Modello di Bass Generalizzato

Il modello di Bass Generalizzato (Bass et al., 1994) introduce una funzione di intervento x(t)

$$z'(t) = \left(p + q\frac{z(t)}{m}\right)(m - z(t))x(t).$$

ove x(t) è una funzione integrabile e non negativa.

Nel modello di Bass standard tale funzione è uniformemente unitaria, $x(t)=1. \label{eq:x}$

- Se 0 < x(t) < 1 si assiste a un rallentamento del processo di diffusione,
- Un valore x(t) > 1 indica una sua velocizzazione.

Modello di Bass Generalizzato: soluzione in forma chiusa

La soluzione in forma chiusa del modello di Bass Generalizzato è definita come

$$z(t) = m \frac{1 - e^{-(p+q) \int_0^t x(\tau) d\tau}}{1 + \frac{q}{p} e^{-(p+q) \int_0^t x(\tau) d\tau}}, \qquad t > 0.$$

Si noti che le variazioni di x(t) non modificano il mercato potenziale m, che rimane una costante moltiplicativa.

La x(t) agisce sul timing.

Come modellare x(t): impulso esponenziale

La funzione x(t) può essere descritta in vari modi a seconda delle necessità di modellazione.

Un perturbazione forte e veloce può essere rappresentata mediante uno shock esponenziale, del tipo

$$x(t) = 1 + c_1 e^{b_1(t - a_1)} I_{t \ge a_1},$$

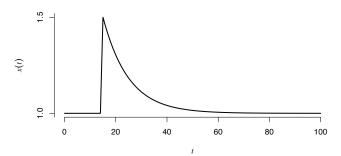
il parametro c_1 rappresenta intensità e segno dell'impulso, b_1 descrive la persistenza nel tempo dell'effetto ed è generalmente negativo ad indicare un ritorno in stazionarietà del sistema, e a_1 è il tempo di inizio dell'impulso.

470 / 515

Come modellare x(t): impulso esponenziale

- L'uso dell'impulso esponenziale risulta particolarmente utile quando si voglia identificare l'effetto positivo di strategie di marketing (prezzo e pubblicità) o meccanismi di incentivo tesi a velocizzare le adozioni (o vendite), specialmente nella prima parte del ciclo di vita del prodotto.
- Allo stesso modo, un impulso esponenziale di segno negativo può descrivere efficacemente la drastica diminuzione nelle vendite dovuta all'entrata nel mercato di un prodotto concorrente.

Come modellare x(t): impulso esponenziale



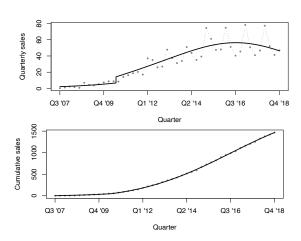
Esempio: Apple iPhone

	Estimate	Std.Error	Lower	Upper	p-value
\overline{m}	2108.9	124.9	1864.1	2353.8	< 0.001
p	0.0009	0.0001	0.0008	0.0011	< 0.001
q	0.10	0.001	0.08	0.12	< 0.001
a_1	12.5	0.99	10.56	14.44	< 0.001
b_1	-0.14	0.06	-0.25	-0.03	0.02
c_1	1.13	0.17	0.78	1.47	< 0.001

Tabella: GBM per iPhone: stime e 95% CIs

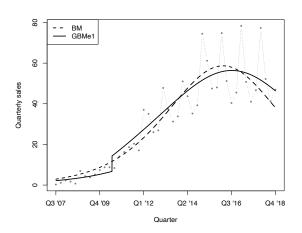
$$R^2 = 0.9998$$

Esempio: Apple iPhone



474 / 515

Esempio: Apple iPhone



Come modellare x(t): impulso rettangolare

Una perturbazione più stabile, che agisce sul processo di diffusione per un periodo relativamente lungo, può essere descritta tramite un impulso rettangolare, del tipo

$$x(t) = 1 + c_1 I_{t \ge a_1} I_{t \le b_1},$$

il parametro c_1 descrive l'intensità dell'impulso che può essere sia positiva che negativa, mentre i parametri a_1 e b_1 definiscono gli estremi di un intervallo temporale chiuso entro il quale avviene l'impulso (con $a_1 < b_1$).

