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Before starting: Additional Material
for Practical Training

Lab 2.3:intro to python (basic, numpy, graphics,
data handling)

Lab 12.5: unsupervised learning (only 12.5.1 related Gareth James - Daniela Witten - Trevor Hastie-
to PC A) Robert Tibshirani - Jonathan Taylor

An Introduction

Pay attention, the book uses some datasets that tO StatiStical
are available at Leaming

https://www.statlearning.com/resources-python



https://www.statlearning.com/resources-python

Recap — The Machine Learning pipeline

« Definition
« Expected Impact
» Evaluation metric

Conversion
Parsing
Aggregation
Alignment

« Quality
» Reconciliation

« Denoising
» Qutlier detection

Modelling

Comparison

Modeling

On-line
Implementation
Business outcome
Improvement



Supervised
Tasks

Setup: available historical data

Data: (x - ‘input’, y — ‘output’)

Objective: earn a map/function
that, when fed with new 'x'
provides output estimates of 'y



Supervised
Tasks

Depending on the nature of the output,
we distinguish two subclasses of
problems:

- If y is a continuous variable ->
Regression Problem

-If yis a categorical variable ->
Classification Problem

Setup: available historical data

Data: (x - ‘input’, y — ‘output’)

ObLective: earn a map/function
that, when fed with new 'x'
provides output estimates of 'y



An example of a Regression Task

» Goal: estimating the selling prize of an
house [1]

» Thanks to an historical dataof n .
transactions (for example the California
housing dataset) with information such
as

- Median price house (output - V)
- # Rooms (input - X)

- Squared meters (input - X)

- Built year (input - X)

- Address (input - X)

[1] Machine Learning and the Spatial Structure of House Prices and
Housing Returns— A. Caplin et al.

www.immobiliare.it



http://www.immobiliare.it/

An example of a Classification Task

« Goal: estimating the Iris type

* Thanks to an historical data of
ndata sample with
information such as

- Class (‘setosa’, ‘virginica’,
versicolur’) (output - )

- Sepal length (input - X)

- Sepal width (input - X)

- Petal length (input - X)

- Petal width (input - X)




An example of a Classification Task

« Goal: recognizing a song from
a small (3-4 sec.) data sample

* Currently handling a 100
million class problem

 Historically, first results on
Shazam talked about a ‘digital
footprint (X): mainly a feature
engineering approach made
the solution feasible!

What's this song?

?0 Google play




Supervised X y
Tasks — X —

- Ifyisacontinuous variable -> Regression

- Ifyisacategorical variable ->
Classification

Note #01: We will initially concentrate on
Regression

Setup: available historical data . .
P Note #02: With small changes, regression

Data: (x ~input’, y ~‘output) approaches can be adapted to Classification

Objective: earn a map/function "
ti‘nat, when fed witfl%ew X' (and vice Versa)

provides output estimates of 'y



Supervised X y
Tasks — X —

- Ifyisacontinuous variable -> Regression

- Ifyisacategorical variable ->
Classification

Note #01: We will initially concentrate on
Regression

Setup: available historical data . .
P Note #02: With small changes, regression

Data: (x ~input’, y ~‘output) approaches can be adapted to Classification

Objective: earn a map/function "
ti‘nat, when fed witfl%ew X' (and vice Versa)

provides output estimates of 'y



We’ll talk a lot of supervised learning

WEEK 01

2025-02-24 Monday - Lecture 01: Course introduction & Motivation & Taxonomy of ML
2025-02-27 Thursday - Lecture 02: Introduction to Statistics for Machine Learning
2025-02-28 Friday - Lecture 03 (Lab 01): Introduction to Python

WEEK 02

2025-03-01 Monday - Lecture 04: Data Visualization

2025-03-04 Thursday - Lecture 05: Principal Component Analysis & Multivariate modeling
2025-03-05 Friday - Lecture 06 (Lab 02): Elaborate and Visualize data

WEEK 03

2025-03-10 Monday - Lecture 07: Supervised Learning, linear regression, training vs testing
2025-03-13 Thursday - Lecture 08: Overfitting and Ridge Regression, crossvalidation
2025-03-14 Friday - Lecture 09 (Lab 03): Linear Regression and Ridge Regression

