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@ Recap: the Decision Tree

At the heart is the decision
tree, a structure that mimics
human decision-making by
splitting data into branches  _ _ _ _ __ | —— . I
based on feature values.
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Recap: Gini Index / Entropy / Information Gain

The Gini Index (or Gini Impurity) is a measure of Gini Index and Entropy vs. Class Probabilty

1.0 1 —— Gini Index

how impure or mixed a dataset is.
For a dataset Swith cclasses:

2
2 0.6

C
Gini(S) =1-Y p?
1=1

Im

Ginigyis = "’;f L. Gini(left) + T . Gini(right)

n X i 0.4 0.6
Probability of Class 1

Entropy(S) = — Z p; log, (p;)
i=1

IG(S,A) = Entropy(S) — Z ||i:)|’ - Entropy(S,)
veValues(A)



max_depth =1 max_depth = 2

sepal Ien_th (cm) <=5.45
sepal length (cm) <= 5.45 sampies ~ 150
gini = 0.667 e - setota

samples = 150
value =[50, 50, 50]
class = setosa

sepal length (cm) <= 6.15
gini = 0.546
samples = 98
value = [5, 44, 49]
class = virginica

gini = 0.546
samples = 98

value = [5! 4.4.'49] gini = 0.449 gini = 0.508
class = virginica samples = 7 samples = 43
value = [1, 5, 1] value = [5, 28, 10]
class = versicolor class = versicolor

max_depth = 3 max_depth = None (full tree)
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@ Recap: Decision Tree

Advantages
 Easily interpretable
« They require no data normalization

to overfitting! Typically, poor
generalization performances!

» The classification is almost immediate Root Node
* The computational expensive part is
done off-line (once) [: Affe j\
1?_30 | _>.so§ ........ Sub Tree
Drawbacks v [ — j
* Really high variance classifiers-> Prone We\gh‘t AN

v ,ﬁ Under‘stomding the risks to
erevent a heart attack.

Leaf N éde,s



@ Recap: tree-
based Approaches

Tree-based methods are among
the most effective techniques for
supervised learning, particularly
when working with smaller
datasets (with nfewer than 10,000
samples).

Interestingly, the core concepts
behind them are quite
straightforward...

Why do tree-based models still outperform deep learning on typical tabular data?

Part of Advances in Neural Information Processing Systems 35 (NeurlPS 2022)
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Figure 1: Benchmark on medium-sized datasets, top only numerical features; bottom: all features.
Dotted lines correspond to the score of the default hyperparameters, which is also the first random
search iteration. Each value corresponds to the test score of the best model (on the validation set)
after a specific number of random search iterations, averaged on 15 shuffles of the random search
order. The ribbon corresponds to minimum and maximum scores on these 15 shuffles.



Recap: Random Forest (RF) @ @ @

. EXAMPLES
A RF is composed by many ‘weak’ et e reen

learners (decision trees): we cleverly
combine DTs reducing overfitting! : P: R‘ : : 'P\

We construct slightly different DTs
(more on this later) and, in
we decide by a majority-voting (we
choose following the ) the final
class. In regression, the final decision is
the average.

This in an ‘ensemble’ approach: we
combine multiple models (often called
base learners or weak learners) to
produce a stronger model.




“\ Recap: How to Build a Random Forest

Let’s assume you want to build a forest o | @ o ©
with 7 trees.

For each tree;

- Sample the dataset with replacement
(bootstrap sample). This procedure is
called Bagging (bootstrap

aggregating).
- Build a decision tree: but at each split,
instead of evaluating all features, pick

a random subset (e.g., V¥p). This
procedure is called Feature Bagging.

The reason for doing this is the correlation of the trees in
an ordinary bootstrap sample: if one or a few features are
very strong predictors for the response variable (target

output), these features will be selected in many of
the 7 trees, causing them to become correlated.




RF: feature importance

Feature importance reflects how useful or
valuable each feature is for making predictions
in a model. For decision trees (and ensembles
like Random Forests), it's typically based on:

& How much each feature decreases impurity
(e.g., Giniindex or entropy) when it’s used to
split the data

nl Intuition

- If a feature is consistently chosen for
important splits (i.e., it helps reduce impurity a
lot), it gets high importance.

