
Lecture #16
Decision Trees &
Random Forests

Gian Antonio Susto

Machine Learning
2024/2025

Let’s consider this ‘decision-making’ example

Let’s consider this ‘decision-making’ example
This was
probably built
on historical
data!

X = ?ge,
Weight,
Smoker

Y = ?Heart
Attack

Let’s consider this ‘decision-making’ example
This was
probably built
on historical
data!

X = Age,
Weight,
Smoker

Y = Heart
Attack

We are dealing with a multivariate
supervised classification problem!

However, each ’decisions’ are made by
considering a single variable at each time!

Let’s consider this ‘decision-making’ example
This was
probably built
on historical
data!

X = Age,
Weight,
Smoker

Y = Heart
Attack

We are dealing with a multivariate
supervised classification problem!

However, each ’decisions’ are made by
considering a single variable at each time!

This is a
Decision Tree!

Tree-based methods are among
the most effective techniques for
supervised learning, particularly
when working with smaller
datasets (with n fewer than 10,000
samples).

Interestingly, the core concepts
behind them are quite
straightforward…

🌳 Tree-based
Approaches

Why do tree-based models still outperform deep learning on typical tabular data?
Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022)

Our goal is to find ‘decisions’
— that is, splitting points
defined by pairs of (variable,
value) — which allow us to
partition the data into
distinct scenarios where one
class becomes dominant or
more easily predictable.

The result is a tree-like
structure where:

- Internal nodes represent
decision rules based on
features.

- Leaf nodes represent
predictions — typically
the most frequent class

🌳 Tree-based Approaches

At the heart is the decision
tree, a structure that mimics
human decision-making by
splitting data into branches
based on feature values.

Each internal node of the
tree represents a decision
based on a feature, each
branch represents the
outcome of that decision,
and each leaf node
corresponds to a prediction
or outcome.

🌳 The Decision Tree

Decision Tree (DT): how do we build one?

9

🎾 We will investigate the following dataset: we aim from historical behaviour of our
sparring tennis partner to predict if he will play tennis or not with us, based on the
weather

Day
(sample)

Outlook (x1) Temperature
(x2)

Humidity
(x3)

Wind (x4) Play Tennis
(y)

#1 Sunny Hot High Weak No

#2 Sunny Hot High Strong No

#3 Overcast Hot High Weak Yes

#4 Rain Mild High Weak Yes

#5 Rain Cool Normal Weak Yes

#6 Rain Cool Normal Strong No

#7 Overcast Cool Normal Strong Yes

#8 Sunny Mild High Weak No

#9 Sunny Cool Normal Weak Yes

#10 Rain Mild Normal Weak Yes

#11 Sunny Mild Normal Strong Yes

#12 Overcast Mild High Strong Yes

#13 Overcast Hot Normal Weak Yes

#14 Rainy Mild High Strong No

From: ‘Machine Learning’, Mitchell 1997

n = 15

p = 4

Only categorical
variable

Decision Tree (DT): how do we build one?

10

🎾 We will investigate the following dataset: we aim from historical behaviour of our
sparring tennis partner to predict if he will play tennis or not with us, based on the
weather

Day
(sample)

Outlook (x1) Temperature
(x2)

Humidity
(x3)

Wind (x4) Play Tennis
(y)

#1 Sunny Hot High Weak No

#2 Sunny Hot High Strong No

#3 Overcast Hot High Weak Yes

#4 Rain Mild High Weak Yes

#5 Rain Cool Normal Weak Yes

#6 Rain Cool Normal Strong No

#7 Overcast Cool Normal Strong Yes

#8 Sunny Mild High Weak No

#9 Sunny Cool Normal Weak Yes

#10 Rain Mild Normal Weak Yes

#11 Sunny Mild Normal Strong Yes

#12 Overcast Mild High Strong Yes

#13 Overcast Hot Normal Weak Yes

#14 Rainy Mild High Strong No

Any ideas?

From: ‘Machine Learning’, Mitchell 1997

n = 15

p = 4

Only categorical
variable

Decision Tree (DT): how do we build one?

