
Lecture #10
LASSO & Gradient
Descent

Gian Antonio Susto

Machine Learning
2024/2025

We will keep future labs @
Da Room

Before starting

From last lecture: error

M
SE

4

A complicated model is not always ‘optimal’:

• Overly complex models tend to ‘overfit’,
meaning they fail to ‘generalize.’ This
results in high variance, where the model
captures noise rather than true patterns
in the data.

• On the other hand, very simple models
lead to ‘underfitting’, where the available
data is not fully leveraged (‘the model has
learned too little’). This is associated with
high bias, as the model is too simplistic to
capture the underlying structure of the
data.

The key is to find a balance between bias
and variance to achieve good generalization.

Recap: Bias & Variance / Under & Over-fitting

5

Recap: Bias & Variance / Under & Over-fitting

6

Recap: Regularization & Ridge Regression

!1 𝜆

- There are more ‘formal’ approaches that
allow for optimized management of the
trade-off between underfitting and
overfitting.

- Regularization is a technique used in ML
to prevent overfitting by adding a
penalty term to the loss function of a
model.

- In linear regression, this is achieved by
‘simply’ changing the cost function: β s.t.

J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+𝜆	𝑅,

R is a penalty on model complexity.
Regularization parameter
(this is an hyperparameter)

Based on a test dataset, it is possible to choose
the hyperparameter value to achieve the best
trade-off between model complexity and
accuracy

7

Recap: Regularization & Ridge Regression

!1 𝜆

- There are more ‘formal’ approaches that
allow for optimized management of the
trade-off between underfitting and
overfitting.

- Regularization is a technique used in ML
to prevent overfitting by adding a
penalty term to the loss function of a
model.

- In linear regression, this is achieved by
‘simply’ changing the cost function: β s.t.

J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝜆	𝑅,

R is a penalty on model complexity.

If 𝑅 = ∑&"'
(𝛽&

% (L2
penalization) we are dealing

with Ridge Regression
What if we make other
choices? Any ideas?

8

Recap: Regularization & Ridge Regression

!1 𝜆

- There are more ‘formal’ approaches that
allow for optimized management of the
trade-off between underfitting and
overfitting.

- Regularization is a technique used in ML
to prevent overfitting by adding a
penalty term to the loss function of a
model.

- In linear regression, this is achieved by
‘simply’ changing the cost function: β s.t.

J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝜆	𝑅,

R is a penalty on model complexity.

If 𝑅 = ∑&"'
(𝛽&

% (L2
penalization) we are dealing

with Ridge Regression
What if we make other
choices? Any ideas?

If 𝑅 = ∑&"'
(|𝛽&| (L1 penalization) we

have Least Absolute Shrinkage and
Selection Operator (LASSO)

9

Ridge Regression
vs LASSO:
traceplots

The Prostate dataset has 97 observations
with 8 clinical features predicting log-PSA
levels (proxy of the problem)
https://www.statlearning.com/resources-
python

https://www.statlearning.com/resources-python
https://www.statlearning.com/resources-python

10

Ridge Regression
vs LASSO:
traceplots

Let’s suppose the
optimal values for the

regularization
parameter are here

Which one will you choose?

11

Ridge Regression
vs LASSO:
traceplots

Let’s suppose the
optimal values for the

regularization
parameter are here

Which one will you choose?

- Performances

- Sparsity! Ie. having some
coefficients equal to zero

Benefits of a sparse solution

- Computational efficiency (faster
prediction, lower storage and
memory needs, efficient
retraining, …)

- Robustness (in case of noisy data
for example)

- Interpretability (less variables =>
easier models to understand)

- Easier management &
deployment (easier system
management, edge
implementation …)

Benefits of a sparse solution

- Computational efficiency (faster
prediction, lower storage and
memory needs, efficient
retraining, …)

- Robustness (in case of noisy data
for example)

- Interpretability (less variables =>
easier models to understand)

- Easier management &
deployment (easier system
management, edge
implementation …)

The LASSO performs feature
selection, one of the preprocessing
step, directly inside the modelling

phase!

A geometric interpretation J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝜆	𝑅

R is a penalty on model
complexity.

LASSO RIDGE REGRESSION

Min MSE is
achieved here Min MSE is

achieved here

A geometric interpretation J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝜆	𝑅

R is a penalty on model
complexity.

LASSO RIDGE REGRESSION

Min MSE is
achieved here Min MSE is

achieved here

A geometric interpretation J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝜆	𝑅

R is a penalty on model
complexity.

LASSO RIDGE REGRESSION

Min MSE is
achieved here Min MSE is

achieved here

A geometric interpretation J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝜆	𝑅

R is a penalty on model
complexity.

LASSO RIDGE REGRESSION

Min MSE is
achieved here Min MSE is

achieved here

A geometric interpretation J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝜆	𝑅

R is a penalty on model
complexity.

LASSO RIDGE REGRESSION

Min MSE is
achieved here Min MSE is

achieved here

This is a sparse
solution!

