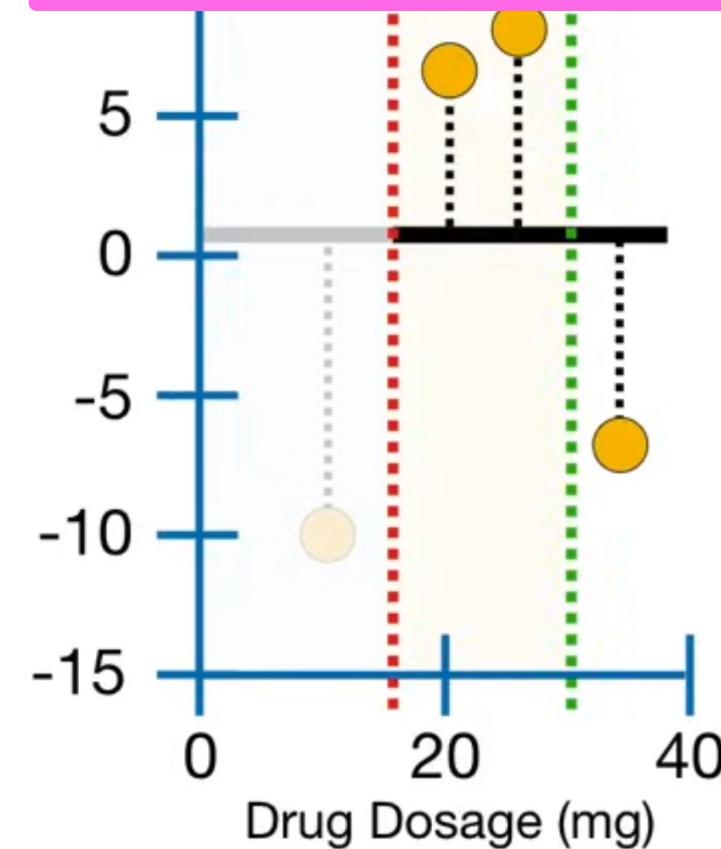
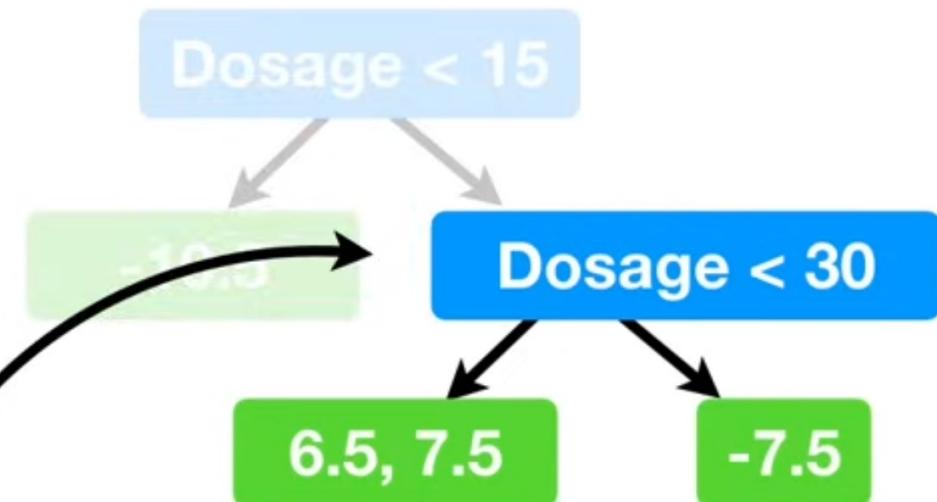
...and their average **Dosage** is **22.5**, which corresponds to this **dotted green line**.

We do the same thing (looking at all splits and considering similarity score as a metric)

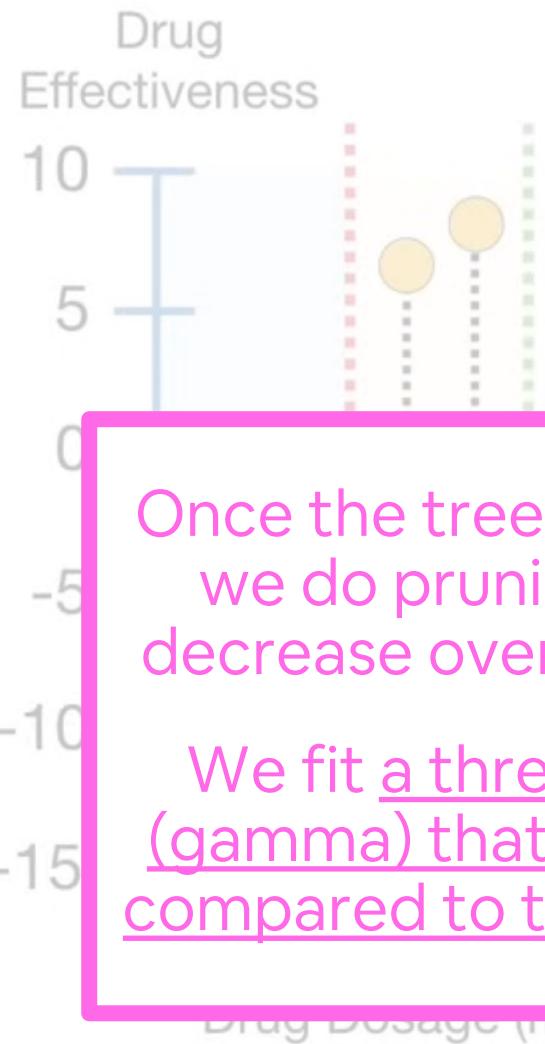
We decide to stop at depth = 2 in this example, but in reality, typically depth = 6

So we will use **Dosage < 30** as the threshold for this branch.

