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At the heart is the decision 
tree, a structure that mimics 
human decision-making by 
splitting data into branches 
based on feature values.

Each internal node of the 
tree represents a decision 
based on a feature, each 
branch represents the 
outcome of that decision, 
and each leaf node 
corresponds to a prediction 
or outcome.

🌳 Recap: the Decision Tree



Recap: Gini Index / Entropy / Information Gain
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The Gini Index (or Gini Impurity) is a measure of 
how impure or mixed a dataset is.
For a dataset S with c classes:





Don’t we see a similar 
behaviour that we had 
with other algorithms?





Advantages
• Easily interpretable
• They require no data normalization
• The classification is almost immediate
• The computational expensive part is 

done off-line (once)

Drawbacks
• Really high variance classifiersà Prone 

to overfitting! Typically, poor 
generalization performances! 

🌳 Recap:  Decision Tree -> Random Forest 🌳  🌳  🌳  



Tree-based methods are among 
the most effective techniques for 
supervised learning, particularly 
when working with smaller 
datasets (with n fewer than 10,000 
samples).

Interestingly, the core concepts 
behind them are quite 
straightforward…

🌳 Recap: tree-
based Approaches

Why do tree-basedmodels still outperform deep learning on typical tabular data?
Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022)
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Recap: Random Forest (RF) 🌳  🌳  🌳  

A RF is composed by many ‘weak’ 
learners (decision trees): we cleverly 
combine DTs reducing overfitting!

We construct slightly different DTs 
(more on this later) and, in classification, 
we decide by a majority-voting (we 
choose following the mode) the final 
class. In regression, the final decision is 
the average.

This in an ‘ensemble’ approach: we 
combine multiple models (often called 
base learners or weak learners) to 
produce a stronger model.



🔧 Recap: How to Build a Random Forest

Let’s assume you want to build a forest 
with T trees.
For each tree:

- Sample the dataset with replacement 
(bootstrap sample). This procedure is 
called Bagging (bootstrap 
aggregating).

- Build a decision tree: but at each split, 
instead of evaluating all features, pick 
a random subset (e.g., √p). This 
procedure is called Feature Bagging.

The reason for doing this is the correlation of the trees in 
an ordinary bootstrap sample: if one or a few features are 
very strong predictors for the response variable (target 
output), these features will be selected in many of 
the T trees, causing them to become correlated.



RF: feature importance
Feature importance reflects how useful or 
valuable each feature is for making predictions 
in a model. For decision trees (and ensembles 
like Random Forests), it's typically based on:

🔍 How much each feature decreases impurity 
(e.g., Gini index or entropy) when it’s used to 
split the data

📊 Intuition

- If a feature is consistently chosen for 
important splits (i.e., it helps reduce impurity a 
lot), it gets high importance.

- Features that are rarely used or don’t reduce 
impurity much get low or zero importance.
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This is a ‘eXplainable Artificial Intelligence 
(XAI)’ approach.

It is a ’global’ approach: provide us with 
info on the whole model structure

Any idea how can this information be 
exploited?



RF: feature importance - Derivation
Let’s consider the Gini impurity, and we have a decision tree:

1. At every split, the algorithm calculates how much that split reduces impurity:

2. The contribution of a feature is the sum of all impurity decreases where that feature 
was used to split:

3. In a Random Forest, we average this importance over all the trees in the forest.

4. (Optional) the importances are normalized so they sum to 1:
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🍷  On the wine dataset



RF is not the only tree-based ensemble 
approach!
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Many approaches in the literature! All 
these methods aim to overcome the 
overfitting problem of individual 
decision trees by:

✅ Building multiple trees

✅ Imposing constraints (on data, 
features, model structure, or learning 
process)

✅ Combining their outputs to produce 
more robust and generalizable 
predictions
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What varies between methods:
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Method Core Idea Model Combination Key Traits

Bagging Train trees on random data 
subsets Averaging / Voting Reduces variance, parallelizable, 

robust to overfitting

Random Forest Bagging + random feature 
selection Averaging / Voting Strong baseline, good 

generalization

Boosting Sequential models to fix previous 
errors Weighted sum Reduces bias, sensitive to noise

AdaBoost Focus on misclassified samples 
via reweighting Weighted sum Simple, uses weak learners (e.g., 

stumps), effective on clean data

Gradient Boosting Fit to loss function gradients Weighted sum Flexible loss functions, can 
overfit without tuning

XGBoost Regularized GBM with pruning 
and optimizations Weighted sum Fast, regularized, handles 

missing values

LightGBM Histogram-based GBM, leaf-wise 
growth Weighted sum Very fast, memory-efficient, 

great for large-scale problems

CatBoost Categorical-feature-friendly GBM Weighted sum Handles categoricals natively, 
avoids overfitting

Stacked Ensemble Combine diverse models with 
meta-learner

Meta-model (e.g., 
regression)

Very flexible, risk of overfitting 
without proper cross-validation
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We’ll see it in the 
context of Regression!
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Does this approach remind you of 
something we have seen in the past?



