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Before starting: Exam –
theoretic/numeric exercise part

A 45-60 minutes exam, multiple choices (main reference: slides)

è We’ll make a ‘simulation’ during next week lecture (lecture 14 –
27th of March)

è The lecture will also be a recap of the first part of the course: if 
there are topics that you’d like to be discussed, let me know

We are preparing some example exercises that we’ll be shared 
with you. 



Before starting: Exam – programming 
part

A 3-4 hours exam (done 15 minutes after the theoretic part)

è What we do in the labs are good examples of what will be asked 
during the exam

è Since we’d like you to concentrate on the ML commands, we’ll 
provide you with a ’cheat sheet’ with the basic python commands 
(remember you’ll also have the help)

è By Easter (20th of April), we’ll provide you with an example of the 
exam to be done at home: we will correct in class together (around 
the 15th of May)

è There will be a couple of Labs/lectures (on week 13, 19-23 of May) as 
additional lab simulations
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Recap: Nested CV for Hyperparameter Tuning

Nested cycle of CV

1. Inner

– Training data for model construction

– Validation data for choosing the 

hyperparameter(s)

2. Outer

– Training data (training+validation) for 

model building

– Test data for performance evaluation
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Recap: Nested CV for Hyperparameter Tuning

Nested cycle of CV

1. Inner

– Training data for model construction

– Validation data for choosing the 

hyperparameter(s)

2. Outer

– Training data (training+validation) for 

model building

– Test data for performance evaluation
We are answering the 

question: what is the best 
hyperparameter for this 

approach?



6

Recap: Nested CV for Hyperparameter Tuning

Nested cycle of CV

1. Inner

– Training data for model construction

– Validation data for choosing the 

hyperparameter(s)

2. Outer

– Training data (training+validation) for 

model building

– Test data for performance evaluation
We are answering the 

question: what the 
performance will be?
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Recap: Nested CV for Hyperparameter Tuning

Nested cycle of CV

1. Inner

– Training data for model construction

– Validation data for choosing the 

hyperparameter(s)

2. Outer

– Training data (training+validation) for 

model building

– Test data for performance evaluation

We are answering the 
question: what will be the ’final’ 

model?



Supervised 
Tasks

Setup:  available historical data

Data: (x – ‘input’, y – ‘output’)

Objective: earn a map/function 
that, when fed with new 'x', 

provides output estimates of 'y'

Depending on the nature of the output, 
we distinguish two subclasses of 
problems:

- If y is a continuous variable -> 
Regression Problem

- If y is a categorical variable -> 
Classification Problem

x y
F(x)



• Goal: estimating the Iris type
• Thanks to an historical data of 

n data sample with 
information such as
− Class (‘setosa’, ‘virginica’, 

’versicolur’) (output - Y)
− Sepal length (input - X) 
− Sepal width (input - X) 
− Petal length (input - X) 
− Petal width (input - X) 

An example of a Classification Task



• Goal: estimating the Iris type
• Thanks to an historical data of 

n data sample with 
information such as
− Class (‘setosa’, ‘virginica’, 

’versicolur’) (output - Y)
− Sepal length (input - X) 
− Sepal width (input - X) 
− Petal length (input - X) 
− Petal width (input - X) 

An example of a Classification Task
The number of classes is indicated with C (in this 
case C = 3).

If C = 2, we are dealing with a ‘binary classification’ 
problem (ie. spam vs. not spam)

If C > 2, we are dealing with a ‘multi-class 
classification’ problem



• Goal: recognizing a song from 
a small (3-4 sec.) data sample
• Currently handling a C = 10^8

class problem
• Historically, first results on 

Shazam talked about a ‘digital 
footprint (X)’: mainly a feature 
engineering approach made 
the solution feasible!
• Target, the song name

An example of a Classification Task



We’ll use classification to show the variety of 
ML approaches form

Up until now, all the regression 
approaches (OLS, Ridge Regression, 
LASSO, Elastic Net) we have seen they 
all shared the same form:

F(x) = β0 + β1x1 + β2x2 + … + βpxp



We’ll use classification to show the variety of 
ML approaches form



How to evaluate a classifier?

With regression, we have seen two evaluation metrics

Does it make sense on classification tasks? Other ideas?



Classification rate

The classification rate (or accuracy) is a performance metric used in classification 
tasks to measure the proportion of correctly classified instances over the total 
number of instances in a dataset.

- A classification rate of 1 (100%) means a perfect 
classifier

- A classification rate of 1/C (100/C%) in classification 
means the model is performing as well as random 
guessing (in binary classification 0.5)
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Binary classification: ‘Positive’ and ‘Negative’ classes
In binary classification, the terms "positive" and "negative" refer to how classes are 
assigned in the problem. These terms are used to define false positives (FP), false 
negatives (FN), true positives (TP), and true negatives (TN) when evaluating model 
performance.

- The positive class is the one that represents the condition or outcome of interest.

- The negative class typically represents the absence of the condition.
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Binary classification: ‘Positive’ and ‘Negative’ classes
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Specificity tells us how well a model 
avoids false alarms by correctly 
identifying the negative cases. 

It is important when false positives (FP) 
are costly or problematic.



Binary classification: ‘Positive’ and ‘Negative’ classes
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Precision tells us how reliable the positive 
predictions are. It is important when false 

positives (FP) are costly or misleading.