$$\text{Gain} = 98 + 56.25 - 14.08 = 140.17$$



Predicted Drug Effectiveness  
0.5



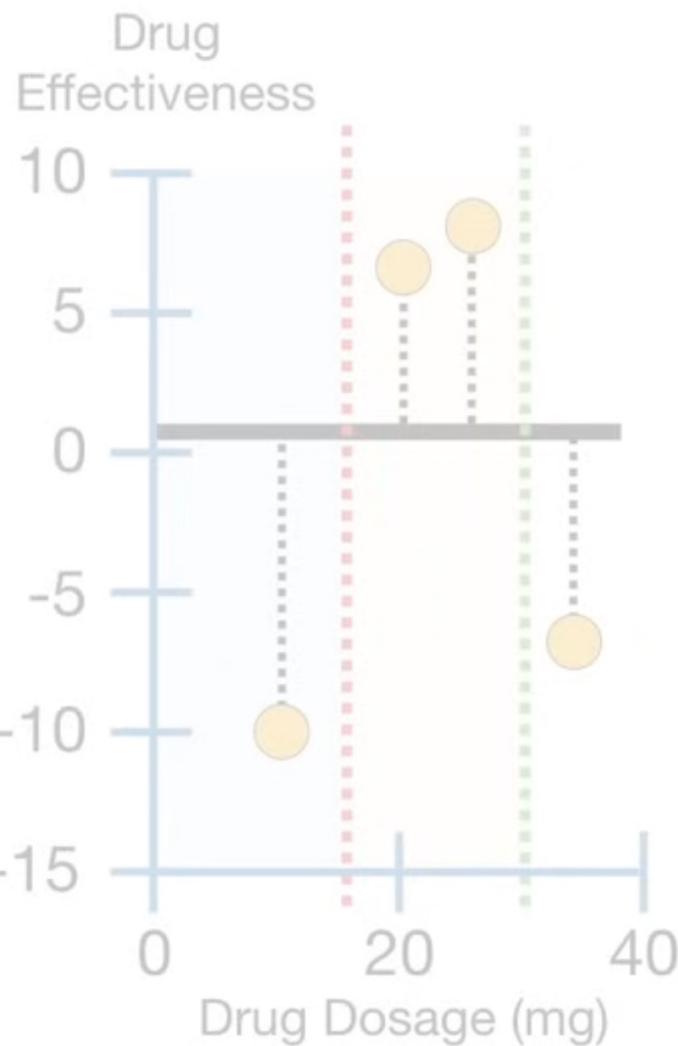
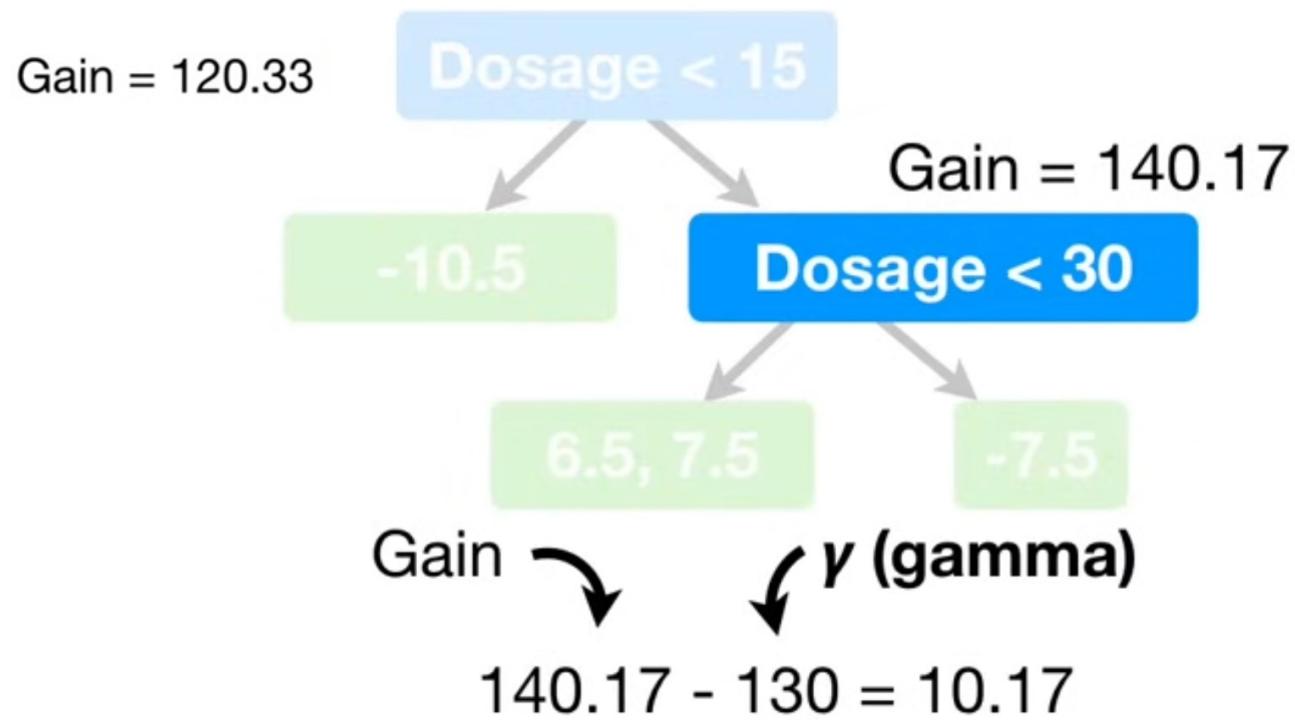
Once the tree is built,  
we do pruning to  
decrease overfitting!

We fit a threshold  
(gamma) that will be  
compared to the gain!

We start by picking a  
number, for example, **130**.

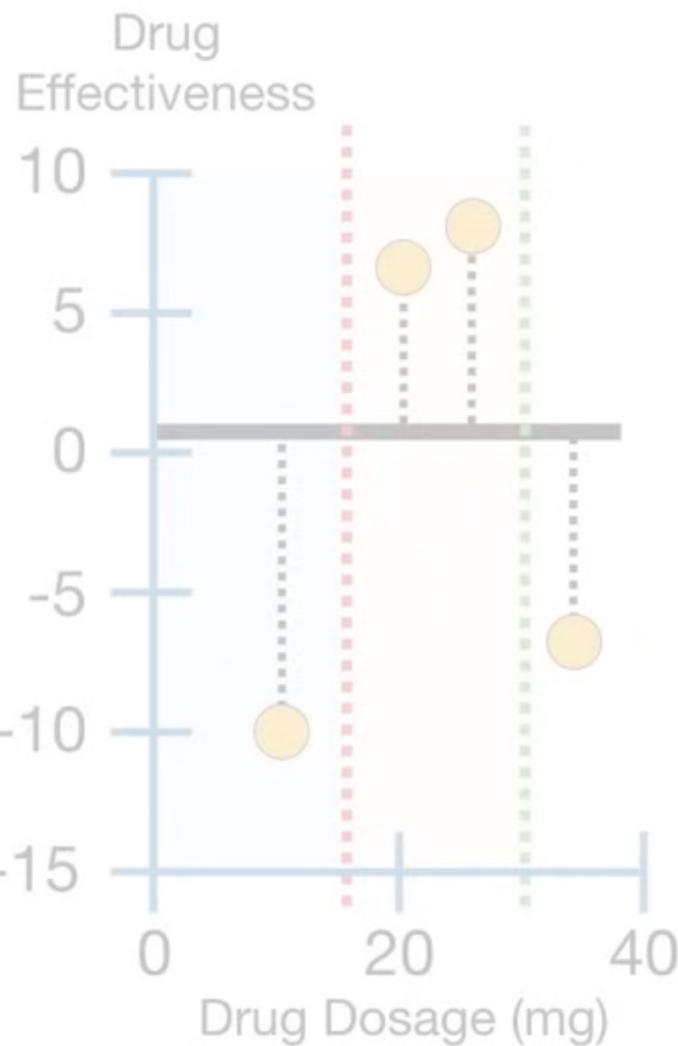
**TERMINOLOGY ALERT!!!**  
**XGBoost** calls this  
number  **$\gamma$  (gamma)**.