WEEK 04

2025-03-17 Monday - Lecture 10: Ridge Regression vs LASSO, gradient descent
2025-03-20 Thursday - Lecture 11: Classification, Logistic Regression
2025-03-21 Friday - Lecture 12 (Lab 04): Regularization & Classification



We’ll talk a lot of supervised learning

WEEK 05

2025-03-24 Monday - Lecture 13: Multiclass Classification and Softmax Regression, Introduction to
performance metrics: accuracy, precision, recall, F1-score / Handling unbalanced data

2025-03-27 Thursday - Lecture 14: Decision trees, overfitting and pruning

2025-03-28 Friday - Lecture 15 (Lab 05): Decision Trees

WEEK 06

2025-03-31 Monday - Lecture 16: Ensemble Methods: Bagging, Random Forests, bootstrap aggregating
2025-04-03 Thursday - Lecture 17: AdaBoost, XGBoost, Catboost

2025-04-04 Friday - Lecture 18 (Lab 06): Ensemble approaches

WEEK 07

2025-03-17 Monday - Lecture 19: Support Vector Machines (SVM), Linear and kernel-based
approaches, Concept of the margin and kernel trick

2025-04-10 Thursday - Lecture 20: Unsupervised Learning: K-Means Clustering. Evaluating clustering
performance.

2025-04-11 Friday - Lecture 21 (Lab 07): SVM and Clustering



We’ll talk a lot of supervised learning

WEEK 08

WEEK 09

WEEK 10

WEEK 11

5855-85-& ‘ Hurs!ai - Eecture !7: gutoencoders




We’ll talk a lot of supervised learning

WEEK 14

2025-05-26 Monday - Lecture 31: XAl #01
2025-05-29 Thursday - Lecture 32: XAl #02
2025-05-30 Friday - Lecture 33 (Lab 10): XAl

WEEK 15

2025-06-05 Thursday - Lecture 34: Fairness in ML
2025-06-06 Friday - Lecture 35: Real-world Applications and MLOps

WEEK 16
2025-06-09 Monday - Lecture 36: What's next



Regression Approaches
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Regression Approaches
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Linear Regression

We are looking for a model F(x)that
X y allows us to make predictions
F(x) (estimates) of a target variable ybased
on the features x = [X; X; ... X,]

We initially consider linear models, ie.
models with the form:

F(X) = Bo+ BiX1+ BoXg + .o + BpXop

le. House Price = 150k$ + 10k$*[#
bathrooms] + ... - 1k$*[house age]



Linear Regression

— X —

We are looking for a model F(x)that
y allows us to make predictions

(estimates) of a target variable ybased
on the features x = [X; X; ... X,]

We initially consider linear models, ie.

mode
F(x) =

- These are called parameters/coefficients

s with the form:

Bo + B1Xq + BoXy + .. + BpXp

le. House Price = 150k$ + 10k$*[#
bathrooms] + ... - 1k$*[house age]



Linear Regression

We are looking for a model F(x)that
X y allows us to make predictions
F(x) (estimates) of a target variable ybased
on the features x = [X; X; ... X,]

We initially consider linear models, ie.
models with the form:

F(X) = Bo + BiX1+ BaXg + ... + BpXp

- These are called parameters/coefficients

- One the parameter is the so-called

intercept, the ‘constant’ coefficient le. House Price = 150k$ + 10k$*[#
bathrooms] + ... - 1k$*[house age]



Linear Regression: Parameters Search and
Objective Function

How to choose the ‘best’ parameters

g (X) = Bo + B1X1+ BoXy + ... + Bpxp?

Data will tell us!




Linear Regression: Parameters Search and

Objective Function

How to choose the ‘best’ parameters

:B (X) = Bo + B1X1+ BoXy + ... + Bpxp?

Data will tell us!

We need a criterium (an objective) to
choose such parameters: we will
choose the ‘best’ parameters to
optimized our objective. Ideas?

The objective will be called
‘Cost function’



Linear Regression: Parameters Search and
Objective Function

How to choose the ‘best’ parameters

:B (X) = Bo + B1X1+ BoXy + ... + Bpxp?

Data will tell us!

