Antibodies

General structure of antibodies

Structural differences between isotypes

Half-life

Monoclonal antibodies

Monoclonal vs polyclonal antibody

Development

Therapeutic applications

Four polypeptide chains

Two identical heavy chains Two identical light chains

Four disulfide bonds

Disulfide bond -----

Four polypeptide chains

Two identical heavy chains Two identical light chains

Both heavy and light chains contains globular domains called **Ig domain**

Disulfide bond -----

Ig domain

Structure of IgG domain

Two β sheets held together by one disulphide bond

Variable (V) regions

Antigen binding

Constant (C) regions

Recognized by immune cells

Variable (V) regions

Antigen binding

Each variable region is composed by two Ig domains, one V_H and one V_L

Constant (C) regions

Recognized by immune cells

Variable (V) regions

Antigen binding

Each variable region is composed by two Ig domains, one V_H and one V_L

Constant (C) regions

Recognized by immune cells

Three Ig domains on the heavy chain, C_H1 C_H2 and

C_H3

One Ig domain on the light chain, CL

Ν

Ν

V_H

Ν

lgG

Each antibody has two identical antigen binding sites

Crystal structure of lgG

Fc and Fab

Fab region

Fragment antigen binding

it contains the antigen binding portion

Fc region Fragment crystallizable it's involved in effector function

- Fc receptor binding
- Complement binding

Fc and Fab

Fab region

Fragment antigen binding

it contains the antigen binding portion

Fc region

Fragment crystallizable

it's involved in effector function

...in the old times, these features were discovered thanks to **proteolysis**

Interaction sites in the Fc region have now been fully characterised

A closer look to the variable regions

In the V_L and in the V_H, sequence variability is higher in three stretches of residues, called complementaritydetermining regions (CDR)

The three CDRs correspond to the loops

Heavy and light chain CDRs are typically engaged in Ag binding

Our immune system designed other creative solutions

4-5 The hinge region of the immunoglobulin molecule allows flexibility in binding to multiple antigens

© Elsevier. Abbas et al: Cellular and Molecular Immunology 6e - www.studentconsult.com

lsotypes

Five distinct classes based on the structure of the heavy chain constant regions

lsotypes

Five distinct classes based on the structure of the heavy chain constant regions

lsotypes

Five distinct classes based on the structure of the heavy chain constant regions with

same sequence

C regions for IgM and IgE contain 4 Ig domains IgG, IgA and IgD contain 3 Ig domains

Isotypes - summary

In humans and mice more frequent K chain. Ratio can be different in case of lymphomas

Functions of Isotypes

lsotype of antibody	Subtypes	H chain	Serum concentr. (mg/mL)	Serum half-life (days)	Secreted form	Functions
IgA	lgA1,2	a(1 or 2)	3.5	6	IgA Monomer, dimer, (dimer) Ca1 Ca2 Ca3 J chain	Mucosal immunity
IgD	None	d	Trace	3	None	Naive B cell antigen receptor
IgE	None	e	0.05	2	IgE Ce1 Monomer C Ce2 C Ce2 C Ce3 Ce4	Defense against helminthic parasites, immediate hypersensitivity
IgG	lgG1-4	g (1,2,3 or 4)	13.5	23	IgG1 V _H Monomer	Opsonization, complement activation, antibody- dependent cell- mediated cytotoxicity, neonatal immunity, feedback inhibition of B cells
IgM	None	m	1.5	5	IgM Cm1 Pentamers, hexamers Cm3 P-Cm2 Cm4 Pentamers, hexamers Cm3 P-Cm2 Cm4 Pentamers, hexamers Cm3 Pentamers, hexamers Cm3 Pentamers, hexamers Cm3 Pentamers, hexamers Cm3 Pentamers, hexamers Cm3 Pentamers, hexamers Cm4 Pentamers, hexamers Cm4 Pentamers, hexamers Cm4 Pentamers, hexamers Cm4 Pentamers, hexamers Cm4 Pentamers, hexamers Cm4 Pentamers, hexamers	Naive B cell antigen receptor, complement activation

The second se

Secreted and membrane associated antibodies differ in the amino acid sequence of the carboxyterminal end of the heavy chain C regions

Antibody Affinity

The recognition of antigen by antibodies involves non covalent reversible binding

Affinity and avidity

IgM are the first Ab to be made and are usually low affinity

IgM have 10 antigen binding sites IgM can "compensate" the low affinity with the high avidity

Antibody half-life

Te half-life is the mean time before the number of antibody molecules is reduced by half in the blood

Why IgGs last longer?

FcRn (Neonatal Fc Receptor) recycles endocytosed IgGs back to the extracellular milieu, instead of targeting them to lysosomal degradation

The FcRn allow the transport of IgG through the placenta

FIGURA 6.9.

La transcitosi delle IgA. La figura mostra le diverse tappe che portano all'esportazione delle IgA dimeriche dalla lamina propria intestinale o bronchiale al lume dell'organo, un fenomeno denominato transcitosi.