Come modellare x(t): impulso rettangolare

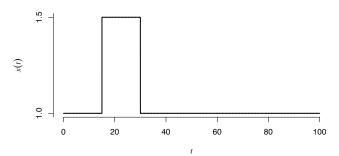
identificare l'effetto di politiche regolatorie caratterizzate da una finestra temporale definita.

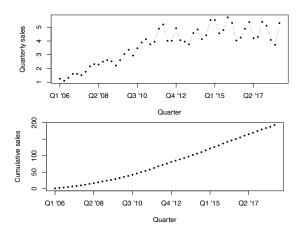
• Inoltre un impulso rettangolare di segno negativo può essere utilizza

L'uso dell'impulso rettangolare risulta utile quando si voglia

• Inoltre, un impulso rettangolare di segno negativo può essere utilizzato per descrivere la fase di depressione iniziale tipica dei prodotti caratterizzati da forti esternalità di rete.

Come modellare $\boldsymbol{x}(t)$: impulso rettangolare





	Estimate	Std.Error	Lower	Upper	p-value
\overline{m}	281.66	3.58	274.65	288.68	< 0.0001
p	0.0047	0.00042	0.0047	0.0048	< 0.0001
q	0.061	0.001	0.059	0.063	< 0.0001

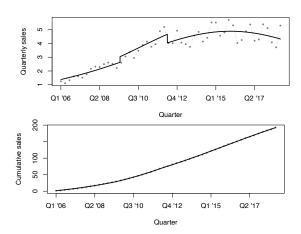
Tabella: BM per iMac: stime e 95% Cls

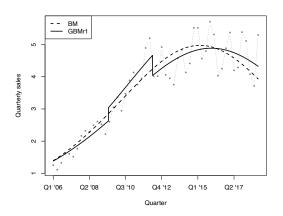
$$R^2 = 0.9999088$$

	Estimate	Std.Error	Lower	Upper	<i>p</i> -value
\overline{m}	304.1	3.67	296.9	311.3	< 0.0001
p	0.0043	0.00001	0.0042	0.0044	< 0.0001
q	0.055	0.00	0.053	0.056	< 0.0001
a_1	14.67	0.96	12.79	16.54	< 0.0001
b_1	25.95	0.71	24.55	27.35	< 0.0001
c_1	0.16	0.02	0.13	0.20	< 0.0001

Tabella: GBM per iMac: stime e 95% Cls

$$R^2 = 0.9999$$





Confronto tra modelli . . .

Mercato potenziale variabile, m(t)

Si può proporre una generalizzazione del modello di Bass che considera un mercato potenziale variabile, ovvero dipendente dal tempo t

$$z'(t) = m(t) \left\{ \left(p + q \frac{z(t)}{m} \right) \left(1 - \frac{z(t)}{m(t)} \right) \right\} + z(t) \frac{m'(t)}{m(t)}$$
$$\frac{z'(t)m(t) - z(t)m'(t)}{m^2(t)} = \left(\frac{z(t)}{m(t)} \right)' = \left(p + q \frac{z(t)}{m(t)} \right) \left(1 - \frac{z(t)}{m(t)} \right)$$

per cui, posto y(t) = z(t)/m(t), si consegue subito la forma

$$y'(t) = p + qy(t)(1 - y(t))$$

che coincide con il modello di Bass standard.

