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Let’s consider this ‘decision-making’ example

[ Swmoker j

e

UndefS‘to\nding the risks To
erevent a heart atltack.




Let’s consider this ‘decision-making’ example

This was

probably built
on historical
datal Age

X=7 / | ->30--

Y="7

UndefS‘ta\nJing the risks To
erevent a heart atltack.



Let’s COnSider this ‘deCiSiOn- We are dealing with a multivariate

supervised classification problem!

Tp(')sbvavgf built However, each ’decisions’ are made by
gn hlsto¥|cal considering a single variable at each timel
datal [ Age ]\

Wel g 18-30
Smoke / v

Y = Heart ‘ o
Attack Weight

Undefs‘tomding the rmsks to
erevent a heart attack.



Let’s COnSider this ‘deCiSiOn- We are dealing with a multivariate

supervised classification problem!

Tpésbvavgls built Root Nede However, each ’decisions’ are made by
gn hlsto¥|cal considering a single variable at each timel
datal [: Age j\

Weu dg 1%-30 o

Smoke * :

Y = Heart §

Undefs‘tomdinﬁ the rmsks to
erevent a heart attack.

Thisis a
Decision Tree! Leof Nodes



Why do tree-based models still outperform deep learning on typical tabular data?

Part of Advances in Neural Information Processing Systems 35 (NeurlPS 2022)

@ Tree-based
Approaches

Only numerical features
Classification (16 datasets)
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Tree-based methods are among
the most effective techniques for
supervised learning, particularly
when working with smaller
datasets (with nfewer than 10,000
samples).
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Interestingly, the core concepts
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Figure 1: Benchmark on medium-sized datasets, top only numerical features; bottom: all features.
Dotted lines correspond to the score of the default hyperparameters, which is also the first random
search iteration. Each value corresponds to the test score of the best model (on the validation set)
after a specific number of random search iterations, averaged on 15 shuffles of the random search
order. The ribbon corresponds to minimum and maximum scores on these 15 shuffles.



@ Tree-based Approaches

Our goalis to find ‘decisions’

—that s, spllt.tlngfpom’.cs |
defined by pairs of (variable, (X7
value) — which allow us to Root Node
partition the data into *,
distinct scenarios where one

class becomes dominant or

more easily predictable.

The result is a tree-like
structure where:

- Internal nodes represent
decision rules based on
features.

represent
— typically
the most frequént class




@ The Decision Tree

At the heart is the decision
tree, a structure that mimics
human decision-making by
splitting data into branches  _ _ _ _ __ | —— . I
based on feature values.

Decision Node _—)»Root Node
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tree represents a decision

based ona featU re, eaCh Leaf Node Leaf Node Leaf Node Decision Node
branch represents the N o

outcome of that decision, v v
and eaCh leaf nOde Leaf Node Leaf Node

corresponds to a prediction
or outcome.



Decision Tree (DT): how do we build one?

» We will investigate the following dataset: we aim from historical behaviour of our
sparring tennis partner to predict if he will play tennis or not with us, based on the
weather B

Day Outlook (x4) Temperature | Humidity Wind (x4) Play Tennis
(sample) (x2) (x3) (y)

P = 4 Sunny High Weak
. #2 Sunny Hot High Strong No
Only Categorlcal #3 Overcast Hot High Weak Yes
Varlable #4 Rain Mild High Weak Yes
#5 Rain Cool Normal Weak Yes
#6 Rain Cool Normal Strong No
#7 Overcast Cool Normal Strong Yes
#8 Sunny Mild High Weak No
#9 Sunny Cool Normal Weak Yes
#10 Rain Mild Normal Weak Yes
H#11 Sunny Mild Normal Strong Yes
#12 Overcast Mild High Strong Yes
#13 Overcast Hot Normal Weak Yes
#14 Rainy Mild High Strong No

From: ‘Machine Learning’, Mitchell 1997



Decision Tree (DT): how do we build one?

