
Lecture #08
Cross-Validation &
Bias vs Variance &
Ridge Regression

Gian Antonio Susto

Machine Learning
2024/2025

Tomorrow’s lab -> Da Room

Before starting

We are looking for a model F(x) that
allows us to make predictions
(estimates) of a target variable y
based on the features x = [x1 x2 … xp]

All the model that we will consider have
parameters that needs to be trained. For
example, the β in OLS

F(x) = β0 + β1x1 + β2x2 + … + βpxp

Two elements are necessary for training:

- Data

- A training procedure with an objective
(cost) function

Recap – Supervised Learning

x y
F(x)

We are looking for a model F(x) that
allows us to make predictions
(estimates) of a target variable y
based on the features x = [x1 x2 … xp]

All the model that we will consider have
parameters that needs to be trained. For
example, the β in OLS

F(x) = β0 + β1x1 + β2x2 + … + βpxp

Two elements are necessary for training:

- Data

- A training procedure with an objective
(cost) function

Recap – Supervised Learning

x y
F(x)

We are looking for a model F(x) that
allows us to make predictions
(estimates) of a target variable y
based on the features x = [x1 x2 … xp]

All the model that we will consider have
parameters that needs to be trained. For
example, the β in OLS

F(x) = β0 + β1x1 + β2x2 + … + βpxp

Two elements are necessary for training:

- Data

- A training procedure with an objective
(cost) function

Recap – Supervised Learning

x y
F(x)

For OLS:

- Training is simple: just a
closed-form solution if we
consider RMSE as an
objective

Recap – Training vs Testing

Modeling

Training is not enough; we need to test a model to:

- Understand model performances (Does it generalize? What performances should I
expect in the real world?)

- Among the different choices I can make in a ML pipeline, which is the best?

Training is not enough; we need to test a model to:

- Understand model performances (Does it generalize? What performances should I
expect in the real world?)

- Among the different choices I can make in a ML pipeline, which is the best?

Recap – Training vs Testing

Training is not enough; we need to test a model to:

- Understand model performances (Does it generalize? What performances should I
expect in the real world?)

- Among the different choices I can make in a ML pipeline, which is the best?

Recap – Training vs Testing

Recap – Training vs Testing

We put randomly 20% of the dataset in testing,
while keeping the rest in training

Training is not enough; we need to test a model to:

- Understand model performances (Does it generalize? What performances should I
expect in the real world?)

- Among the different choices I can make in a ML pipeline, which is the best?

We then divide data into a training and a test part:

- Random choice?

- Can we do better? How to choose randomly?

Recap – Training vs Testing

•As said, in modeling we divide data into:
• Training & Validation for model building

• Test for performance estimation

• Based on the random choice, performance can

dramatically change! Especially with ‘small’ datasets

11

t

Y

Cross-Validation

12

t

Y

•As said, in modeling we divide data into:
• Training & Validation for model building

• Test for performance estimation

• Based on the random choice, performance can

dramatically change! Especially with ‘small’ datasets

Cross-Validation

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold

13

Test Data

Training & Validation Data

Cross-Validation

14

Test Data

Training & Validation Data

Cross-Validation

1MSE (Mean Squared Error)… or other performance metric!

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold

15

Test Data

Training & Validation Data

Cross-Validation

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold 5MSE1MSE 2MSE 3MSE 4MSE

16

Test Data

Training & Validation Data

Cross-Validation

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold 1MSE 2MSE 3MSE 4MSE 5MSE

AVERAGED MSE

17

Test Data

Training & Validation Data

Cross-Validation

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold 1MSE 2MSE 3MSE 4MSE 5MSE

AVERAGED MSE1 design choice:
- # splits (k)

18

Cross-Validation

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold

In the extreme case of
k = n, we talk about

‘Leave One Out Cross
Validation’

19

Test Data

Training & Validation Data

Cross-Validation

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold

- MonteCarlo

1MSE

20

Test Data

Training & Validation Data

Cross-Validation

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold

- MonteCarlo (MCCV)

1MSE 2MSE

21

1MSE 2MSE

Cross-Validation

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold

- MonteCarlo (MCCV)

Test Data

Training & Validation Data

22

1MSE 2MSEkMSE

Cross-Validation

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold

- MonteCarlo (MCCV)

Test Data

Training & Validation Data

23

1MSE 2MSEkMSE

AVERAGED
MSE

Cross-Validation

• To avoid biases in performance evaluation we

use cross-validation

•Approaches

- K-fold

- MonteCarlo (MCCV)

Test Data

Training & Validation Data

2 design choices:
- # splits (k)
- ratio of test data (q)

K-fold vs MCCV

✅ Pros

- Lower variance in performance estimation:
Since each data point is used exactly once
in the test set, the estimated model
performance is more stable.

