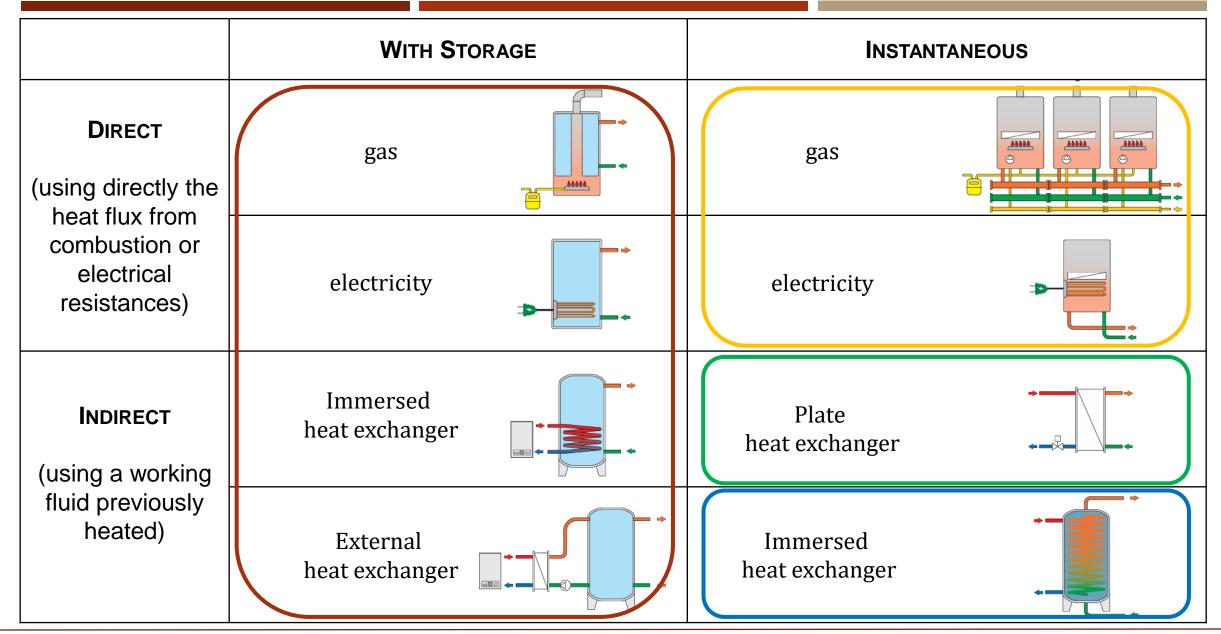


SIZING OF DOMESTIC HOT WATER PRODUCTION SYSTEMS

Eng. Marco Marigo

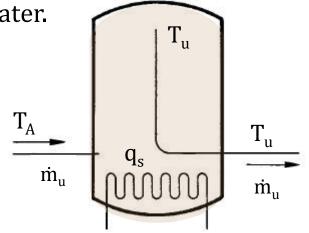

marco.marigo@unipd.it

Heating Ventilation and Air Conditioning Systems

March 19th, 2025

- Different approaches for Domestic Hot Water (DHW) production
- Sizing of a DHW system: simplified method
- $\circ~$ Main assumptions for the sizing process
- Calculation of the energy needs and examples
- $\circ~$ Instructions for the report

DHW PRODUCTION


Heating Ventilation and Air Conditioning Systems

March 19th, 2025

THE MIXED HOT WATER STORAGE SYSTEMS

The mass flow rate \dot{m}_u flows within the water tank increasing its temperature from the inlet temperature T_A to the outlet temperature T_u ; the power q_s is released to the water. During the hot water supply a certain mass flow rate \dot{m}_u is required (equal to m_d/τ_d) at a constant temperature T_u .

