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Additive and Multiplicative Effects Network
Models
Peter Hoff

Abstract. Network datasets typically exhibit certain types of statistical pat-
terns, such as within-dyad correlation, degree heterogeneity, and triadic pat-
terns such as transitivity and clustering. The first two of these can be well
represented with a social relations model, a type of additive effects model
originally developed for continuous dyadic data. Higher-order patterns can
be represented with multiplicative effects models, which are related to ma-
trix decompositions that are commonly used for matrix-variate data analysis.
Additionally, these multiplicative effects models generalize other popular la-
tent feature network models, such as the stochastic blockmodel and the latent
space model. In this article, we review a general regression framework for
the analysis of network data that combines these two types of effects, and
accommodates a variety of network data types, including continuous, binary
and ordinal network relations.
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1. INTRODUCTION

Network data provide quantitative information about
relationships among objects, individuals or entities, which
we refer to as nodes. Most network data quantify pairwise
relationships between nodes. A pair of nodes is referred
to as a dyad, and a quantity that is measured or observed
for multiple dyads is called a dyadic variable. Common
sample spaces for dyadic variables include continuous,
discrete, dichotomous and ordinal spaces, among others.
Examples of dyadic variables include quantitative mea-
sures of trade flows between countries, communications
among people, binding activity among proteins, and struc-
tural connections among regions of the brain, to name just
a few.

Measurements of a dyadic variable on a population of
n nodes may be summarized with a sociomatrix, an n × n

square matrix Y with an undefined diagonal, where entry
yi,j denotes the value of the relationship between nodes i

and j from the perspective of node i, or in the direction
from i to j . If yi,j is equal to yj,i by design, then Y is nec-
essarily symmetric and we say the variable is undirected.
If yi,j is potentially different from yj,i then the variable is
directed. In what follows, we assume that dyadic variables
are directed unless stated otherwise.
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Analysis of an observed sociomatrix Y often proceeds
in the context of one or more statistical models, with
which a data analyst may evaluate competing theories of
network formation, describe patterns in the network, esti-
mate effects of other variables on dyadic relations, or im-
pute missing values. Much of the literature on dyadic data
analysis has focused on binary network data for which
the sociomatrix Y can be viewed as the adjacency ma-
trix of a graph. Many statistical random graph models are
motivated by intuitive, preconceived notions of how net-
works may form, particularly social networks. For exam-
ple, preferential attachment models view an observed net-
work as the end result of a social process in which nodes
are sequentially introduced into a population of existing
nodes (Price, 1976). As another example, the parameters
in commonly used exponential family random graph mod-
els have interpretations as node-level preferences for cer-
tain links patterns (Wasserman and Pattison, 1996).

However, many types of dyadic data are not dichoto-
mous in their raw form, in which case the socioma-
trix Y does not correspond to a graph. For dichotomous
and nondichotomous data alike, an alternative foundation
upon which to build a statistical model for Y is from its
inherent structure as a sociomatrix, that is, as a data ma-
trix whose row labels are the same as its column labels.
Such an approach can build upon familiar, well-developed
statistical methodologies such as ANOVA, linear regres-
sion, matrix decompositions, factor analysis and linear
and generalized linear mixed effects models, and can be
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FIG. 1. A graph describing the relationships between models. An arrow is drawn from one model to another if the former can be viewed as a
submodel of the latter.

applied to a wide variety of dyadic data types. In this ar-
ticle, we review such a framework for network data anal-
ysis using these tools, starting with simple ANOVA-style
decompositions of sociomatrices and ending with addi-
tive and multiplicative random effects regression models
for continuous, binary, ordinal and other types of dyadic
network data.

In the next section, we review an ANOVA-style de-
composition of a sociomatrix known as the social re-
lations model (SRM) (Warner, Kenny and Stoto, 1979,
Wong, 1982), which corresponds to a particular additive
nodal effects model for directed dyadic data. An exten-
sion of this model that includes covariates is also devel-
oped, which we call the social relations regression model
(SRRM). The SRM and SRRM are able to describe net-
work variances and covariances, but are unable to de-
scribe commonly observed third-order patterns involving
triads of nodes, such as transitivity, balance, or cluster-
ing. In Section 3 we discuss how, for both directed and
undirected data, such patterns can be represented by a
multiplicative nodal effects model, in which the relation-
ship between two nodes depends on how similar they
are in terms of unobserved node-specific latent features.
From a matrix decomposition perspective, the combina-
tion of additive and multiplicative nodal effects corre-
sponds to an “additive main effects, multiplicative inter-
action” (AMMI) matrix model (Gollob, 1968, Bradu and
Gabriel, 1974). Combining an AMMI model with a social
relations covariance model for the additive effects yields
what we call an additive and multiplicative effects (AME)
network model. A graph describing the relationships be-
tween all of these models is shown in Figure 1.

The components of an AME model are related to lin-
ear regression, linear mixed effects models and matrix
decompositions—methods that are most appropriate for
continuous data consisting of a signal of interest plus
Gaussian noise. In contrast, many dyadic variables are
discrete, ordinal, binary or sparse. In Section 4, we ex-
tend the AME framework to accommodate these and other

types of dyadic variables using a Gaussian transformation
model. In Section 5, we compare the multiplicative ef-
fects component of an AME model with two other latent
feature models, the stochastic blockmodel (Nowicki and
Snijders, 2001) and the latent space model (Hoff, Raftery
and Handcock, 2002). We review results showing that
these latter two models can be viewed as submodels of the
multiplicative effects model. This is no coincidence—the
blockmodel and distance model were the first nonadditive
latent feature network models and are the precursors to
the AME models presented here. More specifically, a sim-
ple multiplicative effects model for binary data appeared
in Hoff, Raftery and Handcock (2002), along with some
other nonadditive nodal effects models. Symmetric mul-
tiplicative effects were combined with a social relations
generalized linear model for binary and count data in Hoff
(2005). The basic form of the AME model developed in
the present article first appeared in Hoff et al. (2013), and
is implemented in the R software package amen (Hoff
et al., 2012), the current version of which is available at
https://pdhoff.github.io/amen/.

Some recent applications of AME models include anal-
yses of data from Syrian rebel groups (Gade, Hafez and
Gabbay, 2019), bird populations (Genovart et al., 2019),
Nigerian conflicts (Dorff, Gallop and Minhas, 2019), and
social networks of Nicaraguan horticulturalists (Koster,
2018). A primary motivation for the AME framework
in these applications is to provide inference for parame-
ters describing relationships between the sociomatrix and
observed nodal and dyadic covariates, while accounting
for certain types of second- and third-order dependence
patterns often observed in network data. However, an
alternative thread of research (Young and Scheinerman,
2007, Hoff, 2008, 2009b, Rohe, Chatterjee and Yu, 2011)
has focused on estimation of the latent features them-
selves, as these provide an embedding of the nodes in
a low-dimensional space that can assist with visualiza-
tion of network structure, or help uncover “communities”

https://pdhoff.github.io/amen/
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FIG. 2. Left panel: Scatterplot of country-level export effects versus import effects. Right panel: Scatterplot of dyadic residuals.

of nodes that behave similarly or have high within-group
rates of interaction.

An alternative popular approach to describing net-
work structure and dependence patterns is with expo-
nentially parameterized random graph models (ERGMs)
(Wasserman and Pattison, 1996). Connections between
AME models and ERGMs are discussed in Section 5,
along with a summary of the limitations of AME models
in terms of evaluating certain types of network dependen-
cies. Section 6 presents a Markov chain Monte Carlo al-
gorithm for Bayesian model fitting of a hierarchy of AME
network models. Section 7 discusses some directions for
future research.

2. SOCIAL RELATIONS REGRESSION

2.1 ANOVA and Social Relations Model

Numeric sociomatrices typically exhibit certain statisti-
cal features. For example, it is often the case that values
of the dyadic variable in a given row of the sociomatrix
are correlated with one another, in the sense that high and
low values are not equally distributed among the rows, re-
sulting in substantial heterogeneity of the row means of
the sociomatrix. Such heterogeneity can be explained by
the fact that the relations within a row all share a common
“sender,” or row index. If sender i1 is more “sociable”
than sender i2, we would expect the values in row i1 to be
larger than those in row i2, on average. In this way, het-
erogeneity of the nodes in terms of their sociability con-
tributes to an across-row variance of the row means of
the sociomatrix. Similarly, nodal heterogeneity in “pop-
ularity” contributes to the across-column variance of the
column means.

A classical approach to evaluating across-row and
across-column heterogeneity in a data matrix is the
ANOVA decomposition. A statistical model based on the
ANOVA decomposition posits that the variability of the
yi,j ’s around some overall mean μ is well represented by

additive row and column effects:

yi,j = μ + ai + bj + εi,j .(2.1)

In this model, heterogeneity among the ai’s and bj ’s gives
rise to observed heterogeneity in the row means and col-
umn means of the sociomatrix, respectively.

