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Let’s consider this ‘decision-making’ example
This was 
probably built 
on historical 
data!

X = Age, 
Weight, 
Smoker

Y = Heart 
Attack

We are dealing with a multivariate 
supervised classification problem!

However, each ’decisions’ are made by 
considering a single variable at each time!

This is a 
Decision Tree!



Tree-based methods are among 
the most effective techniques for 
supervised learning, particularly 
when working with smaller 
datasets (with n fewer than 10,000 
samples).

Interestingly, the core concepts 
behind them are quite 
straightforward…

🌳 Tree-based 
Approaches

Why do tree-based models still outperform deep learning on typical tabular data?
Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022)



Our goal is to find ‘decisions’ 
— that is, splitting points 
defined by pairs of (variable, 
value) — which allow us to 
partition the data into 
distinct scenarios where one 
class becomes dominant or 
more easily predictable.

The result is a tree-like 
structure where:

- Internal nodes represent 
decision rules based on 
features.

- Leaf nodes represent 
predictions — typically 
the most frequent class

🌳 Tree-based Approaches



At the heart is the decision 
tree, a structure that mimics 
human decision-making by 
splitting data into branches 
based on feature values.

Each internal node of the 
tree represents a decision 
based on a feature, each 
branch represents the 
outcome of that decision, 
and each leaf node 
corresponds to a prediction 
or outcome.

🌳 The Decision Tree



Decision Tree (DT): how do we build one?

9

🎾  We will investigate the following dataset: we aim from historical behaviour of our 
sparring tennis partner to predict if he will play tennis or not with us, based on the 
weather

Day 
(sample)

Outlook (x1) Temperature 
(x2)

Humidity 
(x3)

Wind (x4) Play Tennis 
(y)

#1 Sunny Hot High Weak No

#2 Sunny Hot High Strong No

#3 Overcast Hot High Weak Yes

#4 Rain Mild High Weak Yes

#5 Rain Cool Normal Weak Yes

#6 Rain Cool Normal Strong No

#7 Overcast Cool Normal Strong Yes

#8 Sunny Mild High Weak No

#9 Sunny Cool Normal Weak Yes

#10 Rain Mild Normal Weak Yes

#11 Sunny Mild Normal Strong Yes

#12 Overcast Mild High Strong Yes

#13 Overcast Hot Normal Weak Yes

#14 Rainy Mild High Strong No

From: ‘Machine Learning’, Mitchell 1997

n = 15

p = 4

Only categorical 
variable
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🎾  We will investigate the following dataset: we aim from historical behaviour of our 
sparring tennis partner to predict if he will play tennis or not with us, based on the 
weather

Day 
(sample)

Outlook (x1) Temperature 
(x2)

Humidity 
(x3)

Wind (x4) Play Tennis 
(y)

#1 Sunny Hot High Weak No

#2 Sunny Hot High Strong No

#3 Overcast Hot High Weak Yes

#4 Rain Mild High Weak Yes

#5 Rain Cool Normal Weak Yes

#6 Rain Cool Normal Strong No

#7 Overcast Cool Normal Strong Yes

#8 Sunny Mild High Weak No

#9 Sunny Cool Normal Weak Yes

#10 Rain Mild Normal Weak Yes

#11 Sunny Mild Normal Strong Yes

#12 Overcast Mild High Strong Yes

#13 Overcast Hot Normal Weak Yes

#14 Rainy Mild High Strong No

Any ideas?

From: ‘Machine Learning’, Mitchell 1997

n = 15

p = 4

Only categorical 
variable
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We will use a ‘recursive’ procedure:

- We start building a tree from the 
root

- We choose the variable to be 
associated to the decision based 
on the one that better ‘simplifies’* 
the problem: a scenario where we 
have a dominant/only class

- We iterate this, until classes are 
separated or until we reach a given 
‘depth’ of the tree



Decision Tree (DT): how do we build one?

12

We will use a ‘recursive’ procedure:

- We start building a tree from the 
root

- We choose the variable to be 
associated to the decision based 
on the one that better ‘simplifies’* 
the problem: a scenario where we 
have a dominant/only class

- We iterate this, until classes are 
separated or until we reach a given 
‘depth’ of the tree

*We need a quantitative metric to 
define how ‘simple’ a decision is at a 
leaf level!



