
Lecture #17
Ensemble Tree-
based Approaches

Gian Antonio Susto

Machine Learning
2024/2025

At the heart is the decision
tree, a structure that mimics
human decision-making by
splitting data into branches
based on feature values.

Each internal node of the
tree represents a decision
based on a feature, each
branch represents the
outcome of that decision,
and each leaf node
corresponds to a prediction
or outcome.

🌳 Recap: the Decision Tree

Recap: Gini Index / Entropy / Information Gain

3

The Gini Index (or Gini Impurity) is a measure of
how impure or mixed a dataset is.
For a dataset S with c classes:

Don’t we see a similar
behaviour that we had
with other algorithms?

Advantages
• Easily interpretable
• They require no data normalization
• The classification is almost immediate
• The computational expensive part is

done off-line (once)

Drawbacks
• Really high variance classifiersà Prone

to overfitting! Typically, poor
generalization performances!

🌳 Recap: Decision Tree -> Random Forest 🌳 🌳 🌳

Tree-based methods are among
the most effective techniques for
supervised learning, particularly
when working with smaller
datasets (with n fewer than 10,000
samples).

Interestingly, the core concepts
behind them are quite
straightforward…

🌳 Recap: tree-
based Approaches

Why do tree-basedmodels still outperform deep learning on typical tabular data?
Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022)

9

Recap: Random Forest (RF) 🌳 🌳 🌳

A RF is composed by many ‘weak’
learners (decision trees): we cleverly
combine DTs reducing overfitting!

We construct slightly different DTs
(more on this later) and, in classification,
we decide by a majority-voting (we
choose following the mode) the final
class. In regression, the final decision is
the average.

This in an ‘ensemble’ approach: we
combine multiple models (often called
base learners or weak learners) to
produce a stronger model.

🔧 Recap: How to Build a Random Forest

Let’s assume you want to build a forest
with T trees.
For each tree:

- Sample the dataset with replacement
(bootstrap sample). This procedure is
called Bagging (bootstrap
aggregating).

- Build a decision tree: but at each split,
instead of evaluating all features, pick
a random subset (e.g., √p). This
procedure is called Feature Bagging.

The reason for doing this is the correlation of the trees in
an ordinary bootstrap sample: if one or a few features are
very strong predictors for the response variable (target
output), these features will be selected in many of
the T trees, causing them to become correlated.

RF: feature importance
Feature importance reflects how useful or
valuable each feature is for making predictions
in a model. For decision trees (and ensembles
like Random Forests), it's typically based on:

🔍 How much each feature decreases impurity
(e.g., Gini index or entropy) when it’s used to
split the data

📊 Intuition

- If a feature is consistently chosen for
important splits (i.e., it helps reduce impurity a
lot), it gets high importance.

- Features that are rarely used or don’t reduce
impurity much get low or zero importance.

11

RF: feature importance
Feature importance reflects how useful or
valuable each feature is for making predictions
in a model. For decision trees (and ensembles
like Random Forests), it's typically based on:

🔍 How much each feature decreases impurity
(e.g., Gini index or entropy) when it’s used to
split the data

📊 Intuition

- If a feature is consistently chosen for
important splits (i.e., it helps reduce impurity a
lot), it gets high importance.

- Features that are rarely used or don’t reduce
impurity much get low or zero importance.

12

This is a ‘eXplainable Artificial Intelligence
(XAI)’ approach.

It is a ’global’ approach: provide us with
info on the whole model structure

Any idea how can this information be
exploited?

RF: feature importance - Derivation
Let’s consider the Gini impurity, and we have a decision tree:

1. At every split, the algorithm calculates how much that split reduces impurity:

2. The contribution of a feature is the sum of all impurity decreases where that feature
was used to split:

3. In a Random Forest, we average this importance over all the trees in the forest.

4. (Optional) the importances are normalized so they sum to 1:

13

🍷 On the wine dataset

RF is not the only tree-based ensemble
approach!

15

Many approaches in the literature! All
these methods aim to overcome the
overfitting problem of individual
decision trees by:

✅ Building multiple trees

✅ Imposing constraints (on data,
features, model structure, or learning
process)

✅ Combining their outputs to produce
more robust and generalizable
predictions

RF is not the only tree-based ensemble
approach!