While straightforward to implement, a classical
ANOVA analysis ignores a fundamental characteristic of
directed dyadic data: Each node appears in the dataset as
both a sender and a receiver of relations, or equivalently,
the row and column labels of the data matrix refer to the
same set of nodes. In the context of the ANOVA model,
this means that each node i has two additive effects: a row
effect ai and a column effect bi . Since each pair of effects
(ai, bi) shares a node, a correlation between the vectors
(a1, . . . , an) and (b1, . . . , bn) may be expected. Addition-
ally, each dyad {i, j} has two outcomes, yi,j and yj,i . As
such, the possibility that εi,j and εj,i are correlated should
be considered.

We illustrate these phenomena empirically with a so-
ciomatrix of export data among n = 30 countries. Here,
yi,j is the 1990 export volume from country i to country
j , in log billions of dollars. For each country i = 1, . . . , n,
âi is the ith row mean minus the grand mean μ̂ of the so-
ciomatrix, and b̂i is the ith column mean minus μ̂. The
left panel of Figure 2 shows that these row and column ef-
fects are strongly correlated—countries with large export
volumes typically have larger than average import vol-
umes as well. A scatterplot of ε̂i,j = yi,j − (μ̂ + âi + b̂j )

versus ε̂j,i in the right panel of the plot indicates a strong
dyadic correlation, even after controlling for country-
specific heterogeneity in export and import volumes.

The standard ANOVA model of a data matrix quanti-
fies row variation, column variation and residual varia-
tion. However, the ANOVA model does not quantify the
sender–receiver or dyadic correlations that are apparent
from the figure, and that are present in most other dyadic
datasets that I have seen. A model that does quantify these
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correlations, and therefore provides a more complete de-
scription of many sociomatrices, was introduced in the
social psychology literature by Warner, Kenny and Stoto
(1979). This more complete model, called the social re-
lations model (SRM), is a random effects model given
by (2.1) but with the additional assumptions that the ai ’s,
bj ’s and εi,j ’s are mean-zero random variables for which

Var
[( ai

bi

)] = � =
(

σ 2
a σab

σab σ 2
b

)

Var
[( εi,j

εj,i

)] = σ 2
(

1 ρ

ρ 1

)
,

(2.2)

with effects otherwise being independent. Straightfor-
ward calculations show that under this random effects
model, the variance of the relational variable is Var[yi,j ] =
σ 2

a +σ 2
b +σ 2, and the covariances among the relations are

Cov[yi,j , yi,k] = σ 2
a

(within-row covariance)

Cov[yi,j , yk,j ] = σ 2
b

(within-column covariance)

Cov[yi,j , yj,k] = σab

(row-column covariance)

Cov[yi,j , yj,i] = 2σab + ρσ 2

(row-column covariance plus reciprocity)

with all other covariances between elements of Y being
zero. We refer to this covariance model as the social re-
lations covariance model. Unbiased moment-based esti-
mators of μ, �, σ 2 and ρ are derived in Warner, Kenny
and Stoto (1979), and standard errors for these estima-
tors are obtained in Bond and Lashley (1996). Under the
additional assumption that the random effects are jointly
normally distributed, Wong (1982) provides an EM al-
gorithm for maximum likelihood estimation, Gill and
Swartz (2001) develop a Bayesian method for parameter
estimation, and Li and Loken (2002) discuss connections
to models in genetics and extensions to repeated-measures
dyadic data.

2.2 Social Relations Regression Model

Often we wish to quantify the association between a
particular dyadic variable and some other dyadic or nodal
variables. Useful for such situations is a type of linear
mixed effects model we refer to as the social relations
regression model (SRRM), which combines a linear re-
gression model with the covariance structure of the SRM
as follows:

(2.3) yi,j = β�xi,j + ai + bj + εi,j ,

where xi,j is a p-dimensional vector of regressors and
β is a vector of regression coefficients to be estimated.
The vector xi,j may contain variables that are specific
to nodes or pairs of nodes. For example, we may have
xi,j = (xr,i ,xc,j ,xd,i,j ) where xr,i is a vector of charac-
teristics of node i as a sender or row object, xc,j is a vector
of characteristics of node j as a receiver or column object,
and xd,i,j is a vector of characteristics of the ordered pair
(i, j).

We illustrate the use of the SRRM with a more detailed
analysis of the international trade dataset described above.
This dataset also includes several other variables, such
as country-specific measures of gross domestic product
(GDP) and polity (a measure of citizen access to govern-
ment), as well as the geographic distance between pairs
of county capitals. Our objective in this example is to
quantify the relationship between trade and polity after
controlling for the effects of GDP and geographic dis-
tance. We first do so with a naive ordinary linear regres-
sion model of the form

yi,j = β0 + βr,1polityi + βr,2gdpi + βc,1polityj

+ βc,2gdpj + βddistancei,j + εi,j ,

where polityi is a measure of country i’s polity score on
a scale from 1 to 10, gdpi is the log GDP of country
i in dollars, distancei,j is the log distance in miles be-
tween capitals of countries i and j , and the εi,j ’s are as-
sumed to be i.i.d. mean-zero error terms. This model is a
“gravity model” of trade (Isard, 1954, Bergstrand, 1985),
where trade flow is analogous to a gravitational force be-
tween countries, and GDP plays the role of mass. Gravity
models of this type are widely used to empirically eval-
uate different theories of international trade (Baier and
Bergstrand, 2009).

Regression parameter estimates and standard errors as-
suming an i.i.d. error model are given in the first column
of Table 1. Based upon the ratio of parameter estimates
to standard errors, we would conclude that the hypothe-
sis of no polity effects is inconsistent with an i.i.d. error
model. However, while technically valid, this conclusion
is not particularly interesting given that we expect row,
column and dyadic dependence for network data such as
these, and thus doubt the i.i.d. error model a priori. More
interesting is an evaluation of whether or not the hypothe-
sis of no polity effects is consistent with a social relations
covariance model. The parameter estimates and standard
errors for the SRRM in the second column of the table
indicate that indeed it is: the parameter estimates of the
polity effects are not substantially larger than their stan-
dard errors.

3. MULTIPLICATIVE EFFECTS MODELS

While more reasonable than an ordinary regression
model, SRRMs applied to many datasets often exhibit
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TABLE 1
Parameter estimates and standard errors from the trade data using a normal linear regression model with i.i.d. errors, a SRRM, and an AME model

IID SRRM AME

Regressor β̂ se(β̂) t-ratio β̂ se(β̂) t-ratio β̂ se(β̂) t-ratio

exporter polity 0.015 0.004 4.166 0.015 0.016 0.939 0.013 0.016 0.786
importer polity 0.022 0.004 6.070 0.022 0.016 1.420 0.018 0.015 1.173
exporter GDP 0.411 0.021 19.623 0.401 0.097 4.117 0.340 0.103 3.306
importer GDP 0.398 0.020 19.504 0.391 0.093 4.189 0.331 0.101 3.266
distance −0.057 0.004 −13.360 −0.064 0.006 −11.578 −0.041 0.004 −10.724

noticeable lack of fit. In particular, it is often observed
that real networks exhibit patterns among triples of nodes
such as transitivity, balance and clustering (Wasserman
and Faust, 1994). For example, in the context of fitting a
regression model, the notion of balance would correspond
to there generally being a higher-than expected relation-
ship (i.e., a positive residual) between nodes j and k if that
between i and j and i and k were also both higher than
expected. Such patterns can be quantified with summary
statistics such as

∑
i �=j �=k �=i êi,j êi,kêj,k/(n(n−1)(n−2)),

where êi,j is a residual from an ordinary least-squares fit
of the yi,j ’s to the xi,j ’s.

One way to evaluate the fit of a model in terms of a
particular summary statistic is to simulate sociomatrices
from the fitted model, and compare the summary statis-
tics computed from the simulated sociomatrices to the
value computed from the observed sociomatrix. Such a
comparison is made in the pink histogram in the upper-
left plot of Figure 3, which shows the posterior predic-
tive distribution of the above-mentioned triadic summary
statistic from a Bayesian fit of the SRRM to the trade
data. Specifically, the posterior predictive distribution was
constructed by simulating 2000 values of the parameters
{β, a1, . . . , an, b1, . . . , bn, σ

2, ρ} from their posterior dis-
tribution (using a Markov chain Monte Carlo approxima-
tion described in Section 6), then simulating a socioma-
trix from the model given by equation (2.3) for each of
these 2000 parameter values, and finally computing the

triadic summary statistic for each of these 2000 simu-
lated sociomatrices. The sociomatrices simulated from
the fitted SRRM consistently exhibit far less third-order
dependence than the observed sociomatrix, indicating a
lack-of-fit with respect to this summary statistic. The rea-
son why the SRRM is unable to capture this third-order
dependence is that each êi,j from a sociomatrix simu-
lated from the SRRM will be approximately given by
êi,j ≈ âi + b̂j + εi,j , where the âi ’s and b̂j ’s approxi-
mately sum to zero across nodes and the εi,j ’s are mean
zero normal random variables. In this case, averages of
the form

∑
i �=j �=k �=i(âi + b̂j + εi,j )(âi + b̂k + εi,k)(âj +

b̂k +εj,k)/(n(n−1)(n−2)) will be close to zero. Perhaps
more simply, by thinking of the ai’s and bj ’s as random
effects it is intuitively clear that the SRRM is unable to
represent third-order dependence because it assumes that
the differences between the yi,j ’s and β�xi,j ’s are mean-
zero Gaussian random variables, and all third-order mo-
ments of mean-zero Gaussian random variables are zero.