We need a criterium (an objective) to
choose such parameters: we will
choose the ‘best’ parameters to
optimized our objective. Ideas?

A common objective is to minimize
the sum of (squared) prediction errors,

n () _ ®)]2
ie. | will choose B s.t. Zi=1 Fg GO
the possible lowest valuel




Linear Regression: Parameters Search and
Objective Function

How to choose the ‘best’ parameters

We have already seen

= — ?
8 (X) = Bo+ Brxy+ BoXp + o + BpXp something similar in PCA
Data will tell us!

di2 + d22 + d32 + d4? + ds52 + de2 = sum of squared distances = SS(distances)

We need a criterium (an objective) to
choose such parameters: we will
choose the ‘best’ parameters to
optimized our objective. Ideas?

A common objective is to minimize oA

the sum of (squared) prng_l)CtFIO? %r)r]ors, Fe

. . n L) _ D)2 . : :
ie. | will choose B s.t. =1y "~ | ) Gene 1

s . 3
: n 2
the possible lowest value! - &




Linear Regression: Parameters Search and

Objective Function

How to choose the ‘best’ parameters
Fa (X) = Bo+ BrXq + BoXo + .o + BpXp?
Data will tell us!

We need a criterium (an objective) to
choose such parameters: we will
choose the ‘best’ parameters to
optimized our objective. [deas?

A common objective is to minimize

the sum of (squared) prediction errors,

O ®)]2
ie. | will choose B s.t, 2i=2 Fg GO)IZ;
the possible lowest valuel

S

This metric is called
Mean Squared Error
(MSE), and it is widely
used in regression.

The Root Mean Squared
Error RMSE = VMSE is
also widely used

We will shortly see why
we use the ‘squared’
version of the error




Linear Regression: Parameters Search and

Objective Function

At the change of parameters
combinations, different MSE are
achieved (our predictions will become
better or worse)

A nice property of regression
approaches is that the cost function is
| in the space of the parameters
(a line segment connecting any two
Bomts on the function's graph'never lies
elow the function itself): this will

become extremely useful later!

the sum of (squared) prediction errors,

O ®)]2
ie. | will choose B s.t. 2= Fg GO 1o
the possible lowest valuel

400 4
300.
200 -

1004




Linear Regression: Parameters Search and
Objective Function

How to chIWEIEYCERNMEPEEEC o ﬁ
‘optimal’ par\amet?rs that 400 ) L.
SN Minimizes the cos
s (0 = Bo function 3001
ey 200
Data wil 'We indicate with B* the set 1651
We need ¢ L
choose suCh parameters. we w

choose the ‘best’ paraméters to
optimized our objective. [deas?

A common objective is to minimize
the sum of (squared) prediction errors,

O ®)]2
ie. | will choose B s.t. Zi=1 Fg GO 1o
the possible lowest valuel




Linear Regression: Parameters Search and
Objective Function - Ideas?



Linear Regression: Parameters Search and
Objective Function

An approach called ’grid i
search’ consists in trying
all possible combination

of parameters p and then
choose B* that minimizes

the cost function



Linear Regression: Parameters Search and
Objective Function

11111

11111

An approach called ’grid
search’ consists in trying
all possible combination
of parameters p and then
choose B* that minimizes

the cost function

This is a costly approach;

instead in ML we use 17—
‘optimization’ approaches | (/[
that will find such L2 %

parametersin a ‘fast’ way




Linear regression: a closed-form solution (1/3)

Linear regression has a really simple

way to find the optimal parameters: a |

closed-form solution! 00 4
30041

We need to minimize this cost 500 |

function, by smart choices of the
parameters 2

J(B) = |y — XB|"

= (y - XB8)'(y — XB)
How to do that?




Linear regression: a closed-form solution (1/3)

Linear regression has a really simple
way to find the optimal parameters: a f

closed-form solution! 400}
3001

We need to minimize this cost 566
function, by smart choices of the |
parameters

J(B) = |ly — XB|
= (y — XB8)" (y — XB)

How to do that? Let’s compute the
derivative of J w.r.t. the coefficients!