Predicted Drug Effectiveness  
0.5

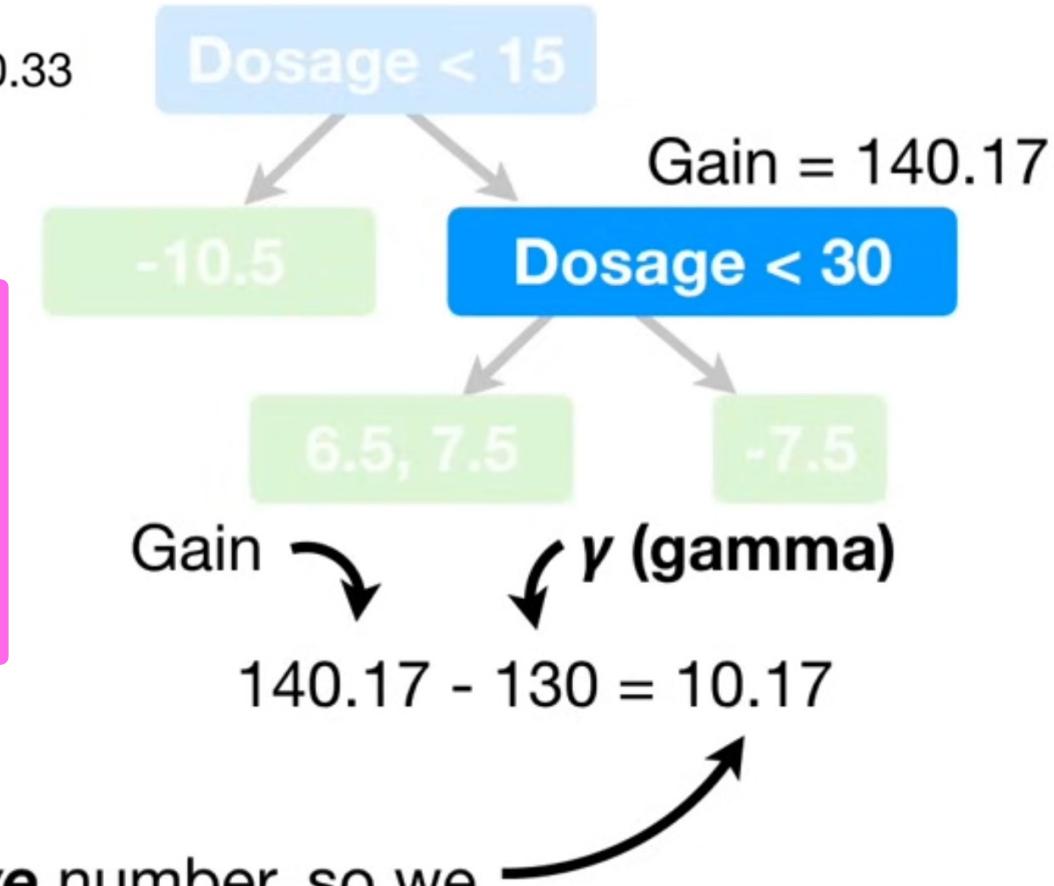


...we get a **positive** number, so we will not remove this branch and we are done pruning.

Predicted Drug Effectiveness  
0.5

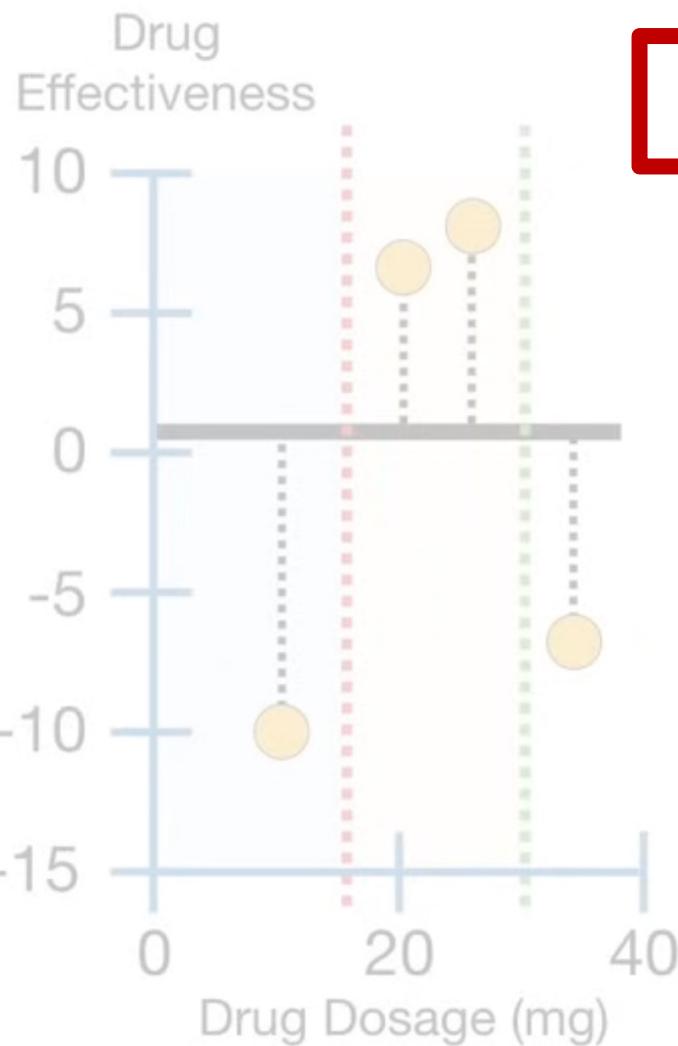


Gain = 120.33

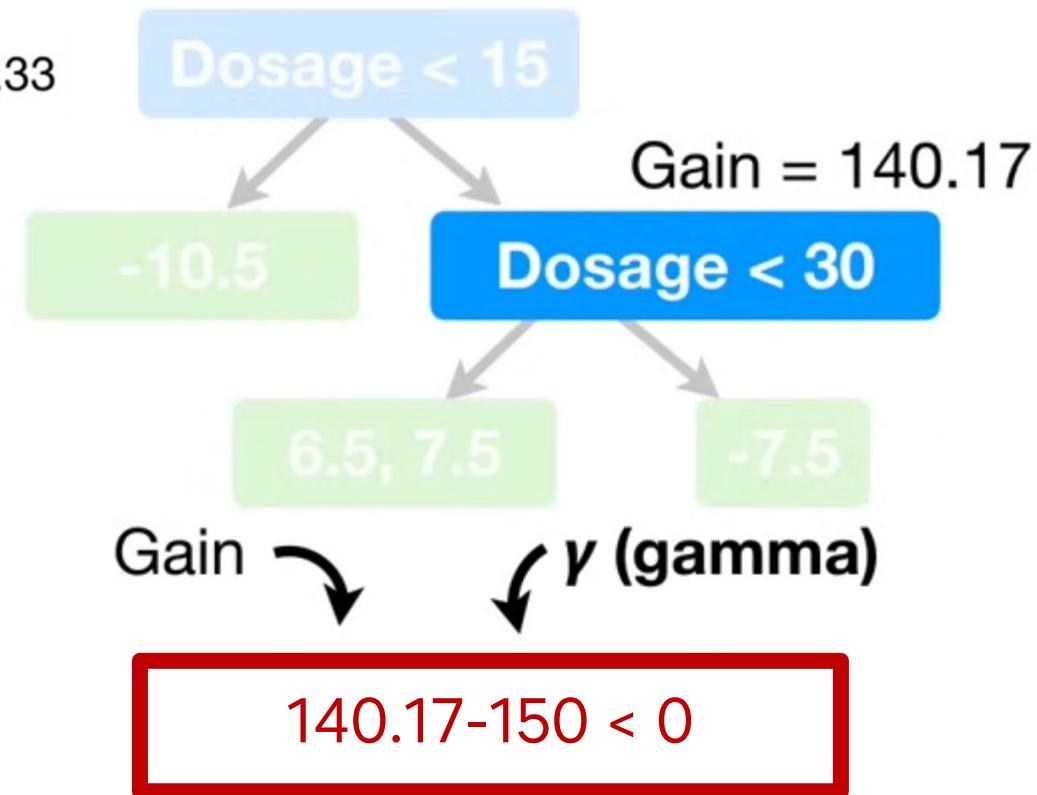


...we get a **positive** number, so we will not remove this branch and we are done pruning.