To model such higher-order network patterns we must
go beyond node-specific effects that combine additively.
One solution is to include additional nodal effects into the
model that combine multiplicatively. For example, for bi-
nary and count dyadic variables, Hoff (2005) proposed
modeling yi,j as a function of β�xi,j + u�

i uj + ai +
bj , where each ui is a low-dimensional vector of node-
specific parameters, or latent features. The effect γi,j =

FIG. 3. Posterior predictive distributions of third- and fourth-order goodness-of-fit statistics. The pink histograms correspond to the SRRM fit, the
blue to the AME fit. The observed values of the statistics are given by vertical gray lines.
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u�
i uj can capture some forms of triadic dependence be-

cause γi,j γi,kγk,j can be nonzero on average across triads,
even if the ui’s sum to zero. To see this, consider the sim-
plest case where the dimension of the vector is one, so the
latent feature for each node is just the scalar ui . In this
case γi,j γi,kγj,k = u2

i u
2
ju

2
k , which is always nonnegative,

and so its across-triad average is strictly positive unless
all the ui’s are zero.

A more flexible multiplicative effects model for di-
rected dyadic data is obtained by replacing u�

i uj with
u�

i vj , so that ui represents latent features of node i as
a sender of relations, and vi represents features of i as
a receiver. Combining such a multiplicative term with the
terms in the SRRM yields the following additive and mul-
tiplicative effects (AME) model for dyadic data:

yi,j = β�xi,j + u�
i vj + ai + bj + εi,j{

(εi,j , εj,i) : i < j
} ∼ i.i.d. N2

(
0, σ 2( 1 ρ

ρ 1

))
.

(3.1)

Specifically, we refer to the model given by (3.1) as a
Gaussian AME model, since the observed data are condi-
tionally Gaussian, given β and the node-specific additive
and multiplicative features. Simpler versions of (3.1) for
a variety of types of dyadic variables (including counts,
binary variables and undirected relations) have appeared
in Hoff (2005, 2008, 2009b).

The matrix form of this model can be expressed as

Y = M + a1� + 1b� + UV� + E,

where mi,j = β�xi,j , a = (a1, . . . , an), b = (b1, . . . , bn)

and U and V are n × r matrices with ith rows equal to
the r-dimensional latent feature vectors ui and vi respec-
tively. In matrix form, this model represents the deviations
of the sociomatrix Y from the linear regression model M
as the sum of a rank-1 matrix of row effects, a rank-1 ma-
trix of column effects, a rank-r matrix UV� and a noise
matrix E. Without the regression term and distributional
assumptions about the node-specific effects and E, this
model is essentially a special case of an additive main ef-
fects, multiplicative interaction (AMMI) model (Gollob,
1968, Bradu and Gabriel, 1974), a class of matrix models
developed in the psychometric and agronomy literature
for data arising from two-way layouts. Since socioma-
trices have additional structure—the outcomes yi,j and
yj,i involves the same pair of nodes—our version of the
AMMI model includes the possibility that εi,j and εj,i are
correlated.

Hoff et al. (2013) proposed a random effects AME
model, which in addition to (3.1), specified that

(u1,v1), . . . , (un,vn) ∼ i.i.d. N2r (0,�),

(a1, b1), . . . , (an, bn) ∼ i.i.d. N2(0,�).
(3.2)

One motivation for the random effects model is that it
provides a means of shrinking the node-specific effects

{(ai, bi,ui ,vi), i = 1, . . . , n} to prevent overfitting. An-
other motivation, discussed in more detail in Section 5.1,
is that it provides summaries of certain network depen-
dencies via the global parameters � and � .

To illustrate the how the inclusion of multiplicative
effects improves model fit, we obtained an approxima-
tion to the posterior predictive distribution of the tri-
adic goodness-of-fit statistic

∑
i,j,k êi,j êi,kêj,k/(n(n −

1)(n − 2)) under an AME model with two-dimensional
multiplicative effects and the same regressors as the
SRRM (polity, GDP and geographic distance). The pos-
terior predictive distribution was approximated by sim-
ulating values of the parameters {β, {ai, bi,ui ,vi : i =
1, . . . , n}, σ 2, ρ} from their posterior distribution, simu-
lating a sociomatrix from (3.1) for each set of simulated
parameters, and computing the goodness-of-fit statistic
for each simulated sociomatrix.

A histogram of this posterior predictive distribution is
given in light blue in the upper-left plot of Figure 3, along
with that of the SRRM fit (also included in the figure are
posterior predictive comparisons of three other statistics,
which will be discussed in Section 5.1). The posterior pre-
dictive distribution obtained under the AME fit is roughly
centered around the observed value of the statistic indi-
cating that, unlike the SRRM, the AME model with two-
dimensional multiplicative effects is able to describe this
third-order residual dependency in the trade data. Had this
not been the case, we might have considered using a larger
dimension for the multiplicative effects. In this manner,
goodness-of-fit plots such as these can provide a heuristic
for selecting the dimension of the multiplicative effects.
Finally, parameter estimates and standard errors for the
regression coefficients in this AME model are given in the
third column of Table 1. Parameter estimates are slightly
smaller than those of the SRRM, but the main conclusions
are the same.

As shown with the goodness-of-fit statistics, the mul-
tiplicative effects can be viewed as a means to quantify
global higher-order dependence patterns in a sociomatrix.
However, these effects can also be interpreted as repre-
senting omitted regression variables or uncovering group
structure among the nodes. This interpretation is based on
the observation that the strength or presence of ties be-
tween nodes is often related to similarities of node-level
attributes. For example, suppose for each node i that xi

is the indicator that i is a member of a particular group
or has a particular trait. Then xixj is the indicator that i

and j are co-members of this group, and this fact may
have some effect on their relationship yi,j . A positive
association between xixj and yi,j is referred to as ho-
mophily, and a negative association as anti-homophily.
Quantifying homophily on an observed attribute can be
done with a SRRM by creating a dyadic regressor xd,i,j

from a nodal regressor xi through multiplication (xd,i,j =
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FIG. 4. Estimates of node-specific effects. The left panel gives additive row effects versus additive column effects. The plot on the right gives
estimates of ui in red and vi in blue for each country i = 1, . . . , n. The country names indicate the direction of these vectors, and the size of the
plotting text indicates their magnitude. A dashed line is drawn between an export-import pair if their trade flow is larger than expected based on
the other terms in the model.

xixj ) or some other operation. However, the possibility
that not all relevant nodal attributes are included in a
network dataset motivates inclusion of the multiplicative
term u�

i vj , where ui and vi represent unobserved latent
features of node i as a sender and receiver of relations,
respectively.

These latent features may be estimated and examined to
highlight additional structure in the data beyond that ex-
plained by the SRRM. For example, estimates of the ui’s
and vi ’s of the rank-2 AME fit to the trade data are dis-
played in Figure 4. Recall that this model includes polity,
GDP and geographic distance as regressors, in addition
to the additive effects and multiplicative latent features.
The interpretation of the multiplicative factors is that if ui

and vj are large and in the same direction, then nodes
i and j tend to have observed trade flows larger than
β�xi,j + ai + bj , that is, larger than what is predicted by
the additive effects alone. As can be seen from the figure,
the estimates of the latent features from these data high-
light some geographically related clustering of nodes, in
particular, a cluster of Pacific rim countries and a clus-
ter of mostly European countries. These are patterns that,
while related to geographic distance, are not well repre-
sented by a single linear relationship between log-trade
and log-distance in the regression model.

So far the AME framework has been described in the
context of directed network relations. An AME frame-
work for undirected relations is simpler, as in this case
there is no need for separate sender and receiver effects.
The undirected AME model reduces to

yi,j = β�xi,j + u�
i 	uj + ai + aj + εi,j

for undirected pairs {(i, j) : 1 ≤ i < j ≤ n}, where {εi,j :
1 ≤ i < j ≤ n} ∼ i.i.d. N(0, σ 2

ε ). The multiplicative term
u�

i 	uj now includes as a parameter a diagonal matrix
	 of “eigenvalues,” whose nonzero entries can be either

positive or negative. This generalizes the role of the mul-
tiplicative effects in the directed AME model in the sense
that, in the directed case the matrix UV� can be any
rank-r matrix, whereas in the undirected case the matrix
U	U� can be any symmetric rank-r matrix. Interpreta-
tion of the parameter 	 in terms of describing homophily
and anti-homophily on unobserved attributes is described
in Hoff (2008).