- Features that are rarely used or don’t reduce
impurity much get low or zero importance.

Default feature importance (scikit-learn)

eeeeeeeeeeeeeeeeee



RF: feature importance

This is a ‘eXplainable Artificial Intelligence
(XAI) approach.

Feature importance reflects how useful or
valuable each feature is for making predictions It is a ’global’ approach: provide us with

in a model. For decision trees (and ensembles info on the whole model structure
I/|ke Random Forests), it's typically based on: Any idea how can this information be
& How much each feature decreases impurity exploited?

(e.g., Giniindex or entropy) when it’s used to

S p I it t h e d ata Default feature importance (scikit-learn)

ul Intuition

- If a feature is consistently chosen for
important splits (i.e., it helps reduce impurity a
lot), it gets high importance.

- Features that are rarely used or don’t reduce
impurity much get low or zero importance.




RF: feature importance - Derivation

Let’s consider the Gini impurity, and we have a decision tree:
1. Atevery split, the algorithm calculates how much that split reduces impurity:

AGini = Gini(parent) — (nlef L. Gini(left) + Tright Gz’ni(right))
n n

2. The contribution of a feature is the sum of all impurity decreases where that feature
was used to split:

I'mportance(feature) = Z AGini

nodes using feature

3. InaRandom Forest, we average this importance over all the trees in the forest.

4. (Optional) the importances are normalized so they sum to 1:
Raw Importance

Normalized Importance =
P > Raw Importances



On the wine dataset

Feature Importances from Random Forest (Wine Dataset)

color_intensity
proline
flavanoids
0d280/0d315_of diluted_wines
alcohol

hue
total_phenols
alcalinity_of ash
malic_acid
proanthocyanins
magnesium

ash

nonflavanoid_phenols

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Importance



RF is not the only tree-based ensemble

approach!

Many approaches in the literature! Al
these methods aim to overcome the
overfitting problem of individual

decision trees by:
Building multiple trees

Imposing constraints (on data,
features, model structure, or learning

process)

Combining their outputs to produce
more robust and generalizable

predictions

Bootstrap aggregatin% or
Bagging is a ensemble
meta-algorithm combining
predictions from multiﬁle-
decision trees through a
majority voting mechanism

Bagging

Models are built sequentially Optimized Gradient Boosting
by minimizing the errors from algorithm through parallel
lprevious models while processing, tree-pruning,
_increasing (or boosting) handling missing values and
influence of high-performing regularization to avoid
models overfitting/bias

/. /.

Decision /"Random AA
Trees \, Forest wy

. Bagging-based algorithm Gradient Boostin
PP ot where only a subset of employs gradien
ossl?ible solutions to features are selected at descent algorithm to

pa decision based on random to build a forest minimize errors in

certain conditions or collection of decision sequential models

trees



RF is not the only tree-based ensemble
approach!

Many approaches in the literature! Al What varies between methods:
these methods aim to overcome the

overfitting problem of individual

. Dimension Examples of Constraints or Strategies
decision trees by:
. . How trees are Independently (Bagging), Sequentially (Boosting)

Building multiple trees -

7 . .

f. ImpOSIng %OTStralntS (On dlata’ . Data sampling Random subsets of rows (Bagging), Weighted sampling (AdaBoost),

eaturess, modael structure, or learning fi dataitesTus AR

Process

Combining their OUtpUtS tO prOdUCe Feature usage All features (Bagging), Random subset per split (Random Forest)

more rObUSt and generalizable Tree complexity Deep trees (Random Forest), Shallow trees/stumps (AdaBoost),

pred|Ct|0nS Controlled depth (GBM variants)
Loss Classification error (AdaBoost), Gradient of loss (GBM, XGBoost),
optimization Log-loss or custom losses
Regularization No regularization (RF), Explicit penalties (XGBoost), Leaf-wise

constraints (LightGBM)