Entropy (Measure of Impurity / Uncertainty)
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Information Gain measures the decrease in entropy after the dataset is split on 
an attribute. It tells us how much "information" a feature gives us about the target 
variable.

Where: 
- 𝑆 is the original dataset - 𝐴 is the attribute we split on

- 𝑣 are the possible values of 𝐴 - 𝑆! is the subset of 𝑆 where 𝐴 = 𝑣

Interpretation:

- High IG: splitting on this attribute significantly reduces uncertainty → it's a good 
choice!

- Low IG: the attribute doesn't help much in separating the classes.



Information Gain (Reduction in Entropy After a 
Split)
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Entropy quantifies the uncertainty or impurity in a 
dataset. In the context of classification, it tells us 
how mixed the class labels are in a set.

For a dataset S with c classes

Where 𝑝" is the proportion of samples in class 𝑖.

- Entropy = 0: the dataset is pure (all examples belong to one class) 

- Higher entropy: more class mixing, greater uncertainty.

Example: our tennis dataset 🎾 has 9 ‘yes’ and 5 ‘no’



🎾 Example
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Outlook 
(x1)

Temp. 
(x2)

Humidi
ty (x3)

Wind 
(x4)

Play 
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(y)
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Overcast Hot High Weak Yes

Rain Mild High Weak Yes
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Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rainy Mild High Strong No
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Outlook
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Outlook

Sunny (5) → 2 Yes, 3 No → Entropy = 0.971

Overcast (4) → 4 Yes → Entropy = 0

Rain (5) → 3 Yes, 2 No → Entropy = 0.971

Temperature

Hot (4) → 2 Yes, 2 No → Entropy = 1.0

Mild (6) → 4 Yes, 2 No → Entropy = 0.918

Cool (4) → 3 Yes, 1 No → Entropy = 0.811
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Humidity

High (7) → 3 Yes, 4 No → Entropy = 0.985

Normal (7) → 6 Yes, 1 No → Entropy = 0.592

Outlook 
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(y)
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Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rainy Mild High Strong No
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Humidity

High (7) → 3 Yes, 4 No → Entropy = 0.985

Normal (7) → 6 Yes, 1 No → Entropy = 0.592

Wind

Weak (8) → 6 Yes, 2 No → Entropy = 0.811

Strong (6) → 3 Yes, 3 No → Entropy = 1.0

Outlook 
(x1)

Temp. 
(x2)

Humidi
ty (x3)

Wind 
(x4)

Play 
Tennis 
(y)

Sunny Hot High Weak No

Sunny Hot High Strong No

Overcast Hot High Weak Yes

Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rainy Mild High Strong No
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✅ 2 Yes, ❌ 3 No

Entropy ≈ 0.971 (as computed earlier)

Humidity

High (3) → 0 Yes, 3 No → Entropy = 0

Normal (2) → 2 Yes, 0 No → Entropy = 0

✅ Highest possible gain! We split on Humidity.
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Sunny Mild High Weak No
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Sunny Mild Normal Strong Yes

✅ 2 Yes, ❌ 3 No
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🎾 Example
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✅ 3 Yes, ❌ 2 No

Entropy ≈ 0.971 (as computed earlier)

Wind

Weak (3) → 3 Yes, 0 No → Entropy = 0

Strong (2) → 0 Yes, 2 No → Entropy = 0

✅ Highest possible gain! We split on Wind.

Outlook 
(x1)

Temp
. (x2)

Humidit
y (x3)

Wind 
(x4)

Play 
Tennis (y)

Rain Mild High Weak Yes

Rain Cool Normal Weak Yes

Rain Cool Normal Strong No

Rain Mild Normal Weak Yes

Rain Mild High Strong No



🎾 Example
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Another metric: Gini Index
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Where 𝑝" is the proportion of examples in class i. 
- Gini = 0 → Perfect purity (all examples belong to one class)

- Higher Gini →More mixed classes (more impurity)

Gini for a Split:

The Gini Index (or Gini Impurity) is a measure of 
how impure or mixed a dataset is.
For a dataset S with c classes:



Decision Tree Algorithm (CART)

26

Function CART(data):

If all examples have the same class -> Return a leaf with that class

best_split← find the attribute and value that gives lowest Gini

If no good split is found (no improvement in Gini) -> Return a leaf with the majority class

left_data, right_data← split data using best_split

left_tree← CART(left_data)

right_tree← CART(right_data)

Return a decision node with:

- the split condition

- left_tree and right_tree as children

A recursive algorithm: the 
function is internally recalled



Numerical Variables
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For a given numerical feature (e.g.
sepal length), CART considers binary 
splits of the form:

Feature ≤ t
where t is a threshold value. 