Performance on the
Prostate Dataset

Performance on the
Prostate Dataset

Any drawbacks in
using LASSO?

Performance on the
Prostate Dataset

Any drawbacks in
using LASSO?

Unfortunately, we cannot rely
on a closed-form solution to

derive the parameters!

How do we solve this?

MIT Introduction to Deep Learning http://introtodeeplearning.com

We seek for a set of weights that achieve minimal loss:

Training in supervised ML, typically involves
minimizing a loss!

Generic loss ℒ, it can be MSE,
cross-entropy (we’ll see it in

classification), …

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

We seek for a set of weights that achieve minimal loss:

Training in supervised ML, typically involves
minimizing a loss!

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

We seek for a set of weights that achieve minimal loss:

Training in supervised ML, typically involves
minimizing a loss!

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

We seek for a set of weights that achieve minimal loss:

Training in supervised ML, typically involves
minimizing a loss!

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

We seek for a set of weights that achieve minimal loss:

Training in supervised ML, typically involves
minimizing a loss!

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

We seek for a set of weights that achieve minimal loss:

(Gradient Descent)

Training in supervised ML, typically involves
minimizing a loss!

http://introtodeeplearning.com/

MIT Introduction to Deep Learning http://introtodeeplearning.com

We seek for a set of weights that achieve minimal loss:

(Gradient Descent)

Learning Rate

Training in supervised ML, typically involves
minimizing a loss!

http://introtodeeplearning.com/

Gradient Descent: initial choices of the
parameters

- Choices of the initial parameters can be completely random,
however

- However, there are some guidelines to speed up the procedure:

1. If λ is large → Use zero initialization

2. If features are highly correlated → Use Ridge solution

3. If features are independent and λ is small → Use OLS solution

4. If unsure → Use Ridge or OLS, as they provide reasonable starting
points.

- The learning rate η is critical in gradient descent. If it's too large, the
algorithm diverges; if it's too small, convergence is slow.

- Some guidelines:

1. Upper bound – The learning rate should satisfy

where L is the largest eigenvalue of X’X (also called the Lipschitz
constant)

2. Adaptive learning rate - We can adjust η dynamically:

- η0 is the initial learning rate

- t is the current iteration

- Γ is a decay parameter (e.g., γ=0.01).

Gradient Descent: learning rate

- The learning rate η is critical in gradient descent. If it's too large, the
algorithm diverges; if it's too small, convergence is slow.

- Some guidelines:

1. Upper bound – The learning rate should satisfy

where L is the largest eigenvalue of X’X (also called the Lipschitz
constant)

2. Adaptive learning rate - We can adjust η dynamically:

- η0 is the initial learning rate

- t is the current iteration

- Γ is a decay parameter (e.g., γ=0.01).

Gradient Descent: learning rate

- The learning rate η is critical in gradient descent. If it's too large, the
algorithm diverges; if it's too small, convergence is slow.

- Some guidelines:

1. Upper bound – The learning rate should satisfy

where L is the largest eigenvalue of X’X (also called the Lipschitz
constant)

2. Adaptive learning rate - We can adjust η dynamically:

- η0 is the initial learning rate

- t is the current iteration

- Γ is a decay parameter (e.g., γ=0.01).

Gradient Descent: learning rate

Gradient Descent: learning rate

- The learning rate η is critical in gradient descent. If it's too large, the
algorithm diverges; if it's too small, convergence is slow.

- Some guidelines:

1. Upper bound – The learning rate should satisfy

where L is the largest eigenvalue of X’X (also called the Lipschitz
constant)

2. Adaptive learning rate - We can adjust η dynamically:

- η0 is the initial learning rate

- t is the current iteration

- Γ is a decay parameter (e.g., γ=0.01).

Gradient Descent:
computing the gradient

- Derivative of LASSO is not
defined in 0

Gradient Descent:
computing the gradient

- Derivative of LASSO is not
defined in 0, we need to use
a subgradient g

Shape of cost function in OLS, RR & LASSO

Gradient is always
perpendicular to

contour plot

39

Other approaches for solving the LASSO

- Least Angle Regression (LARS)

- Subcoordinate Methods

Ridge vs LASSO
✅ Pros

- Prevents overfitting: It shrinks the
coefficients, making the model more
robust to noise.

- Works well with collinearity: If features are
correlated, Ridge distributes weights more
evenly.

- Closed–form solution

❌ Cons

- No feature selection: Ridge shrinks
coefficients but never eliminates them, so
it doesn’t provide a sparse model.

- Harder to interpret since all features
remain, the model may be less
interpretable than LASSO.

- Not ideal for sparse Data: if many features
are irrelevant, Ridge does not remove
them, potentially reducing efficiency.

✅ Pros

- Performs feature selection + sparse model:
useful when you want a simpler,
interpretable model with fewer nonzero
coefficients.

- Works well in high-dimensional settings:
Ideal when there are many irrelevant
features (e.g., text, genomics).

- Helps with multicollinearity: LASSO
automatically selects the most important
feature among correlated ones.

