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Tomorrow’s lab -> Da Room

Before starting



We are looking for a model F(x) that 
allows us to make predictions 
(estimates) of a target variable y
based on the features x = [x1 x2 … xp]

All the model that we will consider have 
parameters that needs to be trained. For 
example, the β in OLS 

F(x) = β0 + β1x1 + β2x2 + … + βpxp

Two elements are necessary for training:

- Data

- A training procedure with an objective 
(cost) function

Recap – Supervised Learning

x y
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example, the β in OLS 
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Two elements are necessary for training:

- Data

- A training procedure with an objective 
(cost) function

Recap – Supervised Learning

x y
F(x)

For OLS:

- Training is simple: just a 
closed-form solution if we 
consider RMSE as an 
objective



Recap – Training vs Testing

Modeling

Training is not enough; we need to test a model to:

- Understand model performances (Does it generalize? What performances should I 
expect in the real world?)

- Among the different choices I can make in a ML pipeline, which is the best?
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Recap – Training vs Testing

We put randomly 20% of the dataset in testing, 
while keeping the rest in training



Training is not enough; we need to test a model to:

- Understand model performances (Does it generalize? What performances should I 
expect in the real world?)

- Among the different choices I can make in a ML pipeline, which is the best?

We then divide data into a training and a test part:

- Random choice?

- Can we do better? How to choose randomly?

Recap – Training vs Testing



•As said, in modeling we divide data into:
• Training & Validation for model building

• Test for performance estimation

• Based on the random choice, performance can 

dramatically change! Especially with ‘small’ datasets

11

t

Y

Cross-Validation



12

t

Y

•As said, in modeling we divide data into:
• Training & Validation for model building

• Test for performance estimation

• Based on the random choice, performance can 

dramatically change! Especially with ‘small’ datasets

Cross-Validation



• To avoid biases in performance evaluation we 

use cross-validation

•Approaches

- K-fold
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Test Data

Training & Validation Data

Cross-Validation
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Test Data

Training & Validation Data

Cross-Validation

1MSE (Mean Squared Error)… or other performance metric!

• To avoid biases in performance evaluation we 

use cross-validation

•Approaches

- K-fold
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Test Data

Training & Validation Data

Cross-Validation

• To avoid biases in performance evaluation we 

use cross-validation

•Approaches

- K-fold 1MSE 2MSE 3MSE 4MSE 5MSE

AVERAGED MSE1 design choice:
- # splits (k)
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Cross-Validation

• To avoid biases in performance evaluation we 

use cross-validation

•Approaches

- K-fold

In the extreme case of 
k = n, we talk about 

‘Leave One Out Cross 
Validation’
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Test Data

Training & Validation Data

Cross-Validation

• To avoid biases in performance evaluation we 

use cross-validation

•Approaches

- K-fold

- MonteCarlo

1MSE
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Test Data
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Cross-Validation
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Cross-Validation
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1MSE 2MSEkMSE

AVERAGED 
MSE

Cross-Validation

• To avoid biases in performance evaluation we 

use cross-validation

•Approaches

- K-fold

- MonteCarlo (MCCV)

Test Data

Training & Validation Data

2 design choices:
- # splits (k)
- ratio of test data (q)



K-fold vs MCCV

✅ Pros

- Lower variance in performance estimation: 
Since each data point is used exactly once 
in the test set, the estimated model 
performance is more stable.

- More efficient: Because it ensures that 
each data point is used for both training 
and testing, it typically requires fewer 
iterations for a reliable estimate.

- More deterministic: If the folds are fixed 
(e.g., using stratification), the results are 
more repeatable compared to MCCV.

❌ Cons

- Less flexibility in train-test splits: The size 
of training and test sets is fixed and 
depends on k, limiting adaptability.

✅ Pros

- More flexibility in train-test splits: MCCV 
allows arbitrary train-test splits, which can 
be useful when data distribution changes 
over time. 

- Good for small datasets: Since the test set 
can be kept larger, MCCV ensures better 
generalization testing. 

- Multiple random splits reduce bias: Since 
training and test sets vary across multiple 
runs, MCCV can better capture different 
aspects of the dataset. 

