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From last lecture: error

Comparison of OLS and Ridge Regression on High-Dimensional Regression Dataset
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Recap: Bias & Variance / Under & Over-fitting

A complicated modelis not always ‘optimal’:

Overly complex models tend to ‘overfit’, | N L] i Shlauluiee) o
meaning they fail to ‘generalize.’ This |
results in high variance, where the model
captures noise rather than true patterns
in the data.

Best Fit

Error

~Iraining Frre,

On the other hand, very simple models — —
lead to ‘underfitting’, where the available Model "complexity
datais not fully leveraged (‘the model has

learned too little’). This is associated with

data.

high bias, as the model is too simplistic to | 2 | g 8
capture the underlying structure of the g : \
6

st | b - Ol
The key is to find a balance between bias High B Low Bias, LowV o

and variance to achieve good generalization.



Recap: Bias & Variance / Under & Over-fitting
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Recap: Regularization & Ridge Regression

Based on a test dataset, it is possible to choose
the hyperparameter value to achieve the best B e

trade-off between model complexity and
accuracy

Error

- Regularization is a technique used in ML
to prevent overfitting by adding a
penalty term to the loss function of a
model.

- Inlinear regression, this is achieved by
‘simply’ changing the cost function..g-st:

] = Z?=1[y(i) - yW]? v,
Ris a penalty on model complexity.

Regularization parameter
(this is an hyperparameter)




Recap: Regularization & Ridge Regression

Traceplot of Ridge Coefficients
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J= 3 [y® — y D124 2] penalization) we are dealing

with

What if we make other
choices? Any ideas?



Recap: Regularization & Ridge Regression

Traceplot of Ridge Coefficients
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Traceplot of Lasso Coefficients

Ridge Regression
vs LASSO:
traceplots

Coefficient Value

Coefficient Value

Traceplot of Ridge Coefficients
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The Prostate dataset has 97 observations
with 8 clinical features predicting log-PSA
levels (proxy of the problem)

https://www.statlearning.com/resources-

python
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Ridge Regression
vs LASSO:
traceplots

Let’s suppose the
optimal values for the [P

regularization

Coefficient Value

parameter are here
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Which one will you choose?



Ridge Regression
vs LASSO:
traceplots

Let’s suppose the
optimal values for the [P

regularization

Coefficient Value

parameter are here
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Which one will you choose?
- Performances

- Sparsity! le. having some
coefficients equal to zero



Benefits of a sparse solution

Computational efficiency (faster
prediction, lower storage and
memory needs, efficient
retraining, ...)

Robustness (in case of noisy data
for example)

Comparison of Coefficients (OLS, Ridge, Lasso)

Interpretability (less variables => —w
easier models to understand) — Lasso st o)
Easier management &

deployment (easier system /\
management, edge . | /\ _—
implementation ... \/ \/




Benefits of a sparse solution

Computational efficiency (faster

prediction, lower storage and
memory needs, efficient
retraining, ...)

Robustness (in case of noisy data

for example)

Interpretability (less variables =>
easier models to understand)

Easier management &
deployment (easier system
management, edge
implementation ...

Coefficient Value

0.4

0.2 1

0.0
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Comparison of Coefficients (OLS, Ridge, Lasso)

The LASSO performs feature
selection, one of the preprocessing

step, directly inside the modelling
phasel

— OLS
—— Ridge (best alpha)
—— Lasso (best alpha)




A geometric interpretation | =- AR
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A geometric interpretation

= 30 [y® — y®124 AR
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A geometric interpretation

= 30 [y® — y®124 AR

This is a sparse

solution!
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R? Score

Performance on the

Prostate Dataset

Boxplot of R? Scores (Cross-validation)

Boxplot of MSE Scores (Cross-validation)
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Training in supervised ML, typically involves
minimizing a loss!

We seek for a set of weights that achieve minimal loss:

1 n . .
=g E0w) ) i
w n i=1

W* = argmin J (W)
w

min {Z(.%- ~XB Y |ﬂj|}

i=1 j=1

J(wg, wy) ‘

MIT /ntroduction to Deep Learning http://introtodeeplearning.com
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Training in supervised ML, typically involves

minimizing a loss!

We seek for a set of weights that achieve minimal loss:

1 n . .
W* = argmin— E £(f(x(l); W),y(”)
w n i=1

W* = argmin J (W)
w

J(wg, wy)

MIT /ntroduction to Deep Learning http://introtodeeplearning.com

Algorithm

Initialize weights randomly ~N'(0, 0%)
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Training in supervised ML, typically involves
minimizing a loss!