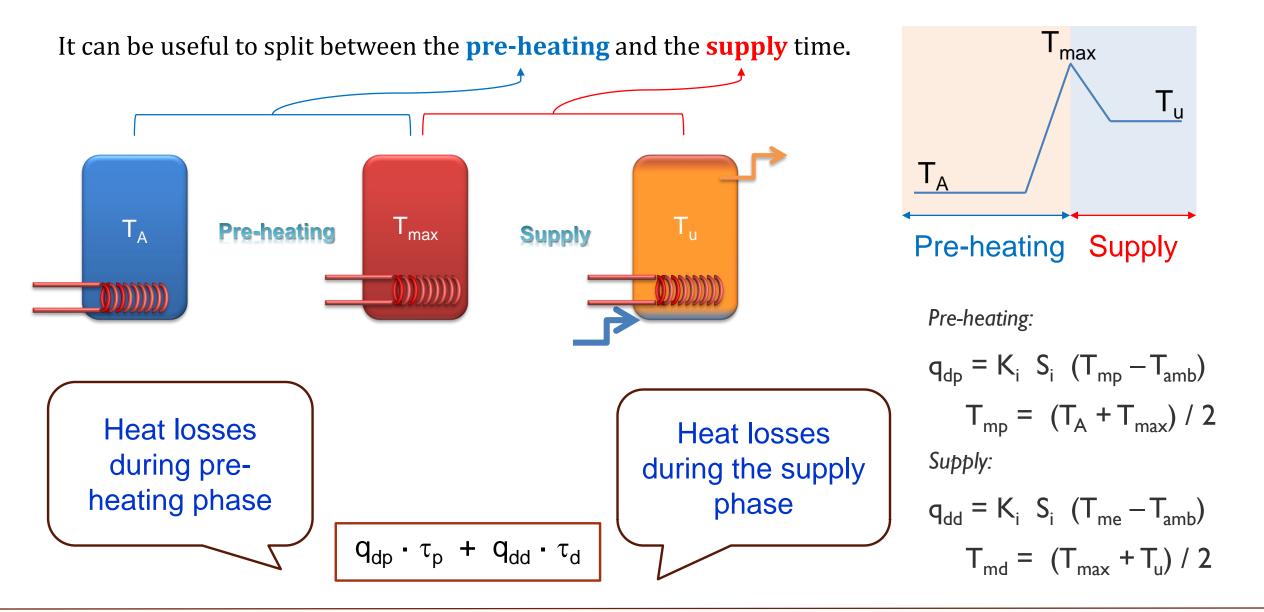
Assuming that the whole volume V_s is at a uniform temperature T_u (neglecting the stratification within the tank) the thermal behaviour of the system can be written by the following equation:

$$\begin{array}{c|c} \rho \cdot V_{s} \cdot c \left(dT_{u} / d\tau \right) &= \begin{array}{c|c} q_{s} \end{array} - \dot{m}_{u} \cdot c \cdot T_{u} + \dot{m}_{u} \cdot c \cdot T_{A} \end{array} - \begin{array}{c|c} K_{i} \cdot S_{i} \left(T_{u} - T_{amb} \right) \end{array} \\ \hline \\ \hline \\ Internal \\ energy of \\ released by \\ the system \\ variation \end{array} \begin{array}{c|c} Heat \\ Heat exchange \\ due to the heat \\ up of the water \\ flow rate \end{array} \end{array} + \begin{array}{c|c} Heat losses \\ through the \\ envelope \\ envelope \end{array}$$

THE MIXED HOT WATER STORAGE SYSTEMS – SIMPLIFIED METHOD

$$\rho \cdot V_{s} \cdot c \left(dT_{u} / d\tau \right) = q_{s} \left(\dot{m}_{u} \cdot c \cdot T_{u} + \dot{m}_{u} \cdot c \cdot T_{A} \right) - K_{i} \cdot S_{i} \left(T_{u} - T_{amb} \right)$$

It can be useful to split between the pre-heating and the supply time. **Integrating the general thermal balance equation in the tank** in the whole period of pre-heating and supply, the required energy q_s in the time $\tau_p + \tau_d$ will allow:


- to supply the required amount of water m_d at T_u
- to compensate the heat **losses through the envelope** of the tank
- To provide the **internal energy variation** in the tank

$$\mathbf{q_s} (\tau_p + \tau_d) = \mathbf{m_d} \cdot \mathbf{c} (\mathbf{T_u} - \mathbf{T_A}) + \mathbf{q_{dp}} \cdot \tau_p + \mathbf{q_{dd}} \cdot \tau_d + \mathbf{V_s} \cdot \mathbf{c} \cdot (\mathbf{T_u} - \mathbf{T_A})$$