» We will investigate the following dataset: we aim from historical behaviour of our
sparring tennis partner to predict if he will play tennis or not with us, based on the
weather B

Day Outlook (x4) Temperature | Humidity Wind (x4) Play Tennis
(sample) (x2) (x3) (y)

P = 4 Sunny High Weak
. #2 Sunny Hot High Strong No
Only Categorlcal #3 Overcast Hot High Weak Yes
Varlable #4 Rain Mild High Weak Yes
#5 Rain Cool Normal Weak Yes
#6 Rain Cool Normal Strong No
#7 Overcast Cool Normal Strong Yes
#8 Sunny Mild High Weak No
#9 Sunny Cool Normal Weak Yes
#10 Rain Mild Normal Weak Yes
#11 Sunny Mild Normal Strong Yes
#12 Overcast Mild High Strong Yes
#13 Overcast Hot Normal Weak Yes
#14 Rainy Mild High Strong No

From: ‘Machine Learning’, Mitchell 1997



Decision Tree (DT): how do we build one?

We will use a ‘recursive’ procedure:

- We start building a tree from the \
root /

- We choose the variable to be /
associated to the decision based \
on the one that better ‘simplifies™
the problem: a scenario where we

have a dominant/only class

- We iterate this, until classes are
separated or until we reach a given
‘depth’ of the tree



Decision Tree (DT): how do we build one?
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We will use a ‘recursive’ procedure:

- We start building a tree from the
root

- We choose the variable to be
associated to the decision based
on the one that better ‘simplifies™
the problem: a scenario where we
have a dominant/only class

- We iterate this, until classes are
separated or until we reach a given
‘depth’ of the tree

*We need a quantitative metric to
define how ‘simple’ a decision is at a
leaf levell




Entropy (Measure of Impurity / Uncertainty)

Information Gain measures the decrease in entropy after the dataset is split on
an attribute. It tells us how much "information" a feature gives us about the target
variable.

|5y

IG(S,A) = Entropy(S) — Z sl - Entropy(S,)
veValues(A)
Where:
- Sisthe original dataset - A is the attribute we split on
- v are the possible values of A - S, isthe subset of Swhere A =v

Interpretation:

- High IG: splitting on this attribute significantly reduces uncertainty — it's a good
choicel

- Low IG: the attribute doesn't help much in separating the classes.



Information Gain (Reduction in Entropy After a
Split)

quantifies the uncertainty or impurity in a
dataset. In the context of classification, it tells us
how mixed the class labels are in a set.

05

0.4

For a dataset Swith cclasses .
Entropy(S) = — Z p; log, (ps)
i=1

Where p; is the proportion of samples in class i. 00 02 10

0.1

e
o

- Entropy = 0: the dataset is pure (all examples belong to one class)
- Higher entropy: more class mixing, greater uncertainty.
Example: our tennis dataset «' has 9 ‘yes’ and 5 ‘no’

9 9\ 5 5
Entropy = —— log, [ — ) — > log, [ > ) ~0.94
MHTOPY = Ty 0% (14) 14 52 (14) 0



«w Example

Entropy = 9 log, ( ) ) 0 log, (i) ~ 0.94

14 14) 14

Outlook Humidi

(x1) ty (x3)

Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes

Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mild High Weak No

Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes

Overcast Mild High Strong  Yes
Overcast Hot Normal Weak Yes
Rainy Mild High Strong No



Entropy(S) = — sz- logz(pz-) e

9 9 5 5
E S Sy . | =) ~0.94
niropy 14 82 (14) 14 082 (14) 0-9

'Example

Outlook

Sunny (5) — 2 Yes, 3 No — Entropy = 0.971 Play
(x1) (X,) ty (x3) | (Xq) Tennis

- (4) - 4 Yes — Entropy = 0 Jl I Jl (y)

Rain (5) — 3 Yes, 2 No — Entropy = 0.971 SIUL High ~ Weak  No
Sunny Hot High Strong No