4. TRANSFORMATION MODELS FOR
NON-GAUSSIAN NETWORKS

On their original scale, many dyadic variables are not
well represented by a model with a Gaussian error term.
In some cases, such as with the trade data, a dyadic vari-
able can be transformed so that the Gaussian AME model
is reasonable. In other cases, such as with binary, ordi-
nal, discrete or sparse variables, no such transformation
is available. Examples of such data include measures of
friendship that are binary (not friends/friends) or ordinal
(dislike/neutral/like), discrete counts of conflictual events
between countries, or durations of phone calls between
pairs of individuals. In this section we describe exten-
sions of the Gaussian AME model to accommodate or-
dinal dyadic variables, which for our purposes includes
variables for which the possible values can be put in some
meaningful order. This includes discrete variables (such
as binary indicators or counts), ordered qualitative vari-
ables (such as low/medium/high), and even continuous
variables. The extensions are based on latent variable rep-
resentations of probit and ordinal probit regression mod-
els.

4.1 Binary and Ordinal Network Data

Let S be the observed sociomatrix for a dyadic vari-
able si,j . The simplest type of ordinal dyadic variable is
a binary variable indicating the presence of some type of
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relationship between i and j , so that si,j = 0 or 1 de-
pending on whether a social link is absent or present, re-
spectively. One model for quantifying the association be-
tween such a binary variable and other variables is pro-
bit regression, which models the probability of a link be-
tween i and j as 
(β�xi,j ), where 
 is the standard nor-
mal CDF. As is well known, the probit regression model
has a latent variable representation in which si,j is the bi-
nary indicator that some latent normal random variable,
say yi,j ∼ N(β�xi,j ,1), is greater than zero (Albert and
Chib, 1993). An ordinary probit regression model corre-
sponds to the yi,j ’s being independent, which is gener-
ally an inappropriate assumption for network data. How-
ever, a model for binary data that does capture the types of
network dependencies discussed in the previous section,
such as row and column covariance, dyadic correlation,
and higher-order dependence, is an AME model for the
latent yi,j ’s:

yi,j = β�xi,j + u�
i vj + ai + bj + εi,j ,

si,j = g(yi,j ),
(4.1)

where the ai’s bi’s and εi,j ’s follow the SRM covari-
ance model and g(y) is the binary indicator that y > 0.
Without the multiplicative term u�

i vj , this is basically
a generalized linear mixed effects model. With the mul-
tiplicative term but without the SRM covariance struc-
ture, this model is a type of generalized bilinear regres-
sion (Gabriel, 1998). Including both the multiplicative
term and the SRM covariance structure yields a regres-
sion model for binary social network data that can repre-
sent many of the types of patterns seen in network data.

This probit AME model for binary data extends in a
natural way to accommodate ordinal data with more than
two levels. As with binary data, we model the observed
sociomatrix S as being a function of a latent sociomatrix
Y that follows a Gaussian AME distribution. Specifically,
the model is the same as in equation (4.1) but with g be-
ing a nondecreasing function. Such a model is a type of
Gaussian transformation model (Bickel and Ritov, 1997).

One approach to estimation for these models is as fol-
lows: For both the probit and ordinal probit models, ob-
servation of S tells us that Y lies in a certain set, say Y ∈
C(S). For the binary probit model, this set is simply given
by C(S) = {Y ∈ R

n×n : sign(yi,j ) = sign(2si,j − 1)}, that
is, si,j = 1 implies yi,j > 0 and si,j = 0 implies yi,j < 0.
For the ordinal probit model, since g is nondecreasing we
have C(S) = {Y ∈ R

n×n : maxi′j ′ {yi′,j ′ : si′,j ′ < si,j } <

yi,j < mini′j ′ {yi′,j ′ : si,j < si′j ′ }}. A likelihood based on
the knowledge that Y ∈ C(S) is given by L(θ) = Pr(Y ∈
C(S)|θ) where θ are the parameters in the Gaussian AME
model for Y. While a closed form expression for this like-
lihood is unavailable, a Bayesian approach to estimation
and inference is feasible via Gibbs sampling by iteratively
simulating θ from its full conditional distribution given Y,

then simulating Y from its conditional distribution given θ
but constrained to lie in C(S). More details are presented
in Section 6.

4.2 Censored and Ranked Nomination Data

Data on human social networks are often obtained by
asking participants in a study to name and rank a fixed
number of people with whom they are friends. Such a sur-
vey method is called a fixed ranked nomination (FRN)
scheme, and is used in studies of institutions such as
schools or businesses. For example, the National Longi-
tudinal Study of Adolescent Health (Harris et al., 2009)
asked middle and high school students to nominate and
rank up to five members of the same sex as friends, and
five members of the opposite sex as friends.

Data obtained from FRN schemes are similar to ordinal
data, in that the ranks of a person’s friends may be viewed
as an ordinal response. However, FRN data are also cen-
sored in a complicated way. Consider a study in which
people are asked to name and rank up to and including
their top five friends. If person i nominates five people
but doesn’t nominate person j , then si,j is censored: The
data cannot tell us whether j is i’s sixth best friend, or
whether j is not liked by i at all. On the other hand, if
person i nominates four people as friends but could have
nominated five, then person i’s data are not censored—the
absence of a nomination by i of j indicates that i does not
consider j a friend.

A likelihood-based approach to modeling FRN data us-
ing an AME model was developed in Hoff et al. (2013).
Similar to the approach for ordinal dyadic data described
above, this methodology treats the observed ranked out-
comes S as a function of an underlying continuous so-
ciomatrix Y of affinities that is generated from an AME
model. Letting m be the maximum number of nomina-
tions allowed, and coding si,j ∈ {m,m − 1, . . . ,1,0} so
that si,j = m indicates that j is i’s most liked friend, the
FRN likelihood is derived from the following constraints
that the observed ranks S tell us about the underlying
dyadic variables Y:

si,j > 0 ⇒ yi,j > 0,(4.2)

si,j > si,k ⇒ yi,j > yi,k,(4.3)

si,j = 0 and di < m ⇒ yi,j ≤ 0.(4.4)

Constraint (4.2) indicates that if i ranks j , then i has a
positive relation with j (yi,j > 0), and constraint (4.3) in-
dicates that a higher rank corresponds to a more positive
relation. Letting di ∈ {0, . . . ,m} be the number of people
that i ranks, constraint (4.4) indicates that if i could have
made additional friendship nominations but chose not to
nominate j , they then do not consider j a friend. How-
ever, if si,j = 0 but di = m then person i’s unranked rela-
tionships are censored, and so yi,j could be positive even
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though si,j = 0. In this case, all that is known about yi,j

is that it is less than yi,k for any person k ranked by i. In
summary, observation of S tells us that Y ∈ C(S) where
C(S) is defined by conditions (4.2)–(4.4). As with the pro-
bit and ordinal AME models, Bayesian inference for this
transformation model can proceed by iteratively simulat-
ing values of the model parameters and the unknown val-
ues of Y from their full conditional distributions.

5. RELATIONSHIPS TO OTHER MODELS

Two popular categories of statistical network models
are exponentially parameterized random graph models
(ERGMs) and latent variables models. One appealing fea-
ture of ERGMs is that models for evaluating specific
global network patterns of interest can be constructed, in
principle, simply by including an appropriate sufficient
statistic in the model specification. In contrast, much of
the appeal of latent variable models stems from their de-
scription of local, micro-level patterns of relationships
among specific nodes. The AME class of models can char-
acterize local patterns via estimates of the node-specific
effects {(ai, bi,ui ,vi) : i = 1, . . . , n}, and global patterns
via the parameters {β,�,�,σ 2, ρ}. In the next two sub-
sections we compare the AME class to ERGMs and to
some latent variable models in terms of how these types
of patterns are represented.

5.1 Comparisons to ERGMs

An ERGM is a probability model for a binary so-
ciomatrix that includes densities of the form p(Y) =
c(θ) exp(θ · t(Y)), where t(Y) is a vector of sufficient
statistics and θ is a parameter to be estimated. Early ap-
plications of ERGMs used a small number of simple suf-
ficient statistics, often much smaller than the number of
nodes, and in this sense were typically used to describe
“global” patterns in the data. An exception to this was
the not-infrequent inclusion of out- and in-degree statis-
tics that can characterize the differential sociability and
popularity of the nodes. For example, one of the first
ERGMs to be widely used and studied was the “p1”
model (Holland and Leinhardt, 1981) with density

p(Y) ∝ exp
(
μ

∑
i,j

yi,j + ∑
i

(
ai

∑
j

yi,j + bi

∑
j

yj,i

)

+ ρ
∑
i,j

yi,j yj,i

)
,

which includes as sufficient statistics the total number of
ties

∑
i,j yi,j , the number of reciprocated ties

∑
i,j yi,j yj,i

and the in- and out-degrees {∑j yi,j ,
∑

j yj,i , i = 1, . . . ,

n}. The parameters in this model represent roughly the
same data features as they do in the SRM: an overall
mean of the relations (μ), heterogeneity in row and col-
umn means (the ai ’s and bi ’s) and dyadic correlation (ρ).