We seek for a set of weights that achieve minimal loss:

1 n . .
W* = argmin— E £(f(x(l); W),y(”)
w n i=1

W = argmin /(W) Algorithm
v | Inttialize weights randomly ~V (0, 02)

aJ(W)

Compute gradient, v

J(wg, wy)
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Training in supervised ML, typically involves
minimizing a loss!

We seek for a set of weights that achieve minimal loss:

1 n . .
W* = argmin— E L(f(x(l); W),y(”)
w n i=1

W = argmin /(W) Algorithm
v | Inttialize weights randomly ~V (0, 0—2)

aJ(W)

Compute gradient, v

J(wg, wy)

aJ(W)

Update weights, W <« W — 1 v

MIT /ntroduction to Deep Learning http://introtodeeplearning.com
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Training in supervised ML, typically involves
minimizing a loss!

We seek for a set of weights that achieve minimal loss:

1 n . .
W* = argmin— E L(f(x(l); W),y(”)
w n i=1

W* = argmin J (W) Algorithm
i . Initialize weights randomly ~N(0, 0%)

2. Loop until convergence:

aJ(W)

Compute gradient, v

J(wg, wy)

aJ(W)

Update weights, W <« W — 1 v

. Return weights

MIT /ntroduction to Deep Learning http://introtodeeplearning.com
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Training in supervised ML, typically involves
minimizing a loss!

We seek for a set of weights that achieve minimal loss:

1 n . .
W* = argmin— E L(f(x(l); W),y(”)
w n i=1

W* = argmin J (W) Algorithm (Gradient Descent)
|74

. Initialize weights randomly ~N'(0, 04)

2. Loop until convergence:

aJ(W)

Compute gradient, v

J(wg, wy)

aJ(W)

Update weights, W <« W — 1 v

. Return weights
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Training in supervised ML, typically involves
minimizing a loss!

We seek for a set of weights that achieve minimal loss:

1 n . .
W* = argmin— E L(f(x(l); W),y(‘))
w n i=1

W* = argmin J (W) Algorithm (Gradient Descent)
|74

. Initialize weights randomly ~N'(0, 04)

2. Loop until convergence:

3. Compute gradient, o/ W)
J(wo, wy) ow "
4 Update weights, W <« W —n S
- © ow
W, . Return Weightg Learning Rate
Wo

MIT /ntroduction to Deep Learning http://introtodeeplearning.com
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Gradient Descent:initial choices of the
parameters

Choices of the initial parameters can be completely random,
however

However, there are some guidelines to speed up the procedure:
f Aislarge — Use zero initialization
f features are highly correlated — Use Ridge solution

f features are independent and A is small — Use OLS solution

f unsure — Use Ridge or OLS, as they provide reasonable starting
points.



Gradient Descent:|learning rate

- Thelearning rate nis critical in gradient descent. If it's too large, the
algorithm diverges; if it's too small, convergence is slow.

Too low

1(8)| |

A small learning rate
requires many updates
before reaching the
minimum point



Gradient Descent:|learning rate

- Thelearning rate nis critical in gradient descent. If it's too large, the
algorithm diverges; if it's too small, convergence is slow.
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Gradient Descent:|learning rate

- Thelearning rate nis critical in gradient descent. If it's too large, the
algorithm diverges; if it's too small, convergence is slow.

Too low Just right Too high
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A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
before reaching the minimum point which lead to divergent
minimum point

behaviors



Gradient Descent:|learning rate

- Thelearning rate nis critical in gradient descent. If it's too large, the
algorithm diverges; if it's too small, convergence is slow.

- Some guidelines: 1

77<z

where Lis the largest eigenvalue of XX (also called the Lipschitz
constant)

1. Upper bound — The learning rate should satisfy

Tlo
1+~

2. Adaptive learning rate - We can adjust n dynamically: 7, =
- nOistheinitial learning rate
- tisthe current iteration

- Tis a decay parameter (e.g., y=0.01).



Gradient Descent:
computing the gradient

Derivative of LASSO is not

definedin O

n

J(w) = (v — =] w)* + A

1=1

+1,
_]_,
777

°)

w >0
w <0

w=~0

p

> lwj
j=1




Gradient Descent: "

computing the gradient

- Derivative of LASSO is not 3
defined in O, we need to use T TTIIIiInaNgrTT T } Subgradient

— -
- - - -
- - - ~- - -
- - - - -
- -

a y = glox —xo) + flxp)
n P L T >
J(w) =Y (yi —zjw)* + 1) |wj]
T ) > fw) + g(w)(w — w)
J +1, w>0 1 > 0
%lw‘ =1L w<0 Of (w) = { —1, w <0

777 w=20 any valuein [—1,1], w=0



Shape of cost functionin OLS, RR & LASSO

LASSO Cost Function

OLS Cost Function Ridge Regression Cost Function

Loss

OFNWarUow®
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LASSO Cost Function

OLS Cost Function Ridge Regression Cost Function

Loss
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Other approaches for solving the LASSO

L east Angle Regression (LARS)
Subcoordinate Methods




Ridge VS LASSO

Pros

- Prevents overfitting: It shrinks the
coefficients, making the model more
robust to noise.

