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Before starting

Tomorrow’s lab -> Da Room



Recap - Supervised Learning

We are looking for a model F(x)that
X y  allows usto make predictions
—> F(X) > (estimates)of atarget variable y

based on the features x = [x1 X, ... X, ]

All the model that we will consider have

parameters that needs to be trained. For
example, the B in OLS

F(X) = Bo + B1Xq + BoXa + ... + BpX,

Two elements are necessary for training:
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X y  allows usto make predictions
—> F(X) > (estimates)of atarget variable y

based on the features x = [x1 X, ... X, ]

All the model that we will consider have
parameters that needs to be trained. For
example, the B in OLS
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Two elements are necessary for training:
- Data

- A . with an objective
(cost) function



Recap - Supervised Learning :

400
300
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We are looking for a model F(x)that o
X y  allows usto make predictions e
—> F(X) > (estimates)of atarget variable y

based on the features x = [x1 X, ... X, ]

All the model that we will consider have For OLS:
parameters that needs to be trained. For '

le, the Bin OL
example, the B in OLS - Training is simple: just a

F(X) = Bo + BiXq+ BoXp + . + BpXp closed-form solution if we

Two elements are necessary for training: consider RMSE as an
objective

- Data - T

- A with an objective B=(XX)" Xy

(cost) function



Recap — Training vs Testing
'm_"1;,|_\_'_\_il_w_l'j-‘,

- Understand model performances (Does it generalize? What performances should |
expect in the real world?)

Training is not enough; we need to test a model to:

- Among the different choices | can make in a ML pipeline, which is the best?

@

Modelling @

+ Definition « Conversion * Quality eature Extraction + On-line

» Expected Impact + Parsing + Reconciliation Building implementation

 Evaluation metric « Aggregation * Missing data handling § Evaluation/  Business outcome
« Alignment + Denoising Comparison * Improvement

Outlier detection

Modeling



Recap - Training vs Testing

- Understand model performances (Does it generalize? What performances should |
expect in the real world?)

Training is not enough; we need to test a model to:

- Among the different choices | can make in a ML pipeline, which is the best?
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Recap - Training vs Testing
Trainin

- Understand model performances (Does it generalize? What performances should |
expect in the real world?)

Training is not enough; we need to test a model to:

- Among the different choices | can make in a ML pipeline, which is the best?

T2/

Y4

Observed value

Yi
Random error €
Y
P

Predicted value

Q //A\ Vi
% \
>\\"I \\Q}?’{ /%

2 };;

NV, AY Y
< "‘ || gxg‘gzéi‘«

7 '; —~
(J \e“b{{‘ %

Intercept 91 {

XY

Majority-Voting




Recap - Training vs Testing

We put randomly 20% of the dataset in testing,
while keeping the rest in training

Mean Squared Error (MSE): 0.657451727882265
R-squared (R2): 0.49828508595474374

Model Coefficients:

MedInc: 0.44546559658692364
HouseAge: 0.016904055548308032
AveRooms: -0.02838068980516648
AveOccup: -0.004143822818663251

Intercept: 0.026697367635455382

CALIFORNIA REPUBLIC



Recap - Training vs Testing
T

- Understand model performances (Does it generalize? What performances should |
expect in the real world?)

Training is not enough; we need to test a model to:

- Among the different choices | can make in a ML pipeline, which is the best?

We then divide data into a training and a test part:
- Random choice?

- Canwe do better? How to choose randomly?



Cross-Validation

* As said, in modeling we divide data into:
 Training &Vahdation for model building

 Test for performance estimation

» Based on the random choice, performance can

dramatically change! Especially with ‘small’ datasets
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Cross-Validation

* To avoid biases in performance evaluation we

use cross-validation

* Approaches
- K-fold

Test Data
Training & Validation Data



Cross-Validation

* To avoid biases in performance evaluation we

use cross-validation

* Approaches
TMSE (Mean Squared Error)... or other performance metric!
- K-fold (Mean Squared Error) P
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Cross-Validation

* To avoid biases in performance evaluation we

use cross-validation

* Approaches
- K-fold
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Cross-Validation

* To avoid biases in performance evaluation we

use cross-validation

* Approaches
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K-fold

Pros

Lower variance in performance estimation:
Since each data point is used exactly once
in the test set, the estimated model
performance is more stable.

More efficient: Because it ensures that
each data point is used for both training
and testin?, it typically requires fewer
iterations for a reliable estimate.

More deterministic: If the folds are fixed
(e-gUsi ification), the results are
more repeatable compared to MCCV.

