Affinamento ARMAX

Un modello ARMAX viene definito come

$$y_t = \lambda x_t + \phi_1 y_{t-1} + \dots + \phi_h y_{t-h} - \theta_1 z_{t-1} - \dots - \theta_k z_{t-k} + z_t.$$

Se consideriamo $x_t = f(\hat{\beta}, t)$, possiamo scrivere

$$y_t = \lambda f(\hat{\beta}, t) + \phi_1 y_{t-1} + \dots + \phi_h y_{t-h} - \theta_1 z_{t-1} - \dots - \theta_k z_{t-k} + z_t$$

ovvero

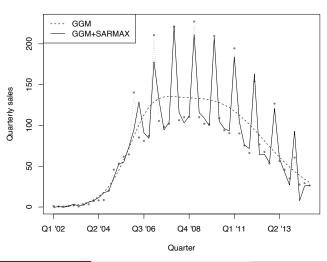
$$y_t - \lambda f(\hat{\beta}, t) = \phi_1 y_{t-1} + \dots + \phi_h y_{t-h} - \theta_1 z_{t-1} - \dots - \theta_k z_{t-k} + z_t.$$

Se $\lambda = 1$ avremo

$$y_t - \lambda f(\hat{\beta}, t) = \hat{\varepsilon}(t) = \phi_1 y_{t-1} + \dots + \phi_h y_{t-h} - \theta_1 z_{t-1} - \dots - \theta_k z_{t-k} + z_t.$$

Stiamo quindi modellando i residui con un modello ARMA(p,q).

Esempio: Apple iPod



Competizione tra due prodotti

Unbalanced competition and regime change diachronic model

$$z'_{1}(t) = m \left\{ \left[p_{1a} + q_{1a} \frac{z(t)}{m} \right] (1 - I_{t>c_{2}}) + \left[p_{1c} + \left(q_{1c} + \delta \right) \frac{z_{1}(t)}{m} + q_{1c} \frac{z_{2}(t)}{m} \right] I_{t>c_{2}} \right\} \left[1 - \frac{z(t)}{m} \right],$$

$$z'_{2}(t) = m \left[p_{2} + (q_{2} - \gamma) \frac{z_{1}(t)}{m} + q_{2} \frac{z_{2}(t)}{m} \right] \left[1 - \frac{z(t)}{m} \right] I_{t>c_{2}},$$

within imitation

Competizione tra due prodotti

Unbalanced competition and regime change diachronic model

$$z'_{1}(t) = m \left\{ \left[p_{1a} + q_{1a} \frac{z(t)}{m} \right] (1 - I_{t>c_{2}}) + \left[p_{1c} + (q_{1c} + \delta) \frac{z_{1}(t)}{m} + q_{1c} \frac{z_{2}(t)}{m} \right] I_{t>c_{2}} \right\} \left[1 - \frac{z(t)}{m} \right],$$

$$z'_{2}(t) = m \left[p_{2} + (q_{2} - \gamma) \frac{z_{1}(t)}{m} + q_{2} \frac{z_{2}(t)}{m} \right] \left[1 - \frac{z(t)}{m} \right] I_{t>c_{2}},$$

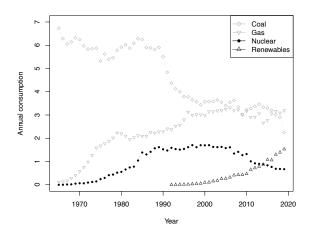
within imitation cross imitation

Competizione tra due prodotti

Segno dei coefficienti 'cross': competizione-collaborazione

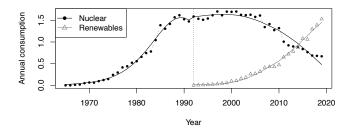
q_{1c}	$q_2 - \gamma$	interpretazione		
-	-	piena competizione		
-	+	2 compete con 1, 1 collabora con 2		
+	-	2 collabora con 1, 1 compete con 2		
	+	piena collaborazione		