- Works well with collinearity: If features are
Correllated, Ridge distributes weights more
evenly.

- Closed-form solution



Ridge VS

Pros

Prevents overfitting: It shrinks the
coefficients, making the model more
robust to noise.

Works well with collinearity: If features are
Correllated, Ridge distributes weights more
evenly.

Closed—-form solution

LASSO

Pros

- Performs feature selection + sparse model:
useful when you want a simpler,
interpretablé model with fewer nonzero
coefficients.

- Works well in high-dimensional settings:
Ideal when there are many irrelevant
features (e.g., text, genomics).

- Helps with multicollinearity: LASSO
automatically selects the most important
feature among correlated ones.



Ridge

Pros

Prevents overfitting: It shrinks the
coefficients, making the model more
robust to noise.

Works well with collinearity: If features are
Correllated, Ridge distributes weights more
evenly.

Closed—-form solution

X Cons

No feature selection: Ridge shrinks
coefficients but never eliminates them, so
it doesn’t provide a sparse model.

Harder to interpret since all features
remain, the model may be less
interpretable than LASSO.

Not ideal for sparse Data: if many features
are irrelevant, Ridge does not remove
them, potentially reducing efficiency.
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interpretablé model with fewer nonzero
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Ideal when there are many irrelevant
features (e.g., text, genomics).

Helps with multicollinearity: LASSO
automatically selects the most important
feature among correlated ones.
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Pros

Prevents overfitting: It shrinks the
coefficients, making the model more
robust to noise.

Works well with collinearity: If features are
Correllated, Ridge distributes weights more
evenly.

Closed—-form solution

X Cons

No feature selection: Ridge shrinks
coefficients but never eliminates them, so
it doesn’t provide a sparse model.

Harder to interpret since all features
remain, the model may be less
interpretable than LASSO.

Not ideal for sparse Data: if many features
are irrelevant, Ridge does not remove
them, potentially reducing efficiency.

VS

LASSO

Pros

Performs feature selection + sparse model:
useful when you want a simpler,
interpretablé model with fewer nonzero
coefficients.

Works well in high-dimensional settings:
Ideal when there are many irrelevant
features (e.g., text, genomics).

Helps with multicollinearity: LASSO
automatically selects the most important
feature among correlated ones.

X Cons

Non-differentiable at zero and higher
computational cost

Unstable with correlated features: LASSO

tends to arbitrarily select one feature from
a group of correlated ones and ignore the

rest



Ridge VS LASSO

Pros Pros
- Prevents overfitting: It shrinks the - Performs feature selection + sparse model:
coefficients, making the model more useful when you want a simpler,
robust to noise. mte}g .r.etachoIe model with fewer nonzero
coefficients.

Works well with collinearity: If features are o . . .
correlated, Ridge distributes weightsmore - Works well in high-dimensional settings:
evenly. daaldien there are many irrelevant

What If | cannot i (e.g., text, genomics).
ith multicollinearity: LASSO

Closed—-form solution

X Cons choose? tically selects the most important

Ufe among correlated ones.

No feature selection: Ridge shrinks %
coefficients but never eliminates them, so Cons
it doesn’t provide a sparse model.

- Non-differentiable at zero and higher

Harder to interpret since all features computational cost

remain, the model may be less .

interpretable than LASSO. - Unstable with correlated features: LASSO
tends to arbitrarily select one feature from

Not ideal for sparse Data: if many features a group of correlated ones and ignore the

are irrelevant, Ridge does not remove rest

them, potentially reducing efficiency.



Elastic Net: A Hybrid of Ridge and LASSO

- Elastic Net is a regularized
regression method that combines o
Ridge (L2) and LASSO (L1) Ridge
penalties to overcome their
individual weaknesses.

n

p p
J(w) = z:(yZ —zlw)® 4+ A\ Z [w;| + A2 Z’wjz
j=1 j=1

1=1

)\1 — Oé)\, )\2 — (]. — Oé))\ -' Elastic net

a=1— Pure LASSO
a=0 — Pure Ridge



Elastic Net: Prostate dataset

Coefficient Value

Comparison of Coefficients (OLS, Ridge, Lasso, ElasticNet)

— OS5

— Ridge (alpha=1.0)
—— Lasso (alpha=0.1)
— Elastic Net (alpha=0.5)

Feature Index
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Thank you!

Gian Antonio Susto