Predicted Drug Effectiveness  
0.5



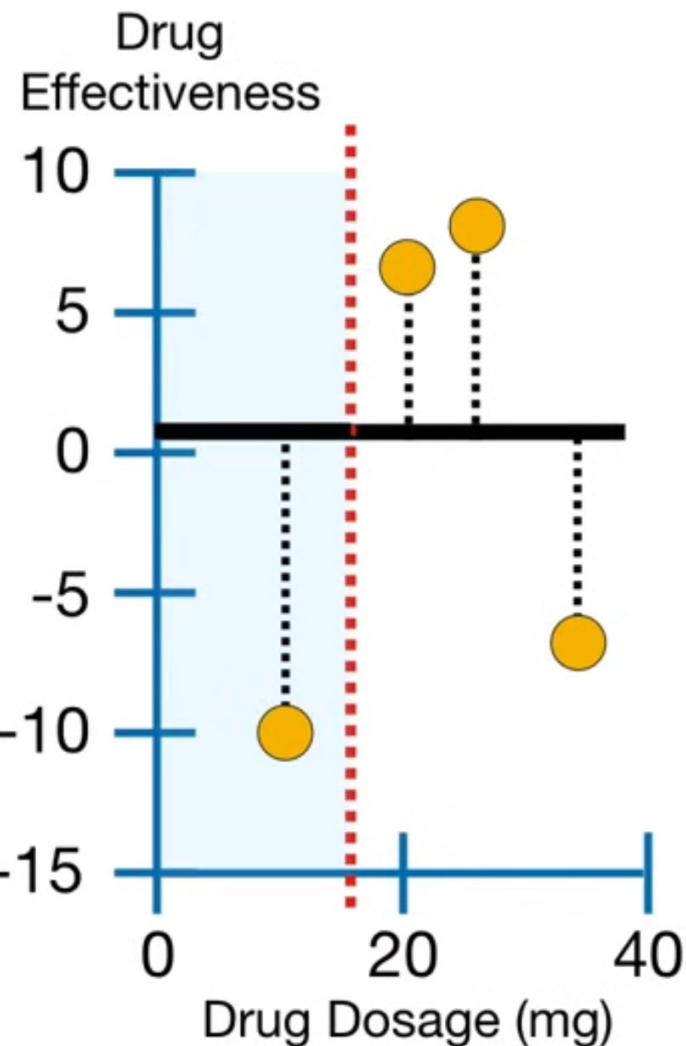
Gain = 120.33



In this case the increased threshold make us prune the whole tree!

Predicted Drug Effectiveness

0.5



Dosage < 15

-10.5

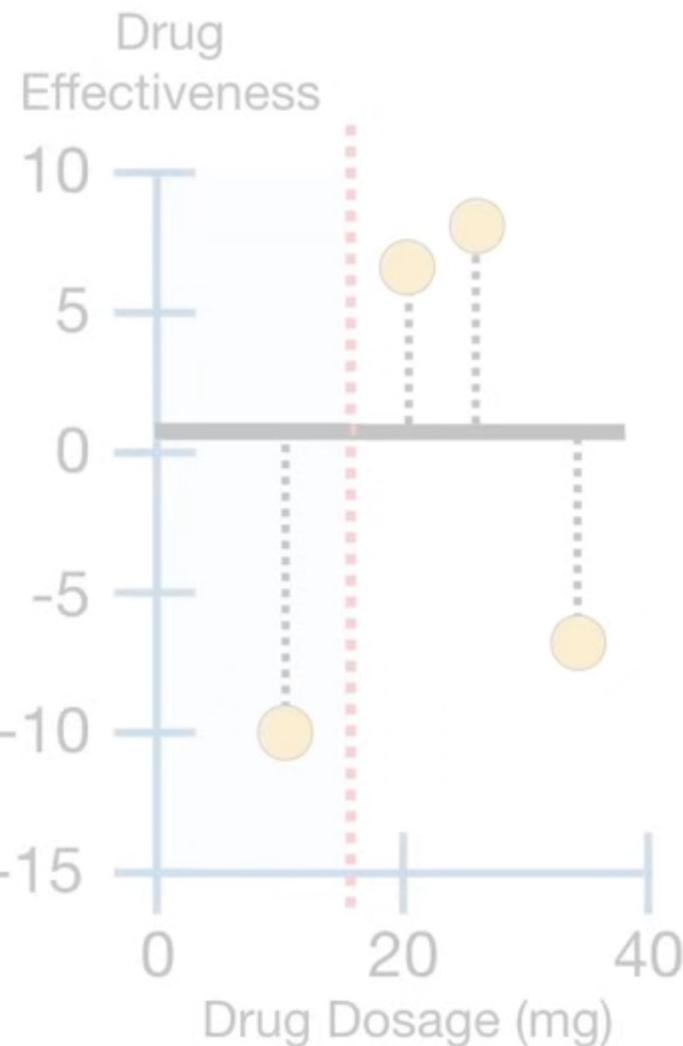
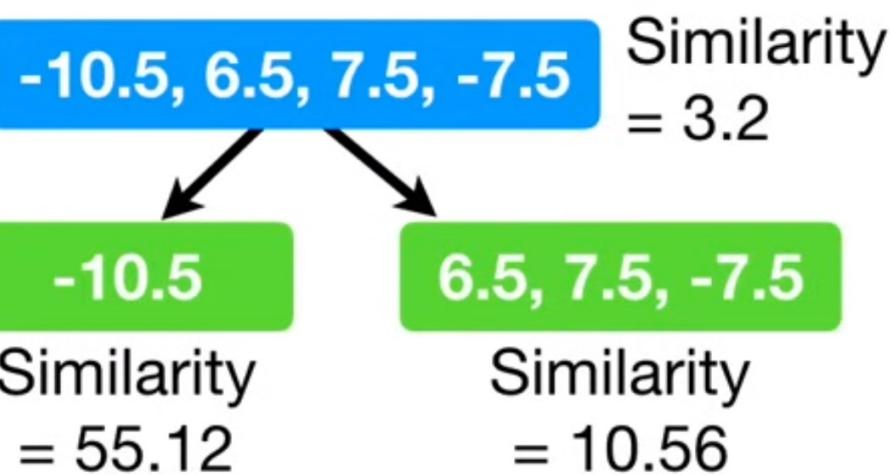
6.5, 7.5, -7.5

$$\text{Similarity Score} = \frac{\text{Sum of Residuals, Squared}}{\text{Number of Residuals} + 1}$$

Remember  $\lambda$  (lambda) is a **Regularization Parameter**, which means that it is intended to reduce the prediction's sensitivity to individual observations.