5 :
E(Outlook) = — -0.971 + 2042 .0.971 = 0.694 Overcast Hot  High ~ Weak  Ves
14 14 Rain Mild High Weak Yes
IG(Outlook) = 0.94 — 0.694 = 0.246 Rain Cool  Normal Weak  Yes
Rain Cool Normal Strong No

- Cool Normal Strong -

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes
Overcast Mild High Strong  Yes
- Hot Normal Weak -

Rainy Mild High Strong No



Entropy(S) = — sz- logz(pz-) e

9 9 5 5
E — —Zog, (2 ) = 2log, [ > ) ~0.94
niropy = — 14082 (14) 14 052 (14) 0-9

'Example

Outlook

Sunny (5) — 2 Yes, 3 No — Entropy = 0.971 Play
(x1) (X2) ty (x3) | (X4) Tennis
- (4) - 4 Yes — Entropy = 0 Jl I Jl )

Rain (5) — 3 Yes, 2 No — Entropy = 0.971 Sunny High  Weak  No

Sunny Hot High Strong No
5 :
E(Outlook) = > 0971+ — .0+ > . 0.971 = 0.694 Overcast [l  High  Weak | S
14 14 Rain - High Weak -
IG(Outlook) = 0.94 — 0.694 = 0.246 Rain Cool  Normal Weak  Yes
Rain Cool Normal Strong No
Temperature Overcast  Cool Normal Strong Yes
Hot (4) — 2 Yes, 2 No — Entropy = 1.0 | | SN B - |
2 2 ’ Sunny Cool Normal Weak Yes
Mild (6) — 4 Yes, 2 No — Entropy = 0.918 II | ‘ in EE  Nomal week [
Cool (4) - 3Yes,1No — Entropy = 0.811 ° ’ “ ‘ ° 3 Sunny Mild Normal Strong  Yes
Overcast - High Strong -
4 6 4 Overcast Hot Normal Weak Yes
E(Tem -1.0+ — -0.918 + — -0.811 =~ 0.911
( p) 14 14 14 Rainy - High Strong .

IG(Temp) = 0.94 — 0.911 = 0.029



Entropy(S) = sz log, (p:)

Entropy = 9 log, (g> 0 log, (i) ~ 0.94

'Example

14 14 14 14
Humidity -
BigH (7) — 3 Yes, 4 No — Entropy = 0.985 I I I Play
(x1) (x2) ty (xs) | (X4) Tennis
Normal (7) — 6 Yes, 1 No — Entropy = 0.592 (y)
Sunny Weak
7 Sunny Hot Strong
E(Humidity) = 14 - 0.985 + ﬁ -0.592 = 0.789 Overcast Hot - Weak -
Rain Mild High Weak &8
IG(Humidity) = 0.94 — 0.789 = 0.151 Rain Cool  Normal Weak  Ves
Rain Cool - Strong .
Overcast Cool - Strong -
Sunny Mild - Weak .
Sunny Cool - Weak -
Rain Mild Normal Weak  Yes
Sunny Mild - Strong -
Overcast Mild - Strong -
Overcast Hot - Weak -
Rainy Mild High Strong N8



Entropy(S) = — Z p; log, (p;)

Entropy = 9 log, (ﬂ) 0 log, (i) ~ 0.94

» Example

14 14 14 14
Humidity )
BiigH (7) — 3 Yes, 4 No — Entropy = 0.985 I I I Play
(x1) (x2) ty (xs) | (X4) Tennis
- (7) > 6 Yes, 1No — Entropy = 0.592 ()
Sunny High Weak No
7 Sunny Hot High Strong No
E(Humidity) = 14 - 0.985 + ﬁ -0.592 = 0.789 Overcast Hot  High  Weak  Yes
Rain Mild High Weak Yes
IG(Humidity) = 0.94 — 0.789 = 0.151 Rain Cool  Normal Weak  Yes
Rain Cool Normal Strong No
W|nd Overcast Cool Normal Strong Yes
Weak (8) — 6 Yes, 2 No — Entropy = 0.811 I. L B I (I A
Sunny Cool Normal Weak Yes
Strong (6) —3 Yes, 3No— Entropy =1.0 II Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes
E(Wznd) 8 - 0.811 + — - 1.0 = 0.892 Overcast  Mild High Strong  Yes
14 14 Overcast Hot Normal Weak Yes
Rainy Mild High Strong No

IG(Wind) = 0.94 — 0.892 = 0.048



w Example

M Yes W No

[l
.