11

We will use a ‘recursive’ procedure:

- We start building a tree from the
root

- We choose the variable to be
associated to the decision based
on the one that better ‘simplifies’*
the problem: a scenario where we
have a dominant/only class

- We iterate this, until classes are
separated or until we reach a given
‘depth’ of the tree

Decision Tree (DT): how do we build one?

12

We will use a ‘recursive’ procedure:

- We start building a tree from the
root

- We choose the variable to be
associated to the decision based
on the one that better ‘simplifies’*
the problem: a scenario where we
have a dominant/only class

- We iterate this, until classes are
separated or until we reach a given
‘depth’ of the tree

*We need a quantitative metric to
define how ‘simple’ a decision is at a
leaf level!

Entropy (Measure of Impurity / Uncertainty)

13

Information Gain measures the decrease in entropy after the dataset is split on
an attribute. It tells us how much "information" a feature gives us about the target
variable.

Where:
- 𝑆 is the original dataset - 𝐴 is the attribute we split on

- 𝑣 are the possible values of 𝐴 - 𝑆! is the subset of 𝑆 where 𝐴 = 𝑣

Interpretation:

- High IG: splitting on this attribute significantly reduces uncertainty → it's a good
choice!

- Low IG: the attribute doesn't help much in separating the classes.

Information Gain (Reduction in Entropy After a
Split)

14

Entropy quantifies the uncertainty or impurity in a
dataset. In the context of classification, it tells us
how mixed the class labels are in a set.

For a dataset S with c classes

Where 𝑝" is the proportion of samples in class 𝑖.

- Entropy = 0: the dataset is pure (all examples belong to one class)

- Higher entropy: more class mixing, greater uncertainty.

Example: our tennis dataset 🎾 has 9 ‘yes’ and 5 ‘no’

🎾 Example

15

Outlook
(x1)

Temp.
(x2)

Humidi
ty (x3)

Wind
(x4)

Play
Tennis
(y)

Sunny Hot High Weak No

Sunny Hot High Strong No

Overcast Hot High Weak Yes

Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rainy Mild High Strong No

🎾 Example

16

Outlook

Sunny (5) → 2 Yes, 3 No → Entropy = 0.971

Overcast (4) → 4 Yes → Entropy = 0

Rain (5) → 3 Yes, 2 No → Entropy = 0.971

Outlook
(x1)

Temp.
(x2)

Humidi
ty (x3)

Wind
(x4)

Play
Tennis
(y)

Sunny Hot High Weak No

Sunny Hot High Strong No

Overcast Hot High Weak Yes

Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rainy Mild High Strong No

🎾 Example

17

Outlook

Sunny (5) → 2 Yes, 3 No → Entropy = 0.971

Overcast (4) → 4 Yes → Entropy = 0

Rain (5) → 3 Yes, 2 No → Entropy = 0.971

Temperature

Hot (4) → 2 Yes, 2 No → Entropy = 1.0

Mild (6) → 4 Yes, 2 No → Entropy = 0.918

Cool (4) → 3 Yes, 1 No → Entropy = 0.811

Outlook
(x1)

Temp.
(x2)

Humidi
ty (x3)

Wind
(x4)

Play
Tennis
(y)

Sunny Hot High Weak No

Sunny Hot High Strong No

Overcast Hot High Weak Yes

Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rainy Mild High Strong No

🎾 Example

18

Humidity

High (7) → 3 Yes, 4 No → Entropy = 0.985

Normal (7) → 6 Yes, 1 No → Entropy = 0.592

Outlook
(x1)

Temp.
(x2)

Humidi
ty (x3)

Wind
(x4)

Play
Tennis
(y)

Sunny Hot High Weak No

Sunny Hot High Strong No

Overcast Hot High Weak Yes

Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rainy Mild High Strong No

🎾 Example

19

Humidity

High (7) → 3 Yes, 4 No → Entropy = 0.985

Normal (7) → 6 Yes, 1 No → Entropy = 0.592

Wind

Weak (8) → 6 Yes, 2 No → Entropy = 0.811

Strong (6) → 3 Yes, 3 No → Entropy = 1.0

Outlook
(x1)

Temp.
(x2)

Humidi
ty (x3)

Wind
(x4)

Play
Tennis
(y)