1004




Linear regression: a closed-form solution (1/3)

. . In the following we will use matrix
Linear regression a1z ] Manipulations’in the case you need a

way to find the optimal SRS | ﬁ

closed-form solution! [ R AR A E RN TSSO R A ATTe]
kowi/matrixcookbook.pdf

We need to minimize this cost 560
function, by smart choices of the 1
parameters

J(B) = |ly — XB|
= (y — XB8)' (y — XB)

How to do that? Let’s compute the
derivative of J w.r.t. the coefficients!

1004




Linear regression: a closed-form solution (1/3)

Linearn y pble

way t¢ Brs: a 4
closec / < /\ / | 400 {
g |

We ne > { N/ |
functi i) “Stationary Points”

pararn F =0

J(B) = |ly — XB|?
= (y — XB8)" (y — XB)

How to do that? Let’s compute the
derivative of J w.r.t. the coefficients!




Linear regression: a closed-form solution (2/3)

JB)=y'y —2y'XB+ B X"Xp



Linear regression: a closed-form solution (2/3)

J(B) =ly'y|-2y"XB + B X"Xp
0,
%y

Ty — ()




Linear regression: a closed-form solution (2/3)

J(B) =ly'y|F 2y" XBH+ B X"Xp

0
0p

0,
(—2y'XB) %yTy =0

0 , 7.\
%(a b) =a

—2X'ly




Linear regression: a closed-form solution (2/3)

J(B) =|y" ¥|- 2y XBH+|B" X" X8
0 T 0 %,
8ﬂ( 2y” XB) %yTy = 55 — (BTXTXB)
0 , o 0  or
b — (BT AB) =2A8.
op op\ ™ P) = 9B (if A is symmetric)
—2X"y oXTX 3




Linear regression: a closed-form solution (3/3)
2XIXB3 —2XTy =0

X'xp =Xy



Linear regression: a closed-form solution (3/3)
2XTXB — 2XTy =0

X'xp =Xy

B=(XX)'Xy

Coefficients are derived from data! We see that both input and
output data are necessary to derive the coefficients.

The equation reported above is



Linear regression: a closed-form solution (3/3)

2XTXB — 2XTy =0
We are
XTX,B _ XTy assuming X’X

is invertible for
the moment

B=(XX)'Xy

Coefficients are derived from data! We see that both input and
output data are necessary to derive the coefficients.

The equation reported above is



Linear regression: a closed-form solution (3/3)

2XTXB — 2XTy =0

del called T T zgiuarﬁng X°X
model calle _
Partial Least X' XB=X"y is invertible for

Squares’ (PLS): the moment

Wetare.prqtba \Y - T
not going to see —
thiqun thg course ,3 — (X X) X Y

Coefficients are derived from data! We see that both input and
output data are necessary to derive the coefficients.

The equation reported above is



Example on California Housing dataset

Target (Y):

- MedHouseVal (Median House Value in block group) Represents the
median house price in the block group. Measured in hundreds of
thousands of dollars (capped at $500,000 in the dataset).

Inputs:*

- MedlInc (Median Income in block group). Represents the median income
8T ﬁ”ouseholds in the block group.”Measured in tens of thousands of
ollars.

- HouseAge (Median House Age in block group). Represents the median
age of houses in the area. Méasured in years.

- AveRooms (Average Number of Rooms per Dwelling). Computed as the
total number of rooms in the block group divided by the number of
households. Helps indicate the geneéral size of homés in an area.

- AveOccup (Average Number of Occupants per Household). Computed
ﬁs ther’]colto?l population in the block group divided by the number of
ouseholds.

* A subset of the available inputs

CALIFORNIA REPUBLIC



Example on California Housing dataset

Target (Y):

- MedHouseVal (Median House Value in block group) Represents
the median house price in the block group. Measured in hundreds
of thousands of dollars (capped at $500,000 in the dataset).

MedInc

Inputs: HouseAge
AveRooms

- Medinc (Median Income in block group). Represents the median AveOccup

iIncome of households in the block group. Measured in tens of
thousands of dollars.

- HouseAge (Median House Age in block group). Represents the RMSE on training data:
median age of houses in the area. Measured in years.

- AveRooms (Average Number of Rooms per Dwelling). Computed :
as the total numbegr of roomsin the blocpk group div?ded by I%he 0.80468385844313648
number of households. Helps indicate the general size of homes
in an area.

