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A complicated model is not always ‘optimal’:

• Overly complex models tend to ‘overfit’, 
meaning they fail to ‘generalize.’ This 
results in high variance, where the model 
captures noise rather than true patterns 
in the data.

• On the other hand, very simple models 
lead to ‘underfitting’, where the available 
data is not fully leveraged (‘the model has 
learned too little’). This is associated with 
high bias, as the model is too simplistic to 
capture the underlying structure of the 
data.

The key is to find a balance between bias 
and variance to achieve good generalization.

Recap: Bias & Variance / Under & Over-fitting
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Recap: Bias & Variance / Under & Over-fitting
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Recap: Regularization & Ridge Regression

!1 𝜆

- There are more ‘formal’ approaches that 
allow for optimized management of the 
trade-off between underfitting and 
overfitting.

- Regularization is a technique used in ML 
to prevent overfitting by adding a 
penalty term to the loss function of a 
model.

- In linear regression, this is achieved by 
‘simply’ changing the cost function: β s.t.    

J = 	∑!"#$ [𝑦 ! − (𝑦 ! ]%+𝜆	𝑅,

R is a penalty on model complexity. 
Regularization parameter 
(this is an hyperparameter)

Based on a test dataset, it is possible to choose 
the hyperparameter value to achieve the best 
trade-off between model complexity and 
accuracy
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Recap: Regularization & Ridge Regression

!1 𝜆

- There are more ‘formal’ approaches that 
allow for optimized management of the 
trade-off between underfitting and 
overfitting.

- Regularization is a technique used in ML 
to prevent overfitting by adding a 
penalty term to the loss function of a 
model.

- In linear regression, this is achieved by 
‘simply’ changing the cost function: β s.t.    

J = 	∑!"#$ [𝑦 ! − (𝑦 ! ]%+	𝜆	𝑅,

R is a penalty on model complexity. 

If 𝑅 = ∑&"'
( 𝛽&

% (L2 
penalization) we are dealing 

with Ridge Regression
What if we make other 
choices? Any ideas?

If 𝑅 = ∑&"'
( |𝛽&| (L1 penalization) we 

have Least Absolute Shrinkage and 
Selection Operator (LASSO)



9

Ridge Regression 
vs LASSO: 
traceplots

The Prostate dataset has 97 observations 
with 8 clinical features predicting log-PSA 
levels (proxy of the problem) 
https://www.statlearning.com/resources-
python

https://www.statlearning.com/resources-python
https://www.statlearning.com/resources-python
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Ridge Regression 
vs LASSO: 
traceplots

Let’s suppose the 
optimal values for the 

regularization 
parameter are here

Which one will you choose?
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Ridge Regression 
vs LASSO: 
traceplots

Let’s suppose the 
optimal values for the 

regularization 
parameter are here

Which one will you choose?

- Performances

- Sparsity! Ie. having some 
coefficients equal to zero



Benefits of a sparse solution

- Computational efficiency (faster 
prediction, lower storage and 
memory needs, efficient 
retraining, …)

- Robustness (in case of noisy data 
for example)

- Interpretability (less variables => 
easier models to understand)

- Easier management & 
deployment (easier system 
management, edge 
implementation …)



Benefits of a sparse solution

- Computational efficiency (faster 
prediction, lower storage and 
memory needs, efficient 
retraining, …)

- Robustness (in case of noisy data 
for example)

- Interpretability (less variables => 
easier models to understand)

- Easier management & 
deployment (easier system 
management, edge 
implementation …)

The LASSO performs feature 
selection, one of the preprocessing 
step, directly inside the modelling 

phase! 



A geometric interpretation J = 	∑!"#$ [𝑦 ! − (𝑦 ! ]%+	𝜆	𝑅
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complexity. 

LASSO RIDGE REGRESSION

Min MSE is 
achieved here Min MSE is 

achieved here
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A geometric interpretation J = 	∑!"#$ [𝑦 ! − (𝑦 ! ]%+	𝜆	𝑅

R is a penalty on model 
complexity. 