Predicted Drug Effectiveness

0.5



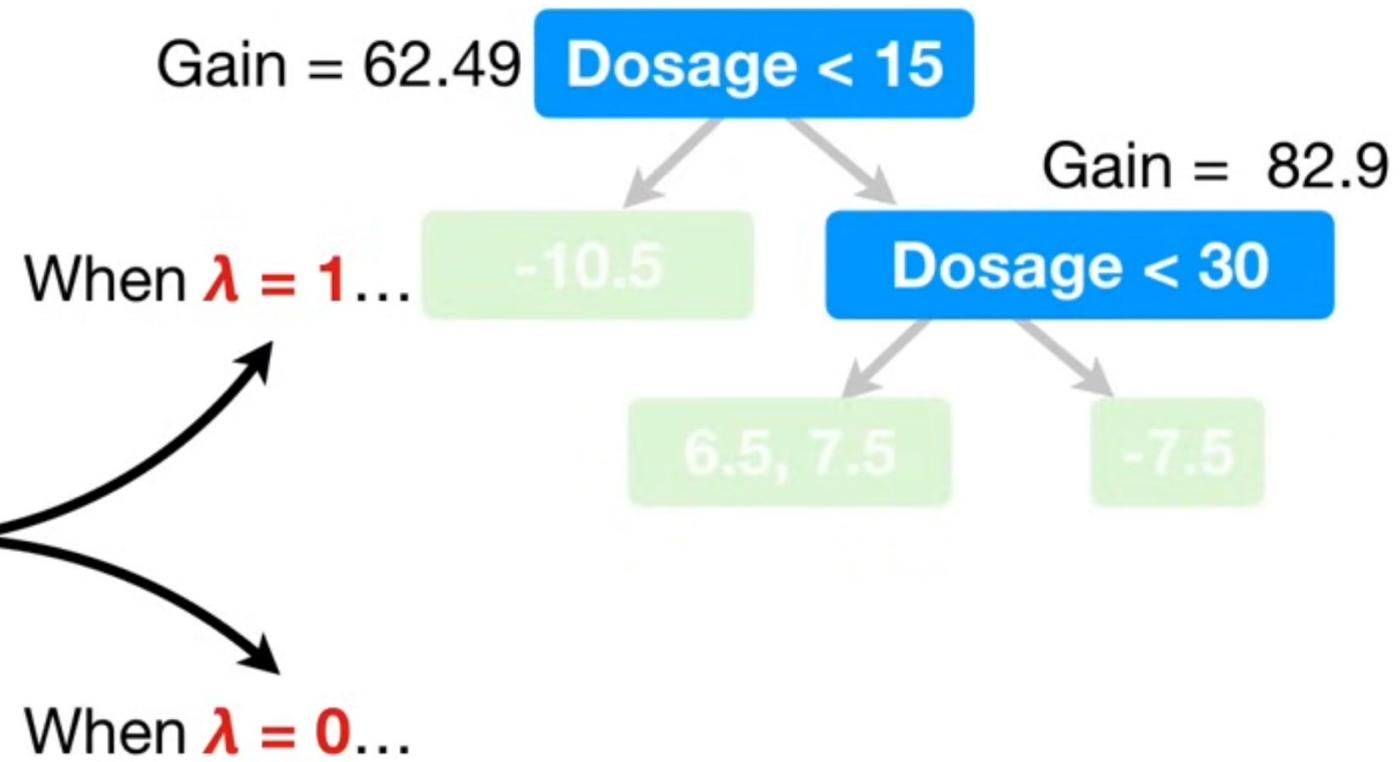
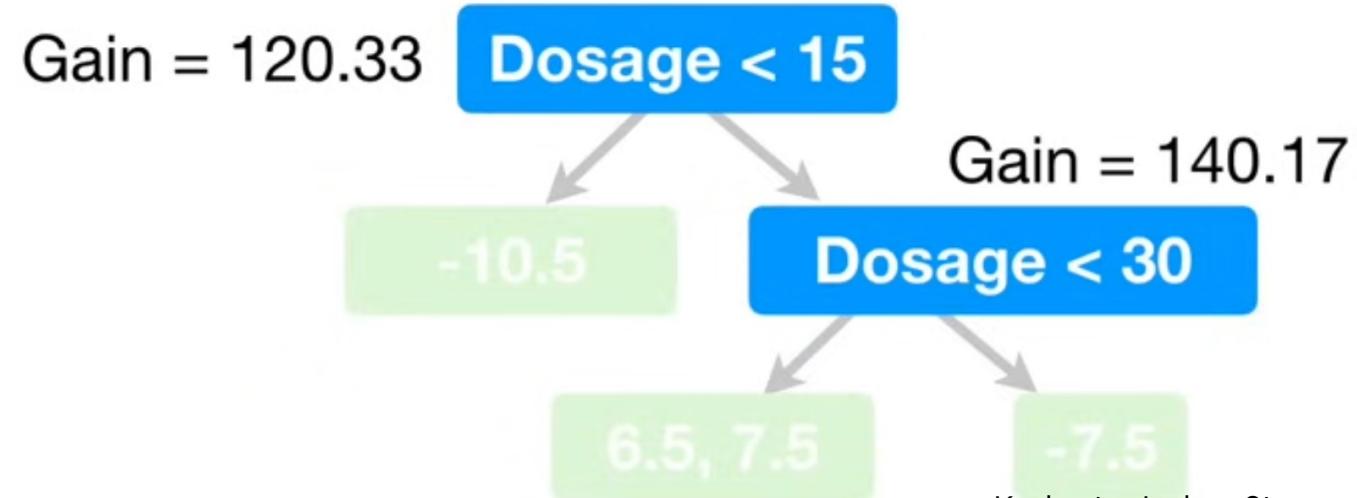
So, one thing we see is that when  $\lambda > 0$ , the **Similarity Scores** are smaller...

...and the amount of decrease is **inversely proportional** to the number of **Residuals** in the node.

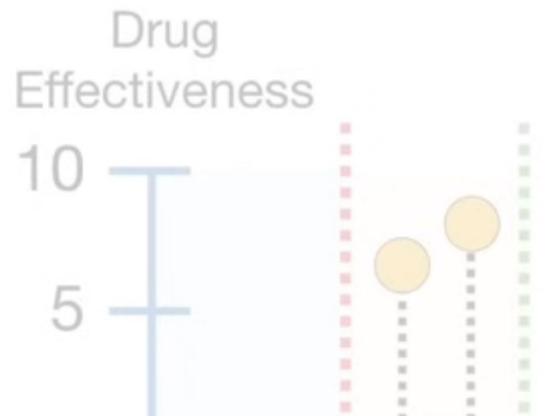
So when  $\lambda > 0$ , it is easier to prune leaves because the values for **Gain** are smaller.

The threshold 130 for example will have a completely different impact!

It is an hyperparameter that can allow us to prevent over fitting the Training data!