Method

Bagging

Random Forest

Boosting

AdaBoost

Gradient Boosting

XGBoost

LightGBM

CatBoost

Stacked Ensemble

Coreldea

Train trees on random data
subsets

Bagging + random feature
selection

Sequential models to fix previous

errors
Focus on misclassified samples

via reweighting

Fit to loss function gradients

Regularized GBM with pruning
and optimizations

Histogram-based GBM, leaf-wise
growth

Categorical-feature-friendly GBM

Combine diverse models with
meta-learner

Model Combination

Averaging / Voting

Averaging / Voting

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Meta-model (e.g.,
regression)

Key Traits

Reduces variance, parallelizable,
robust to overfitting

Strong baseline, good
generalization

Reduces bias, sensitive to noise

Simple, uses weak learners (e.g.,
stumps), effective on clean data

Flexible loss functions, can
overfit without tuning

Fast, regularized, handles
missing values

Very fast, memory-efficient,
great for large-scale problems

Handles categoricals natively,
avoids overfitting

Very flexible, risk of overfitting
without proper cross-validation
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without proper cross-validation
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We’'ll seeitin the

Bo\fjgmg context of Regression! Boos‘tmg
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BO\%W\S, We'll see it in the . BOOSJCMS,

context of Regression!

Original
Boots‘trapping Training Data Moolell I Prediction II Residual
[ ;‘ . @
Or‘igino\l
Training Data We.igh‘te.d Data
Model 2 I Prediction II Residual

@%I 68

Weﬂ”‘te“ Data | Prediction II Residual I
Model ¥

—’“@%. -

Does this approach remind you of

something we have seen in the past?




Why is it called gradient boosting?
@ Boosting r"‘fﬂ:ﬁg{{" Prediction 1 Prodiction reskdusl 1

Y | ;
Boosting is a method that builds a strong learner [ Data samples ’—u « © W—, R, =y, — 9
(accurate model) by combining many weak learners &) U e
(typically decision trees with few splits). The ideais to o i ® |
train models sequentially, each one trying to correct y: {D} T
Prediction residual (1)

the errors of the previous ones.

Prediction 2 Prediction residual 2

N <l
. Weighted | ' i
6 Grad|ent data sam—/: Q > : R, =R, — R,
1 X, Ry) L \ar O
0

‘Gradient’ refers to the use of gradient descent, a ;
mathematical optimization technique. In the context of ey Bradictiinresliuiic)
gradient boosting, it’s used to minimize a loss function
(like MSE or log loss) by fitting new modelstothe ( _Weakmodd3
negative gradients of the loss function — which are

Prediction 3 Prediction residual N

Weighted
data samples

(X, Ry

essentially the residual errors.

In other words, each new tree is trained to predict the
gradient of the loss function with respect to the current .
modells predictions Prediction residual (N-1) i

Q. ! =
Q 2 i'—-/m_‘ Ry, =R, - R,
- I
o i T
@

_________________

Prediction N Prediction residual N

A

Weighted
data samples

(xs RN l)

| o —-/MH

Q ' R\‘=RVI_R'
| @ E / N= N-1
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Average Weight

So let’s start by
plugging in 71.2 for the
Predicted Weight...

(Observed Weight - Predicted Weight)

Kudos to Joshua Starmer!



Average Weight

The errors that the previous tree
made are the differences between
the Observed Weights

(Observed Weight -

Kudos to Joshua Starmer!



Average Weight

Weight

Residual
(kg)

Kudos to Joshua Starmer!



Average Weight NOTE: The term Pseudo Residual is based

on Linear Regression, where the difference
between the Observed values and the

Predicted values results in Residuals.

Weight

(kg) Residual

16.8

Kudos to Joshua Starmer!



Average Weight Average Weight
=
Weight .
(kg) Residual

4.8

-156.2

1.8

5.8

-14.2

Kudos to Joshua Starmer!



After computing the residuals, we

build a tree that aims to predict the

residuals!

We’ll do the same procedure later, Color not Blue
different times...

Our regression tree has a constrain:
the max amount of leaves! In this
example 4!

In practice, from 8 to 32

Kudos to Joshua Starmer!