- AveOccup (Average Number of OQCUﬁantS per Household).
Computed as the total population in the block group divided by
the number of households.



Example on California Housing dataset

Target (Y):

- MedHouseVal (Median House Value in block group) Represents
the median house price in the block grou . Measured in hundreds
of thousands of dollars (capped at $500,000 in the dataset).

MedInc

Inputs: HouseAge
AveRooms

- Medinc (Median Income in block group). Represents the median AveOccup

iIncome of households in the block group. Measured in tens of
thousands of dollars.

- HouseAge (Median House Age in block group). Represents the RMSE on training data:
median age of houses in the area. Measured in years.

- AveRooms (Average Number of Rooms per Dwelling). Computed
as the total numbegr of roomsin the blocpk group div?ded by I%he 0.80468385844313648
number of households. Helps indicate the general size of homes
in an area.

- AveOccup (Average Number of Occugants per Household). s it ’good’?

Computed as the total population in the block group divided by
the number of households.




R-Squared

R-squared (R?), or the Coefficient of Determination, is a
statistical measure that indicates how well a regression
model explains the variance in the target variable. Where:

- Residual Sum of Squares, measures the total squared
difference between the actual and predicted values

- Total Sum of Squares, measures the total variance in
the target variable

Interpretation:
- R-squared =1, perfect fit!

- R-squared = 0, the model does no better than simply
predicting the mean

- R-squared < 0, the model performs worse than a simple
average prediction




R-Squared

R-squared (R?), or the Coefficient of Determination, is a R2 —1
statistical measure that indicates how well a regression
model explains the variance in the target variable. Where:

SSres
S‘Stot

- Residual Sum of Squares, measures the total squared gg  _ A \2
difference between the actual and predicted values res — Z(yz — Ui)

- Total Sum of Squares, measures the total variance in
the target variable

Interpretation:

- R-squared =1, perfect fit!

- R-squared = 0, the model does no better than simply R-squared:
predicting the mean -
0.514

- R-squared < 0, the model performs worse than a simple
average prediction




Minimization of MSE on training data

Let’s consider a univariate example:

— True Function
X Samples
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Minimization of MSE on training data

OLS: linear coefficients to variable X and to the intercept (constant):
Y = a+bX

Mean Squared Error: 78.3462

T I I T | | |
1) S S — True Function |- .o —
: X Samples 5
70 ' Model ' : : : :
X | | | | | |
0 05 1 15 2 25 3 35 4




Minimization of MSE on training data

OLS: linear coefficients to variable X and to the intercept (constant):
Y = a+bX

Mean Squared Error: 78.3462

T I I T | | |
| KOOI SRSSyn T U O |- —
Can we dO better? X Samples
i a — Model | g g g g X
X | | | | | |
0 05 1 15 2 25 3 35 4




Minimization of MSE on training data

Let’s also consider a transformation of the input data!
Y = a+bX+cX2

Mean Squared Error: 33.1529

This approach is B = T A R S S
called ‘basis Z Nosa X
expansion’ and it is x

a popular feature . x

engineering step! x oz

73 AR SRS SRSRSRR SNNRNNE VSIS S il NSRS R N—— -
: : b X :

] St N SO 0o S S SO .
E E P X E
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X : ;
X x X s |
OfF----mmmmmmmmmm et B R e e e —
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Minimization of MSE on training data

Let’s also consider a transformation of the input datal

Y = a+bX+cX?

Mean Squared Error: 33.1529

! i i | | ! !

Can we do better R S B B -
again? ~Model KX




Minimization of MSE on training data

Extension to the 20-th order
Y = a+bX+cX2+ ... +vX20

Mean Squared Error: 17.7894

ol " o N o o L L — True Function
' ' ' : ' X Samples
1 . S S Model —
I | I I
0 05 1 15 2 25 3 35 4



Minimization of MSE on training data

Which one is more ‘reasonable’?

Mean Squared Errol: 33.1529

! i i ! :

P} I S — True Function 4444444444444444444
: X Samples
Model X X

Mean Squared Erroi: 17.7894

PN x _____________________ _____________________ ___________ — True Function | |
’ : : ‘ ; X Samples
: : : : : : Model
1 S s S S S S _
| | | | | | [
0 05 1 15 2 25 3 35 4




Minimization of MSE on training data

Which one is more ‘reasonable’?