Sunny Hot High Weak No

Sunny Hot High Strong No

Overcast Hot High Weak Yes

Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rainy Mild High Strong No

🎾 Example

20

🎾 Example

21

Outlook
(x1)

Temp
. (x2)

Humidit
y (x3)

Wind
(x4)

Play
Tennis (y)

Sunny Hot High Weak No

Sunny Hot High Strong No

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Sunny Mild Normal Strong Yes

✅ 2 Yes, ❌ 3 No

Entropy ≈ 0.971 (as computed earlier)

Humidity

High (3) → 0 Yes, 3 No → Entropy = 0

Normal (2) → 2 Yes, 0 No → Entropy = 0

✅ Highest possible gain! We split on Humidity.

🎾 Example

22

Outlook
(x1)

Temp
. (x2)

Humidit
y (x3)

Wind
(x4)

Play
Tennis (y)

Sunny Hot High Weak No

Sunny Hot High Strong No

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Sunny Mild Normal Strong Yes

✅ 2 Yes, ❌ 3 No

Entropy ≈ 0.971 (as computed earlier)

Humidity

High (3) → 0 Yes, 3 No → Entropy = 0

Normal (2) → 2 Yes, 0 No → Entropy = 0

✅ Highest possible gain! We split on Humidity.

🎾 Example

23

✅ 3 Yes, ❌ 2 No

Entropy ≈ 0.971 (as computed earlier)

Wind

Weak (3) → 3 Yes, 0 No → Entropy = 0

Strong (2) → 0 Yes, 2 No → Entropy = 0

✅ Highest possible gain! We split on Wind.

Outlook
(x1)

Temp
. (x2)

Humidit
y (x3)

Wind
(x4)

Play
Tennis (y)

Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Rain Mild Normal Weak Yes

Rain Mild High Strong No

🎾 Example

24

Another metric: Gini Index

25

Where 𝑝" is the proportion of examples in class i.
- Gini = 0 → Perfect purity (all examples belong to one class)

- Higher Gini →More mixed classes (more impurity)

Gini for a Split:

The Gini Index (or Gini Impurity) is a measure of
how impure or mixed a dataset is.
For a dataset S with c classes:

Decision Tree Algorithm (CART)

26

Function CART(data):

If all examples have the same class -> Return a leaf with that class

best_split← find the attribute and value that gives lowest Gini

If no good split is found (no improvement in Gini) -> Return a leaf with the majority class

left_data, right_data← split data using best_split

left_tree← CART(left_data)

right_tree← CART(right_data)

Return a decision node with:

- the split condition

- left_tree and right_tree as children

A recursive algorithm: the
function is internally recalled

Numerical Variables

27

For a given numerical feature (e.g.
sepal length), CART considers binary
splits of the form:

Feature ≤ t
where t is a threshold value.

The algorithm tries many possible
values of t and chooses the one that
minimizes the impurity.

28

Wikipedia

CART in action: Iris Dataset

Don’t we see a similar
behaviour that we had
with other algorithms?

Don’t we see a similar
behaviour that we had
with other algorithms?

✂ Another way to deal with under8tting vs
over8tting: Pruning
Pruning is the process of removing parts of a fully-grown tree to avoid
overfitting and improve generalization.

CART uses Cost-Complexity Pruning, also called Minimal Cost-Complexity
Pruning. It finds subtrees that balance the trade-off between tree accuracy &
tree simplicity.

where:

- 𝑅 𝑇 : error (e.g., Gini impurity or
misclassification rate)

- |𝑇|: number of terminal (leaf) nodes

- 𝛼: pruning parameter (higher = more
pruning)

🌲 Max Depth vs ✂ Pruning
This is a pre-pruning technique (also
called early stopping): it limits the depth
of the tree before it's fully grown.

The tree building process stops once the
specified depth is reached, even if
further splits would improve the fit.

✅ Pros

- Fast and easy to control

- Prevents overfitting in small datasets

❌ Cons

- May miss useful splits just below the
cutoff

- Not based on how meaningful those
splits are

This is a post-hoc operation: you let the
tree grow fully, then remove branches
that don’t improve generalization (based
on validation error, cost-complexity,
etc.)