Similarities are also found between the SRRM and the
“p2” model developed by van Duijn, Snijders and Zijlstra
(2004). The p2 model extends the p1 model by including
regressors (as does the SRRM), and additionally treats the
node-level parameters ai and bi as potentially correlated
random effects (as do the SRM and SRRM).

Holland and Leinhardt (1981) concede that the p1
model is of limited utility due to its inability to describe
more complex forms of dependency such as transitivity
or clustering. While inclusion of appropriate regressors,
either in a p2 model or SRRM, can represent some de-
gree of higher-order dependency, often such models still
exhibit lack-of-fit, and so more complex models are often
desired. The ERGM approach to describing higher-order
dependencies is to include additional sufficient statistics,
such as the number of triangles observed in the graph, or
the number of cycles of various lengths. This approach
has great appeal to researchers interested in testing social
theories of tie formation, as one can compare the fits of
two models, one with and one without a statistic that rep-
resents a particular network dependency of interest.

However, simultaneous inclusion of certain types of
statistics, such as the number of triangles in a graph, along
with statistics that intuitively represent degree hetero-
geneity, can lead to model degeneracy (Handcock, 2003).
Two approaches to ameliorating this problem include con-
straining the parameter space away from problematic val-
ues, and finding alternative summary statistics to rep-
resent transitivity. The former approach has been stud-
ied by Hunter and Handcock (2006) and Snijders et al.
(2006), who considered curved exponential families mod-
els, that is, models with densities of the form p(Y) =
c(ψ) exp(θ(ψ) · t(Y)), where now the value of θ is con-
strained to lie on a curve indexed by the parameter ψ .
These articles also propose new transitivity statistics for
inclusion in ERGMs, and Hunter, Goodreau and Hand-
cock (2008) show empirically on several datasets that
models based on these alternative statistics avoid some of
the degeneracy problems created by the use of more tra-
ditional network statistics. Similarly, Schweinberger and
Handcock (2015) replace problematic transitivity statis-
tics with a latent blockmodel structure, resulting in im-
proved model stability. A comprehensive overview of
ERGMs with case studies is given by Lusher, Koskinen
and Robins (2013) and a recent review of ERGM research
is given in Schweinberger et al. (2017).

In contrast, the AME approach to representing com-
plex patterns in a sociomatrix is with the low-rank matrix
UV�. From a fixed effects perspective, an AME model
can fit the observed sociomatrix with an arbitrary degree
of precision, if the dimension of the latent features is suffi-
ciently large. This is because an n×n matrix Y can be ap-
proximated to an arbitrary degree of precision by a prod-
uct UV� of two n× r matrices U and V, by choosing r to
be sufficiently large (Eckart and Young, 1936). Of course,
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what we hope for is that only a small value of r is neces-
sary to achieve a good fit. It has been my experience that
many networks can be well approximated in this sense
by low-dimensional latent variable models, such as AME
models (sometimes even perfectly—see, e.g., Section 4.2
of Hoff, Raftery and Handcock, 2002). In these cases,
an AME model provides a model-based low-dimensional
representation of the observed network.

However, the types of global network dependencies that
can be represented by the Gaussian random effects model
(3.2) for the nodal effects are more limited. Specifically,
the 2r × 2r covariance matrix covariance matrix � of
(ui ,vi ) can encode some types of third-order and higher
dependencies, but not others. For example, consider third-
order moments of ei,j = yi,j − β�xi,j . Under the AME
model we have ei,j = u�

i vj + ai + bj + εi,j . Because
ai +bj +εi,j is a mean zero Gaussian random variable un-
der this model, and all third-order moments of mean-zero
Gaussian random variables are zero, then the third-order
moments of the ei,j ’s will be the same as those of the
γi,j ’s, where γi,j = u�

i vj . Therefore, under the random
effects model (3.2) the third-order moment E[ei,j ej,kek,i]
corresponding to a three-cycle is given by

E[ei,j ej,kek,i] = E[γi,j γj,kγk,i]
= E

[
u�

i vj u�
j vku�

k vi

]
= tr

(
E

[
viu�

i vj u�
j vku�

k

]) = tr
(
�3

uv

)
,

where �uv = E[uiv�
i ]. This moment can be positive, neg-

ative or zero depending on the values of �uv . A similar
calculation shows that the third-order transitive moment
E[ei,j ei,kej,k] is given by tr(�uu�vv�uv) where �uu =
E[uiu�

i ] and �vv = E[viv�
i ]. However, not all higher-

order moments can be represented by the random effects
model for the multiplicative effects, and even when they
can, the parameter � describing the moments can be hard
to interpret. For example, consider a fourth-order mo-
ment E[γi,j γj,kγk,lγl,i] corresponding to the four-cycle
i → j → k → l → i. Straightforward calculations show
that this moment is

E[γi,j γj,kγk,lγl,i] = tr
(
�4

uv

)
,

and that more generally, the kth order moment corre-
sponding to the k-cycle i1 → ·· · → ik → i1 is tr(�k

uv).
Depending on the dimension r of the multiplicative ef-
fects, it might not be possible for all such kth order mo-
ments to be separately estimated. For example, if r = 1
then E[γi,j γj,kγk,i] = σ 3

uv and E[γi,j γj,kγk,lγl,i] = σ 4
uv .

These moments are not separately estimable since they
are both completely determined by the single parameter
σuv . To separately estimate such moments, the dimension
r must be increased, but calculation of the value of r that
will permit separate estimation of moments correspond-
ing to k-cycles for a range of k-values is very tricky.

Furthermore, some types of higher-order moments are
not estimable at all by a Gaussian multiplicative ran-
dom effects model. For example, consider the fourth-
order transitive moment E[ei,j ei,kej,kek,j ], which might
be of interest in evaluating a theory of how the relations
yj,k, yk,j between two nodes j and k might be associ-
ated with their relations yi,j , yi,k to a third party, node
i. Calculations similar to those done above show that
E[γi,j γi,kγj,kγk,j ] is zero, and so the corresponding mo-
ment E[ei,j ei,kej,kek,j ] will be determined by �, and
therefore confounded with the covariance of the additive
effects.

However, we emphasize that these limitations are a re-
sult of the limited ability of the Gaussian random effects
model to summarize the heterogeneity of the node specific
effects {(ai, bi,ui ,vi ) : i = 1, . . . , n}, and are not limita-
tions of the ability of these nodal effects themselves to
represent the sociomatrix. The range of network patterns
that can be described by these effects is much broader than
the range of patterns that can be descried by the simple
random effects model that summarizes the effects. As ev-
idence of this, we refer back to Figure 3, which compares
the AME and SRRM models in terms of four goodness-
of-fit statistics corresponding to the four third- and fourth-
order moments described above. The SRRM exhibits lack
of fit in terms of all four of these statistics, whereas the
AME model does not exhibit any substantial lack of fit.
In particular, the AME model improves the fit in terms
of the transitive fourth-order moment, even though this
pattern is not representable by the random effects model
for the multiplicative effects, as described in the previous
paragraph.

To summarize, an estimate of the multiplicative effects
matrix UV� in an AME model provides a reduced-rank
representation of the sociomatrix Y. As the dimension of
the multiplicative effects increases, so does the accuracy
of the representation. Furthermore, an estimate of � pro-
vides a summary of the across-node heterogeneity of the
ui’s and vi ’s, and therefore, also a summary of certain
network dependencies induced by these effects. But since
� is an incomplete summary of the across-node hetero-
geneity of the multiplicative effects (it only describes the
covariance of these effects), it can only provide an limited
summary of the potential network dependencies that are
present in the sociomatrix. Additionally, the correspon-
dence between � and the higher-order dependencies it
describes is somewhat opaque. For this reason, in situa-
tions where the primary goal of a data analysis is to eval-
uate specific types of higher-order network dependencies,
an approach using ERGMs will be more straightforward.

5.2 Comparison to Other Latent Variable Models

While estimates of the parameter � in the random ef-
fects model (3.2) can represent certain higher-order net-
work dependencies, estimates of the latent features in the
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FIG. 5. Two hypothetical networks. The network on the left can be represented by two groups of stochastically equivalent nodes. The network on
the right can be represented by an embedding of the nodes in two-dimensional Euclidean space.