Mean Squared Errol: 33.1529

! i i ! :

P} I S — True Function ___________________
' X Samples
Model g g g g X X

Mean Squared Erroi: 17.7894

— True Function| |
X Samples
Model

[
35 4




Minimization of MSE on training data

Which one is more ‘reasonable’? Complicating a model does not always
improve its accuracy on new data!
Mean Squared Errol: 33.1529 . .
; ——— ; i 5 5 (lack of generalization)
‘ . ;irgeplles X X

Mean Squared Erroi: 17.7894

PN L. . N A — True Function | |
X Samples

) O S SN . S “Iil ___________ I\IAOdel _

0 05 1 2 25 3 35 4




Minimization of MSE on training data

Which one is more ‘reasonable’?

80

Mean Squared Errol: 33.1529

— True Function
X Samples

Model

Complicating a model does not always
improve its accuracy on new data!
(lack of generalization)

-> We need an ‘independent’ dataset,
known as a validation set, where we
see performances on new cases!

Mean Squared Erroi: 17.7894

— True Function| |
X Samples
Model
[

35 4



Training vs. Test

To understand how good a modelis in
generalizing, we need a test set: a set of
data that was not used to find the model
parameters.

Such data should not share data sample with
the training set: a set of data used to builing

a model, finding the ‘best’ parameters
Dataset



Example on California Housing dataset

We put randomly 20% of the dataset in testing,
while keeping the rest in training

Mean Squared Error (MSE): 0.657451727882265
R-squared (R2): 0.49828508595474374

Model Coefficients:

MedInc: 0.44546559658692364
HouseAge: ©.016904055548308032
AveRooms: —-0.02838068980516648
AveOccup: —-0.004143822818663251 CALIFORNIA REPUBLIC

Intercept: 0.026697367635455382 _




Example on California Housing dataset

We put randomly 20% of the dataset in testing,
while keeping the rest in training

Mean Squared Error (MSE): 0.657451727882265
R-squared (R2): 0.49828508595474374

Arbitrary choice:
random choices are

always safe?

Model Coefficients:

MedInc: 0.44546559658692364
HouseAge: ©.016904055548308032
AveRooms: —-0.02838068980516648
AveOccup: —-0.004143822818663251 CALIFORNIA REPUBLIC

Intercept: 0.026697367635455382 _




Cross-Validation

* As said, in modeling we divide data into:
 Training &Vahdation for model building

 Test for performance estimation

» Based on the random choice, performance can

dramatically change! Especially with ‘small’ datasets
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* As said, in modeling we divide data into:
 Training &Vahdation for model building

 Test for performance estimation

» Based on the random choice, performance can

dramatically change! Especially with ‘small’ datasets




Cross-Validation

* To avoid biases in performance evaluation we

use cross-validation

* Approaches
- K-fold

Test Data
Training & Validation Data



Cross-Validation

* To avoid biases in performance evaluation we

use cross-validation

* Approaches
TMSE (Mean Squared Error)... or other performance metric!
- K-fold (Mean Squared Error) P
A
\\
\
1

Test Data
Training & Validation Data



Cross-Validation

* To avoid biases in performance evaluation we

use cross-validation

* Approaches
_K-fold IMSE  2MSE 3MSE 4MSE 5I\1ISE
]
]
I
[ I
Test Data

Training & Validation Data



Cross-Validation

* To avoid biases in performance evaluation we

use cross-validation

* Approaches
TMSE  2MSE
- K-fold ' ‘ 3MSE 4M’SE 5N'ISE
L . AN s ]
\ Y « ¥ /

N

~~+ AVERAGED MSE «*

Test Data
Training & Validation Data



Cross-Validation

* To avoid biases in performance evaluation we

use cross-validation

* Approaches
TMSE
- K'fOId % $\\
\ Y
- MonteCarlo \ \
i S~
Test Data

Training & Validation Data
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* To avoid biases in performance evaluation we

use cross-validation

* Approaches
1MSE 2MSE
- K-fold 4 A
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- MonteCarlo \ T N
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Thank you!

Gian Antonio Susto




