Functions of antibodies

Main functions of antibodies

Neutralization The pathogen is not destroyed, but its capability to infect cells is impaired

Elimination The pathogen itself, or cells infected with it, are destroyed

Main functions of antibodies

Neutralization | The pathogen is not destroyed, but its capability to infect cells is impaired

Antibodies

Antigen binding site

Elimination

The pathogen itself, or cells infected with it, are destroyed

Antibodies + other components (macrophages, NKs, complement) Antigen binding site + **Fc portion**

How many Fc Receptors?

		FcR	Affinity for Immunoglobulin	Cell Distribution	Function
FcγR		FcγRI (CD64)	High (K _d ~10 ⁻⁹ M); binds IgG1 and IgG3, can bind monomeric IgG	Macrophages, neutrophils; also eosinophils	Phagocytosis; activation of phagocytes
		FcγRIIA (CD32)	Low ($K_{\rm d} \sim 10^{-7}$ M)	Macrophages, neutrophils, dendritic cells, eosinophils, platelets	Phagocytosis; cell activation
		FcγRIIB (CD32)	Low ($K_{\rm d} \sim 10^{-7}$ M)	B lymphocytes, macrophages, dendritic cells, other cells	Feedback inhibition of various cellular responses
		FcγRIIC (CD32)	Low ($K_{\rm d} \sim 10^{-7}$ M)	Macrophages, neutrophils, NK cells	Phagocytosis, cell activation
		FcγRIIIA (CD16)	Low ($K_{\rm d} \sim 10^{-6}$ M)	NK cells, macrophages, dendritic cells	Antibody-dependent cell- mediated cytotoxicity
I		FcγRIIIB (CD16)	Low (K _d ~10 ⁻⁶ M); GPI-linked protein	Neutrophils	Phagocytosis (inefficient)
FceR FcaR	۲ [FceRI	High (<i>K</i> _d ~10 ⁻¹⁰ M); binds monomeric IgE	Mast cells, basophils, eosinophils	Cell activation (degranulation)
		FceRII (CD23)	Low ($K_{\rm d} \sim 10^{-7}$ M)	B lymphocytes, eosinophils, Langerhans cells	Unknown
		FcαR (CD89)	Low ($K_{\rm d} \sim 10^{-6}$ M)	Neutrophils, eosinophils, monocytes	Cell activation?

Neutralization

Antibodies can inhibit the infectivity of microbes as well as the potential injurious effects of microbial toxins.

Neutralization mostly occurs by steric hindrance

All isotypes! Actually the Fc portion is not even needed

Neutralization is the basis of all vaccines

Neutralization by steric hindrance

What makes a good NAb?

High affinity

Usually the antibody to be efficacious needs to bind the target (e.g. viral glycoprotein) with higher affinity than the endogenous ligand (e.g. cellular receptor)

Right epitope

The right epitope is the one that, if bound, prevent pathogen infection

Easy, right? Then why don't we have an HIV vaccine?

HIV has a very high genetic variability. An effective vaccine would protect from multiple variants.

Conserved residues required for receptor binding in HIV glycoprotein are shielded with glycans. Our immune system finds other epitopes more attractive.

In HIV, individuals with antibodies (sieropositive) are often not "immune" since they don't have broadly neutralizing Abs

IgG: antibody mediated opsonization and phagocytosis

IgG antibodies coat (opsonize) microbes and promote their phagocytosis by binding to Fc receptors on phagocytes.

High affinity: IgG1 and IgG3

Low affinity: IgG2 Very low affinity: IgG4

FcR	Affinity for Immunoglobulin	Cell Distribution	Function
FcγRI (CD64)	High (K _d ~10 ⁻⁹ M); binds IgG1 and IgG3, can bind monomeric IgG	Macrophages, neutrophils; also eosinophils	Phagocytosis; activation of phagocytes
FcγRIIA (CD32)	Low ($K_{\rm d} \sim 10^{-7}$ M)	Macrophages, neutrophils, dendritic cells, eosinophils, platelets	Phagocytosis; cell activation
FcγRIIB (CD32)	Low ($K_{\rm d} \sim 10^{-7}$ M)	B lymphocytes, macrophages, dendritic cells, other cells	Feedback inhibition of various cellular responses
FcyRIIC (CD32)	Low ($K_{\rm d} \sim 10^{-7}$ M)	Macrophages, neutrophils, NK cells	Phagocytosis, cell activation
FcγRIIIA (CD16)	Low ($K_{\rm d} \sim 10^{-6}$ M)	NK cells, macrophages, dendritic cells	Antibody-dependent cell- mediated cytotoxicity
FcγRIIIB (CD16)	Low (K _d ~10 ⁻⁶ M); GPI-linked protein	Neutrophils	Phagocytosis (inefficient)