X Cons

Less flexibility in train-test splits: The size
of training and test sets is fixed and
depends on k; limiting adaptability.

VS

MCCV

Pros

More flexibility in train-test splits: MCCV
allows arbitrary train-test splits, which can
be useful when data distribution changes
over time.

Good for small datasets: Since the test set
can be kept larger, MCCV ensures better
generalization testing.

Multiple random splits reduce bias: Since
training and test sets vary across multiple
runs, MCCV can better capture different
aspects of the dataset.

X Cons

Higher variance: Since the splits are
random, some data points might appear
more frequently in training sets while
others might rarely be in test sets.

Higher computational cost: Running many
iterations of MCCV can be more expensive
than k-Fold CV.



Example on California Housing dataset

Target (Y):

- MedHouseVal (Median House Value in block group) Represents the
median house price in the block group. Measured in hundreds of
thousands of dollars (capped at $500,000 in the dataset).

Inputs:*

- MedlInc (Median Income in block group). Represents the median income
of households in the block grQuE). Measured in tens of thousands of
dollars. Used in the following in the 1 feature & 4 features case.

- HouseAge (Median House Age in block group). Represents the median
age of houses in the area. Méasured in years. 4 features case.

- AveRooms (Average Number of Rooms per Dwelling). Computed as the
total number of rooms in the block group divided by the number of
Poutseholds. Helps indicate the genéral size of homeés in an area. 4

eatures case.

- AveOccup (Average Number of Occupants per Household). Computed
as the total population in the block group divided by the number of
households. 4 features case.

* A subset of the available inputs

CALIFORNIA REPUBLIC



Cross-Validation Results
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Cross-Validation Results
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Evaluation: ’Errors’ in ML can be of different types:

Bias vs Variance
In this example, the linear

Mean Squared Error. 78 3462 ] ! model without basis extension

11 A ............... — True Function ................. -
: X Samples : : : :

wocel & (Ivariable) will never capture

the true nature of the

underlying phenomena.

, ' | | | | | The inability for a ML method
i i i | . to capture the true relationship

is called bias.



Evaluation: ’Errors’ in ML can be of different types:

Bias vs Variance

Mean Squared Error: 17.7894
| I I

This model (20 variables!)
instead has very low bias, as it

is able to adapt to available
data.

The inability for a ML method
to capture the true relationship
is called bias.



Evaluation: ’Errors’ in ML can be of different types:
Bias vs Variance

Mean Squared Error; 78.3462 Mean Squared Error: 17.7894
, I I . I T T T T T
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We can try to cross-validate: it is likely that both models will get ‘bad’ results, but of different nature.

[Right model] While the model was pretty good on training data (low bias), it will become bad on testing ones:
this difference in performance on different datasets, will make the model on the right a high-variance model
(with a lot of variability).

[Left model] As said, this is a high bias model, but it is consistent across folds: this is a low-variance model.




Prediction Error

Evaluation: ’Errors’ in ML can be of different types:
Bias vs Variance
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Evaluation: ’Errors’ in ML can be of different types:
Bias vs Variance

Mean Squared Error

Cross-Validation Results
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Bias & Variance - Underfitting & Overfitting

A complicated modelis not always ‘optimal’:

Overly complex models tend to ‘overfit’, | N L] i Shlauluiee) o
meaning they fail to ‘generalize.’ This |
results in high variance, where the model
captures noise rather than true patterns
in the data.

Best Fit

Error

~Iraining Frre,

On the other hand, very simple models — —
lead to ‘underfitting’, where the available Model "complexity
datais not fully leveraged (‘the model has

learned too little’). This is associated with

data.

high bias, as the model is too simplistic to | 2 | g 8
capture the underlying structure of the g : \
6

st | b - Ol
The key is to find a balance between bias High B Low Bias, LowV o

and variance to achieve good generalization.



Regularization finds this balance in the modelling!

There are more ‘formal’ approaches that
allow for optimized management of the
trade-off between underfitting and
overfitting.

¢ Underfitling|. | fOverfitiing >

BesTE Fit

Error

Regularization is a technique used in ML
to prevent overfitting by adding a

T"Oim’n Err
penalty term to the loss function of a g Error

model.

1/
In linear regression, this is achieved by Y

‘simply’ changing the cost function: g s.t.
J = Xaly® —y@12+y R,

Ris a penalty on model complexity.
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Regularization finds this balance in the modelling!