AME model can also be interpreted locally at the micro-
level, in that ui and vi describe latent features of node
i as a sender and receiver of ties. Estimates of the fea-
tures (such as those displayed in Figure 4) can be used
to identify interesting nodes, assist with visualization of
network patterns, or be used as an input to other data
analysis methods, such as clustering (Rohe, Chatterjee
and Yu, 2011). Other popular nonadditive latent variable
models for network data include the stochastic block-
model (Nowicki and Snijders, 2001) and the latent dis-
tance model (Hoff, Raftery and Handcock, 2002). The
blockmodel assumes each node belongs to an unobserved
latent class or “block,” and that the relations between
two nodes are determined (statistically) by their block
memberships. This model is based on the assumption of
stochastic equivalence, that is, the assumption that the
nodes can be divided into groups such that members of
the same group have the same distribution of relationships
to other nodes. This basic blockmodel has been extended
in a number of ways, such as allowing for node-specific
degree heterogeneity (Karrer and Newman, 2011, Zhao,
Levina and Zhu, 2012), and to allow for nodes to be mem-
bers of multiple groups (Airoldi et al., 2008). In contrast,
the latent distance model assumes each node has some
unobserved location in a latent Euclidean “social space,”
and that the strength of a relation between two nodes is
decreasing in the distance between them in this space.
This model provides a compact representation of certain
patterns seen in social networks such as transitivity and
community, that is, the existence subgroups of nodes with
strong within-group relations. Like the basic blockmodel,
the distance model has been extended to allow for degree
heterogeneity (Krivitsky et al., 2009), and has been stud-
ied theoretically by Rastelli, Friel and Raftery (2016). Ex-
tensions to network embeddings in non-Euclidean metric
spaces have been considered by Asta and Shalizi (2015),
and embeddings in ultrametric spaces have been proposed
by Schweinberger and Snijders (2003).

Figure 5 displays two hypothetical symmetric net-
works, each one of which can be well represented by one

of these two latent variable models. The network on the
left can be well represented by a two-group stochastic
blockmodel in which the within-group density of ties is
lower than the between-group density. Such a network is
not representable by a latent distance model because in
such a model, stochastic equivalence of two nodes is con-
founded with the expected strength of their relationship:
In a latent distance model, two nodes are stochastically
equivalent if they are in the same location in the social
space. However, if they are in the same location, then the
distance between them is zero and so their expected rela-
tionship is strong. As such, networks where stochastically
equivalent nodes have weak ties will not be well repre-
sented by a latent distance model. Conversely, the net-
work displayed on the right side of Figure 5 is very well
represented by a two-dimensional latent distance model
in which the probability of a tie between two nodes is
decreasing in the distance between them. However, repre-
sentation of this network by a blockmodel would require
a large number of blocks (e.g., one block in each subre-
gion of the space), none of which would be particularly
cohesive or distinguishable from neighboring blocks.

In contrast to these two extreme networks, real net-
works exhibit combinations of stochastic equivalence and
transitivity in varying amounts. Inference based on ei-
ther a blockmodel or a distance model will often provide
only an incomplete description of the heterogeneity across
nodes in terms of how they form ties to others. However,
as shown in Hoff (2008), latent variable models based on
multiplicative effects (such as AME models) can repre-
sent both of these types of network patterns, and there-
fore provide a generalization of both the stochastic block-
model and the latent distance model. To explain this gen-
eralization, we consider the simple case of an undirected
dyadic variable so that the sociomatrix is symmetric. Each
of the three types of latent variable models may be writ-
ten abstractly as yi,j ∼ mi,j + α(ui ,uj ) where α is some
function of the node-specific latent variables u1, . . . ,un,
mi,j consists of any other terms in the model (such as a
regression term or additive effects), and “y ∼ x” means
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that the distribution of y is stochastically increasing in x.
The three latent variable models correspond to the follow-
ing three specifications of the function α:

Stochastic blockmodel: α(ui ,uj ) = u�
i 
uj , where

ui ∈ R
r is a standard basis vector indicating block mem-

bership, and 
 is r × r symmetric.
Latent distance model: α(ui ,uj ) = −|ui − uj |,

where ui ∈ R
r .

Multiplicative effects model: α(ui ,uj ) = u�
i 	uj ,

where ui ∈ R
r and 	 is an r × r diagonal matrix.

Hoff (2008) referred to the symmetric multiplicative ef-
fects model as an “eigenmodel,” as the matrix U	U� re-
sembles an eigendecomposition of a rank-r matrix. Note
that as the ui’s range over r-dimensional Euclidean space,
and 	 ranges over all r × r diagonal matrices, the ma-
trix U	U� ranges over the space of all symmetric rank-r
matrices. Similarly, for the asymmetric AME models dis-
cussed elsewhere in this article, as the ui’s and vi ’s range
over r-dimensional space, the multiplicative term UV�
ranges over the space of all n × n rank-r matrices.

To compare these models, we compare the sets of ma-
trices that are representable by their latent variables. Let
Sn be the set of n × n symmetric matrices, and let

Br = {
S ∈ Sn : si,j = u�

i 
uj , ui a standard basis vector,


 ∈ R
r×r symmetric

};
Dr = {

S ∈ Sn : si,j = −|ui − uj |,ui ∈ R
r};

Er = {
S ∈ Sn : si,j = uT

i 	uj ,ui ∈R
r ,

	 a r × r diagonal matrix
}
.

In other words, Br is the set of matrices expressible as
a r-dimensional blockmodel, and Dr and Er are defined
similarly for the latent distance and multiplicative effects
models, respectively. Hoff (2008) showed the following:

1. Er generalizes Br ;
2. Er+1 weakly generalizes Dr ;
3. Dr does not weakly generalize E1.

Result 1 means that Br is a proper subset of Er unless
r ≥ n. This is because the matrix S corresponding to an r-
group blockmodel is of rank r or less, and Er includes all
such matrices. Result 2 means that for any S ∈ Dr , there
exists an S̃ ∈ Er+1 whose elements are a monotonic trans-
formation of those of S, that is, have a numerical order
that matches that of the elements of S. From a practical
point of view, this means that if an r-dimensional latent
distance model fits the data reasonably well, then there
exists a link function and a set of (r + 1)-dimensional
multiplicative effects that represents the data equally well.
Finally, result 3 says that there exist rank-1 matrices S, ex-
pressible via one-dimensional multiplicative effects, that

cannot be order-matched by a distance model of any di-
mension. Taken together, these results imply that multi-
plicative effects models can represent both the types of
network patterns representable by stochastic blockmodels
and those representable by latent distance models, and so
is a more general and flexible class of models than either
of these two other latent variable models. See Hoff (2008)
for more details and numerical examples.

6. INFERENCE VIA POSTERIOR APPROXIMATION

While maximum likelihood estimation for a Gaussian
AME model is feasible, it is quite challenging for binary,
ordinal and other AME transformation models because
the likelihoods involve intractable integrals arising from
the combination of the transformation and the dependen-
cies induced by the SRM. However, reasonably standard
Gibbs sampling algorithms can be constructed to provide
Bayesian inference for a wide variety of AME network
models. We first construct a Gibbs sampler for Gaussian
SRRMs, then extend the sampler to accommodate Gaus-
sian AME models, and finally extend the algorithm to fit
AME transformation models. These algorithms are imple-
mented in the R package amen (Hoff et al., 2012), which
includes an R vignette (Hoff, 2015) with several example
analyses of binary, ordinal and continuous network data.

6.1 Gibbs Sampling for the SRRM

The unknown quantities in the Gaussian SRRM include
the parameters β , �, σ 2, and ρ, and the random effects
a and b. Approximation of the posterior distribution of
these quantities is facilitated by using a Np(β0,Q−1

0 )

prior distribution for β , a gamma(ν0/2, ν0σ
2
0 /2) prior dis-

tribution for 1/σ 2 and a Wishart(�−1
0 /η0, η0) prior dis-

tribution for �−1. A Gibbs sampler proceeds by itera-
tively simulating the values of the unknown quantities
from their conditional distributions, thereby generating a
Markov chain having a stationary distribution equal to the
target posterior distribution. Values simulated from this
Markov chain can be used to approximate a variety of
posterior quantities of interest. Given starting values of
the unknown quantities, the algorithm proceeds by iterat-
ing the following steps:

1. Simulate {β,a,b} given Y, �, σ 2, ρ;
2. Simulate σ 2 given Y,β,a,b, ρ;
3. Simulate ρ given Y,β,a,b, σ 2;
4. Simulate � given a,b;
5. Simulate missing values of Y given β,a,b, σ 2, ρ

and observed values of Y.

We include the last step because, while sociomatrices typ-
ically have undefined diagonals, the calculations below
make use of matrix operations that are only defined on
matrices with no missing values. By treating the diago-
nal values as missing at random, the fact that they are
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undefined will not affect the posterior distribution. Addi-
tionally, this step permits imputation of other dyadic out-
comes that are missing at random.