Major targets: macrophages and neutrophils

IgG: antibody mediated opsonization and phagocytosis

IgG: Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC)

Natural killer (NK) cells (and macrophages?) bind to antibody-coated cells by Fc receptors and destroy these cells.

FcR	Affinity for Immunoglobulin	Cell Distribution	Function
FcγRI (CD64)	High (K _d ~10 ⁻⁹ M); binds IgG1 and IgG3, can bind monomeric IgG	Macrophages, neutrophils; also eosinophils	Phagocytosis; activation of phagocytes
FcγRIIA (CD32)	Low ($K_{\rm d} \sim 10^{-7}$ M)	Macrophages, neutrophils, dendritic cells, eosinophils, platelets	Phagocytosis; cell activation
FcγRIIB (CD32)	Low ($K_{\rm d} \sim 10^{-7}$ M)	B lymphocytes, macrophages, dendritic cells, other cells	Feedback inhibition of various cellular responses
FcγRIIC (CD32)	Low ($K_{\rm d} \sim 10^{-7}$ M)	Macrophages, neutrophils, NK cells	Phagocytosis, cell activation
FcγRIIIA (CD16)	Low ($K_{d} \sim 10^{-6}$ M)	NK cells, macrophages, dendritic cells	Antibody-dependent cell- mediated cytotoxicity
FcγRIIIB (CD16)	Low (K _d ~10 ⁻⁶ M); GPI-linked protein	Neutrophils	Phagocytosis (inefficient)

IgG: Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC)

IgG and IgM: Complement activation (classical pathway)

The classical pathway is initiated by binding of the complement protein C1 to the CH2 domains of IgG or the CH3 domains of IgM molecules that have bound antigen

Because of its pentameric structure, a single molecule of IgM can bind two C1q molecules, and this is one reason that IgM is a more efficient complement-binding (also called complement-fixing) antibody than is IgG.

IgG effector functions

IgE: Antibody-Mediated Clearance of Helminths

Major targets: mast cells, basophils and eosinophils

FcɛRI	High (<i>K</i> _d ~10 ⁻¹⁰ M); binds monomeric IgE	Mast cells, basophils, eosinophils	Cell activation (degranulation)
FceRII (CD23)	Low ($K_{\rm d} \sim 10^{-7}$ M)	B lymphocytes, eosinophils, Langerhans cells	Unknown

Eosinophils → Major basic protein, present in the granules of eosinophils, is responsible for the killing of helminths

Mast cell degranulation through the high-affinity IgE receptor produce mediators may induce broncho-constriction and increased intestinal motility, contributing to the expulsion of worms from sites

IgA1 is dimeric and abundant at mucosal surfaces

Poly-Ig receptor mediate the translocation of IgA across the mucosa in the lumen (transcytosis)

Poly-Ig Receptor

The ectodomain of the poly-Ig receptor recognize the J chain, present on IgA and IgM. Upon transcytosis, the ectodomain is cleaved and remains associated to the IgA (secretory component).