- More efficient: Because it ensures that
each data point is used for both training
and testing, it typically requires fewer
iterations for a reliable estimate.

- More deterministic: If the folds are fixed
(e.g., using stratification), the results are
more repeatable compared to MCCV.

❌ Cons

- Less flexibility in train-test splits: The size
of training and test sets is fixed and
depends on k, limiting adaptability.

✅ Pros

- More flexibility in train-test splits: MCCV
allows arbitrary train-test splits, which can
be useful when data distribution changes
over time.

- Good for small datasets: Since the test set
can be kept larger, MCCV ensures better
generalization testing.

- Multiple random splits reduce bias: Since
training and test sets vary across multiple
runs, MCCV can better capture different
aspects of the dataset.

❌ Cons

- Higher variance: Since the splits are
random, some data points might appear
more frequently in training sets while
others might rarely be in test sets.

- Higher computational cost: Running many
iterations of MCCV can be more expensive
than k-Fold CV.

Example on California Housing dataset
Target (Y):

- MedHouseVal (Median House Value in block group) Represents the
median house price in the block group. Measured in hundreds of
thousands of dollars (capped at $500,000 in the dataset).

Inputs:*

- MedInc (Median Income in block group). Represents the median income
of households in the block group. Measured in tens of thousands of
dollars. Used in the following in the 1 feature & 4 features case.

- HouseAge (Median House Age in block group). Represents the median
age of houses in the area. Measured in years. 4 features case.

- AveRooms (Average Number of Rooms per Dwelling). Computed as the
total number of rooms in the block group divided by the number of
households. Helps indicate the general size of homes in an area. 4
features case.

- AveOccup (Average Number of Occupants per Household). Computed
as the total population in the block group divided by the number of
households. 4 features case.

* A subset of the available inputs

K-fold: k = 10
MCCV: k = 100, q = 0.2

Sometimes looking at
the mean can be

enough, but a better
strategy is considering

the distribution (ie.
boxplot)

An example of why
cross-validation is

fundamental!

30

Evaluation: ’Errors’ in ML can be of different types:
Bias vs Variance

In this example, the linear

model without basis extension

(1 variable) will never capture

the true nature of the

underlying phenomena.

The inability for a ML method

to capture the true relationship

is called bias.

31

This model (20 variables!)

instead has very low bias, as it

is able to adapt to available

data.

The inability for a ML method

to capture the true relationship

is called bias.

Evaluation: ’Errors’ in ML can be of different types:
Bias vs Variance

32

Evaluation: ’Errors’ in ML can be of different types:
Bias vs Variance

We can try to cross-validate: it is likely that both models will get ‘bad’ results, but of different nature.

[Right model] While the model was pretty good on training data (low bias), it will become bad on testing ones:
this difference in performance on different datasets, will make the model on the right a high-variance model
(with a lot of variability).

[Left model] As said, this is a high bias model, but it is consistent across folds: this is a low-variance model.

33

Evaluation: ’Errors’ in ML can be of different types:
Bias vs Variance

34

Evaluation: ’Errors’ in ML can be of different types:
Bias vs Variance

Complex model:
lower bias…

… but higher
variance!

35

A complicated model is not always ‘optimal’:

• Overly complex models tend to ‘overfit’,
meaning they fail to ‘generalize.’ This
results in high variance, where the model
captures noise rather than true patterns
in the data.

• On the other hand, very simple models
lead to ‘underfitting’, where the available
data is not fully leveraged (‘the model has
learned too little’). This is associated with
high bias, as the model is too simplistic to
capture the underlying structure of the
data.

The key is to find a balance between bias
and variance to achieve good generalization.

Bias & Variance – Underfitting & Overfitting

36

- There are more ‘formal’ approaches that
allow for optimized management of the
trade-off between underfitting and
overfitting.

- Regularization is a technique used in ML
to prevent overfitting by adding a
penalty term to the loss function of a
model.

- In linear regression, this is achieved by
‘simply’ changing the cost function: β s.t.

J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝛾	𝑅,

R is a penalty on model complexity.

Regularization finds this balance in the modelling!

!1 𝛾

37

Regularization finds this balance in the modelling!

