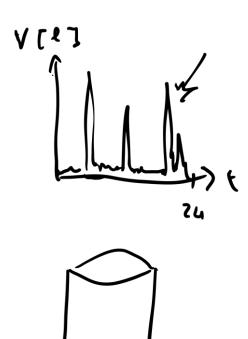
# Domestic Hot Water production

HEATING VENTILATION AIR CONDITIONING SYSTEMS
18-03-2025
Jacopo Vivian

# Classification of systems

#### **Direct vs indirect production**


- **Direct**: DHW is produced inside the heat generation (e.g. heat pump or gas boiler)
- Indirect: there is an intermediate heat exchanger between heat generation and DHW circuit



# Classification of systems

#### Instantaneous systems vs systems with storage

- Instantaneous: heat generation (e.g. heat pump or gas boiler) supplies heat for DHW production to the users instantaneously (either direct or indirect)
- With storage: heat generation (e.g. heat pump or gas boiler) supplies heat to a thermal storage tank, which supplies heat to the users when needed (either direct or indirect)



#### **Example**

Single family house with 2 baths: 1 shower and 1 sink each.

Sinks: 2 (baths) + 1 (kitchen) + 1 (laundry) + 1 (bidet) = 5

Showers: 2 (baths)

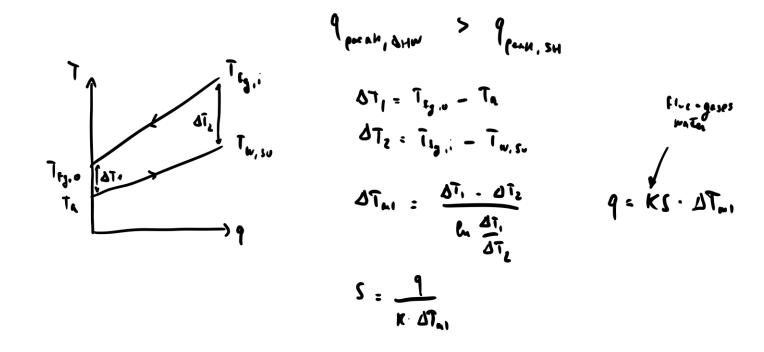
Assume 6 I/min for sinks and 12 I/min for showers

#### **Example**

Single family house with 2 baths: 1 shower and 1 sink each.

$$U_{V,MAX} = 2 \cdot 12 + 5 \cdot 6 = 54 \cdot (/min = 0.9 \cdot 1/s)$$
 $Q = mc_{p} (T_{w,sv} - T_{c}) = 0.9 \cdot 4.18 \cdot (40 - 10)$ 
 $= 113 \quad NW$ 
 $T_{w}$ 
 $T_{w}$ 
 $T_{w}$ 
 $T_{w}$ 
 $T_{w}$ 
 $T_{w}$ 

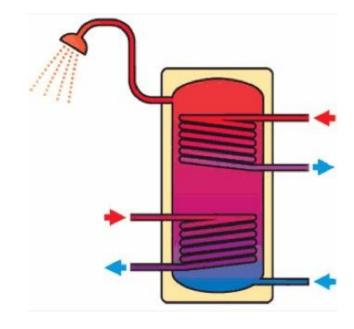
#### **Example**

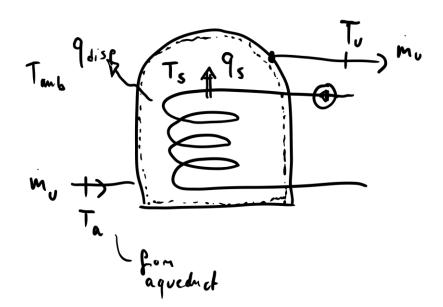

Single family house with 2 baths: 1 shower and 1 sink each.

12 
$$l/min$$
 $q = 0.2 \cdot 4.18 \left(40 - 10\right) = 25 \text{ nW}$ 

12  $uy/s$ 
 $q \simeq 30 \text{ kW}$ 
 $SH + DHW \text{ prod.}$ 

#### **Heat source**


Flue gases from gas boilers or hot water produced with heat pumps.