Outlook ,+ .

Overcast

W Yes W No

W Yes W No
3
2
1
0
3



Outlook -, *

w Example

Overcast

2 Yes, X 3No
Entropy =~ 0.971 (as computed earlier)

Humidity

BiigR (3) — 0 Yes, 3 No — Entropy = 0

Normal (2) — 2 Yes, 0 No — Entropy = 0
3 2

E(Humidity) = 5 -0+ 5 -0=0
=y _ 0= Outlook | T Humidit | Wind | PI
IG(Humidity|Sunny) = 0.971 — 0 = 0.971
J— Sunny
Highest possible gain! We split on Humidity. Sunny Hot - - No

Sunny Mild - - .
Sunny  Cool  Normal Weak Ves
Sunny Mid  Normal Strong Yes



Outlook ,+ )

Overcast

w Example

2 YeS, x 3 NO Humidity: High I Humidity: Nor 1al
%4

Entropy =~ 0.971 (as computed earlier)

Humidity
BiigR (3) — 0 Yes, 3 No — Entropy = 0
Normal (2) — 2 Yes, 0 No — Entropy = 0

3 2
E(Humidity) = 5 -0+ 5 -0=0
IG(Humidity|Sunny) = 0.971 — 0 = 0.971
J— Sunny
Highest possible gain! We split on Humidity. Sunny Hot - - No

Sunny Mild  [High Weak  No
Sunny  Cool  Normal Weak Ves
Sunny  Mid  Normal Strong Yes



Outlook -, *

w Example

Overcast

3 YeS, x 2 NO Humidity: High It Humidity: Normal
%
Entropy =~ 0.971 (as computed earlier)

Wind
Weak (3) —» 3 Yes, 0 No — Entropy = 0
Strong (2) — 0 Yes, 2 No — Entropy = 0

3 2
E(Wznd) 04+--0=0 Outlook | Temp | Humidit | Wind | Play
5 (x) 09 |y | () | Tennis(y)
. . Rai Mild High Weak
IG(Wznd|Razn) = 0.971 — 0 = 0.971 Sl =
Rain Cool Normal = Weak Yes
~—7 R . . . . Rain Cool Normal  Strong No
Highest possible gain! We split on Wind. ' ,
Rain Mild Normal Weak  Yes

Rain Mild High Strong No



«w Example

]
3

Outlook .+ y

Overcast

Humidity: High
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Another metric: Gini Index

The Gini Index (or Gini Impurity) is a measure of =
how impure or mixed a dataset is. -

o

For a dataset Swith cclasses: C o |

Gini(S) =1-) p?
1=1

Where p; is the proportion of examples in class /
- Gini = 0 — Perfect purity (all examples belong to one class)
- Higher Gini — More mixed classes (more impurity)

Gini for a Split:

Ny
Ginigyy = ~* - Gini(left) + ="

n

- Gini(right)




Decision Tree Algorithm (CART)

Function CART(data):
If all examples have the same class -> Return a leaf with that class function is internally recalled

A recursive algorithm: the

best_split < find the attribute and value that gives lowest Gini

If no good split is found (no improvement in Gini) -> Return a leaf with the majority class

left_data, right_data « split data using best_split

left_tree « CART(left_data)
right_tree « CART(right_data)

Return a decision node with:

- the split condition

- left_tree and right_tree as children



Numerical Variables

For a given numerical feature (e.g.
sepal length), CART considers binary
splits of the form:

Feature< ¢
where t is a threshold value.