Many approaches in the literature! All
these methods aim to overcome the
overfitting problem of individual
decision trees by:

✅ Building multiple trees

✅ Imposing constraints (on data,
features, model structure, or learning
process)

✅ Combining their outputs to produce
more robust and generalizable
predictions

16

What varies between methods:

17

Method Core Idea Model Combination Key Traits

Bagging Train trees on random data
subsets Averaging / Voting Reduces variance, parallelizable,

robust to overfitting

Random Forest Bagging + random feature
selection Averaging / Voting Strong baseline, good

generalization

Boosting Sequential models to fix previous
errors Weighted sum Reduces bias, sensitive to noise

AdaBoost Focus on misclassified samples
via reweighting Weighted sum Simple, uses weak learners (e.g.,

stumps), effective on clean data

Gradient Boosting Fit to loss function gradients Weighted sum Flexible loss functions, can
overfit without tuning

XGBoost Regularized GBM with pruning
and optimizations Weighted sum Fast, regularized, handles

missing values

LightGBM Histogram-based GBM, leaf-wise
growth Weighted sum Very fast, memory-efficient,

great for large-scale problems

CatBoost Categorical-feature-friendly GBM Weighted sum Handles categoricals natively,
avoids overfitting

Stacked Ensemble Combine diverse models with
meta-learner

Meta-model (e.g.,
regression)

Very flexible, risk of overfitting
without proper cross-validation

18

Method Core Idea Model Combination Key Traits

Bagging Train trees on random data
subsets Averaging / Voting Reduces variance, parallelizable,

robust to overfitting

Random Forest Bagging + random feature
selection Averaging / Voting Strong baseline, good

generalization

Boosting Sequential models to fix previous
errors Weighted sum Reduces bias, sensitive to noise

AdaBoost Focus on misclassified samples
via reweighting Weighted sum Simple, uses weak learners (e.g.,

stumps), effective on clean data

Gradient Boosting Fit to loss function gradients Weighted sum Flexible loss functions, can
overfit without tuning

XGBoost Regularized GBM with pruning
and optimizations Weighted sum Fast, regularized, handles

missing values

LightGBM Histogram-based GBM, leaf-wise
growth Weighted sum Very fast, memory-efficient,

great for large-scale problems

CatBoost Categorical-feature-friendly GBM Weighted sum Handles categoricals natively,
avoids overfitting

Stacked Ensemble Combine diverse models with
meta-learner

Meta-model (e.g.,
regression)

Very flexible, risk of overfitting
without proper cross-validation

Residual

Residual

Residual

ResidualPrediction

Prediction

Prediction

We’ll see it in the
context of Regression!

Residual

Residual

Residual

ResidualPrediction

Prediction

Prediction

We’ll see it in the
context of Regression!

Does this approach remind you of
something we have seen in the past?

Why is it called gradient boosting?

🔹 Boosting

Boosting is a method that builds a strong learner
(accurate model) by combining many weak learners
(typically decision trees with few splits). The idea is to
train models sequentially, each one trying to correct
the errors of the previous ones.

🔹Gradient

‘Gradient’ refers to the use of gradient descent, a
mathematical optimization technique. In the context of
gradient boosting, it’s used to minimize a loss function
(like MSE or log loss) by fitting new models to the
negative gradients of the loss function — which are
essentially the residual errors.

In other words, each new tree is trained to predict the
gradient of the loss function with respect to the current
model's predictions

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

After computing the residuals, we
build a tree that aims to predict the
residuals!

We’ll do the same procedure later,
different times…

Our regression tree has a constrain:
the max amount of leaves! In this
example 4!

In practice, from 8 to 32

Kudos to Joshua Starmer!

After computing the residuals, we
build a tree that aims to predict the
residuals!

We’ll do the same procedure later,
different times…

Our regression tree has a constrain:
the max amount of leaves! In this
example 4!

In practice, from 8 to 32

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Let’s use only a ‘small’ part of the regression tree!
0.1 here is the learning rate!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

We are losing accuracy on
training data with the hope to
get better generalization (less

overfitting and variance!)

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

All the trees are scaled by the
same learning rate!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Empirical evidence shows that
taking ‘lots of small steps’ in the
right direction results in better

predictions with a testing
dataset (lower variance)

47

Method Core Idea Model Combination Key Traits

Bagging Train trees on random data
subsets Averaging / Voting Reduces variance, parallelizable,

robust to overfitting

Random Forest Bagging + random feature
selection Averaging / Voting Strong baseline, good

generalization

Boosting Sequential models to fix previous
errors Weighted sum Reduces bias, sensitive to noise

AdaBoost Focus on misclassified samples
via reweighting Weighted sum Simple, uses weak learners (e.g.,

stumps), effective on clean data

Gradient Boosting Fit to loss function gradients Weighted sum Flexible loss functions, can
overfit without tuning

XGBoost Regularized GBM with pruning
and optimizations Weighted sum Fast, regularized, handles

missing values

LightGBM Histogram-based GBM, leaf-wise
growth Weighted sum Very fast, memory-efficient,

great for large-scale problems

CatBoost Categorical-feature-friendly GBM Weighted sum Handles categoricals natively,
avoids overfitting

Stacked Ensemble Combine diverse models with
meta-learner

Meta-model (e.g.,
regression)

Very flexible, risk of overfitting
without proper cross-validation

Adaboost is really similar!