# Systems with storage

#### Classification of systems with storage

- Mixed hot water tank: the water in the tank is the domestic hot water (accumulo a miscela)
- Thermal storage: the water in the tank is technical water which heats up the domestic hot water through a coil (termo-accumulo)





$$Q_{s} - Q_{disp} = m_{0}h_{0} - m_{0}h_{0} + \frac{dU_{sist}}{dz} + \frac{1}{Q_{sist}}$$

$$Q_{s} - \frac{UA}{dz}(T_{s} - T_{amb}) = m_{0}c_{p}(T_{0} - T_{a}) + \frac{m_{s}c_{v}}{dz} + \frac{dT_{s}}{dz}$$

$$U_{niferent home. In strange} T_{0} = T_{s}$$

$$C_{p} = C_{0} = C = 4.186 \text{ at} \frac{T_{s}}{R_{s}R_{s}}$$

$$q_{s} - UA(\overline{t_{s}} - \overline{t_{au_{s}}}) = m_{u} c(\overline{t_{s}} - \overline{t_{a}}) + p_{u} V_{s} c(\overline{d\overline{t_{s}}})$$

$$\int_{c}^{c} V_{s} c(\overline{d\overline{t_{s}}}) + T_{s}(m_{u} c + UA) = q_{s} + UA T_{au_{s}} + m_{u} c T_{a}$$

$$\Rightarrow \frac{dT_{s}}{dt} + T_{s}(\overline{m_{u}} c + UA) = q_{s} + UA T_{au_{s}} + m_{u} c T_{a}$$

$$\Rightarrow \frac{dT_{s}}{dt} + T_{s}(\overline{m_{u}} c + UA) = q_{s} + UA T_{au_{s}} + m_{u} c T_{a}$$

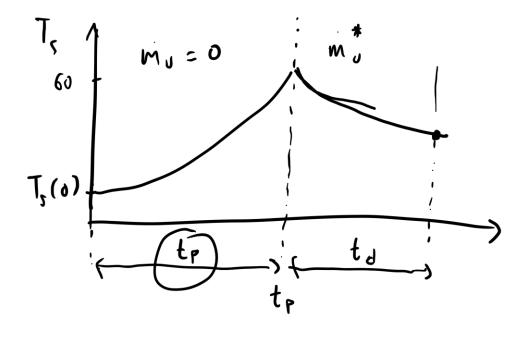
$$\Rightarrow \frac{dV_{s}(t)}{dt} + a Y(t) = b + Ce^{-at}$$

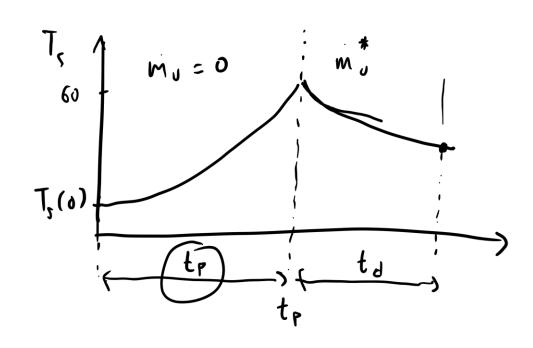
$$\Rightarrow \frac{dV_{s}(t)}{dt} + a Y(t) = b + Ce^{-at}$$

$$q_{s} - UA(\overline{t_{s}} - \overline{t_{au_{s}}}) = m_{u} c(\overline{t_{s}} - \overline{t_{a}}) + p_{u} V_{s} c(\overline{d\overline{t_{s}}})$$

$$\int_{c}^{c} V_{s} c(\overline{d\overline{t_{s}}}) + T_{s}(m_{u} c + UA) = q_{s} + UA T_{au_{s}} + m_{u} c T_{a}$$

$$\Rightarrow \frac{dT_{s}}{dt} + T_{s}(\overline{m_{u}} c + UA) = q_{s} + UA T_{au_{s}} + m_{u} c T_{a}$$


$$\Rightarrow \frac{dT_{s}}{dt} + T_{s}(\overline{m_{u}} c + UA) = q_{s} + UA T_{au_{s}} + m_{u} c T_{a}$$


$$\Rightarrow \frac{dV_{s}(t)}{dt} + a Y(t) = b + Ce^{-at}$$

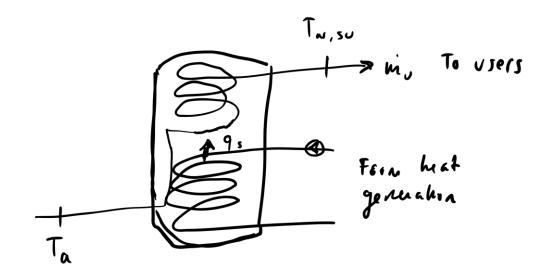
$$\Rightarrow \frac{dV_{s}(t)}{dt} + a Y(t) = b + Ce^{-at}$$

