
Lecture #11
Classification & k-
Nearest Neighbour

Gian Antonio Susto

Machine Learning
2024/2025

Before starting: Exam –
theoretic/numeric exercise part

A 45-60 minutes exam, multiple choices (main reference: slides)

è We’ll make a ‘simulation’ during next week lecture (lecture 14 –
27th of March)

è The lecture will also be a recap of the first part of the course: if
there are topics that you’d like to be discussed, let me know

We are preparing some example exercises that we’ll be shared
with you.

Before starting: Exam – programming
part

A 3-4 hours exam (done 15 minutes after the theoretic part)

è What we do in the labs are good examples of what will be asked
during the exam

è Since we’d like you to concentrate on the ML commands, we’ll
provide you with a ’cheat sheet’ with the basic python commands
(remember you’ll also have the help)

è By Easter (20th of April), we’ll provide you with an example of the
exam to be done at home: we will correct in class together (around
the 15th of May)

è There will be a couple of Labs/lectures (on week 13, 19-23 of May) as
additional lab simulations

4

Recap: Nested CV for Hyperparameter Tuning

Nested cycle of CV

1. Inner

– Training data for model construction

– Validation data for choosing the

hyperparameter(s)

2. Outer

– Training data (training+validation) for

model building

– Test data for performance evaluation

5

Recap: Nested CV for Hyperparameter Tuning

Nested cycle of CV

1. Inner

– Training data for model construction

– Validation data for choosing the

hyperparameter(s)

2. Outer

– Training data (training+validation) for

model building

– Test data for performance evaluation
We are answering the

question: what is the best
hyperparameter for this

approach?

6

Recap: Nested CV for Hyperparameter Tuning

Nested cycle of CV

1. Inner

– Training data for model construction

– Validation data for choosing the

hyperparameter(s)

2. Outer

– Training data (training+validation) for

model building

– Test data for performance evaluation
We are answering the

question: what the
performance will be?

7

Recap: Nested CV for Hyperparameter Tuning

Nested cycle of CV

1. Inner

– Training data for model construction

– Validation data for choosing the

hyperparameter(s)

2. Outer

– Training data (training+validation) for

model building

– Test data for performance evaluation

We are answering the
question: what will be the ’final’

model?

Supervised
Tasks

Setup: available historical data

Data: (x – ‘input’, y – ‘output’)

Objective: earn a map/function
that, when fed with new 'x',

provides output estimates of 'y'

Depending on the nature of the output,
we distinguish two subclasses of
problems:

- If y is a continuous variable ->
Regression Problem

- If y is a categorical variable ->
Classification Problem

x y
F(x)

• Goal: estimating the Iris type
• Thanks to an historical data of

n data sample with
information such as
− Class (‘setosa’, ‘virginica’,

’versicolur’) (output - Y)
− Sepal length (input - X)
− Sepal width (input - X)
− Petal length (input - X)
− Petal width (input - X)

An example of a Classification Task

• Goal: estimating the Iris type
• Thanks to an historical data of

n data sample with
information such as
− Class (‘setosa’, ‘virginica’,

’versicolur’) (output - Y)
− Sepal length (input - X)
− Sepal width (input - X)
− Petal length (input - X)
− Petal width (input - X)

An example of a Classification Task
The number of classes is indicated with C (in this
case C = 3).

If C = 2, we are dealing with a ‘binary classification’
problem (ie. spam vs. not spam)

If C > 2, we are dealing with a ‘multi-class
classification’ problem

• Goal: recognizing a song from
a small (3-4 sec.) data sample
• Currently handling a C = 10^8

class problem
• Historically, first results on

Shazam talked about a ‘digital
footprint (X)’: mainly a feature
engineering approach made
the solution feasible!
• Target, the song name

An example of a Classification Task

We’ll use classification to show the variety of
ML approaches form

Up until now, all the regression
approaches (OLS, Ridge Regression,
LASSO, Elastic Net) we have seen they
all shared the same form:

F(x) = β0 + β1x1 + β2x2 + … + βpxp

We’ll use classification to show the variety of
ML approaches form

How to evaluate a classifier?

With regression, we have seen two evaluation metrics

Does it make sense on classification tasks? Other ideas?

Classification rate

The classification rate (or accuracy) is a performance metric used in classification
tasks to measure the proportion of correctly classified instances over the total
number of instances in a dataset.

- A classification rate of 1 (100%) means a perfect
classifier

- A classification rate of 1/C (100/C%) in classification
means the model is performing as well as random
guessing (in binary classification 0.5)

Classification rate

The classification rate (or accuracy) is a performance metric used in classification
tasks to measure the proportion of correctly classified instances over the total
number of instances in a dataset.