The algorithm tries many possible
values of ¢ and chooses the one that &
minimizes the impurity.

o
o (N
e
@ o
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05 10 15 20 25

CART in action: Iris Dataset

Iris Data (red=setosa,green=versicolor,blue=virginica)
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max_depth =1 max_depth = 2

sepal Ien_th (cm) <=5.45
sepal length (cm) <= 5.45 sampies ~ 150
gini = 0.667 e - setota

samples = 150
value =[50, 50, 50]
class = setosa

sepal length (cm) <= 6.15
gini = 0.546
samples = 98
value = [5, 44, 49]
class = virginica

gini = 0.546
samples = 98

value = [5! 4.4.'49] gini = 0.449 gini = 0.508
class = virginica samples = 7 samples = 43
value = [1, 5, 1] value = [5, 28, 10]
class = versicolor class = versicolor

max_depth = 3 max_depth = None (full tree)




max_depth =1 max_depth = 2 max_depth = 3 max_depth = 4
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sepal width (cm)
sepal width (cm)
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sepal length (cm) sepal length (cm) sepal length (cm) sepal length (cm)
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Variance
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Model Complexity
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0.80
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Accuracy

0.60

0.55

0.50

0.45

Cross-validated Accuracy for Tree Depths (CART, Sepal Only)

1 2 3 4 5 6 7 None
max_depth



77 Another way to deal with underfitting vs
overfitting: Pruning

Pruning is the process of removing parts of a fully-grown tree to avoid
overfitting and improve generalization.

CART uses Cost-Complexity Pruning, also called Minimal Cost-Complexity
Pruning. It finds subtrees that balance the trade-off between tree accuracy &
tree simplicity.

R.(T) = R(T) + a - |T

Accuracy vs. Pruning Level (More Granular)

0.75}

where:

>\0.70-
- R(T): error (e.g., Giniimpurity or Soss|
misclassification rate) BN

lida

0.55¢

- |T|: number of terminal (leaf) nodes

0.50F

- a: pruning parameter (higher = more
pruning)

0.45¢}

0.00 0.05 0.10 0.15 0.20
ccp_alpha (pruning strength)



4 Max Depth

This is a pre-pruning technique (also
called early stopping): it limits the depth
of the tree before it's fully grown.

VS

The tree building process stops once the
specified depthis reached, even if
further splits would improve the fit.

Pros

- Fast and easy to control

- Prevents overfitting in small datasets
X Cons

- May miss useful splits just below the
cutoff

- Not based on how meaningful those
splits are

Q, .
7 Pruning

This is a post-hoc operation: you let the
tree grow fully, then remove branches
that don’t improve generalization (based
on validation error, cost-complexity,
etc.)

Pros

- More flexible: it allows complex splits
only if they help

- Oftenresultsin better generalization
than hard depth limits

X Cons

- Can be slower (requires evaluating
subtrees)

- Needs careful tuning



Alternatives to CART
1.1D3, C4.5, and C5.0

1. Earlier and extended versions of CART.

2.C4.5 (and its commercial version C5.0) uses information gain ratio
instead of Gini/entropy.

3.C5.0is faster and more memory-efficient than CART.

2.CHAID (Chi-sguared Automatic Interaction Detector)

1. Based on chi-square tests for splitting.

2.Handles categorical data well and can create multiway splits (not just
binary).

3.Popular in social sciences and marketing.