Modellare m(t): Ipotesi

- 1 Il mercato per le innovazioni appare piuttosto instabile e incerto specialmente nella prima fase della diffusione: fase di incubazione
- 2 Pubblicità, attività di marketing e promozione hanno un ruolo centrale nel cercare di superare questa fase
- 3 Come possiamo valutare l'effetto di queste azioni sul processo di diffusione?
- Gli sforzi di comunicazione condizionano il processo di diffusione nella struttura del mercato potenziale
- 6 Il mercato potenziale m non è costante ma ha una struttura variabile dipendente dal processo di comunicazione relativa all'innovazione
- 6 Di conseguenza: comunicazione e adozione sono due fasi distinte che hanno bisogno di essere modellate separatamente

Modello di Bass con mercato potenziale variabile, m(t)

La soluzione in forma chiusa del modello di Bass con potenziale variabile evidenzia che la struttura di m(t) è libera

$$z(t) = m(t)F(t) = \frac{m(t)}{1 + \frac{q}{p}e^{-(p+q)t}}$$

Modello GGM

Il modello GGM (Guseo-Guidolin, 2009) generalizza il modello di Bass ipotizzando che il mercato potenziale m(t) sia funzione di un processo di diffusione della conoscenza che co-evolve con quello di vera e propria adozione del prodotto.

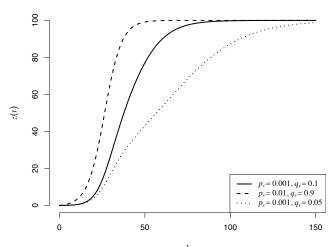
$$z(t) = m(t)F(t) = m(t) \frac{1 - e^{-(p+q)t}}{1 + \frac{q}{p}e^{-(p+q)t}}$$

$$z(t) = KG(t)F(t) = K\sqrt{\frac{1 - e^{-(p_c + q_c)t}}{1 + \frac{q_c}{p_c}e^{-(p_c + q_c)t}}} \frac{1 - e^{-(p_s + q_s)t}}{1 + \frac{q_s}{p_s}e^{-(p_s + q_s)t}}$$

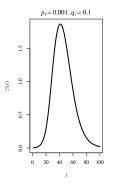
Modello GGM

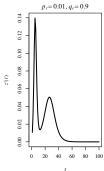
- Nel GGM i parametri p_c e q_c descrivono la dinamica di diffusione dell'informazione, che può avvenire per mezzo di comportamenti innovativi o imitativi.
- I parametri p_s e q_s descrivono l'usuale processo di adozione del prodotto (come nel modello di Bass).
- In questo modello il mercato potenziale viene creato dalla diffusione dell'informazione relativa al prodotto: in altre parole, diviene potenziale adottante del prodotto solo chi ne è informato.
- Il parametro K è il parametro di scala del processo tale per cui $lim_{t\to +\infty}m(t)=K$, situazione nella quale tutti coloro che sono informati divengono potenziali acquirenti.

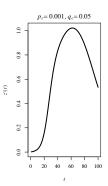
GGM

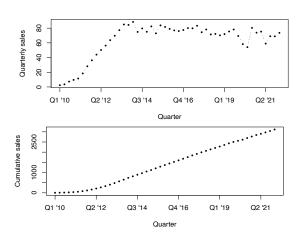


GGM





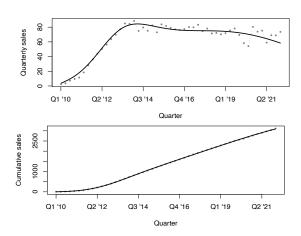


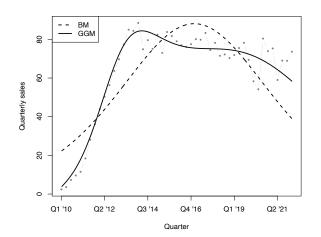


	Estimate	Std.Error	Lower	Upper	<i>p</i> -value
\overline{K}	4030.7	75.47	3882.8	4178.6	< 0.0001
p_c	0.0015	0.00001	0.0014	0.0016	< 0.0001
q_c	0.08	0.0026	0.08	0.09	< 0.0001
p_s	0.012	0.0006	0.011	0.014	< 0.0001
q_s	0.21	0.008	0.20	0.23	< 0.0001

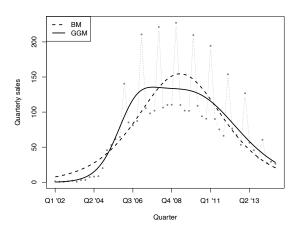
Tabella: GGM per Samsung: stime e 95% Cls

$$R^2 = 0.9999$$





Esempio: Apple iPod



Confronto tra modelli ...