❌ Cons

- Higher variance: Since the splits are 
random, some data points might appear 
more frequently in training sets while 
others might rarely be in test sets.

- Higher computational cost: Running many 
iterations of MCCV can be more expensive 
than k-Fold CV.



Example on California Housing dataset
Target (Y): 

- MedHouseVal (Median House Value in block group) Represents the 
median house price in the block group. Measured in hundreds of 
thousands of dollars (capped at $500,000 in the dataset).

Inputs:*

- MedInc (Median Income in block group). Represents the median income 
of households in the block group. Measured in tens of thousands of 
dollars. Used in the following in the 1 feature & 4 features case.

- HouseAge (Median House Age in block group). Represents the median 
age of houses in the area. Measured in years. 4 features case.

- AveRooms (Average Number of Rooms per Dwelling). Computed as the 
total number of rooms in the block group divided by the number of 
households. Helps indicate the general size of homes in an area. 4 
features case.

- AveOccup (Average Number of Occupants per Household). Computed 
as the total population in the block group divided by the number of 
households. 4 features case.

* A subset of the available inputs



K-fold: k = 10
MCCV: k = 100, q = 0.2 



Sometimes looking at 
the mean can be 

enough, but a better 
strategy is considering 

the distribution (ie. 
boxplot)





An example of why 
cross-validation is 

fundamental!
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Evaluation: ’Errors’ in ML can be of different types: 
Bias vs Variance

In this example, the linear 

model without basis extension 

(1 variable) will never capture 

the true nature of the 

underlying phenomena.

The inability for a ML method 

to capture the true relationship 

is called bias.
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This model (20 variables!) 

instead has very low bias, as it 

is able to adapt to available 

data.

The inability for a ML method 

to capture the true relationship 

is called bias.

Evaluation: ’Errors’ in ML can be of different types: 
Bias vs Variance
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Evaluation: ’Errors’ in ML can be of different types: 
Bias vs Variance

We can try to cross-validate: it is likely that both models will get ‘bad’ results, but of different nature.

[Right model] While the model was pretty good on training data (low bias), it will become bad on testing ones: 
this difference in performance on different datasets, will make the model on the right a high-variance model 
(with a lot of variability).

[Left model] As said, this is a high bias model, but it is consistent across folds: this is a low-variance model.
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Evaluation: ’Errors’ in ML can be of different types: 
Bias vs Variance
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Evaluation: ’Errors’ in ML can be of different types: 
Bias vs Variance

Complex model: 
lower bias…

… but higher 
variance!
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A complicated model is not always ‘optimal’:

• Overly complex models tend to ‘overfit’, 
meaning they fail to ‘generalize.’ This 
results in high variance, where the model 
captures noise rather than true patterns 
in the data.

• On the other hand, very simple models 
lead to ‘underfitting’, where the available 
data is not fully leveraged (‘the model has 
learned too little’). This is associated with 
high bias, as the model is too simplistic to 
capture the underlying structure of the 
data.

The key is to find a balance between bias 
and variance to achieve good generalization.

Bias & Variance – Underfitting & Overfitting
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- There are more ‘formal’ approaches that 
allow for optimized management of the 
trade-off between underfitting and 
overfitting.

- Regularization is a technique used in ML 
to prevent overfitting by adding a 
penalty term to the loss function of a 
model.

- In linear regression, this is achieved by 
‘simply’ changing the cost function: β s.t.    

J = 	∑!"#$ [𝑦 ! − (𝑦 ! ]%+	𝛾	𝑅,

R is a penalty on model complexity.

Regularization finds this balance in the modelling!

!1 𝛾
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Regularization finds this balance in the modelling!

!1 𝛾

Regularization parameter 
(this is an hyperparameter)

- There are more ‘formal’ approaches that 
allow for optimized management of the 
trade-off between underfitting and 
overfitting.

- Regularization is a technique used in ML 
to prevent overfitting by adding a 
penalty term to the loss function of a 
model.

- In linear regression, this is achieved by 
‘simply’ changing the cost function: β s.t.    

J = 	∑!"#$ [𝑦 ! − (𝑦 ! ]%+	𝛾	𝑅,

R is a penalty on model complexity. 
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Regularization finds this balance in the modelling!