1.0r

0.51

1.0

Mean Squared Error

Effect of max_leaf_nodes on Gradient Boosting Predictions

x ~—— max_leaf_nodes=2
—— max_leaf_nodes=5
—— max_leaf_nodes=10
—— max_leaf_nodes=20
—— max_leaf_nodes=50
x Data

0 1 2 é 4 5
X
Train/Test Error vs max_leaf nodes
—&— Train MSE
0.025 —o— Test MSE
0.020 f
0.015
0.010
0.005 f
0.0005 10 20 30 40 50

max_leaf_nodes

Color not Blue

Our regression tree has a constrain:
the max amount of leaves! In this

example 4!

In practice, from 8 to 32

Kudos to Joshua Starmer!



ErEm 0 D £

By restricting the total
number of leaves, we get
«—— fewer leaves than
Residuals.

Residual

Kudos to Joshua Starmer!



- Gender=F .

- Height<1.6

Height Favorite

-14.2, -15.2

(m) Color Gender

So we replace these
residuals with their
average.

(-14.2 + -15.2)
2

=-14.7

Kudos to Joshua Starmer!



Gender=F

Color not Blue .

Height Favorite Gaoidar

(m) Color

So we replace these
residuals with their
average.

(1.8 + 5.8)
2

=3.8

Kudos to Joshua Starmer!



Predicted Weight = 71.2 + 16.8

Height Favorite
(m) Color

1.6 Blue Male

...which is the same as
the Observed Weight.

Kudos to Joshua Starmer!



Predicted Weight = 71.2 + 16.8 = 88

EMPURI L PO | laander:| Yoot No. The model fits the
Training Data too well.

(m) Color el L))

1.6 Blue Male 88

Kudos to Joshua Starmer!



Predicted Weight = 71.2 + 16.8 = 88

Height Favorite Weight In other words, we have
ender

(m) Color (kg) low Bias, but probably
1.6 Blue  Male 88 very high Variance.

Kudos to Joshua Starmer!



Average Weight | Gender=F

G+ ox

Color not Blue

Let’s use only a ‘small’ part of the regression treel!
0.1 hereis the learning rate!

Kudos to Joshua Starmer!



- Gender=F .

Average Weight
71 2

Color not Blue -

Now the Predicted Weight = 71.2 + (0.1 x 16. 8

Kudos to Joshua Starmer!



Predicted Weight = 71.2 + (0.1 x 16.8

We are losing accuracy on
training data with the hope to

get better generalization (less
overfitting and variance!)




Average Weight %
@+ X
l \ W Color not Blue

. 147 ] 48 3
Residual Residual

16.8 15.1 ]

The new Residuals are all
4.8 4.3 smaller than before, so
we’ve taken a small step in

-15.2 -13.7 , SELT
the right direction.

1.8 1.4

5.8 5.4

-14.2 -12.7

Kudos to Joshua Starmer!



And here’s the new tree!

o

W Color not Blue

EXZ D 50 653

Kudos to Joshua Starmer!




Just like before, since multiple samples
ended up in these leaves, we just replace
the Residuals with their averages.

Kudos to Joshua Starmer!



All the trees are scaled by the
same learning rate!

...etc...etc...etc...

Kudos to Joshua Starmer!



.o X gub &
-”-
+

16.8 15.1 13.6

4.8 4.3 3.9

-15.2 -13.7 -12.4

8 » . Each time we add a tree to
the Prediction, the

5.8 5.4 5.1 Residuals get smaller.

-14.2 -12.7 -11.4

Kudos to Joshua Starmer!



Empirical evidence shows that
taking ‘lots of small steps’ in the
right direction results in better
predictions with a testing
dataset (lower variance)

= + o
/__/

15.1 13.6

16.8

4.8 4.3 3.9

-15.2 -13.7 -12.4

- » . Each time we add a tree to
the Prediction, the

5.8 5.4 5.1 Residuals get smaller.