The algorithm tries many possible 
values of t and chooses the one that 
minimizes the impurity.
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Wikipedia

CART in action: Iris Dataset







Don’t we see a similar 
behaviour that we had 
with other algorithms?
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✂ Another way to deal with under8tting vs 
over8tting: Pruning
Pruning is the process of removing parts of a fully-grown tree to avoid 
overfitting and improve generalization.

CART uses Cost-Complexity Pruning, also called Minimal Cost-Complexity 
Pruning. It finds subtrees that balance the trade-off between tree accuracy & 
tree simplicity.

where:

- 𝑅 𝑇 : error (e.g., Gini impurity or 
misclassification rate)

- |𝑇|: number of terminal (leaf) nodes

- 𝛼: pruning parameter (higher = more 
pruning)



🌲 Max Depth vs ✂ Pruning
This is a pre-pruning technique (also 
called early stopping): it limits the depth 
of the tree before it's fully grown.

The tree building process stops once the 
specified depth is reached, even if 
further splits would improve the fit.

✅ Pros

- Fast and easy to control

- Prevents overfitting in small datasets

❌ Cons

- May miss useful splits just below the 
cutoff

- Not based on how meaningful those 
splits are

This is a post-hoc operation: you let the 
tree grow fully, then remove branches 
that don’t improve generalization (based 
on validation error, cost-complexity, 
etc.)

✅ Pros

- More flexible: it allows complex splits 
only if they help

- Often results in better generalization 
than hard depth limits

❌ Cons

- Can be slower (requires evaluating 
subtrees)

- Needs careful tuning 



Alternatives to CART
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1.ID3, C4.5, and C5.0
1. Earlier and extended versions of CART.
2. C4.5 (and its commercial version C5.0) uses information gain ratio

instead of Gini/entropy.
3. C5.0 is faster and more memory-eQcient than CART.

2.CHAID (Chi-squared Automatic Interaction Detector)
1. Based on chi-square tests for splitting.
2. Handles categorical data well and can create multiway splits (not just 

binary).
3. Popular in social sciences and marketing.

3.QUEST (Quick, Unbiased, EOcient Statistical Tree)
1. Designed to reduce bias in variable selection.
2. Handles both categorical and continuous variables well.



CART: Classification & Regression Tree
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We can use regression trees! Splitting criteria changes:

1) MSE - At each split, the algorithm calculates the MSE 
for the left and right child nodes, and tries to minimize 
the weighted average MSE:

Where: 𝑛#, 𝑛$	 are number of samples in left/right child.
Lower MSE = better split!
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So — maximizing variance reduction = minimizing MSE.



CART: Classification & Regression Tree
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We can use regression trees! Splitting criteria changes:

1) MSE - At each split, the algorithm calculates the MSE 
for the left and right child nodes, and tries to minimize 
the weighted average MSE:

Where: 𝑛#, 𝑛$	 are number of samples in left/right child.
Lower MSE = better split!

2) Variance reduction: 

So — maximizing variance reduction = minimizing MSE.

Leaf output changes: leaves 
output the mean of the target 
variable in the node!



Advantages
• Easily interpretable
• They require no data normalization
• The classi7cation is almost immediate
• The computational expensive part is 

done o:-line (once)

Drawbacks
• Really high variance classi7ersà Prone 

to over7tting! Typically, poor 
generalization performances! 

🌳 Decision Tree -> Random Forest 🌳  🌳  🌳  
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Advantages
• Easily interpretable
• They require no data normalization
• The classification is almost immediate
• The computational expensive part is 

done off-line (once)

Drawbacks
• Really high variance classifiersà Prone 

to overfitting! Typically, poor 
generalization performances!

We can solve this by considering many 
trees: a forest!!!!
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Random Forest (RF) 🌳  🌳  🌳  

A RF is composed by many ‘weak’ 
learners (decision trees): we cleverly 
combine DTs reducing overfitting!

We construct slightly different DTs 
(more on this later) and, in classification, 
we decide by a majority-voting (we 
choose following the mode) the final 
class. In regression, the final decision is 
the average.
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Random Forest (RF) 🌳  🌳  🌳  

A RF is composed by many ‘weak’ 
learners (decision trees): we cleverly 
combine DTs reducing overfitting!