3.QUEST (Quick, Unbiased, Efficient Statistical Tree)

1. Designed to reduce bias in variable selection.
2.Handles both categorical and continuous variables well.



CART: Classification & Regression Tree

herbs< 8.5 | herbs==8.5

We can use regression trees! Splitting criteria changes:

1) MSE - At each split, the algorithm calculates the MSE
for the left and right child nodes, and tries to minimize
the weighted average MSE:

MSE1is = % .MSE;, + %R . MSEg

Where: n;, np are number of samples in left/right child.
Lower MSE = better split!

herbs< 55

578 :n=7

water==55

1.33e+04 : n=28

water<55

il

herbs>z5. a =25

.Qg 403 - T
i

Jmlﬁe+03:llli.|]]

286 :n=2

sand< 2.5

o

i e+03:rl““rlﬂ]

398 :n=8

188 : n=3

1.08e+03 : n=8



CART: Classification & Regression Tree

We can use regression trees! Splitting criteria changes:

1) MSE - At each split, the algorithm calculates the MSE
for the left and right child nodes, and tries to minimize
the weighted average MSE:

MSEq,1 = ; .MSE; + % . MSEp

Where: n;, np are number of samples in left/right child.

Lower MSE = better split!
2) Variance reduction: R Ve
Var(y) = > (-7

=1

Reduction = Var(parent) — (n - Varp, —|— — VarR)
n n

So — maximizing variance reduction = minimizing MSE.

herbs< 8.5 | herbs==8.5

il

1.33e+04 : n=28
water==55 | water<5.5
herbs< 55 | herb a =25 | sand<25
38803 - T

™ b, |
Jmlﬁe+03 ool e+03 - rl““rlﬂ]
578 :n=7 286 - n=2 398 - n=8 188 : n=3

1.08e+03 : n=8



CART: Classification & Regression Tree

We can use regression trees! Splitting criteria changes:

1) MSE - At each split, the algorithm calculates the MSE
for the left and right child nodes, and tries to minimize
the weighted average MSE:

MSEq,1 = ; .MSE; + % . MSEp

Where: n;, np are number of samples in left/right child.

Lower MSE = better split!
2) Variance reduction: R Ve
Var(y) = > (-7

=1

Reduction = Var(parent) — (n - Varp, —|— — VarR)
n n

So — maximizing variance reduction = minimizing MSE.

herbs< 8.5 | herbs==8.5

il

1.33e+04 : n=28

water==55 | water<5.5

herbs< 55

g

herb gg 103 - %a =25 | sand<25

o

Jmlﬁe+03 oonndmiTl e+03 - rl““rlﬂ]

57.8:n=7

286 :n=2 398 : n 8 188 - n=3

1.08e+03 : n=8

Leaf output changes: leaves
output the mean of the target
variable in the node!



@ Decision Tree

Advantages
 Easily interpretable
« They require no data normalization

to overfitting! Typically, poor
generalization performances!

* The classification is almost immediate Root Node
* The computational expensive part is
done off-line (once) [: Affe j\
1?_30 | _>.so§ ........ Sub Tree
Drawbacks v [ — j
 Really high variance classifiers-> Prone We\gh‘t AN

v ,ﬁ Under‘stomding the risks to
erevent a heart attack.

Leaf N édes



@ Decision Tree -> Random Forest @ @ @

Advantages
 Easily interpretable
» They require no data normalization
* The classification is almost immediate

* The computational expensive part is
done off-line (once)

Drawbacks

 Really high variance classifiers=> Prone
to overfitting! Typically, poor
generalization performances!
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Random Forest (RF) @ @ @

EXAMPLES

Tree-1 Tree-2 Tree-n

A RF is composed by many ‘weak’
learners (decision trees): we cleverly
combine DTs reducing overfitting!

We construct slightly different DTs
(more on this later) and, in
we decide by a majority-voting (we
choose following the ) the final
class. In regression, the final decision is
the average.
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EXAMPLES

Tree-1 Tree-2 Tree-n

A RF is composed by many ‘weak’
learners (decision trees): we cleverly
combine DTs reducing overfitting!

We construct slightly different DTs
(more on this later) and, in
we decide by a majority-voting (we
choose following the ) the final
class. In regression, the final decision is
the average.