Huge kudos to Joshua Starmer!

Only 2 leaves!

Two main differences:

1) AdaBoost only have stumps (2 leaves) as
trees

2) AdaBoost weights differently the trees
depending on the weights (Gradient
boosting have all the trees scaled by the
same factor)

49

Method Core Idea Model Combination Key Traits

Bagging Train trees on random data
subsets Averaging / Voting Reduces variance, parallelizable,

robust to overfitting

Random Forest Bagging + random feature
selection Averaging / Voting Strong baseline, good

generalization

Boosting Sequential models to fix previous
errors Weighted sum Reduces bias, sensitive to noise

AdaBoost Focus on misclassified samples
via reweighting Weighted sum Simple, uses weak learners (e.g.,

stumps), effective on clean data

Gradient Boosting Fit to loss function gradients Weighted sum Flexible loss functions, can
overfit without tuning

XGBoost Regularized GBM with pruning
and optimizations Weighted sum Fast, regularized, handles

missing values

LightGBM Histogram-based GBM, leaf-wise
growth Weighted sum Very fast, memory-efficient,

great for large-scale problems

CatBoost Categorical-feature-friendly GBM Weighted sum Handles categoricals natively,
avoids overfitting

Stacked Ensemble Combine diverse models with
meta-learner

Meta-model (e.g.,
regression)

Very flexible, risk of overfitting
without proper cross-validation

XGBoost

- A state-of-the art approach!

- Full of implementation tricks: we are just
scratching the surface!

- It exploits:

1) Boosting (sequential trees)

2) A new way to construct trees, still
based on the residuals

3) Regularization!

Kudos to Joshua Starmer!

First prediction: the mean! Black thick line…

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Trees here are not the standard
regression trees: we also build them

starting from residuals

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

= 4

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

= 110.25

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Best
split!

Kudos to Joshua Starmer!

We do the same thing (looking at
all splits and considering similarity

score as a metric)

We decide to stop at depth = 2 in
this example, but in reality,

typically depth = 6

Kudos to Joshua Starmer!

Once the tree is built,
we do pruning to

decrease overfitting!

We fit a threshold
(gamma) that will be

compared to the gain!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Even if the gain for the
root is 120.3 (less than
130) we cannot prune

the root!

Kudos to Joshua Starmer!

140.17-150 < 0

120.33-150 < 0

In this case the increased
threshold make us prune the

whole tree!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

Kudos to Joshua Starmer!

The threshold 130 for example
will have a completely different

impact!

It is an hyperparameter that can
allow us to prevent over fitting

the Training data!

Kudos to Joshua Starmer!

If we are happy with the tree, pay
attention that in inference (when

we make the prediction) we
consider a quantity that is slightly
different than the similarity score!

Don’t get confused!

Kudos to Joshua Starmer!

If we are happy with the tree, pay
attention that in inference (when

we make the prediction) we
consider a quantity that is slightly
different than the similarity score!

Don’t get confused!

Kudos to Joshua Starmer!

Let’s do boosting now
(similar structure as
gradient boosting)!

Kudos to Joshua Starmer!

76

Method Core Idea Model Combination Key Traits

Bagging Train trees on random data
subsets Averaging / Voting Reduces variance, parallelizable,

robust to overfitting

Random Forest Bagging + random feature
selection Averaging / Voting Strong baseline, good

generalization

Boosting Sequential models to fix previous
errors Weighted sum Reduces bias, sensitive to noise

AdaBoost Focus on misclassified samples
via reweighting Weighted sum Simple, uses weak learners (e.g.,

stumps), effective on clean data

Gradient Boosting Fit to loss function gradients Weighted sum Flexible loss functions, can
overfit without tuning

XGBoost Regularized GBM with pruning
and optimizations Weighted sum Fast, regularized, handles

missing values

LightGBM Histogram-based GBM, leaf-wise
growth Weighted sum Very fast, memory-efficient,

great for large-scale problems

CatBoost Categorical-feature-friendly GBM Weighted sum Handles categoricals natively,
avoids overfitting

Stacked Ensemble Combine diverse models with
meta-learner

Meta-model (e.g.,
regression)

Very flexible, risk of overfitting
without proper cross-validation

Thank you!

Gian Antonio Susto

Machine Learning
2024/2025

Decision Tree (DT): how do we build one?

78

We will use a ‘recursive’ procedure:

- We start building a tree from the
root

- We choose the variable to be
associated to the decision based
on the one that better ‘simplifies’*
the problem: a scenario where we
have a dominant/only class

- We iterate this, until classes are
separated or until we reach a given
‘depth’ of the tree

*We need a quantitative metric to
define how ‘simple’ a decision is at a
leaf level!