- A classification rate of 1 (100%) means a perfect
classifier

- A classification rate of 1/C (100/C%) in classification
means the model is performing as well as random
guessing (in binary classification 0.5)

- Confusion matrix is a useful representation

Classification rate

The classification rate (or accuracy) is a performance metric used in classification
tasks to measure the proportion of correctly classified instances over the total
number of instances in a dataset.

- A classification rate of 1 (100%) means a perfect
classifier

- A classification rate of 1/C (100/C%) in classification
means the model is performing as well as random
guessing (in binary classification 0.5)

- Confusion matrix is a useful representation

Binary classification: ‘Positive’ and ‘Negative’ classes
In binary classification, the terms "positive" and "negative" refer to how classes are
assigned in the problem. These terms are used to define false positives (FP), false
negatives (FN), true positives (TP), and true negatives (TN) when evaluating model
performance.

- The positive class is the one that represents the condition or outcome of interest.

- The negative class typically represents the absence of the condition.

Binary classification: ‘Positive’ and ‘Negative’ classes
In binary classification, the terms "positive" and "negative" refer to how classes are
assigned in the problem. These terms are used to define false positives (FP), false
negatives (FN), true positives (TP), and true negatives (TN) when evaluating model
performance.

- The positive class is the one that represents the condition or outcome of interest.

- The negative class typically represents the absence of the condition.

Binary classification: ‘Positive’ and ‘Negative’ classes

Positive

Po
si

ti
ve

Negative

N
eg

at
iv

e

The classification rate! Not
always the best metric…

Binary classification: ‘Positive’ and ‘Negative’ classes

Positive

Po
si

ti
ve

Negative

N
eg

at
iv

e

The classification rate! Not
always the best metric…

Binary classification: ‘Positive’ and ‘Negative’ classes

Positive

Po
si

ti
ve

Negative

N
eg

at
iv

e

Specificity tells us how well a model
avoids false alarms by correctly
identifying the negative cases.

It is important when false positives (FP)
are costly or problematic.

Binary classification: ‘Positive’ and ‘Negative’ classes

Positive

Po
si

ti
ve

Negative

N
eg

at
iv

e

Precision tells us how reliable the positive
predictions are. It is important when false

positives (FP) are costly or misleading.

We choose this instead of specificity if we want
to focus on the quality of positive predictions

instead of the negative ones

Positive

Po
si

ti
ve

Negative

N
eg

at
iv

e

Recall (also called Sensitivity or True Positive Rate) measures how
well a model identifies actual positive cases.

It answers the question: ‘Of all the actual positive cases, how
many did the model correctly classify?"

Binary classification: ‘Positive’ and ‘Negative’ classes

Simply putting it:
‘A new observation is assigned to the class that appears
most frequently among its k nearest neighbors in the
training data.’

25

Wikipedia

Simplest classification approach: k-Nearest
Neighbors (k-NN)

Green: new data point
Blue and Red: historical data of 2 different
classes

Simply putting it:
‘A new observation is assigned to the class that appears
most frequently among its k nearest neighbors in the
training data.’

26

k = 1, classified as Red
k = 3, classified as Red

Wikipedia

Simplest classification approach: k-Nearest
Neighbors (k-NN)

Green: new data point
Blue and Red: historical data of 2 different
classes

Simply putting it:
‘A new observation is assigned to the class that appears
most frequently among its k nearest neighbors in the
training data.’

27

k = 1, classified as Red
k = 3, classified as Red
k = 5, classified as Blue

Wikipedia

Simplest classification approach: k-Nearest
Neighbors (k-NN)

Green: new data point
Blue and Red: historical data of 2 different
classes

Simply putting it:
‘A new observation is assigned to the class that appears
most frequently among its k nearest neighbors in the
training data.’

28

k = 1, classified as Red
k = 3, classified as Red
k = 5, classified as Blue

Wikipedia

Simplest classification approach: k-Nearest
Neighbors (k-NN)

Green: new data point
Blue and Red: historical data of 2 different
classes

k is an hyperparameter!

With different choices we get
different results and effects!

29

Wikipedia

k-Nearest Neighbors (k-NN) in action: Iris Dataset

30

k-Nearest Neighbors (k-NN) in action: Iris Dataset

Which one do
you think is
the best?

31

k-Nearest Neighbors (k-NN) in action: Iris Dataset

32

k-Nearest Neighbors (k-NN) in action: Iris Dataset

33

k-Nearest Neighbors (k-NN) in action: Iris Dataset

With the choice of k we can
also regulate some behaviour

we have previously
encountered: ideas?

34

k-Nearest Neighbors (k-NN) in action: Iris Dataset

With the choice of k we can
also regulate some behaviour

we have previously
encountered: ideas?