This in an ‘ensemble’ approach: we
combine multiple models (often called
base learners or weak learners) to
produce a stronger model.
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Abstract

We evaluate 179 classifiers arising from 17 families (discriminant analysis. Bayesian,
neural networks, support vector machines, decision trees. rule-based classifiers, boosting,
bagging, stacking, random forests and other ensembles, generalized linear models, nearest-
neighbors, partial least squares and principal component regression, logistic and multino-
mial regression, multiple adaptive regression splines and other methods), implemented in
Weka, R (with and without the caret package), C and Matlab. including all the relevant
classifiers available today. We use 121 data sets. which represent the whole UCI data
base (excluding the large-scale problems) and other own real problems, in order to achieve
significant conclusions about the classifier behavior, not dependent on the data set col-
lection. The classifiers most likely to be the bests are the random forest (RF)
versions, the best of which (implemented in R and accessed via caret) achieves 94.1% of
the maximum accuracy overcoming 90% in the 84.3% of the data sets. However, the dif-
ference is not statistically significant with the second best, the SVM with Gaussian kernel
implemented in C using LibSVM, which achieves 92.3% of the maximum accuracy. A few
models are clearly better than the remaining ones: random forest, SVM with Gaussian
and polynomial kernels, extreme learning machine with Gaussian kernel, C5.0 and avNNet
(a committee of multi-layer perceptrons implemented in R with the caret package). The
random forest is clearly the best family of classifiers (3 out of 5 bests classifiers are RF),
followed by SVM (4 classifiers in the top-10). neural networks and boosting ensembles (5
and 3 members in the top-20, respectively).

4. Conclusion

This paper presents an exhaustive evaluation of 179 classifiers belonging to a wide collection
of 17 families over the whole UCI machine learning classification database, discarding the
large-scale data sets due to technical reasons. plus 4 own real sets, summing up to 121 data
sets from 10 to 130,064 patterns, from 3 to 262 inputs and from 2 to 100 classes. The
best results are achieved by the parallel random forest (parRF_t). implemented in
R with caret, tuning the parameter mtry. The parRF_t achieves in average 94.1% of the

mavimnm acenracy: avor oll the data coto (Mahle B lawar nart) and avereamaoc the Q0% AF




“\ How to Build a Random Forest (Conceptually)

Let’s assume you want to build a forest
with 7 trees.

For each tree:

- Sample the dataset with replacement
(bootstrap sample). This procedure is
called Bagging (bootstrap

aggregating).
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For each tree;

- Sample the dataset with replacement
(bootstrap sample). This procedure is B
called Bagging (bootstrap [

aggregating).

This procedure leads to better model performance because it
decreases the variance of the model, without increasing the
bias.

While the predictions of a single tree are highly sensitive to
noise in its training set, the average of many trees is not, as long
as the trees are not correlated.

Bootstrap sampling is a way of de-correlating the trees by
showing them different training sets.



“\ How to Build a Random Forest (Conceptually)

Let’s assume you want to build a forest
with 7 trees.

For each tree;

- Sample the dataset with replacement
(bootstrap sample). This procedure is
called Bagging (bootstrap

aggregating).
- Build a decision tree: but at each split,
instead of evaluating all features, pick

a random subset (e.g., V¥p). This
procedure is called Feature Bagging.




“\ How to Build a Random Forest (Conceptually)

Let’s assume you want to build a forest o | @ o ©
with 7 trees.

For each tree;

- Sample the dataset with replacement
(bootstrap sample). This procedure is
called Bagging (bootstrap

aggregating).

- Build a decision tree: but at each split,
instead of evaluating all features, pick
a random subset (e.g., V¥p). This
procedure is called Feature Bagging.

The reason for doing this is the correlation of the trees in
an ordinary bootstrap sample: if one or a few features are
very strong predictors for the response variable (target

output), these features will be selected in many of
the 7 trees, causing them to become correlated.