IgA1 represent the first line of defense at mucosal surfaces

The main function of IgA1 is to neutralize microbes present at mucosal surfaces

IgA2 is monomeric and abundant in the serum

FcαR (CD89) Low ($K_d \sim 10^{-6}$ M) Neutrophils, eosinophils, monocytes Cell activation?	
--	--

Seems to have different properties than IgA1 (pro-inflammatory)

Other concepts about antibodies:

Immunodominance

Isotypes, idiotypes, and allotypes

Cross-reactivity

Agglutination and precipitation

Immunodominance

(B and T cells)

Immunodominance is the immunological phenomenon in which immune responses are mounted against only a few of the antigenic epitopes out of the many possible

Several mechanism involved: antigen processing, MHC presentation (T cells); immunological history

Isotypes, idiotypes, and allotypes

Different **allotypes** are immunoglobulins of the same class that differs in small portions (1-4 amino acids) in their constant region (e.g. due to polymorphisms between individuals)

Different **idiotypes** are immunoglobulins that differs in their variable region (e.g. antibodies that recognize different antigens)

Cross-reactivity

The ability of an antibody to bind to multiple antigens

Two possibilities:

Molecular mimicry and autoimmune diseases

Sequence similarities between foreign and self-peptides can result in the cross-activation of autoreactive T or B cells by pathogen-derived peptides.

An example of cross-reactivity: ABO antibodies

ABO blood types classification is based on carbohydrates expressed on the surface of red blood cells by glycosyltransferase

IgM antibodies directed against the ABO structures (not expressed by an individual) develops in the first months of life, and are generated by cross-reactivity with carbohydrates expressed on the surface of enterobacteria

ABO blood group antigens

Agglutination and precipitation

Agglutination Bivalent antibody + particulate antigen (cells or bacteria)

Precipitation

Bivalent antibody + soluble antigen (proteins)

Agglutination of blood

Precipitation

Same antibody bound to two Ag molecules

Polyclonal serum

Antigen Added

Antibody effector functions against tumors

ADCC

Antagonism/neutralization

Antibody effector functions against tumors

mAb derivatives

mAb derivatives

BiTE (<u>Bi</u>specific <u>T</u> cell <u>E</u>ngager)

Catumaxomab: trifunctional antibody structure

Cancer Research Reviews

Immune checkpoint inhibitors

The dual signal concept in T cell activation

+ costimulation

costimulation

Anergy

mAb as carriers

Antibody-drug conjugates (ADC)

FDA currently approved mAb for therapy in oncology

Table Table 1 | Therapeutic monoclonal antibodies approved for use in oncology

Gene spon	Generic name (trade name; sponsoring companies)	Target	Antibody Format	Cancer Indication	Refs	Refs
Unco	Unconjugated antibodies					
Ritux	Rituximab (Rituxan/Mabthera; Genentech/Roche/Biogen Idec)	CD20	Chimeric lgG1	Non-Hodgkin lymphoma	74,105	4,105
Gene Trasti	Trastuzumab (Herceptin; Genentech/ Roche)	HER2	Humanized lgG1	Breast cancer	19,72	19,72
Roch Alem	Alemtuzumab (Campath/ MabCampath; Genzyme/Bayer)	CD52	Humanized lgG1	Chronic lymphocytic leukaemia	58	58
Mab(Cetuximab (Erbitux; ImClone Systems/Bristol–Myers Squibb)	EGFR	Chimeric lgG1	Colorectal cancer	13,106	50
Cetu: Syste	Bevacizumab (Avastin; Genentech)	VEGFA	Humanized lgG1	Colorectal, breast and lung cancer	71. 107,108	.3,106
Beva	Panitumumab (Vectibix; Amgen)	EGFR	Human IgG2	Colorectal cancer	109	71.
Panit	Ofatumumab (Arzerra; Genmab/ GlaxoSmithKline)	CD20	Human lgG1	Chronic lymphocytic leuakemia	110	07.108 109
Ofatu	Immunoconjugates					110
Glaxo	Gemtuzumab ozogamicin (Mylotarg; Pfizer)	CD33	Humanized IgG4	Acute myelogenous leukaemia	111	
Gemt	⁹⁰ Y-Ibritumomab tiuxetan (Zevalin; Biogen Idec)	CD20	Mouse	Lymphoma	112	111
Pfizer ⁹⁰ Y-Ib	Tositumomab and ¹³¹ I-tositumomab (Bexxar; GlaxoSmithKline)	CD20	Mouse	Lymphoma	113	112
Bioge					th factor.	
	momab and ¹³¹ I-tositumomab (ar; GlaxoSmithKline)	CD20	Mouse	Lymphoma		113

EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; VEGF, vascular endothelial growth factor.