-14.2 -12.7 -11.4

Kudos to Joshua Starmer!
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Data

Finer Tuning: n_estimators effect on Gradient Boosting (learning_rate=0.1)
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201
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1.0t

x

Effect of Learning Rate on Gradient Boosting (n_estimators=50)

Ir=0.01
— Ir=0.05
— Ir=0.1
— |r=0.2
— |r=0.5
x Data

Mean Squared Error (log scale)

1071}

Train/Test Error vs Learning Rate (n_estimators=50)

Train MSE
—o— Test MSE
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Learning Rate




Method

Bagging
Random Forest

Boosting

AdaBoost

Gradient Boosting

XGBoost

LightGBM

CatBoost

Stacked Ensemble

Coreldea

Train trees on random data
subsets

Bagging + random feature
selection

Sequential models to fix previous

errors
Focus on misclassified samples

via reweighting

Fit to loss function gradients

Regularized GBM with pruning
and optimizations

Histogram-based GBM, leaf-wise
growth

Categorical-feature-friendly GBM

Combine diverse models with
meta-learner

Model Combination

Averaging / Voting

Averaging / Voting

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Meta-model (e.g.,
regression)

Key Traits

Reduces variance, parallelizable,
robust to overfitting

Strong baseline, good
generalization

Reduces bias, sensitive to noise

Simple, uses weak learners (e.g.,
stumps), effective on clean data

Flexible loss functions, can
overfit without tuning

Fast, regularized, handles
missing values

Very fast, memory-efficient,
great for large-scale problems

Handles categoricals natively,
avoids overfitting

Very flexible, risk of overfitting
without proper cross-validation



Adaboost is really similar!

Height Favorite Gander

(m) Color

-)-R-

1.6 Blue Male 88 -
1.6 G F | 76
oen | Femae ...then AdaBoost starts by Then AdaBoost builds
etc...  etc..  etc..  etc.. building a very short tree, called  the next stump based on
rom the Training errors that the previous
Data. stump made...

Only 2 leaves!

-) etc. etc. etc.

Two main differences:

1) AdaBoost only have stumps (2 leaves) as
trees

2) AdaBoost weights differently the trees
depending on the weights (Gradient
boosting have all the trees scaled by the
same factor)

Huge kudos to Joshua Starmer!



Method

Bagging
Random Forest

Boosting

AdaBoost

Gradient Boosting

XGBoost

LightGBM

CatBoost

Stacked Ensemble

Coreldea

Train trees on random data
subsets

Bagging + random feature
selection

Sequential models to fix previous

errors
Focus on misclassified samples

via reweighting

Fit to loss function gradients

Regularized GBM with pruning
and optimizations

Histogram-based GBM, leaf-wise
growth

Categorical-feature-friendly GBM

Combine diverse models with
meta-learner

Model Combination

Averaging / Voting

Averaging / Voting

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Meta-model (e.g.,
regression)

Key Traits

Reduces variance, parallelizable,
robust to overfitting

Strong baseline, good
generalization

Reduces bias, sensitive to noise

Simple, uses weak learners (e.g.,
stumps), effective on clean data

Flexible loss functions, can
overfit without tuning

Fast, regularized, handles
missing values

Very fast, memory-efficient,
great for large-scale problems

Handles categoricals natively,
avoids overfitting

Very flexible, risk of overfitting
without proper cross-validation



XGBoost

- A state-of-the art approach!

- Full of implementation tricks: we are just
scratching the surface!

- It exploits:
1) Boosting (sequential trees) ‘.... ° .... PP
) o0 00 0, Of )® ©
2) A new way to construct trees, still 0. 200% " o %0 — o 0
based on the residuals 00 o0 ry’
. . Original Data Weighted Data Weighted Data
3) Regularization!
# # # Classfer
v eee v eee v eee
0o CYYX X XY
X 0000 X 0000 J X 0000
00000 - 0000 Yy
Y YY) o000 0O YXXX,




Drug
Effectiveness

10

20 40
Drug Dosage (mg)

Kudos to Joshua Starmer!



m First prediction: the mean! Black thick line...

Drug ...and the Residuals, the
Effectiveness differences between the Observed
10 and Predicted values, show us how

5 —

good the initial prediction is.

Drug Dosage (mg)

Kudos to Joshua Starmer!



Drug
Effectiveness

10

0 20
Drug Dosage (mg)

40

-10.5, 6.5, 7.5, -7.5

Trees here are not the standard
regression trees: we also build them
starting from residuals

Kudos to Joshua Starmer!