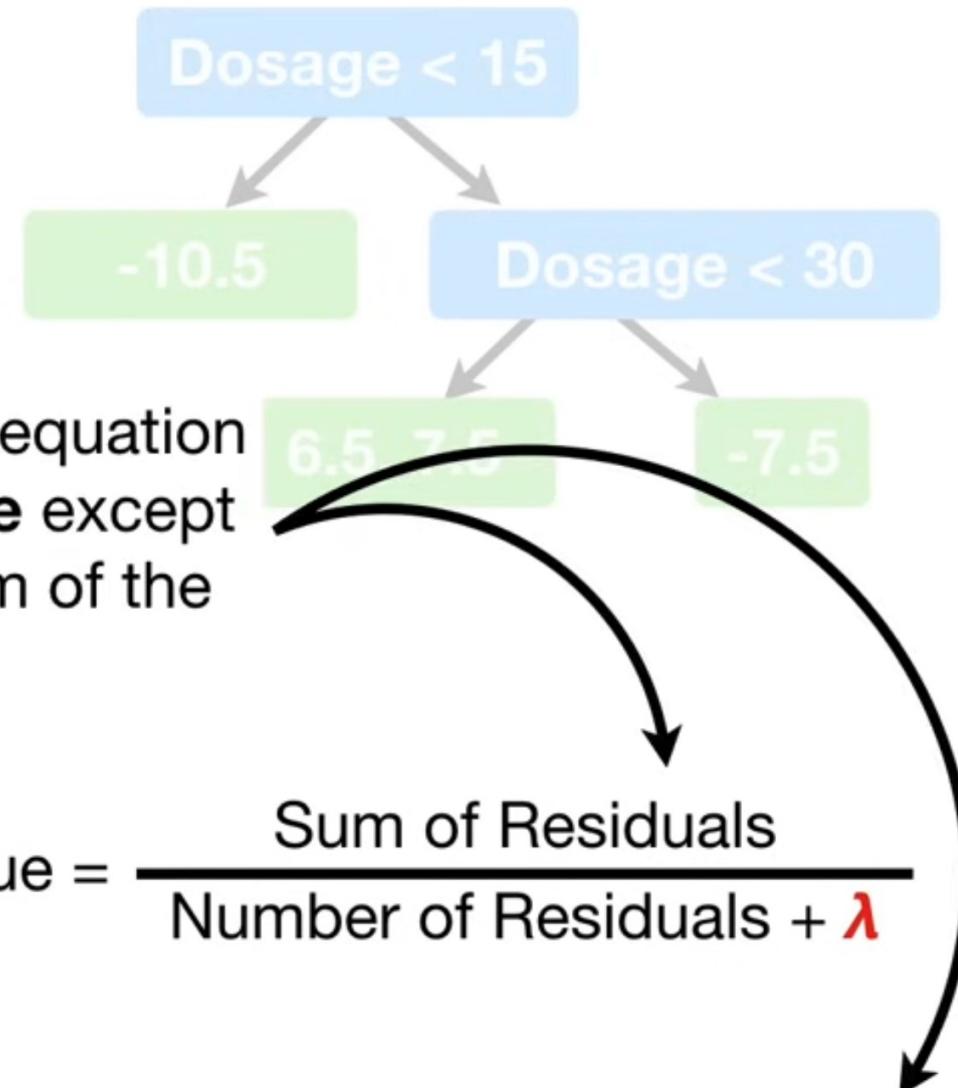


Predicted Drug Effectiveness  
0.5



If we are happy with the tree, pay attention that in inference (when we make the prediction) we consider a **quantity** that is slightly different than the similarity score!  
Don't get confused!

**NOTE:** The **Output Value** equation is like the **Similarity Score** except we do not square the sum of the residuals.



$$\text{Output Value} = \frac{\text{Sum of Residuals}}{\text{Number of Residuals} + \lambda}$$
$$\text{Similarity Score} = \frac{\text{Sum of Residuals, Squared}}{\text{Number of Residuals} + 1}$$

Predicted Drug

Dosage < 15

-10.5

6.5, 7.5

Output = -10.5  
Output = 7

Dosage < 30

-7.5

Output = -7.5

Dosage < 15

-10.5

Dosage < 30

6.5, 7.5

-7.5

Effectiveness  
100  
50  
0  
-50  
-100

Drug Dosage (mg)

If we are happy with the tree, pay attention that in inference (when we make the prediction) we consider a **quantity** that is slightly different than the similarity score!  
Don't get confused!

**Output Value** equation  
**Similarity Score** except square the sum of the residuals.

$$\text{Output Value} = \frac{\text{Sum of Residuals}}{\text{Number of Residuals} + \lambda}$$

$$\text{Similarity Score} = \frac{\text{Sum of Residuals, Squared}}{\text{Number of Residuals} + 1}$$

Predicted Drug Effectiveness

0.5

Drug Effectiveness

10

5

0

-5

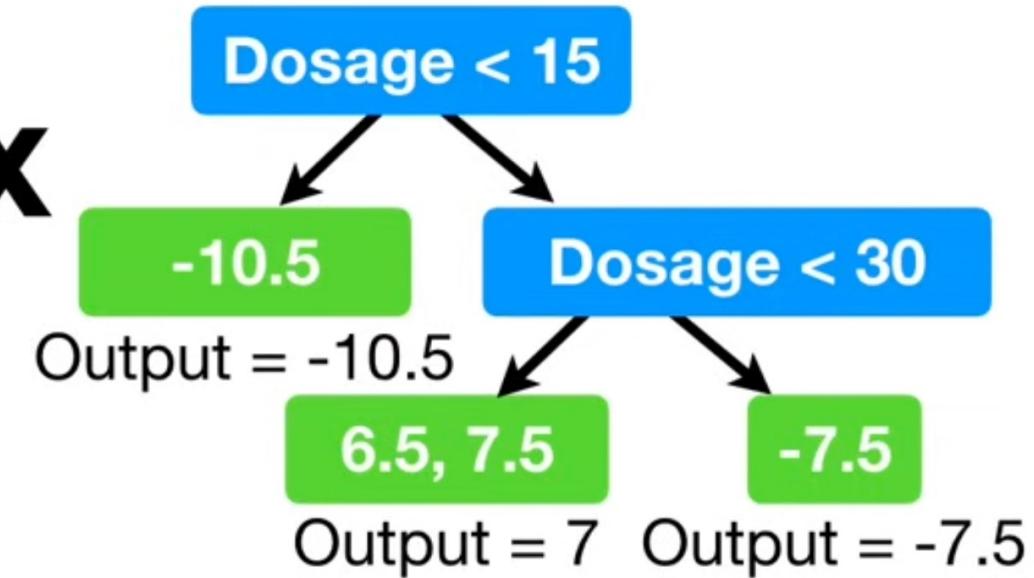
-10

-15

Drug Dosage (mg)

+

Learning Rate  $\times$



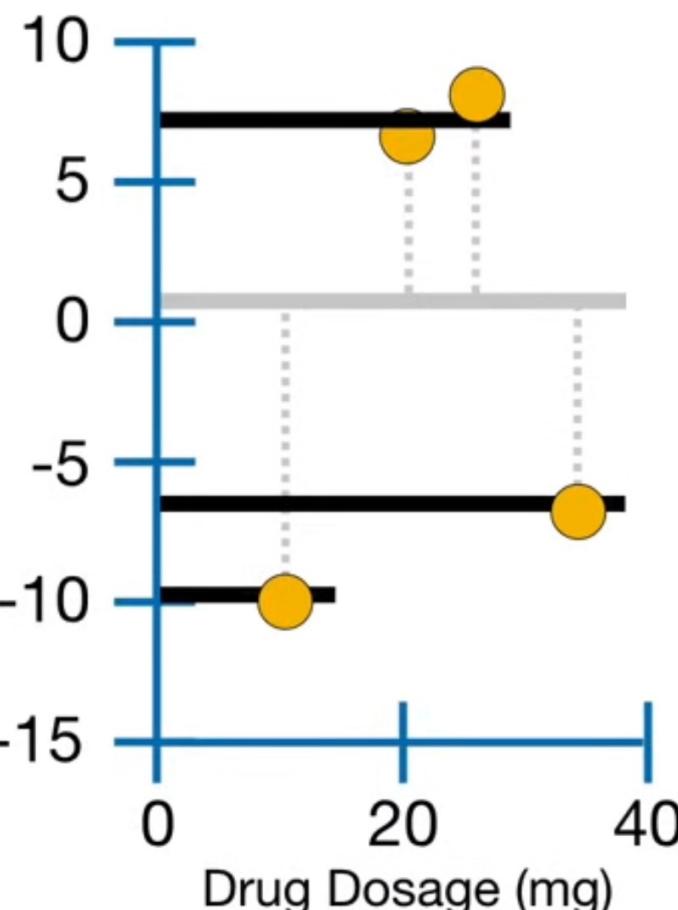
**XGBoost** calls the **Learning Rate,  $\epsilon$  (eta)**, and the default value is **0.3**, so that's what we'll use.