Example of RF in action: ¥ Wine Dataset

W Description

- Objective: Classify wines into 3
classes (based on grape varieties)

- Features (p): 13 chemical
measurements per wine

- Samples (n): 178
- Classes: Class_0, Class_1, Class_2

nl Features include Alcohol, Malic acid, f /

Ash, Alcalinity of ash, Magnesium, Total v A 4 ? A 4 ? T 5
phenols, Flavanoids, Color intensity,

Hue, OD280/0D315 of diluted wines, -—A—A*-ﬁ-&

Proine and more..) ——



Example of RF in action: & Wine Dataset

Confusion Matrix - Random Forest on Wine Dataset

True label
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Random Forests RF in a Nutshell

EXAMPLES
_HyperparameterS: Tree-1 Tree-2 Tree-n

- number of trees (we just put ‘enough trees’)
-Pro: .{{5; }& 5;;5}}. 2{5;;5

- Multi-class
- No data normalization required

- The computational expensive part is done
off-line (once)

- The classification is almost immediate
- High (highest!) classification accuracy

-Drawbacks:

-Time consumlng computation (but it can be
easily parallelize



Random Forests RF in a Nutshell

EXAMPLES
_Hyperparameters: Tree-1 Tree-2 Tree-n

- number of trees (we just put ‘enough trees’)
-Pro: .{{5; }& 5;;5}}. J{E;;i

- Multi-class
- No data normalization required

- The computational expensive partis done
off-line (once)

- The classification is almost immediate
- High (highest!) classification accuracy

-Drawbacks:

-Time consumlng computation (but it can be
easily parallelize

-Lack of interpretability... is it s0?



RF: feature importance

Feature importance reflects how useful or
valuable each feature is for making predictions
in a model. For decision trees (and ensembles
like Random Forests), it's typically based on:

& How much each feature decreases impurity
(e.g., Gini index or entropy) when it’s used to
split the data

nl Intuition

- If a feature is consistently chosen for
important splits (i.e., it helps reduce impurity a
lot), it gets high importance.

- Features that are rarely used or don’t reduce
impurity much get low or zero importance.

Default feature importance (scikit-learn)

eeeeeeeeeeeeeeeeee



RF: feature importance

This is a ‘eXplainable Artificial Intelligence
(XAI) approach.

Feature importance reflects how useful or
valuable each feature is for making predictions It is a ’global’ approach: provide us with

in a model. For decision trees (and ensembles info on the whole model structure
I/|ke Random Forests), it's typically based on: Any idea how can this information be
& How much each feature decreases impurity exploited?

(e.g., Giniindex or entropy) when it’s used to

S p I it t h e d ata Default feature importance (scikit-learn)

ul Intuition

- If a feature is consistently chosen for
important splits (i.e., it helps reduce impurity a
lot), it gets high importance.

- Features that are rarely used or don’t reduce
impurity much get low or zero importance.




RF: feature importance - Derivation

Let’s consider the Gini impurity, and we have a decision tree:
1. Atevery split, the algorithm calculates how much that split reduces impurity:

AGini = Gini(parent) — (nlef L. Gini(left) + Tright Gz’ni(right))
n n

2. The contribution of a feature is the sum of all impurity decreases where that feature
was used to split:

I'mportance(feature) = Z AGini

nodes using feature

3. InaRandom Forest, we average this importance over all the trees in the forest.

4. (Optional) the importances are normalized so they sum to 1:
Raw Importance

Normalized Importance =
P > Raw Importances



On the wine dataset

Feature Importances from Random Forest (Wine Dataset)

color_intensity
proline
flavanoids
0d280/0d315_of diluted_wines
alcohol

hue
total_phenols
alcalinity_of ash
malic_acid
proanthocyanins
magnesium

ash

nonflavanoid_phenols
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Importance



ppclI STUD Machine Learning n m C O
DEGLI STUDI

DI PADOVA 2024/2025 e LN e

= . ik T

o ke
ok o0 A 4 mu.n,jmmnfh

oo e m:

o anrrt s

Thank you!

Gian Antonio Susto