Steps 2 through 5 are relatively standard. We discuss
implementation of these steps before deriving the full con-
ditional distribution of {β,a,b}. To implement steps 2 and
3, consider the stochastic representation of the SRRM as

(6.1) Y = M(X,β) + a1� + 1b� + E,

where E = cZ + dZ�, with Z ∼ Nn×n(0, I), c = σ {(1 +
ρ)1/2 + (1 − ρ)1/2}/2 and d = σ {(1 + ρ)1/2 − (1 −
ρ)1/2}/2. Then E is a mean-zero Gaussian matrix with
Var

[( ei,j
ej,i

)] = σ 2( 1 ρ

ρ 1

) ≡ �e and Var[ei,i] = σ 2(1 + ρ),
with the elements of E being otherwise independent. Now
given β , a and b, construct E = Y − (M(X,β) + a1� +
1b�). As a function of σ 2 and ρ, the density of E is pro-
portional to(

σ 2)−n2/2(
1 − ρ2)−(n

2)/2
(1 + ρ)−n/2

× exp
{−(SS1 + SS2)/

[
2σ 2]}

,

where SS1 = ∑
i<j

( ei,j
ej,i

)�( 1 ρ

ρ 1

)−1( ei,j
ej,i

)} and SS2 =∑n
i=1 e2

i,i/(1 + ρ). The full conditional distribution of
1/σ 2 is therefore gamma([ν0 + n2]/2, [ν0σ

2
0 + SS1 +

SS2]/2). As for ρ, we do not know of a standard semi-
conjugate prior distribution. However, ρ is just a scalar
parameter bounded between −1 and +1, and so approxi-
mate simulation of ρ from its full conditional distribution
(given an arbitrary prior distribution) could be achieved
by computing the unnormalized posterior density on a
grid of values, or by slice sampling, or instead using a
Metropolis–Hastings updating procedure.

To update � in step 4, let fi = (ai ,bi) and recall that the
random effects model for the fi ’s is that f1, . . . , fn ∼ i.i.d.
N2(0,�). Given a Wishart prior distribution for �−1,
the conditional distribution of �−1 given f1, . . . , fn is
Wishart([η0�0 + F�F]−1, η0 + n), where F is the n × 2
matrix with ith row equal to fi .

The missing entries of Y may be updated by simulating
from their full conditional distributions. The full condi-
tional distribution of diagonal entry yi,i is N(mi,j + ai +
bj , σ

2(1 + ρ)). If a dyadic pair of outcomes (yi,j , yj,i) is
missing, then its full conditional distribution is bivariate
normal with mean vector (mi,j + ai + bj ,mj,i + aj + bi)

and covariance matrix σ 2( 1 ρ

ρ 1

)
). However, if yi,j is ob-

served and yj,i is not, then the full conditional distribu-
tion of yj,i is normal with mean ρ × (yi,j − mi,j − ai −
bj ) + mj,i + aj + bi and variance σ 2(1 − ρ2).

Step 1 of the Gibbs sampler requires simulation of
{β,a,b} from its joint distribution given Y, �, σ 2, and
ρ. This is challenging because of the dyadic correla-
tion. However, calculations are simplified by transform-
ing Y so that the dyadic correlation is zero: Given val-
ues of σ 2 and ρ, we may construct Ỹ = c̃Y + d̃Y�,

where c̃ = {(1 + ρ)−1/2 + (1 − ρ)−1/2}/(2σ) and d̃ =
{(1 + ρ)−1/2 − (1 − ρ)−1/2}/(2σ). It follows that

(6.2) Ỹ d= M(X̃,β) + ã1� + 1b̃� + Z,

where Z ∼ Nn×n(0, I), x̃i,j = c̃xi,j + d̃xj,i , (ã1, b̃1), . . . ,

(ãn, b̃n) ∼ i.i.d.N2(0, �̃) with �̃ = �
−1/2
e ��

−1/2
e . There-

fore, simulation of {β,a,b} from its conditional distribu-
tion given Y,�,σ 2 and ρ may be accomplished as fol-
lows:

1.a Compute Ỹ, X̃ and �̃ = �
−1/2
e ��

−1/2
e ;

1.b Simulate {β, ã, b̃} from its conditional distribution
based on (6.2);

1.c Set
( ai

bi

) = �
1/2
e

( ãi

b̃i

)
for i = 1, . . . , n.

Step 1.b may be implemented by simulating β condi-
tional on {Ỹ, X̃, �̃} and then simulating {ã, b̃} conditional
on β and {Ỹ, X̃, �̃}. We first derive the latter distribution,
as it facilitates the derivation of the former. For notational
simplicity, we drop the tildes on the symbols.

Let Y = M + a1� + 1b� + Z where the elements of
Z are i.i.d. standard normal random variables, and let
f = (a,b) be the concatenation of a and b so that f ∼
N2n(0,� ⊗ I), where “⊗” denotes the Kronecker prod-
uct. Vectorizing the formula for Y gives y = m + Wf + z,
where W is the n2 × 2n matrix obtained by column-
binding the matrices 1 ⊗ I and I ⊗ 1, with I being the
n × n identity matrix and 1 the n × 1 vector of ones. Let-
ting r = y − m, standard calculations for Bayesian linear
regression (e.g., Section 9.2 of Hoff (2009a)) show that
the conditional density of f given r and � is given by

p(f|r,�) ∝ exp
(−(r − Wf)�(r − Wf)/2

)
× exp

(−f�
(
�−1 ⊗ I

)
f/2

)
∝ exp

(−f�
[
W�W + �−1 ⊗ I

]
f/2 + f�W�r

)
.

This is the kernel of a multivariate normal distribution
with variance Var[f|r] = (W�W+�−1 ⊗I)−1 and expec-
tation E[f|r] = (W�W + �−1 ⊗ I)−1W�r. Some matrix
manipulations yield Var[f|r] = G ⊗ I − H ⊗ 11�, where:

• G = (�−1 + nI)−1;
• H = (�−1 + n11�)−1( 0 1

1 0

)
G.

Now let s = W�r = (1�R�,1�R), the concatenation of
the row sums and column sums of R = Y − M. We then
have E[f|r] = (G⊗I)s−(H⊗11�)s. Writing this in terms
of the n × 2 matrix F whose vectorization is f, we have
E[F|R] = SG− t11�H, where S is the n×2 matrix whose
first and second columns are the row and column sums of
R, respectively, and t = 1�R1, the sum total of the entries
of R. Therefore, to simulate F (and hence a and b) from
its full conditional distribution, we set F equal to

F = (
SG − t11�H

) + E,
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where E is a simulated n × 2 normal matrix with mean
zero and variance G ⊗ I − H ⊗ 11�. To simulate this nor-
mal matrix, rewrite Var[f|r] as Var[f|r] = [G −nH]⊗ I +
nH ⊗ [I − 11�/n], and recognize this as the covariance
matrix of

Z1(G − nH)1/2 + (
I − 11�/n

)
Z2(

√
nH)1/2,

where Z1 and Z2 are both n × 2 matrices of standard nor-
mal entries. To summarize, to simulate F from its full con-
ditional distribution:

1. Simulate two n × 2 matrices Z1 and Z2 with i.i.d.
standard normal entries;

2. Compute E = Z1(G − nH)1/2 + (I − 11�/n)Z2 ×
(
√

nH)1/2;
3. Set F = (SG − t11�H) + E.

The conditional mean and variance of f = (a,b) can be
used to obtain the distribution of β given y and �, but
marginal over a and b. First, we find the density of y con-
ditional on β and �. This density is given by p(y|β,�) =∫

p(y|f,β)p(f |�)df. As described above, the condi-
tional distribution of y given f and β is Nn2(m+Wf, I) so

the first term in the integrand is (2π)−n2/2 exp(−r�r/2 +
f�W�r − f�W�Wf/2). Combining this with the N2n(0,

� ⊗ I) prior distribution for f gives

p(y|β,�) = (2π)−n2/2e−‖r‖2/2|2π�|−n/2

×
∫

ef�W�r−f�(W�W+�−1⊗I)f/2 df

= (2π)−n2/2e−‖r‖2/2|2π�|−n/2

×
∫

ef�Var[f|r]−1E[f|r]−f�Var[f|r]−1f/2 df.

Completing the square and integrating over f gives the
marginal density,

p(y|β,�)

= (2π)−n2/2e−‖r‖2/2|�|−n/2∣∣Var[f|r]∣∣1/2

× exp
(
E[f|r]�Var[f|r]−1E[f|r]/2

)
.

Plugging in the values of Var[f|r] and E[f|r] and simpli-
fying gives the following expression for the uncorrelated
SRRM likelihood:

p(y|β,�)

= (2π)−n2/2|I + n�|−(n−1)/2∣∣I + n�11�∣∣−1/2

× exp
{−(

r�r + t21�H1 − tr
(
S�SG

))
/2

}
.