There are more ‘formal’ approaches that

allow for optimized management of the — -
trade-off between underfitting and ) SACculle j

overfitting.

| o
= (O
BestFit < =

Error

Regularization is a technique used in ML
to prevent overfitting by adding a
penalty term to the loss function of a
model.

In linear regression, this is achieved by
‘simply’ changing the cost function.p-s=t:

— n (1) _ /(\) 2 '
] lel[y y ' ] ) IfR — 2‘2]9:0 ﬁjz (L2
Ris a penalty on model complexity. penalization) we are dealing

Regularization parameter with
(this is an hyperparameter)




Regularization finds this balance in the modelling!

Based on a test dataset, it is possible to choose
the hyperparameter value to achieve the best B e

trade-off between model complexity and
accuracy

Error

- Regularization is a technique used in ML
to prevent overfitting by adding a
penalty term to the loss function of a

model.
- Inlinear regression, this is achieved by
‘simply’ changing the cost function.p-s=t:
— yn 1@ _ vy ®12240v R
J = Xizaly y&] ’ If R = 25?:0 ,sz (W)

Ris a penalty on model complexity. penalization) we are dealing

Regularization parameter with
(this is an hyperparameter)




Ridge Regression (RR): closed-form solution

= 4= (XTX)"'XTY

Ridge regression (trivial derivation®*):
ming(Y — XB)1 (Y — XB) + \3?
= B=(X"X+X)'X'Y

* If you understood OLS...



Ridge Regression (RR): closed-form solution

= 4= (XTX)"'XTY

Ridge regression (trivial derivation®*):
ming(¥Y — XB8)"(Y — X8) + A
= f=(X"X+X)"'X"Y

* If you understood OLS...

Traceplot of Ridge Regression Coefficients on High-Dimensional Dataset

4\

For lambda = 0, OLS = RR

At the increase of lambda (reported
also as alpha), the coefficients shrink

With high collinearity in the dataset
the robustness improve



Ridge Regression (RR): closed-form solution

Ridge regression (trivial derivation®*):
ming(Y — XB)1 (Y — X3) + \3?
= = (X"X+AX)'X"Y

* If you understood OLS...

Traceplot of Ridge Regression Coefficients on High-Dimensional Dataset

Alpha

For lambda = 0, OLS = RR

At the increase of lambda (reported
also as alpha), the coefficients shrink

With high collinearity in the dataset
the robustness improve



Ridge Regression (RR): closed-form solution

Ridge Regression helps when XX (the Gram matrix in least squares) is ill-
conditioned or nearly singular.

This condition occurs when the predictors are highly correlated, leading to
unstable estimates in Ordinary Least Squares (OLS), this means that X’X
has some eigenvalues close to zero

Theinverse (X’'X) ! then became unstable or nearly singular, leading to
large variance In coerrticient estimates: small changes in data can cause
large swings in estimated coefficients, making predictions unstable.

RR, by adding the term Al adds a small value to the diagonal of the matrix
we need to invert, shift all eigenvalues away from zero, improving
numerical stability

Bridge = (X' X + M) 'X'Y



Example: a high dimensional data with p =50

Coefficients

Traceplot of Ridge Regression Coefficients on High-D

40 -

W
o
|

N
o
1

10 A

Comparison of OLS and Ridge Regression on High-Dimensional Regression Dataset
le—6+9.9999e—1

06 e

9.4

R-squared

8.4 *

8.2 1

OoLS Ridge

10°
Alpha

10°




Nested CV for Hyperparameter Tuning

The Problem with Standard Cross-
Validation for Hyperparameter Tuning

- If we perform hyperparameter tuning

using cross-validation (e.g., grid search,
random search), we typically select the
best-performing model based on its

performance on a validation set. [Testing]

- Then, we evaluate this best model on
a separate test set.

- The issue: The test set has indirectly
influenced model selection, leading to
optimistic performance estimates.



Nested CV for Hyperparameter Tuning

Nested cycle of CV Original set
1 nner g )
— Training data for model construction Bt
— Validation data for choosing the -:
hyperparameter(s) [ eusrioop
[ AT

N ,.------------------""""": parameters
Outer [ ] '
|

Training fold Validation fold
Inner loop

— Training data (training+validation) for

model building

— Test data for performance evaluation




Bonus: Occam’s Razor

‘We consider it a good principle to
explain the phenomena by the

simplest hypothesis possible’

Regularization embodies the
principle of Occam’s Razor,
which suggests that simpler
solutions are generally better
than complex ones. — Munich 1347)
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Thank you!

Gian Antonio Susto