❌ Cons

- Non-differentiable at zero and higher
computational cost

- Unstable with correlated features: LASSO
tends to arbitrarily select one feature from
a group of correlated ones and ignore the
rest

Ridge vs LASSO
✅ Pros

- Prevents overfitting: It shrinks the
coefficients, making the model more
robust to noise.

- Works well with collinearity: If features are
correlated, Ridge distributes weights more
evenly.

- Closed–form solution

❌ Cons

- No feature selection: Ridge shrinks
coefficients but never eliminates them, so
it doesn’t provide a sparse model.

- Harder to interpret since all features
remain, the model may be less
interpretable than LASSO.

- Not ideal for sparse Data: if many features
are irrelevant, Ridge does not remove
them, potentially reducing efficiency.

✅ Pros

- Performs feature selection + sparse model:
useful when you want a simpler,
interpretable model with fewer nonzero
coefficients.

- Works well in high-dimensional settings:
Ideal when there are many irrelevant
features (e.g., text, genomics).

- Helps with multicollinearity: LASSO
automatically selects the most important
feature among correlated ones.

❌ Cons

- Non-differentiable at zero and higher
computational cost

- Unstable with correlated features: LASSO
tends to arbitrarily select one feature from
a group of correlated ones and ignore the
rest

Ridge vs LASSO
✅ Pros

- Prevents overfitting: It shrinks the
coefficients, making the model more
robust to noise.

- Works well with collinearity: If features are
correlated, Ridge distributes weights more
evenly.

- Closed–form solution

❌ Cons

- No feature selection: Ridge shrinks
coefficients but never eliminates them, so
it doesn’t provide a sparse model.

- Harder to interpret since all features
remain, the model may be less
interpretable than LASSO.

- Not ideal for sparse Data: if many features
are irrelevant, Ridge does not remove
them, potentially reducing efficiency.

✅ Pros

- Performs feature selection + sparse model:
useful when you want a simpler,
interpretable model with fewer nonzero
coefficients.

- Works well in high-dimensional settings:
Ideal when there are many irrelevant
features (e.g., text, genomics).

- Helps with multicollinearity: LASSO
automatically selects the most important
feature among correlated ones.

❌ Cons

- Non-differentiable at zero and higher
computational cost

- Unstable with correlated features: LASSO
tends to arbitrarily select one feature from
a group of correlated ones and ignore the
rest

Ridge vs LASSO
✅ Pros

- Prevents overfitting: It shrinks the
coefficients, making the model more
robust to noise.

- Works well with collinearity: If features are
correlated, Ridge distributes weights more
evenly.

- Closed–form solution

❌ Cons

- No feature selection: Ridge shrinks
coefficients but never eliminates them, so
it doesn’t provide a sparse model.

- Harder to interpret since all features
remain, the model may be less
interpretable than LASSO.

- Not ideal for sparse Data: if many features
are irrelevant, Ridge does not remove
them, potentially reducing efficiency.

✅ Pros

- Performs feature selection + sparse model:
useful when you want a simpler,
interpretable model with fewer nonzero
coefficients.

- Works well in high-dimensional settings:
Ideal when there are many irrelevant
features (e.g., text, genomics).

- Helps with multicollinearity: LASSO
automatically selects the most important
feature among correlated ones.

❌ Cons

- Non-differentiable at zero and higher
computational cost

- Unstable with correlated features: LASSO
tends to arbitrarily select one feature from
a group of correlated ones and ignore the
rest

Ridge vs LASSO
✅ Pros

- Prevents overfitting: It shrinks the
coefficients, making the model more
robust to noise.

- Works well with collinearity: If features are
correlated, Ridge distributes weights more
evenly.

- Closed–form solution

❌ Cons

- No feature selection: Ridge shrinks
coefficients but never eliminates them, so
it doesn’t provide a sparse model.

- Harder to interpret since all features
remain, the model may be less
interpretable than LASSO.

- Not ideal for sparse Data: if many features
are irrelevant, Ridge does not remove
them, potentially reducing efficiency.

✅ Pros

- Performs feature selection + sparse model:
useful when you want a simpler,
interpretable model with fewer nonzero
coefficients.

- Works well in high-dimensional settings:
Ideal when there are many irrelevant
features (e.g., text, genomics).

- Helps with multicollinearity: LASSO
automatically selects the most important
feature among correlated ones.

❌ Cons

- Non-differentiable at zero and higher
computational cost

- Unstable with correlated features: LASSO
tends to arbitrarily select one feature from
a group of correlated ones and ignore the
rest

What if I cannot
choose?

45

Elastic Net: A Hybrid of Ridge and LASSO

- Elastic Net is a regularized
regression method that combines
Ridge (L2) and LASSO (L1)
penalties to overcome their
individual weaknesses.

α=1 → Pure LASSO

α=0 → Pure Ridge

46

Elastic Net: Prostate dataset

Thank you!

Gian Antonio Susto

Machine Learning
2024/2025