-10.5, 6.5, 7.5, -7.5

Drug
Effectiveness
10
o?
5 Similarity Score — Sum of Residuals, Squared
0 4 Number of Residuals + A

10 O NOTE: A (lambda) is a
Regularization parameter, and
-15 :l: | I we’ll talk more about that later.
0 20 40

Drug Dosage (mg) Kudos to Joshua Starmer!
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-10.5, 6.5, 7.5, -7.5

Similarity Score =

(-10.5+ 6.5+ 7.5 +-7.5)2

Number of Residuals + 0 =4

...and since there are 4 )
Residuals in the leaf, we put a
4 in the denominator.

Kudos to Joshua Starmer!



Drug
Effectiveness

10

0 20 40
Drug Dosage (mg)

Now the question is whether or
not we can do a better job
clustering similar Residuals if
we split them into two groups.

Wsmilarity =4

Kudos to Joshua Starmer!



Drug
Effectiveness
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0 20 40

Drug Dosage (mg)

-10.52
Number of Residuals + A

T = 110.25

Similarity Score =

...and since only one Residual
went to the leaf on the left, the
Number of Residuals = 1.

Kudos to Joshua Starmer!
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Similarity Score =

6.5, 7.5, -7.5

6.5+ 7.5+ -7.5)2

3+A

...and just like before,
let’s let A = 0.

Kudos to Joshua Starmer!



W&milarity = 4

 -105 |l 65,7.5,-7.5

Similarity = Similarity =
110.25 14.08

Gain =110.25 + 14.08 - 4= 120.33

J

Kudos to Joshua Starmer!

...gives us 120.33.
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Gain=8+0-4=4

Since the Gain for Dosage < 22.5 (Gain = 4) is less
than the Gain for Dosage < 15 (Gain = 120.33),
Dosage < 15 is better at splitting the Residuals into

clusters of similar values.

Kudos to Joshua Starmer!
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Drug Dosage (mq)

Dosage < 30

Gain =4.08 + 56.25 -4 = 56.33

Again, since the Gain for Dosage < 30 (Gain =
56.33) is less than the Gain for Dosage < 15 (Gain =
120.33), Dosage < 15 is better at splitting the

observations.

Kudos to Joshua Starmer!



Drug

Effectiveness

10

0

Best
split! Dosage < 15

...and their average Dosage is

22.5, which corresponds to
this dotted green line.

20
Drug Dosage (mq)

6.5, 7.5, -7.5

Kudos to Joshua Starmer!



We do the same thing (looking at
all splits and considering similarity
score as a metric)

We decide to stop at depth = 2in Dosage < 30
this example, but in reality,
typically depth =6

So we will use Dosage < 30
as the threshold for this
branch.

Gain =98 + 56.25 - 14.08 = 140.17

0 20 40

Drug Dosage (mg) Kudos to Joshua Starmer!



Gain = 120.33 LT[R £

Gain = 140.17

Dosage < 30

We start by picking
Once the tree is built, MUEGBERLO exampl
we do pruning to

decrease overfitting! TERMINOLOGY ALERT!!
We fit a threshold XGBoost calls this

(gamma) that will be number y (gamma).
compared to the gain!

Kudos to Joshua Starmer!



Gain = 120.33
Gain = 140.17

Dosage < 30

Gain -\ ( ¥ (gamma)
140.17 - 130 = 10.17

...we get a positive number, so we /

will not remove this branch and we are
done pruning.

Kudos to Joshua Starmer!



Gain = 120.33
Gain = 140.17

Dosage < 30

Even if the gain for the
root is 120.3 (less than

130) we cannot prune ,
the root! Gain Y ( ¥y (gamma)

140.17 - 130 =10.17

_/

...we get a positive number, so we
will not remove this branch and we are
done pruning.

Kudos to Joshua Starmer!



Gain = 120.33

120.33-150 < 0

Gain = 140.17

Dosage < 30

Gain -\ ( ¥ (gamma)

140.17-150 < O

In this case the increased
threshold make us prune the
whole treel

Kudos to Joshua Starmer!



Drug

Effectiveness
10 :
@9
5 P Sum of Residuals, Squared

Similarity S =
e Number of Residuals + 1

-5 Remember A (lambda) is a Regularization
P @ Parameter, which means that it is intended to
-10 @: reduce the prediction’s sensitivity to individual
¥ | observations.
-15 —H |
0 20 40

Drug Dosage (mq) Kudos to Joshua Starmer!