This is quadratic in r, and hence also quadratic in β . Some
algebra gives

p(y|β,�)

∝ exp
{−β�(Q1 + Q2 + Q3)β/2

+ β�(�1 + �2 + �3)
}
,

where Q1 = X�X and �1 = X�y, with X being the n2 ×p

matrix of the xi,j ’s; Q2 = n4hx̄x̄� and �2 = n4hx̄ȳ with
h = 1�H1, x̄ being the average of the xi,j ’s and ȳ being
the average of the yi,j ’s, and

Q3 = −n2(
g11X̄�

r X̄r + g12
(
X̄�

r X̄c + X̄�
c X̄r

) + g22X̄�
c X̄c

)
,

�3 = −n2(
g11X̄�

r ȳr + g12
(
X�

r ȳc + X̄�
c ȳr

) + g22X̄�
c ȳc

)
,

where ȳr is the n × 1 vector of row means of Y, X̄r is the
n × p matrix whose ith row is the average of xi,j over
j = 1, . . . , n, and ȳc and X̄c are analogously defined as
column means. Now the prior density for β is proportional
to exp{−β�Q0β/2 + β�Q0β0}, and so the conditional
density is given by

p(β|y,�) ∝ p(y|β,�) × π(β)

∝ exp
{−β�(Q0 + Q)β/2 + β�(Q0β0 + �)

}
,

where Q = Q1 + Q2 + Q3 and � = �1 + �2 + �3. This is
a multivariate normal density, with variance (Q0 + Q)−1

and mean (Q0 + Q)−1(Q0β0 + �).

6.2 Gibbs Sampling for the AME

Now suppose that Y follows a Gaussian AME model,
so that Y = M(X,β) + UV� + a1� + 1b� + E where
the distribution of {a,b,E} follows the social relations co-
variance model with parameters {�,σ 2, ρ}. Let (ui ,vi) ∼
N2r (0,�) independently across nodes, and let �−1 ∼
Wishart(�−1

0 /κ0, κ0) a priori. The joint posterior distri-
bution of the unknown parameters may be approximated
by a Gibbs sampler that iterates the following steps:

1. Update (β,a,b, σ 2, ρ,�) and the missing values of
Y using the algorithm described in Section 6.1, but with
Y replaced by Y − UV�;

2. Simulate �−1 ∼ Wishart((�0κ0 + [UV]�[UV])−1,

κ0 + n), where [UV] is the n × 2r matrix equal to the
column-wise concatenation of U and V;

3. For each k = 1, . . . , r , simulate the r th columns of
U and V from their full conditional distributions.

To perform step 3, first consider the full conditional dis-
tribution of u1, the first column of U. Let R = Y −
(M(X,β) + ∑r

k=2 ukv�
k + a1� + 1b�). Then we have

R = u1v�
1 + E. Decorrelating gives R̃ = c̃R + d̃R =

c̃u1v�
1 + d̃v1u�

1 + Z, and vectorizing gives r̃ = [c̃(v1 ⊗
I) + d̃(I ⊗ v1)]u1 + z. Given v1, this is a linear regres-
sion model with outcome vector r̃, design matrix W =
[c̃(v1 ⊗ I) + d̃(I ⊗ v1)], regression parameters u1, and
i.i.d. standard normal errors. Let μu|v and �u|v be the
conditional mean and variance of u1 given v1. Then the
conditional distribution of u1 given v1 and R̃ is normal
with mean and variance given by

Var[u1|R̃,v1] = (
�−1

u|v + W�W
)−1

,

E[u1|R̃,v1] = (
�−1

u|v + W�W
)−1(

�−1
u|vμu|v + W�r̃

)
.
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Some calculations show that W�W = (c̃2 + d̃2)‖v1‖2I +
2c̃d̃v1v�

1 and W�r̃ = (c̃R̃+ d̃R̃�)v1. The full conditional
distribution of v1, and the other columns of U and V, may
be obtained similarly.

6.3 Gibbs Sampling for Transformation Models

A transformation model assumes that the socioma-
trix S is a function of a latent sociomatrix Y that fol-
lows a Gaussian AME model with parameters θ =
{β,a,b,U,V, ρ,�,�}. This collection of parameters
does not include σ 2, because for probit models in gen-
eral and for the other transformation models described in
this article, the overall scale of the yi,j ’s is not identifi-
able, and so we fix σ 2 = 1. For the transformation mod-
els discussed in Section 4, observation of S implies that
Y ∈ C(S). Given starting values of Y and θ , a Gibbs sam-
pler for approximating the joint posterior distribution of Y
and θ conditional on S proceeds by iterating the following
steps:

1. Update θ conditional on Y with the algorithm de-
scribed in Section 6.2;

2. Update Y conditional on θ and Y ∈ C(S).

To perform step 2 of this algorithm, first consider the
simple probit transformation model where the observed
outcome si,j is the binary indicator that the latent Gaus-
sian variable yi,j is greater than zero. Let μi,j = β�xi,j +
u�

i vj + ai + bj . Then unconditional on S but given the
other parameters, we have that

(
yi,j

yj,i

)
∼ N2

((
μi,j

μj,i

)
,

(
1 ρ

ρ 1

))

independently across dyads, and that yi,i ∼ N(μi,i,1+ρ)

independently across diagonal entries. Since the diago-
nal entries of S are undefined and the diagonal entries
of Y are uncorrelated with the off-diagonal entries, each
yi,i value may be updated from its N(μi,j ,1 + ρ) distri-
bution. The off-diagonal entries may be updated in two
steps: first updating the elements of Y below the diago-
nal, and then updating those above. To do so, note that
yi,j |yj,i ∼ N(μi,j + ρ × (yj,i − μj,i),1 − ρ2). Now in
the case of a probit AME model where si,j is the indicator
that yi,j is greater than zero, the full conditional distribu-
tion of yi,j is N(μi,j + ρ(yj,i − μj,i),1 − ρ2) but con-
strained to be above zero if yi,j = 1 and below zero other-
wise. The full conditional distributions under other types
of transformation models are also constrained normal dis-
tributions, where the constraint depends on the type of
transformation. Univariate constrained normal distribu-
tions may be easily simulated from using the inverse-CDF
method.

7. DISCUSSION

The AME framework is a modular approach for net-
work data analysis based on three statistical models: the
social relations covariance model, low-rank matrix repre-
sentations via multiplicative factors, and Gaussian trans-
formation models. Separately, each of these should be fa-
miliar to an applied statistician or data analyst: The first
is a type of linear random effects model, the second is
analogous to a model-based singular value decomposi-
tion, and the third forms the basis of many binary and
ordinal regression models. Together, they provide a flex-
ible model-based framework for inference that accounts
for many statistical patterns often found in network data,
and accommodates a variety of types of dyadic and nodal
variables.

Current and future work in this area includes general-
izing this framework to analyze datasets from more mod-
ern network studies that include multiple sociomatrices
on one or more nodesets, such as comparison studies
across multiple populations, multiple time points, multi-
ple dyadic variables, or combinations of these. For exam-
ple, Durante, Dunson and Vogelstein (2017) and Wang,
Zhang and Dunson (2019) employ multiplicative network
models to describe heterogeneity across a population of
brain networks. Some other steps in this direction have
been taken by representing a set of sociomatrices as a
tensor (Hoff, 2011, 2016). However, these methods are
not yet general enough to encompass the wide variety of
multivariate, multilevel and longitudinal network datasets
that are becoming more prevalent. What is needed is a
broad framework like that which is available for gen-
eralized linear mixed models from the nlme or lme4
software (Pinheiro and Bates, 2000, Walker et al., 2015),
whereby a data analyst may separately select the type of
data being analyzed (continuous, binary, count, etc.) and
build a complicated model of dependence relationships
between subsets of the data. One challenge to developing
such a framework for network data is computational—the
Gibbs samplers described in this article and implemented
in the R package amen become cumbersome when the
number of nodes is above a few thousand, and other in-
tegral approximation methods (such as Laplace approx-
imations) for AME transformation models are infeasi-
ble because of the complicated dependence induced by
the SRM. Fast, stable parameter estimation for large net-
work datasets may require abandoning estimation based
on a full likelihood, in favor of composite likelihood es-
timation (Lindsay, 1988) or modern method-of-moments
approaches (Perry, 2017). Similar approaches have been
proposed for other latent variable models, including pseu-
dolikelihood (Amini et al., 2013) and method of moments
estimation (Bickel, Chen and Levina, 2011) for block-
models, and a case-control likelihood approximation for
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the latent distance model (Raftery et al., 2012). Particu-
larly promising may be variational approximations, which
have been used to estimate block memberships and latent
positions in the blockmodel (Celisse, Daudin and Pierre,
2012) and latent distance model (Salter-Townshend and
Murphy, 2013).
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