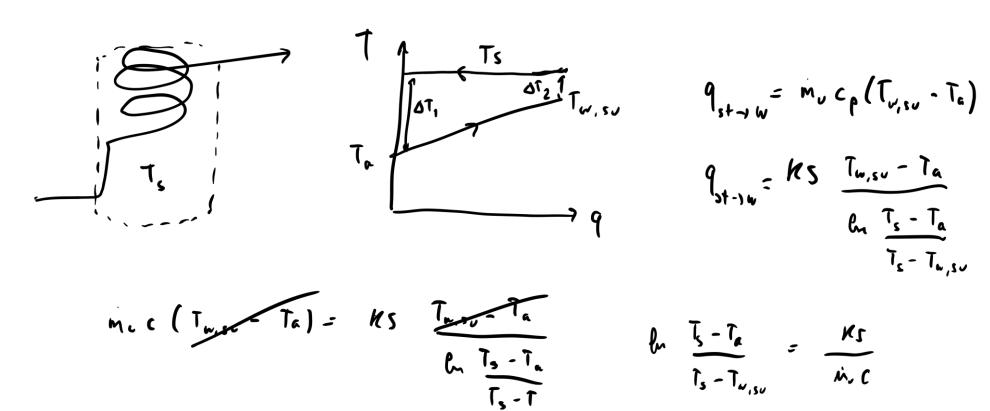
$$\begin{cases} T_s(t) = \frac{b}{a} + Ce^{-at} \\ T_s(t=0) = \frac{b}{a} + C \end{cases} \rightarrow C = T_s(0) - \frac{b}{a}$$

$$T_s(t) = \frac{b}{a} + \left(T_s(0) - \frac{b}{a}\right)e^{-at}$$






Pre-hading 
$$A = a_{\theta}$$
  $b = b_{\theta}$   $(m_{\theta} = 0)$ 


Delivery  $A = a_{\theta}$   $b = b_{\theta}$   $(m_{\theta} = 0)$ 

#### Sizing

Fix pre-heating time  $(t_p)$  and delivery time  $(t_d)$   $\rightarrow$ 

find hot water storage volume ( $V_s$ ) and thermal power of the coil ( $q_s$ )





$$\frac{T_{s}-T_{n}}{T_{s}-T_{w,sv}}=e^{\frac{RS}{R_{s}}}$$

$$T_{w,sv}=\int_{0}^{\infty} (T_{s}) \qquad \left[\begin{array}{c} f_{0}, \ \text{microt} \ \text{fuf} \\ \text{water st} \end{array}\right]$$

$$T_{w,sv}=T_{s}-\left(\overline{\tau}_{s}-T_{w,c}\right)e^{\frac{-RS}{R_{v}c}}$$

$$q_{s}-UA\left(\overline{\tau}_{s}-T_{anb}\right)=\text{mic}\left(T_{w,sv}-T_{a}\right)+\text{ms}\left(\frac{dT_{s}}{dt}\right)$$

#### Sizing

Fix pre-heating time  $(t_p)$  and delivery time  $(t_d)$ 

find hot water storage volume ( $V_S$ ) and thermal power of the coil ( $q_S$ )

## Operating temperature

#### The problem of legionella

Legionella is an aerobic bacterium that grows in warm (20-50°C) aquatic habitats.

It is a problem in case of stagnating water  $\rightarrow$  mixed hot water storage systems.

## Operating temperature

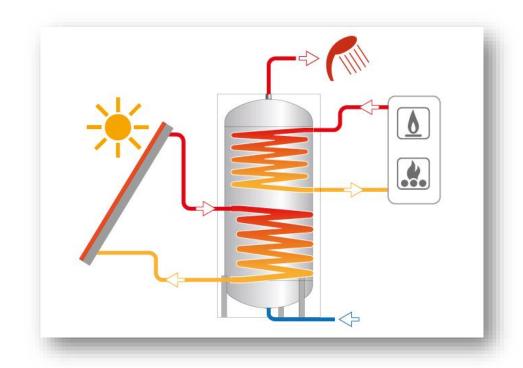
#### The problem of legionella

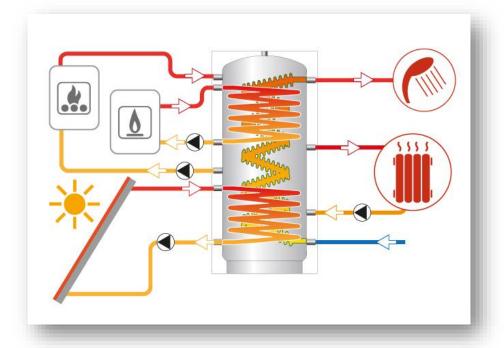
Can be prevented by:

- Avoiding stagnation
- Keeping Ts > 60°C (threshold depending on the Standard)
- Thermal shocks or anti-legionella cycles (bringing Ts to 70-80°C every day for 30 minutes)
- Hyper-cloarting hot water (disinfecting action)

# Sizing for multiple units

#### **Contemporaneity factor**


Users do not ask for DHW exactly in the same moment




# Integration of renewables

#### Solar heat

Heat from solar collectors into systems with storage