Why is it called gradient boosting?

🔹 Boosting

Boosting is a method that builds a strong learner
(accurate model) by combining many weak learners
(typically decision trees with few splits). The idea is to 
train models sequentially, each one trying to correct 
the errors of the previous ones.

🔹Gradient

‘Gradient’ refers to the use of gradient descent, a 
mathematical optimization technique. In the context of 
gradient boosting, it’s used to minimize a loss function 
(like MSE or log loss) by fitting new models to the 
negative gradients of the loss function — which are 
essentially the residual errors.

In other words, each new tree is trained to predict the 
gradient of the loss function with respect to the current 
model's predictions



Kudos to Joshua Starmer!
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Kudos to Joshua Starmer!

After computing the residuals, we 
build a tree that aims to predict the 
residuals!

We’ll do the same procedure later, 
different times…

Our regression tree has a constrain: 
the max amount of leaves! In this 
example 4!

In practice, from 8 to 32
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Kudos to Joshua Starmer!



Let’s use only a ‘small’ part of the regression tree! 
0.1 here is the learning rate!

Kudos to Joshua Starmer!



Kudos to Joshua Starmer!



We are losing accuracy on 
training data with the hope to 
get better generalization (less 

overfitting and variance!) 



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!



All the trees are scaled by the 
same learning rate!

Kudos to Joshua Starmer!



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!

Empirical evidence shows that 
taking ‘lots of small steps’ in the 
right direction results in better 

predictions with a testing 
dataset (lower variance)
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Adaboost is really similar!

Huge kudos to Joshua Starmer!

Only 2 leaves!

Two main differences:

1) AdaBoost only have stumps (2 leaves) as 
trees

2) AdaBoost weights differently the trees 
depending on the weights (Gradient 
boosting have all the trees scaled by the 
same factor)
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XGBoost

- A state-of-the art approach!

- Full of implementation tricks: we are just
scratching the surface!

- It exploits:

1) Boosting (sequential trees)

2) A new way to construct trees, still 
based on the residuals

3) Regularization! 



Kudos to Joshua Starmer!



First prediction: the mean! Black thick line…

Kudos to Joshua Starmer!



Kudos to Joshua Starmer!

Trees here are not the standard 
regression trees: we also build them 

starting from residuals



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!

= 4
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Kudos to Joshua Starmer!

= 110.25



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!

Best 
split!



Kudos to Joshua Starmer!

We do the same thing (looking at 
all splits and considering similarity 

score as a metric)

We decide to stop at depth = 2 in 
this example, but in reality, 

typically depth = 6



Kudos to Joshua Starmer!

Once the tree is built, 
we do pruning to 

decrease overfitting! 

We fit a threshold 
(gamma) that will be 

compared to the gain!



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!

Even if the gain for the 
root is 120.3 (less than 
130) we cannot prune

the root!



Kudos to Joshua Starmer!

140.17-150 < 0

120.33-150 < 0

In this case the increased 
threshold make us prune the 

whole tree!



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!



Kudos to Joshua Starmer!

The threshold 130 for example 
will have a completely different 

impact!

It is an hyperparameter that can 
allow us to prevent over fitting 

the Training data!



Kudos to Joshua Starmer!

If we are happy with the tree, pay 
attention that in inference (when 

we make the prediction) we 
consider a quantity that is slightly 
different than the similarity score! 

Don’t get confused!
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Kudos to Joshua Starmer!

Let’s do boosting now 
(similar structure as 
gradient boosting)!



Kudos to Joshua Starmer!
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Decision Tree (DT): how do we build one?
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We will use a ‘recursive’ procedure:

- We start building a tree from the 
root

- We choose the variable to be 
associated to the decision based 
on the one that better ‘simplifies’* 
the problem: a scenario where we 
have a dominant/only class

- We iterate this, until classes are 
separated or until we reach a given 
‘depth’ of the tree

*We need a quantitative metric to 
define how ‘simple’ a decision is at a 
leaf level!