✅ Pros

- More flexible: it allows complex splits
only if they help

- Often results in better generalization
than hard depth limits

❌ Cons

- Can be slower (requires evaluating
subtrees)

- Needs careful tuning

Alternatives to CART

36

1.ID3, C4.5, and C5.0
1. Earlier and extended versions of CART.
2. C4.5 (and its commercial version C5.0) uses information gain ratio

instead of Gini/entropy.
3. C5.0 is faster and more memory-eQcient than CART.

2.CHAID (Chi-squared Automatic Interaction Detector)
1. Based on chi-square tests for splitting.
2. Handles categorical data well and can create multiway splits (not just

binary).
3. Popular in social sciences and marketing.

3.QUEST (Quick, Unbiased, EOcient Statistical Tree)
1. Designed to reduce bias in variable selection.
2. Handles both categorical and continuous variables well.

CART: Classification & Regression Tree

37

We can use regression trees! Splitting criteria changes:

1) MSE - At each split, the algorithm calculates the MSE
for the left and right child nodes, and tries to minimize
the weighted average MSE:

Where: 𝑛#, 𝑛$	 are number of samples in left/right child.
Lower MSE = better split!

CART: Classification & Regression Tree

38

We can use regression trees! Splitting criteria changes:

1) MSE - At each split, the algorithm calculates the MSE
for the left and right child nodes, and tries to minimize
the weighted average MSE:

Where: 𝑛#, 𝑛$	 are number of samples in left/right child.
Lower MSE = better split!

2) Variance reduction:

So — maximizing variance reduction = minimizing MSE.

CART: Classification & Regression Tree

39

We can use regression trees! Splitting criteria changes:

1) MSE - At each split, the algorithm calculates the MSE
for the left and right child nodes, and tries to minimize
the weighted average MSE:

Where: 𝑛#, 𝑛$	 are number of samples in left/right child.
Lower MSE = better split!

2) Variance reduction:

So — maximizing variance reduction = minimizing MSE.

Leaf output changes: leaves
output the mean of the target
variable in the node!

Advantages
• Easily interpretable
• They require no data normalization
• The classi7cation is almost immediate
• The computational expensive part is

done o:-line (once)

Drawbacks
• Really high variance classi7ersà Prone

to over7tting! Typically, poor
generalization performances!

🌳 Decision Tree -> Random Forest 🌳 🌳 🌳

🌳 Decision Tree -> Random Forest 🌳 🌳 🌳

Advantages
• Easily interpretable
• They require no data normalization
• The classification is almost immediate
• The computational expensive part is

done off-line (once)

Drawbacks
• Really high variance classifiersà Prone

to overfitting! Typically, poor
generalization performances!

We can solve this by considering many
trees: a forest!!!!

42

Random Forest (RF) 🌳 🌳 🌳

A RF is composed by many ‘weak’
learners (decision trees): we cleverly
combine DTs reducing overfitting!

We construct slightly different DTs
(more on this later) and, in classification,
we decide by a majority-voting (we
choose following the mode) the final
class. In regression, the final decision is
the average.

43

Random Forest (RF) 🌳 🌳 🌳

A RF is composed by many ‘weak’
learners (decision trees): we cleverly
combine DTs reducing overfitting!

We construct slightly different DTs
(more on this later) and, in classification,
we decide by a majority-voting (we
choose following the mode) the final
class. In regression, the final decision is
the average.

This in an ‘ensemble’ approach: we
combine multiple models (often called
base learners or weak learners) to
produce a stronger model.

44

Random Forest 🌳 🌳 🌳

🔧 How to Bui ld a Random Forest (Conceptually)

Let’s assume you want to build a forest
with T trees.
For each tree:

- Sample the dataset with replacement
(bootstrap sample). This procedure is
called Bagging (bootstrap
aggregating).

🔧 How to Bui ld a Random Forest (Conceptually)

Let’s assume you want to build a forest
with T trees.
For each tree:

- Sample the dataset with replacement
(bootstrap sample). This procedure is
called Bagging (bootstrap
aggregating).

This procedure leads to better model performance because it
decreases the variance of the model, without increasing the

bias.