LASSO RIDGE REGRESSION

Min MSE is 
achieved here Min MSE is 

achieved here

This is a sparse 
solution!



Performance on the 
Prostate Dataset
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Any drawbacks in 
using LASSO?



Performance on the 
Prostate Dataset

Any drawbacks in 
using LASSO?

Unfortunately, we cannot rely 
on a closed-form solution to 

derive the parameters!

How do we solve this?



MIT Introduction to Deep Learning http://introtodeeplearning.com

We seek for a set of weights that achieve minimal loss:

Training in supervised ML, typically involves 
minimizing a loss!

Generic loss ℒ, it can be MSE, 
cross-entropy (we’ll see it in 

classification), …

http://introtodeeplearning.com/
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MIT Introduction to Deep Learning http://introtodeeplearning.com

We seek for a set of weights that achieve minimal loss:

(Gradient Descent)

Learning Rate

Training in supervised ML, typically involves 
minimizing a loss!

http://introtodeeplearning.com/


Gradient Descent: initial choices of the 
parameters

- Choices of the initial parameters can be completely random, 
however

- However, there are some guidelines to speed up the procedure:

1. If λ is large → Use zero initialization

2. If features are highly correlated → Use Ridge solution 

3. If features are independent and λ is small → Use OLS solution

4. If unsure → Use Ridge or OLS, as they provide reasonable starting 
points.



- The learning rate η is critical in gradient descent. If it's too large, the 
algorithm diverges; if it's too small, convergence is slow. 

- Some guidelines:

1. Upper bound – The learning rate should satisfy

where L is the largest eigenvalue of X’X (also called the Lipschitz 
constant)

2. Adaptive learning rate - We can adjust η dynamically:

- η0 is the initial learning rate

- t is the current iteration

- Γ is a decay parameter (e.g., γ=0.01).

Gradient Descent: learning rate
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Gradient Descent: 
computing the gradient

- Derivative of LASSO is not 
defined in 0



Gradient Descent: 
computing the gradient

- Derivative of LASSO is not 
defined in 0, we need to use 
a subgradient g



Shape of cost function in OLS, RR & LASSO 





Gradient is always 
perpendicular to 

contour plot
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Other approaches for solving the LASSO

- Least Angle Regression (LARS)

- Subcoordinate Methods



Ridge vs LASSO
✅ Pros

- Prevents overfitting: It shrinks the 
coefficients, making the model more 
robust to noise.

- Works well with collinearity: If features are 
correlated, Ridge distributes weights more 
evenly.

- Closed–form solution

❌ Cons

- No feature selection: Ridge shrinks 
coefficients but never eliminates them, so 
it doesn’t provide a sparse model.

- Harder to interpret since all features 
remain, the model may be less 
interpretable than LASSO.

- Not ideal for sparse Data: if many features 
are irrelevant, Ridge does not remove 
them, potentially reducing efficiency.

✅ Pros

- Performs feature selection + sparse model: 
useful when you want a simpler, 
interpretable model with fewer nonzero 
coefficients.

- Works well in high-dimensional settings: 
Ideal when there are many irrelevant 
features (e.g., text, genomics).

- Helps with multicollinearity: LASSO 
automatically selects the most important 
feature among correlated ones.

❌ Cons

- Non-differentiable at zero and higher 
computational cost

- Unstable with correlated features: LASSO 
tends to arbitrarily select one feature from 
a group of correlated ones and ignore the 
rest
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features (e.g., text, genomics).
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automatically selects the most important 
feature among correlated ones.

❌ Cons

- Non-differentiable at zero and higher 
computational cost

- Unstable with correlated features: LASSO 
tends to arbitrarily select one feature from 
a group of correlated ones and ignore the 
rest

What if I cannot
choose?
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Elastic Net: A Hybrid of Ridge and LASSO

- Elastic Net is a regularized 
regression method that combines 
Ridge (L2) and LASSO (L1) 
penalties to overcome their 
individual weaknesses.

α=1 → Pure LASSO 

α=0 → Pure Ridge
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Elastic Net: Prostate dataset



Thank you!

Gian Antonio Susto 

Machine Learning
2024/2025