Underfitting Overfitting

- Instance-based learning (memory-based learning): instead of an
'explicit' model, new observations are compared with previous
instances.

-> May not be really good for edge solutions!

35

k-Nearest Neighbors (k-NN): comments

- Instance-based learning (memory-based learning): instead of an
'explicit' model, new observations are compared with previous
instances.

-> May not be really good for edge solutions!

- Lazy learning: there is no explicit training, the computational
cost is in the prediction step.

-> Great for adaptive solutions or when we start with few data
-> Not ideal if the prediction should be fast!

36

k-Nearest Neighbors (k-NN): comments

37

k-Nearest Neighbors
(k-NN): comments
❌ Slow for large datasets (it
computes distances for every new
prediction).
❌ Sensitive to irrelevant features
(feature selection or scaling is
crucial).
❌ Not great for high-dimensional
data (curse of dimensionality).

38

Curse of dimensionality
The curse of dimensionality refers to the
problems that arise when dealing with
data in high-dimensional spaces. As the
number of dimensions (features)
increases, data behaves in unexpected
ways, making many machine learning tasks
harder and less efficient.

k-Nearest Neighbors
(k-NN): comments
❌ Slow for large datasets (it
computes distances for every new
prediction).
❌ Sensitive to irrelevant features
(feature selection or scaling is
crucial).
❌ Not great for high-dimensional
data (curse of dimensionality).

1. Choose/Given a value for k (number
of neighbors to consider).

2.Compute the distance between the
new data point and all training points
(commonly using Euclidean distance).

3.Select the k nearest neighbors (data
points closest to the new point).

4.Make a prediction:
1. For classification: Assign the class that

appears most frequently among the k
neighbors (majority voting).

2. For regression: Take the average (or
weighted average) of the neighbors’
values.

39

k-Nearest Neighbors (k-NN): the algorithm

1. Choose/Given a value for k (number
of neighbors to consider).

2.Compute the distance between the
new data point and all training points
(commonly using Euclidean distance).

3.Select the k nearest neighbors (data
points closest to the new point).

4.Make a prediction:
1. For classification: Assign the class that

appears most frequently among the k
neighbors (majority voting).

2. For regression: Take the average (or
weighted average) of the neighbors’
values.

40

k-Nearest Neighbors (k-NN): the algorithm

1. Choose/Given a value for k (number
of neighbors to consider).

2.Compute the distance between the
new data point and all training points
(commonly using Euclidean distance).

3.Select the k nearest neighbors (data
points closest to the new point).

4.Make a prediction:
1. For classification: Assign the class that

appears most frequently among the k
neighbors (majority voting).

2. For regression: Take the average (or
weighted average) of the neighbors’
values.

41

k-Nearest Neighbors (k-NN): the algorithm

1. Choose/Given a value for k (number
of neighbors to consider).

2.Compute the distance between the
new data point and all training points
(commonly using Euclidean distance).

3.Select the k nearest neighbors (data
points closest to the new point).

4.Make a prediction:
1. For classification: Assign the class that

appears most frequently among the k
neighbors (majority voting).

2. For regression: Take the average (or
weighted average) of the neighbors’
values.

42

k-Nearest Neighbors (k-NN): a non Euclidian norm

- One of the most commonly used approaches for
classifying time series is 1-NN with Dynamic Time
Warping (DTW).

- DTW is an algorithm for matching time series with
different sampling rates or lengths.

- DTW also provides a similarity index for time
sequences, making it useful as a distance metric for k-
NN with time series.

43

k-Nearest Neighbors (k-NN): a non-Euclidian norm
(only for theory)

- One of the most commonly used approaches for
classifying time series is 1-NN with Dynamic Time
Warping (DTW).

- DTW is an algorithm for matching time series with
different sampling rates or lengths.

- DTW also provides a similarity index for time
sequences, making it useful as a distance metric for k-
NN with time series.

44

k-Nearest Neighbors (k-NN): a non-Euclidian norm
(only for theory)

45

Categorical Inputs: One-hot encoding

- We may encounter categorical inputs, not only outputs

- One-hot encoding is a technique used to represent categorical variables as binary
vectors. Each category is converted into a vector where only one element is "1"
(indicating the presence of that category), while all other elements are "0".

46

Categorical Inputs: One-hot encoding

- We may encounter categorical inputs, not only outputs

- One-hot encoding is a technique used to represent categorical variables as binary
vectors. Each category is converted into a vector where only one element is "1"
(indicating the presence of that category), while all other elements are "0".

47

Classification of a continuous target

In some applications, we may want to move from a regression task to a classification
one!

Thank you!

Gian Antonio Susto

Machine Learning
2024/2025