We construct slightly different DTs 
(more on this later) and, in classification, 
we decide by a majority-voting (we 
choose following the mode) the final 
class. In regression, the final decision is 
the average.

This in an ‘ensemble’ approach: we 
combine multiple models (often called 
base learners or weak learners) to 
produce a stronger model.
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Random Forest 🌳  🌳  🌳  



🔧 How to Bui ld a Random Forest (Conceptually)

Let’s assume you want to build a forest 
with T trees.
For each tree:

- Sample the dataset with replacement 
(bootstrap sample). This procedure is 
called Bagging (bootstrap 
aggregating).



🔧 How to Bui ld a Random Forest (Conceptually)

Let’s assume you want to build a forest 
with T trees.
For each tree:

- Sample the dataset with replacement 
(bootstrap sample). This procedure is 
called Bagging (bootstrap 
aggregating).

This procedure leads to better model performance because it 
decreases the variance of the model, without increasing the 

bias. 

While the predictions of a single tree are highly sensitive to 
noise in its training set, the average of many trees is not, as long 

as the trees are not correlated. 

Bootstrap sampling is a way of de-correlating the trees by 
showing them di:erent training sets.
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- Build a decision tree: but at each split, 
instead of evaluating all features, pick 
a random subset (e.g., √p). This 
procedure is called Feature Bagging.



🔧 How to Bui ld a Random Forest (Conceptually)

Let’s assume you want to build a forest 
with T trees.
For each tree:

- Sample the dataset with replacement 
(bootstrap sample). This procedure is 
called Bagging (bootstrap 
aggregating).

- Build a decision tree: but at each split, 
instead of evaluating all features, pick 
a random subset (e.g., √p). This 
procedure is called Feature Bagging.

The reason for doing this is the correlation of the trees in 
an ordinary bootstrap sample: if one or a few features are 
very strong predictors for the response variable (target 
output), these features will be selected in many of 
the T trees, causing them to become correlated.



Example of RF in action: 🍇Wine Dataset

📦Description

- Objective: Classify wines into 3 
classes (based on grape varieties)

- Features (p): 13 chemical 
measurements per wine

- Samples (n): 178
- Classes: Class_0, Class_1, Class_2

📊 Features include Alcohol, Malic acid, 
Ash, Alcalinity of ash, Magnesium, Total 
phenols, Flavanoids, Color intensity, 
Hue, OD280/OD315 of diluted wines, 
Proline (and more...)



Example of RF in action: 🍇Wine Dataset



Random Forests RF in a Nutshell

-Hyperparameters: 
- number of trees (we just put ‘enough trees’)

-Pro:
- Multi-class
- No data normalization required
- The computational expensive part is done 

off-line (once)
- The classification is almost immediate
- High (highest!) classification accuracy

-Drawbacks: 
-Time consuming computation (but it can be 
easily parallelized) 
-Lack of interpretability… is it so?

51



Random Forests RF in a Nutshell

-Hyperparameters: 
- number of trees (we just put ‘enough trees’)

-Pro:
- Multi-class
- No data normalization required
- The computational expensive part is done 

ok-line (once)
- The classilcation is almost immediate
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-Lack of interpretability… is it so?
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RF: feature importance
Feature importance reflects how useful or 
valuable each feature is for making predictions 
in a model. For decision trees (and ensembles 
like Random Forests), it's typically based on:

🔍 How much each feature decreases impurity 
(e.g., Gini index or entropy) when it’s used to 
split the data

📊 Intuition

- If a feature is consistently chosen for 
important splits (i.e., it helps reduce impurity a 
lot), it gets high importance.

- Features that are rarely used or don’t reduce 
impurity much get low or zero importance.
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This is a ‘eXplainable Arti7cial Intelligence 
(XAI)’ approach.

It is a ’global’ approach: provide us with 
info on the whole model structure

Any idea how can this information be 
exploited?



RF: feature importance - Derivation
Let’s consider the Gini impurity, and we have a decision tree:

1. At every split, the algorithm calculates how much that split reduces impurity:

2. The contribution of a feature is the sum of all impurity decreases where that feature 
was used to split:

3. In a Random Forest, we average this importance over all the trees in the forest.

4. (Optional) the importances are normalized so they sum to 1:

55



🍷  On the wine dataset
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