We choose this instead of specificity if we want 
to focus on the quality of positive predictions 

instead of the negative ones
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Recall (also called Sensitivity or True Positive Rate) measures how 
well a model identifies actual positive cases. 

It answers the question: ‘Of all the actual positive cases, how 
many did the model correctly classify?"

Binary classification: ‘Positive’ and ‘Negative’ classes



Simply putting it:
‘A new observation is assigned to the class that appears 
most frequently among its k nearest neighbors in the 
training data.’
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Wikipedia

Simplest classification approach: k-Nearest 
Neighbors (k-NN)

Green: new data point
Blue and Red: historical data of 2 different 
classes
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k = 1, classified as Red
k = 3, classified as Red

Wikipedia

Simplest classification approach: k-Nearest 
Neighbors (k-NN)

Green: new data point
Blue and Red: historical data of 2 different 
classes



Simply putting it:
‘A new observation is assigned to the class that appears 
most frequently among its k nearest neighbors in the 
training data.’
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k = 1, classified as Red
k = 3, classified as Red
k = 5, classified as Blue

Wikipedia

Simplest classification approach: k-Nearest 
Neighbors (k-NN)

Green: new data point
Blue and Red: historical data of 2 different 
classes



Simply putting it:
‘A new observation is assigned to the class that appears 
most frequently among its k nearest neighbors in the 
training data.’
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k = 1, classified as Red
k = 3, classified as Red
k = 5, classified as Blue

Wikipedia

Simplest classification approach: k-Nearest 
Neighbors (k-NN)

Green: new data point
Blue and Red: historical data of 2 different 
classes

k is an hyperparameter! 

With different choices we get 
different results and effects!
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Wikipedia

k-Nearest Neighbors (k-NN) in action: Iris Dataset
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k-Nearest Neighbors (k-NN) in action: Iris Dataset

Which one do 
you think is 
the best?
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k-Nearest Neighbors (k-NN) in action: Iris Dataset
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k-Nearest Neighbors (k-NN) in action: Iris Dataset
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k-Nearest Neighbors (k-NN) in action: Iris Dataset

With the choice of k we can 
also regulate some behaviour 

we have previously 
encountered: ideas?
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k-Nearest Neighbors (k-NN) in action: Iris Dataset

With the choice of k we can 
also regulate some behaviour 

we have previously 
encountered: ideas?

Underfitting Overfitting



- Instance-based learning (memory-based learning): instead of an 
'explicit' model, new observations are compared with previous 
instances.

-> May not be really good for edge solutions!
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k-Nearest Neighbors (k-NN): comments



- Instance-based learning (memory-based learning): instead of an 
'explicit' model, new observations are compared with previous 
instances.

-> May not be really good for edge solutions!

- Lazy learning: there is no explicit training, the computational 
cost is in the prediction step.

-> Great for adaptive solutions or when we start with few data
-> Not ideal if the prediction should be fast!
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k-Nearest Neighbors (k-NN): comments
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k-Nearest Neighbors 
(k-NN): comments
❌ Slow for large datasets (it 
computes distances for every new 
prediction).
❌ Sensitive to irrelevant features 
(feature selection or scaling is 
crucial).
❌ Not great for high-dimensional 
data (curse of dimensionality).
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Curse of dimensionality
The curse of dimensionality refers to the 
problems that arise when dealing with 
data in high-dimensional spaces. As the 
number of dimensions (features) 
increases, data behaves in unexpected 
ways, making many machine learning tasks 
harder and less efficient.

k-Nearest Neighbors 
(k-NN): comments
❌ Slow for large datasets (it 
computes distances for every new 
prediction).
❌ Sensitive to irrelevant features 
(feature selection or scaling is 
crucial).
❌ Not great for high-dimensional 
data (curse of dimensionality).



1. Choose/Given a value for k (number 
of neighbors to consider).

2.Compute the distance between the 
new data point and all training points 
(commonly using Euclidean distance).

3.Select the k nearest neighbors (data 
points closest to the new point).

4.Make a prediction: 
1. For classification: Assign the class that 

appears most frequently among the k 
neighbors (majority voting).

2. For regression: Take the average (or 
weighted average) of the neighbors’
values.
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k-Nearest Neighbors (k-NN): the algorithm
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k-Nearest Neighbors (k-NN): a non Euclidian norm



- One of the most commonly used approaches for 
classifying time series is 1-NN with Dynamic Time 
Warping (DTW). 

- DTW is an algorithm for matching time series with 
different sampling rates or lengths. 

- DTW also provides a similarity index for time 
sequences, making it useful as a distance metric for k-
NN with time series.
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k-Nearest Neighbors (k-NN): a non-Euclidian norm 
(only for theory)
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k-Nearest Neighbors (k-NN): a non-Euclidian norm 
(only for theory)
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Categorical Inputs: One-hot encoding

- We may encounter categorical inputs, not only outputs

- One-hot encoding is a technique used to represent categorical variables as binary 
vectors. Each category is converted into a vector where only one element is "1" 
(indicating the presence of that category), while all other elements are "0".
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Categorical Inputs: One-hot encoding

- We may encounter categorical inputs, not only outputs

- One-hot encoding is a technique used to represent categorical variables as binary 
vectors. Each category is converted into a vector where only one element is "1" 
(indicating the presence of that category), while all other elements are "0".
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Classification of a continuous target

In some applications, we may want to move from a regression task to a classification 
one! 



Thank you!

Gian Antonio Susto 
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