Let's do boosting now (similar structure as gradient boosting)!

Predicted Drug Effectiveness

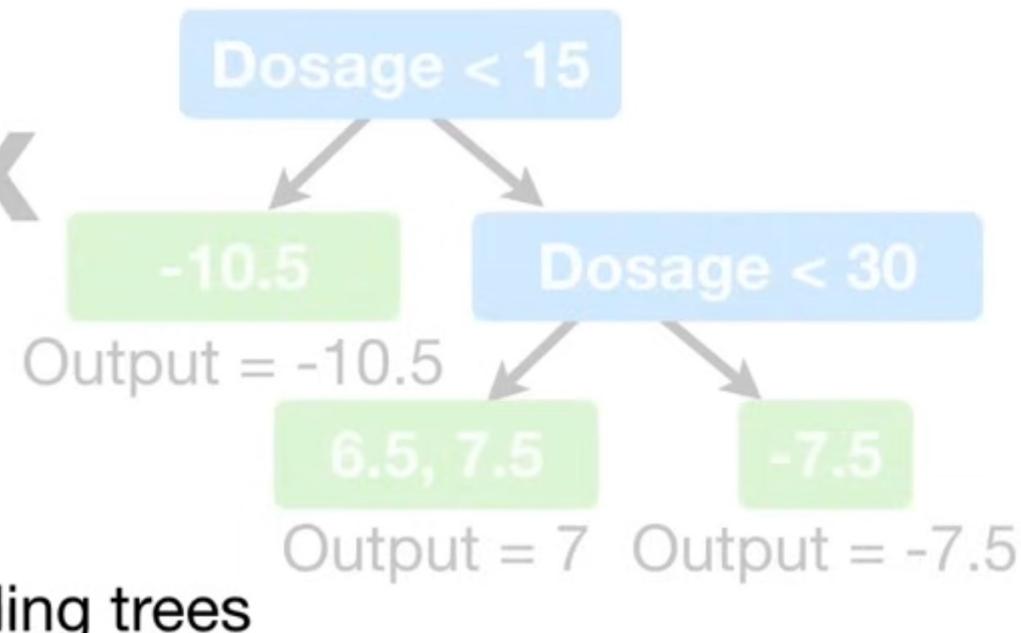
0.5

Drug Effectiveness

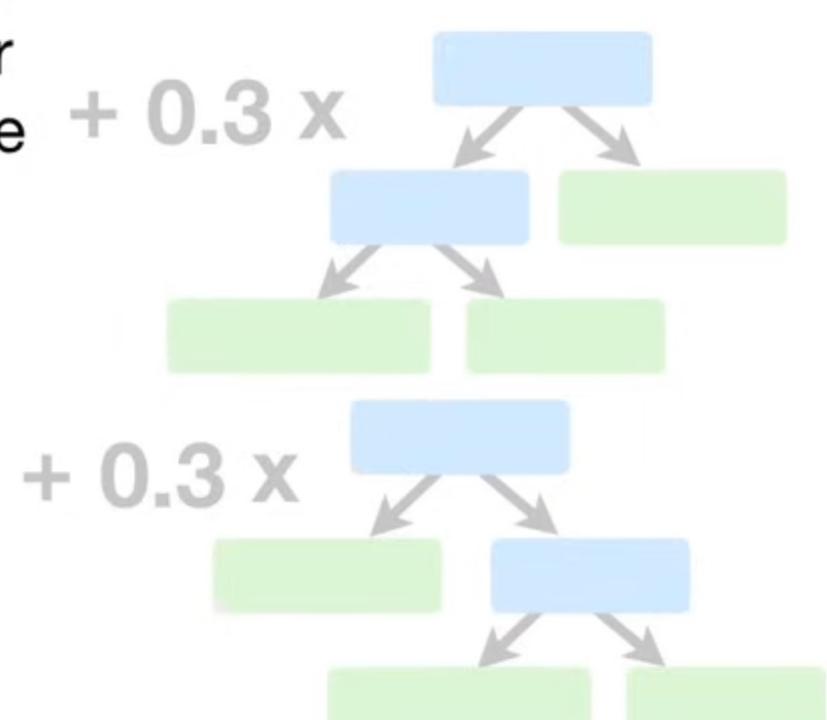


+

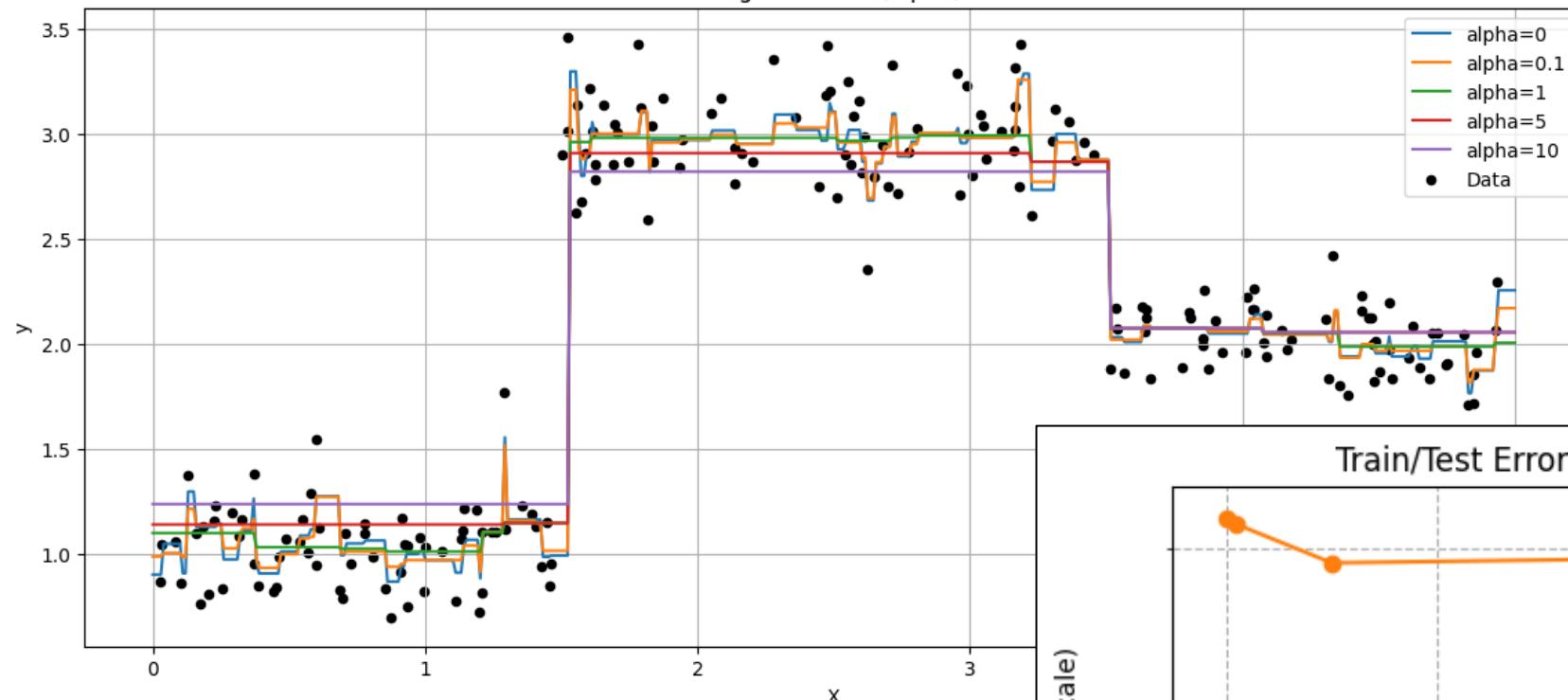
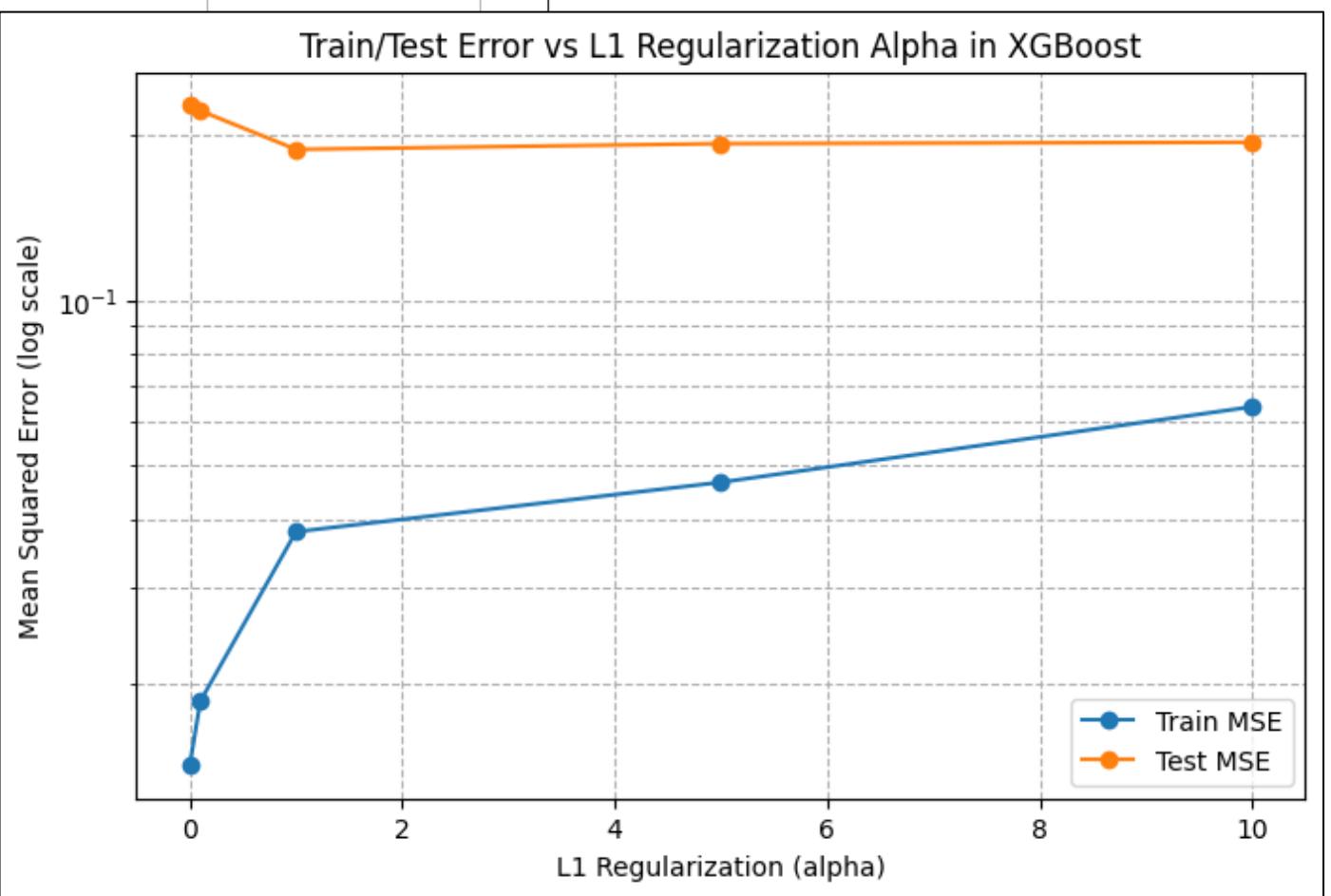
0.3 X



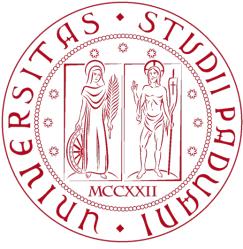
...and we keep building trees until the **Residuals** are super small, or we have reached the maximum number.



Effect of L1 Regularization (alpha) in XGBoost



| Method            | Core Idea                                      | Model Combination             | Key Traits                                                         |
|-------------------|------------------------------------------------|-------------------------------|--------------------------------------------------------------------|
| Bagging           | Train trees on random data subsets             | Averaging / Voting            | Reduces variance, parallelizable, robust to overfitting            |
| Random Forest     | Bagging + random feature selection             | Averaging / Voting            | Strong baseline, good generalization                               |
| Boosting          | Sequential models to fix previous errors       | Weighted sum                  | Reduces bias, sensitive to noise                                   |
| AdaBoost          | Focus on misclassified samples via reweighting | Weighted sum                  | Simple, uses weak learners (e.g., stumps), effective on clean data |