Esempio: Transizione energetica in Germania



Consumo di fonti di energia in Germania

Esempio: Transizione energetica in Germania



Competizione tra rinnovabili e nucleare in Germania

Esempio: Transizione energetica in Germania

UCRCD per rinnovabili vs nucleare: stime e 95% Cls

	Estimate	Std.Error	Lower	Upper
$\overline{m_a}$	26.6	0.73	25.1	28.0
p_{1a}	0.0007	0.0000	0.0006	0.0007
q_{1a}	0.23	0.004	0.22	0.24
$\overline{m_c}$	99.9	9.87	80.5	119.2
p_{1c}	0.012	0.0012	0.010	0.014
p_2	0.001	0.0015	-0.002	0.003
q_{1c}	-0.145	0.015	-0.176	-0.114
q_2	0.342	0.0683	0.208	0.475
δ	0.183	0.0186	0.146	0.219
γ	0.343	0.0730	0.200	0.487

$$R^2 = 0.9915$$

- nucleare $q_{1c} = -0.145$,
- rinnovabili $q_2 \gamma = -0.002$

Modello Prophet: modello di forecasting sviluppato dal Data Science Team di Facebook

Consideriamo un modello per serie storiche con componenti di trend, stagionalità e altre componenti di calendario (vacanze)

$$y(t) = g(t) + s(t) + h(t) + \varepsilon(t)$$

Questa specificazione è simile a quella di un modello additivo generalizzato

Alcuni vantaggi di questa formulazione:

- Flessibilità
- Interpretabilità
- Facilità di gestione

Componente di trend

Spesso la componente di trend è definita utilizzando il modello logistico

$$g(t) = \frac{C}{1 + e^{-k(t)}}$$

dove C è la carrying capacity e k il tasso di crescita.

Inoltre il trend può essere lineare o costante.

Punti di cambio

- Inoltre è possibile incorporare cambiamenti nel trend attraverso la definizione di alcuni punti di cambio, per tenere conto del fatto che il tasso di crescita non sia costante
- Supponiamo che ci siano S punti di cambio ai tempi $s_j, j=1,\ldots,S$
- Possiamo definire un vettore di aggiustamenti δ , dove δ_j è il cambiamento al tempo s_j .
- Quindi il tasso di crescita è dato da k più tutti gli aggiustamenti fino a quel punto: $k+\sum_{j:t>s}\delta_j$
- I punti di cambio possono essere specificati dall'analista, date alcune conoscenze del contesto, o selezionati automaticamente.

Componente di stagionalità

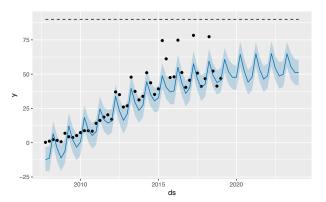
La componente stagionale può essere definita attraverso una combinazione di serie di Fourier

$$s(t) = \sum_{n=1}^{N} \left(a \cos \left(\frac{2\pi nt}{P} \right) + b \sin \left(\frac{2\pi nt}{P} \right) \right)$$

In cui ${\cal P}$ rappresenta la frequenza della serie e ${\cal N}$ il numero di funzioni in seno e coseno da introdurre.

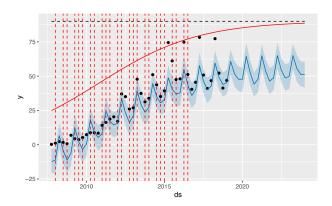
Esempio: Apple iPhone

Trend nonlineare logistico, stagionalità additiva



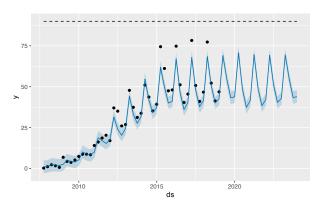
Esempio: Apple iPhone

Punti di cambio nel primo 80% dei dati



Esempio: Apple iPhone

Trend nonlineare logistico, stagionalità moltiplicativa



Esempio: Apple iPhone

Punti di cambio