Considering only the heat-up period:

$$\mathbf{q}_{\mathbf{s}} \cdot \tau_{\mathbf{p}} = \mathbf{V}_{\mathbf{s}} \cdot \mathbf{c} \cdot (\mathbf{T}_{\max} - \mathbf{T}_{\mathbf{A}}) + \mathbf{q}_{dp} \cdot \tau_{\mathbf{p}}$$

PRE-HEATING AND SUPPLY TIME

SIZING OF THE MIXED HOT WATER STORAGE SYSTEM

The sizing method for the heat stored is based on the choice of two parameters: the thermal peak power \mathbf{q}_{s} and the capacity \mathbf{V}_{s} of the storage, once defined the following parameters:

- τ_d supply time
- τ_p pre-heating time
- m_d amount of hot water supplied
- T_u temperature of hot water supplied
- T_A temperature of the available fresh cold water
- T_{max} temperature of the water after the pre-heating period (set-point)

REMARK: The thermal peak power q_s is considered constant

SIZING WITH SIMPLIFIED METHOD

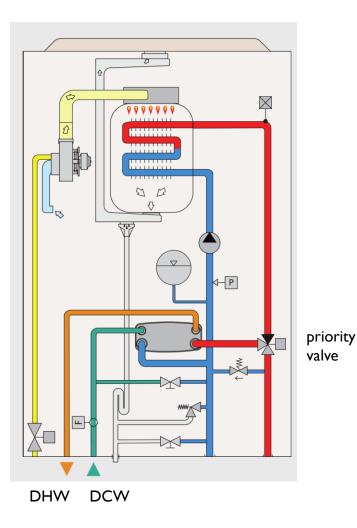
These two equations can be solved together in order to achieve q_S and V_s , once defined the preheating time τ_p and the supply time τ_d

MIXED HOT WATER STORAGE SYSTEM

$$\mathbf{q}_{\mathbf{s}} (\tau_{p} + \tau_{d}) = \mathbf{m}_{d} \cdot \mathbf{c} (\mathbf{T}_{u} - \mathbf{T}_{A}) + \mathbf{q}_{dp} \cdot \tau_{p} + \mathbf{q}_{dd} \cdot \tau_{d} + \mathbf{V}_{\mathbf{s}} \cdot \mathbf{c} \cdot (\mathbf{T}_{u} - \mathbf{T}_{A})$$
$$\mathbf{q}_{\mathbf{s}} \cdot \tau_{p} = \mathbf{V}_{\mathbf{s}} \cdot \mathbf{c} \cdot (\mathbf{T}_{max} - \mathbf{T}_{A}) + \mathbf{q}_{dp} \cdot \tau_{p}$$

INDIRECT SYSTEM WITH INTERNAL HEAT EXCHANGER

$$(\mathbf{q}_{s} - \mathbf{q}_{dp}) \cdot \boldsymbol{\tau}_{p} = \mathbf{V}_{s} \cdot \mathbf{c} \cdot (\mathbf{T}_{max} - \mathbf{T}_{A})$$


$$(\mathbf{q}_{s} - \mathbf{q}_{dd}) \cdot \boldsymbol{\tau}_{d} + \mathbf{V}_{s} \cdot \mathbf{c} \cdot (\mathbf{T}_{max} - \mathbf{T}_{min}) = \mathbf{m}_{d} \cdot \mathbf{c} \cdot (\mathbf{T}_{u} - \mathbf{T}_{A})$$

EXERCISE

Size a mixed hot water storage that must supply 100 kg of water at 40°C with a supply time of 1 hour. Assume a preheating time of 5 hours and that the maximum temperature inside the tank is 60°C. For the calculations, assume also that the water from the aqueduct enters the tank at 10°C, the temperature of the room where the tank is installed is equal to 20°C and, for the thermal loss calculations, assume K = 0,8 kcal/(h m² °C) and S = 1,3 m².

Repeat the calculations neglecting the tank's thermal losses.