!1 𝛾

Regularization parameter
(this is an hyperparameter)

- There are more ‘formal’ approaches that
allow for optimized management of the
trade-off between underfitting and
overfitting.

- Regularization is a technique used in ML
to prevent overfitting by adding a
penalty term to the loss function of a
model.

- In linear regression, this is achieved by
‘simply’ changing the cost function: β s.t.

J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝛾	𝑅,

R is a penalty on model complexity.

38

Regularization finds this balance in the modelling!

!1 𝛾

- There are more ‘formal’ approaches that
allow for optimized management of the
trade-off between underfitting and
overfitting.

- Regularization is a technique used in ML
to prevent overfitting by adding a
penalty term to the loss function of a
model.

- In linear regression, this is achieved by
‘simply’ changing the cost function: β s.t.

J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝛾	𝑅,

R is a penalty on model complexity.
If 𝑅 = ∑&"'

(𝛽&
% (L2

penalization) we are dealing
with Ridge RegressionRegularization parameter

(this is an hyperparameter)

39

Regularization finds this balance in the modelling!

!1 𝛾

- There are more ‘formal’ approaches that
allow for optimized management of the
trade-off between underfitting and
overfitting.

- Regularization is a technique used in ML
to prevent overfitting by adding a
penalty term to the loss function of a
model.

- In linear regression, this is achieved by
‘simply’ changing the cost function: β s.t.

J = 	∑!"#$ [𝑦 ! − (𝑦 !]%+	𝛾	𝑅,

R is a penalty on model complexity.
If 𝑅 = ∑&"'

(𝛽&
% (L2

penalization) we are dealing
with Ridge RegressionRegularization parameter

(this is an hyperparameter)

Based on a test dataset, it is possible to choose
the hyperparameter value to achieve the best
trade-off between model complexity and
accuracy

40

Ridge Regression (RR): closed-form solution

OLS:

Ridge regression (trivial derivation*):

* If you understood OLS…

41

Ridge Regression (RR): closed-form solution

OLS:

Ridge regression (trivial derivation*):

* If you understood OLS…

• For lambda = 0, OLS = RR

• At the increase of lambda (reported
also as alpha), the coefficients shrink

• With high collinearity in the dataset
the robustness improve

This is called
trace-plot

42

Ridge Regression (RR): closed-form solution

OLS:

Ridge regression (trivial derivation*):

* If you understood OLS…

• For lambda = 0, OLS = RR

• At the increase of lambda (reported
also as alpha), the coefficients shrink

• With high collinearity in the dataset
the robustness improve

This is called
trace-plot

• If datasets have high-collinearity,
you could end up with OLS
solutions that are highly sensitive

y = 100x1 – 99x2 + …

• RR avoids that! Let’s see it in an
algebra perspective…

43

Ridge Regression (RR): closed-form solution

• Ridge Regression helps when X′X (the Gram matrix in least squares) is ill-
conditioned or nearly singular.

• This condition occurs when the predictors are highly correlated, leading to
unstable estimates in Ordinary Least Squares (OLS), this means that X’X
has some eigenvalues close to zero

• The inverse then became unstable or nearly singular, leading to
large variance in coefficient estimates: small changes in data can cause
large swings in estimated coefficients, making predictions unstable.

• RR, by adding the term λI adds a small value to the diagonal of the matrix
we need to invert, shift all eigenvalues away from zero, improving
numerical stability

Example: a high dimensional data with p = 50

45

The Problem with Standard Cross-
Validation for Hyperparameter Tuning

- If we perform hyperparameter tuning
using cross-validation (e.g., grid search,
random search), we typically select the
best-performing model based on its
performance on a validation set.

- Then, we evaluate this best model on
a separate test set.

- The issue: The test set has indirectly
influenced model selection, leading to
optimistic performance estimates.

Nested CV for Hyperparameter Tuning

46

Nested CV for Hyperparameter Tuning

Nested cycle of CV

1. Inner

– Training data for model construction

– Validation data for choosing the

hyperparameter(s)

2. Outer

– Training data (training+validation) for

model building

– Test data for performance evaluation

Bonus: Occam’s Razor

‘We consider it a good principle to
explain the phenomena by the
simplest hypothesis possible’

Regularization embodies the
principle of Occam’s Razor,
which suggests that simpler
solutions are generally better
than complex ones.

William of Occam (Occam 1288
– Munich 1347)

Thank you!

Gian Antonio Susto

Machine Learning
2024/2025