| Gradient Boosting | Fit to loss function gradients                 | Weighted sum                  | Flexible loss functions, can overfit without tuning                |
| XGBoost           | Regularized GBM with pruning and optimizations | Weighted sum                  | Fast, regularized, handles missing values                          |
| LightGBM          | Histogram-based GBM, leaf-wise growth          | Weighted sum                  | Very fast, memory-efficient, great for large-scale problems        |
| CatBoost          | Categorical-feature-friendly GBM               | Weighted sum                  | Handles categoricals natively, avoids overfitting                  |
| Stacked Ensemble  | Combine diverse models with meta-learner       | Meta-model (e.g., regression) | Very flexible, risk of overfitting without proper cross-validation |



UNIVERSITÀ  
DEGLI STUDI  
DI PADOVA

# Machine Learning

## 2024/2025

**AMCO**  
ARTIFICIAL INTELLIGENCE, MACHINE  
LEARNING AND CONTROL RESEARCH GROUP

# Thank you!

Gian Antonio Susto



# Decision Tree (DT): how do we build one?

We will use a ‘recursive’ procedure:

- We start building a tree from the root
- We choose the variable to be associated to the decision based on the one that better ‘simplifies’\* the problem: a scenario where we have a dominant/only class
- We iterate this, until classes are separated or until we reach a given ‘depth’ of the tree

\*We need a quantitative metric to define how ‘simple’ a decision is at a leaf level!