INSTANTANEOUS GAS BOILER

Instantaneous combined gas boilers:

- Instantaneous indirect DHW production through plate HE
- The priority valve switches between space heating and DHW
- These systems are already optimized by constructors.
 - → You don't need to design, just choose!

ASSUMPTIONS FOR THE SIZING

In the exercise we had some input data, but what assumptions should be made when *sizing a real system*?

- DHW demand during the peak load (m_d)
- Time of preparation (τ_p)
- Time of demand/supply (τ_d)

[L] [h]

Sizing of the system:

• Boiler capacity (V_s)

40°C

60°C

10 ÷ 15°C

• Required power (q_s)

There are other variables that we should assume for the calculations:

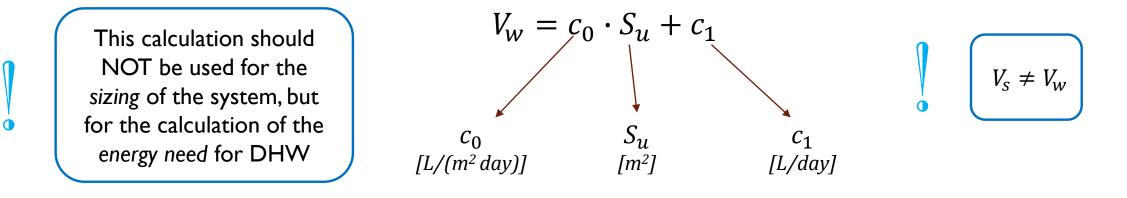
- The temperature of supply (T_u)
- The maximum temperature inside the tank (T_{max})
- The temperature of the water from the aqueduct (T_A)

ASSUMPTIONS FOR THE SIZING

When you use the detailed method for the assessment of the DHW demand, you can use these

tables as a reference for the DHW demand and the preparation/delivery time.

Fixture	Water used per fixture [L per use]	Number of fixtures	Amount of water used at 40°C [L]	Times of use during the reference peak period	Total volume per fixture [L]	
Bath tub	100	0	0	1.00	0	
Shower	60	2	120	1.00	120	
Toilet sink	10	2	20	4.00	80	
Bidet	8	2	16	2.00	32	
Kitchen sink	15	1	15	1.00	15	
TOTAL					247	


$\mathbf{S}_{\mathbf{u}}$ [m ²]	$\mathbf{\tau}_d$ [h]	$\mathbf{\tau}_p$ [h]		
50 – 90	1	2		
90 - 120	1.5	2		
> 120	2	2		

from **VDI 1988**

DHW DEMAND FOR A RESIDENTIAL BUILDING

The Italian Standard (UNI-TS 11300:2) gives some values aimed at the calculation of the **daily** demand of domestic hot water.

For *residential buildings*, the water volume V_w [L/day] is calculated as:

	$S_u \le 35$	$35 < S_u < 50$	$50 < S_u < 200$	$S_{u} > 200$
<i>C</i> ₀	0	2.667	1.067	0
<i>C</i> ₁	50	-43.33	36.67	250

Table 30 from UNI-TS 11300:2

Heating Ventilation and Air Conditioning Systems

March 19th, 2025

EXAMPLE 1 - DHW DEMAND FOR ENERGY NEEDS (RESIDENTIAL)

Case study

Single unit residential building 1 unit hosting 6 people Net surface area of 180 m²

Calculation

From Table 30 of the standard 11300-2:

c₀=1,067 c₁= 36,67

The daily volume of DHW is:

$$V_w = c_0 \cdot S_u + c_1$$

= 1,067 \cdot 180 + 36,67
= 228,73 L/day

DHW DEMAND FOR A NON-RESIDENTIAL BUILDING

When referring to a *non-residential building*, the Italian Standard UNI-TS 11300-2 provides the following equation:

$$V_w = c_2 \cdot N_u \qquad [L/day]$$

 $C_2 [L/(day \cdot N_u)]$ and N_u [-] are calculated according to the following table:

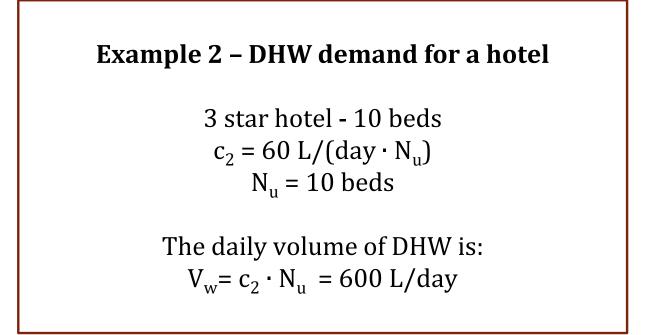

User/Activity	c ₂	N _u	
Residences and B&B	40	Number of beds	
Hotels *, **, ***	60	Number of beds	
Hotels ****, *****	80	Number of beds	
Hospitals	80	Number of beds	
Day hospitals	15	Number of beds	
Sporthall	50	Number of showers	
School	0.2	Number of children	
Kindergarden	8 Number of children		
Offices	0.2	Net floor area	

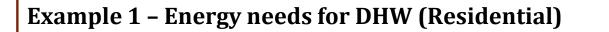
Table 31 from UNI-TS 11300:2

DHW DEMAND FOR A NON-RESIDENTIAL BUILDING

When referring to a *non-residential building*, the Italian Standard UNI-TS 11300-2 provides the following equation:

$$V_w = c_2 \cdot N_u \qquad [L/day]$$

UNI 11300 – PART 2 – ENERGY NEEDS FOR DHW


The energy needs to supply the domestic hot water of a building is calculated from the volume required and the temperature difference between the water supplied to the building and the cold water supplied by the aqueduct

kWh/(kg K)

$$Q_{\rm w} = \rho_{\rm w} \times c_{\rm w} \times \Sigma_{\rm i} \left[V_{\rm w,i} \times (\theta_{\rm er,i} - \theta_0) \right] \times G \ [kWh]$$

- ρ_w water density, 1000 [kg/m³]
- c_w water specific heat 1.162 * 10⁻³ [kWh/(kg K)]
- $V_{w,i}$ daily water volume for the i-th activity or service required [m³/d]
- $\vartheta_{er,i}$ water supply temperature for the i-th activity or service required [°C]
- ϑ_0 cold water supply temperature (from the aqueduct) [°C]
- G number of days considered in the calculation [d]

EXAMPLES

Single unit residential building in Padova, 1 unit hosting 6 people, net surface area of 180 m²

Daily volume of DHW: $V_w = c_0 \cdot S_u + c_1 = 1,067 \cdot 180 + 36,67$ = 228,73 L/day

229 L/day = 0,229 m³/day

 $Q_w = 1000 \cdot 1,162 \cdot 10^{-3} \cdot 0,229 \cdot (40-14) \cdot 365 = 2257 \text{ kWh}$

Example 2 – Energy needs for DHW (Non Residential)

3 star hotel in Padova - 10 beds

```
Daily volume of DHW: V_w = c_2 \cdot N_u = 600 \text{ L/day}
```

 $Q_w = 1000 \cdot 1,162 \cdot 10^{-3} \cdot 0,6 \cdot (40-14) \cdot 365 = 6616 \text{ kWh}$

- 1. Size the storage for the DHW *of your home*, defining capacity V_s and the required power q_s
- 2. Calculate the yearly energy needs for domestic hot water production *of your home*

You can use the format that you prefer for the calculations (excel, Matlab or other files). The only requirement is that, together with the report, you submit a file with **ALL** the calculations.

REPORT – INSTRUCTIONS pt.2

For the report, you are required to use a simplified method instead of the detailed one shown in the previous slide. Use the simplified equation shown below to calculate the *DHW demand*

during the peak load and the *supply time*, then, solve the system of equations to calculate the *capacity* and the *power*.

$m_d \rho_w$	SIMPLIFIED EQUATION		S _u [m ²]	$\mathbf{\tau}_d$ [h]	$\mathbf{\tau}_p$ [h]
$\dot{m}_u = \frac{\tau_u}{\tau_d}$			50 – 90	1	2
	$m_d = 2.4 S_u + 118$	[1.]	90 - 120	1.5	2
			> 120	2	2

The minimum area to be considered for the report is 50 m² with 3 rooms. If your case study is smaller, use your imagination!