Similarity
=509, 12

So, one thing we see is that
when A > 0, the Similarity
Scores are smaller...

...and the amount of decrease is
inversely proportional to the

number of Residuals in the node.

Ea oxEn

Similarity
=3:2

Similarity
=10.56

Kudos to Joshua Starmer!



Gain = 62.49 g LEE: T CR3 E)

Gain = 82.9

When A =1... Dosage < 30

SowhenA>0,itis
easier to prune leaves
because the values for

Gain are smaller.
When A = 0...

The threshold 130 for example Gain = 120.33 JPLEELERRE
will have a completely different

impact! Gain = 140.17

It is an hyperparameter that can SRR

allow us to prevent over fitting
the Training data!

Kudos to Joshua Starmer!



NOTE: The Output Value equation
IS like the Similarity Score except
we do not square the sum of the
residuals.

Sum of Residuals
Number of Residuals + A

Output Value =

quantity

Sum of Residuals, Squared
Number of Residuals + 1

Kudos to Joshua Starmer!

Similarity Score =



Dosage < 15

Dosage < 30

Output = -10.5 Output Value equation

imilarity Score except
Output = 7 Output = -7.5 Isquare the sum of the
residuals.

Sum of Residuals

If we are happy with the tree, pay
Number of Residuals + A

attention that in inference (when
we make the prediction) we

Output Value =

consider a quantity that is slightly
different than the similarity scorel! .
Don’t get confused! Sum of ReS|duaIS, Squared

Number of Residuals + 1

Kudos to Joshua Starmer!

Similarity Score =




Predicted Drug
Effectiveness

m + Learning Ratex

Output =-10.5

Dosage < 15

Dosage < 30

Output = 7 Output =-7.5

XGBoost calls the Learning Rate, ¢
(eta), and the default value is 0.3, so
that’s what we’ll use.

Let’s do boosting now
(similar structure as

gradient boosting)!

Kudos to Joshua Starmer!



Drug

Effectiveness
5 ...and we keep building trees
until the Residuals are super
0 -+ small, or we have reached the
maximum number.
..5 —_—
ﬂ
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0 20 40

Drug Dosage (mq)



Effect of L1 Regularization (alpha) in XGBoost

3.5 1

3.0 A

2.5

2.01
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alpha=0
alpha=0.1
alpha=1
alpha=5
alpha=10
Data

Mean Squared Error (log scale)

Train/Test Error vs L1 Regularization Alpha in XGBoost
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L1 Regularization (alpha)
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Method

Bagging

Random Forest

Boosting

AdaBoost

Gradient Boosting

XGBoost

LightGBM

CatBoost

Stacked Ensemble

Core ldea

Train trees on random data
subsets

Bagging + random feature
selection

Sequential models to fix previous

errors
Focus on misclassified samples

via reweighting

Fit to loss function gradients

Regularized GBM with pruning
and optimizations

Histogram-based GBM, leaf-wise
growth

Categorical-feature-friendly GBM

Combine diverse models with
meta-learner

Model Combination

Averaging / Voting

Averaging / Voting

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Weighted sum

Meta-model (e.g.,
regression)

Key Traits

Reduces variance, parallelizable,
robust to overfitting

Strong baseline, good
generalization

Reduces bias, sensitive to noise

Simple, uses weak learners (e.g.,
stumps), effective on clean data

Flexible loss functions, can
overfit without tuning

Fast, regularized, handles
missing values

Very fast, memory-efficient,
great for large-scale problems

Handles categoricals natively,
avoids overfitting

Very flexible, risk of overfitting
without proper cross-validation
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Thank you!

Gian Antonio Susto




Decision Tree (DT): how do we build one?

o & ‘:C
oSi e,
—— e

We will use a ‘recursive’ procedure:

- We start building a tree from the
root

- We choose the variable to be
associated to the decision based
on the one that better ‘simplifies™
the problem: a scenario where we
have a dominant/only class

- We iterate this, until classes are
separated or until we reach a given
‘depth’ of the tree

*We need a quantitative metric to
define how ‘simple’ a decision is at a
leaf levell