While the predictions of a single tree are highly sensitive to
noise in its training set, the average of many trees is not, as long

as the trees are not correlated.

Bootstrap sampling is a way of de-correlating the trees by
showing them di:erent training sets.

🔧 How to Bui ld a Random Forest (Conceptually)

Let’s assume you want to build a forest
with T trees.
For each tree:

- Sample the dataset with replacement
(bootstrap sample). This procedure is
called Bagging (bootstrap
aggregating).

- Build a decision tree: but at each split,
instead of evaluating all features, pick
a random subset (e.g., √p). This
procedure is called Feature Bagging.

🔧 How to Bui ld a Random Forest (Conceptually)

Let’s assume you want to build a forest
with T trees.
For each tree:

- Sample the dataset with replacement
(bootstrap sample). This procedure is
called Bagging (bootstrap
aggregating).

- Build a decision tree: but at each split,
instead of evaluating all features, pick
a random subset (e.g., √p). This
procedure is called Feature Bagging.

The reason for doing this is the correlation of the trees in
an ordinary bootstrap sample: if one or a few features are
very strong predictors for the response variable (target
output), these features will be selected in many of
the T trees, causing them to become correlated.

Example of RF in action: 🍇Wine Dataset

📦Description

- Objective: Classify wines into 3
classes (based on grape varieties)

- Features (p): 13 chemical
measurements per wine

- Samples (n): 178
- Classes: Class_0, Class_1, Class_2

📊 Features include Alcohol, Malic acid,
Ash, Alcalinity of ash, Magnesium, Total
phenols, Flavanoids, Color intensity,
Hue, OD280/OD315 of diluted wines,
Proline (and more...)

Example of RF in action: 🍇Wine Dataset

Random Forests RF in a Nutshell

-Hyperparameters:
- number of trees (we just put ‘enough trees’)

-Pro:
- Multi-class
- No data normalization required
- The computational expensive part is done

off-line (once)
- The classification is almost immediate
- High (highest!) classification accuracy

-Drawbacks:
-Time consuming computation (but it can be
easily parallelized)
-Lack of interpretability… is it so?

51

Random Forests RF in a Nutshell

-Hyperparameters:
- number of trees (we just put ‘enough trees’)

-Pro:
- Multi-class
- No data normalization required
- The computational expensive part is done

ok-line (once)
- The classilcation is almost immediate
- High (highest!) classilcation accuracy

-Drawbacks:
-Time consuming computation (but it can be
easily parallelized)
-Lack of interpretability… is it so?

52

RF: feature importance
Feature importance reflects how useful or
valuable each feature is for making predictions
in a model. For decision trees (and ensembles
like Random Forests), it's typically based on:

🔍 How much each feature decreases impurity
(e.g., Gini index or entropy) when it’s used to
split the data

📊 Intuition

- If a feature is consistently chosen for
important splits (i.e., it helps reduce impurity a
lot), it gets high importance.

- Features that are rarely used or don’t reduce
impurity much get low or zero importance.

53

RF: feature importance
Feature importance reflects how useful or
valuable each feature is for making predictions
in a model. For decision trees (and ensembles
like Random Forests), it's typically based on:

🔍 How much each feature decreases impurity
(e.g., Gini index or entropy) when it’s used to
split the data

📊 Intuition

- If a feature is consistently chosen for
important splits (i.e., it helps reduce impurity a
lot), it gets high importance.

- Features that are rarely used or don’t reduce
impurity much get low or zero importance.

54

This is a ‘eXplainable Arti7cial Intelligence
(XAI)’ approach.

It is a ’global’ approach: provide us with
info on the whole model structure

Any idea how can this information be
exploited?

RF: feature importance - Derivation
Let’s consider the Gini impurity, and we have a decision tree:

1. At every split, the algorithm calculates how much that split reduces impurity:

2. The contribution of a feature is the sum of all impurity decreases where that feature
was used to split:

3. In a Random Forest, we average this importance over all the trees in the forest.

4. (Optional) the importances are normalized so they sum to 1:

55

🍷 On the wine dataset

Thank you!

Gian Antonio Susto

Machine Learning
2024/2025