!1 𝛾

- There are more ‘formal’ approaches that 
allow for optimized management of the 
trade-off between underfitting and 
overfitting.

- Regularization is a technique used in ML 
to prevent overfitting by adding a 
penalty term to the loss function of a 
model.

- In linear regression, this is achieved by 
‘simply’ changing the cost function: β s.t.    

J = 	∑!"#$ [𝑦 ! − (𝑦 ! ]%+	𝛾	𝑅,

R is a penalty on model complexity. 
If 𝑅 = ∑&"'

( 𝛽&
% (L2 

penalization) we are dealing 
with Ridge RegressionRegularization parameter 

(this is an hyperparameter)
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Regularization finds this balance in the modelling!

!1 𝛾

- There are more ‘formal’ approaches that 
allow for optimized management of the 
trade-off between underfitting and 
overfitting.

- Regularization is a technique used in ML 
to prevent overfitting by adding a 
penalty term to the loss function of a 
model.

- In linear regression, this is achieved by 
‘simply’ changing the cost function: β s.t.    

J = 	∑!"#$ [𝑦 ! − (𝑦 ! ]%+	𝛾	𝑅,

R is a penalty on model complexity. 
If 𝑅 = ∑&"'

( 𝛽&
% (L2 

penalization) we are dealing 
with Ridge RegressionRegularization parameter 

(this is an hyperparameter)

Based on a test dataset, it is possible to choose 
the hyperparameter value to achieve the best 
trade-off between model complexity and 
accuracy
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Ridge Regression (RR): closed-form solution

OLS:

Ridge regression (trivial derivation*):

* If you understood OLS…
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Ridge Regression (RR): closed-form solution

OLS:

Ridge regression (trivial derivation*):

* If you understood OLS…

• For lambda = 0, OLS = RR

• At the increase of lambda (reported 
also as alpha),  the coefficients shrink 

• With high collinearity in the dataset 
the robustness improve

This is called 
trace-plot
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Ridge Regression (RR): closed-form solution

OLS:

Ridge regression (trivial derivation*):

* If you understood OLS…

• For lambda = 0, OLS = RR

• At the increase of lambda (reported 
also as alpha),  the coefficients shrink 

• With high collinearity in the dataset 
the robustness improve

This is called 
trace-plot

• If datasets have high-collinearity, 
you could end up with OLS 
solutions that are highly sensitive

y = 100x1 – 99x2 + …

• RR avoids that! Let’s see it in an 
algebra perspective… 
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Ridge Regression (RR): closed-form solution

• Ridge Regression helps when X′X (the Gram matrix in least squares) is ill-
conditioned or nearly singular. 

• This condition occurs when the predictors are highly correlated, leading to 
unstable estimates in Ordinary Least Squares (OLS), this means that X’X 
has some eigenvalues close to zero

• The inverse then became unstable or nearly singular, leading to 
large variance in coefficient estimates: small changes in data can cause 
large swings in estimated coefficients, making predictions unstable.

• RR, by adding the term λI adds a small value to the diagonal of the matrix 
we need to invert, shift all eigenvalues away from zero, improving 
numerical stability



Example: a high dimensional data with p = 50
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The Problem with Standard Cross-
Validation for Hyperparameter Tuning

- If we perform hyperparameter tuning 
using cross-validation (e.g., grid search, 
random search), we typically select the 
best-performing model based on its 
performance on a validation set.

- Then, we evaluate this best model on 
a separate test set.

- The issue: The test set has indirectly 
influenced model selection, leading to 
optimistic performance estimates.

Nested CV for Hyperparameter Tuning
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Nested CV for Hyperparameter Tuning

Nested cycle of CV

1. Inner

– Training data for model construction

– Validation data for choosing the 

hyperparameter(s)

2. Outer

– Training data (training+validation) for 

model building

– Test data for performance evaluation



Bonus: Occam’s Razor

‘We consider it a good principle to 
explain the phenomena by the 
simplest hypothesis possible’

Regularization embodies the 
principle of Occam’s Razor, 
which suggests that simpler 
solutions are generally better 
than complex ones.

William of Occam (Occam 1288 
– Munich 1347)



Thank you!

Gian Antonio Susto 
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2024/2025


