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Before starting: Additional Material 
for Practical Training

Lab 2.3: intro to python (basic, numpy, graphics, 
data handling) 
Lab 12.5: unsupervised learning (only 12.5.1 related 
to PCA)

Pay attention, the book uses some datasets that
are available at
https://www.statlearning.com/resources-python

https://www.statlearning.com/resources-python


Recap – The Machine Learning pipeline 

Modeling



Supervised 
Tasks

Setup:  available historical data

Data: (x – ‘input’, y – ‘output’)

Objective: earn a map/function 
that, when fed with new 'x', 

provides output estimates of 'y'

x y
F(x)



Supervised 
Tasks

Setup:  available historical data

Data: (x – ‘input’, y – ‘output’)

Objective: earn a map/function 
that, when fed with new 'x', 

provides output estimates of 'y'

Depending on the nature of the output, 
we distinguish two subclasses of 
problems:

- If y is a continuous variable -> 
Regression Problem

- If y is a categorical variable -> 
Classification Problem

x y
F(x)



• Goal: estimating the selling prize of an
house [1]
• Thanks to an historical data of n

transactions (for example the California 
housing dataset) with information such 
as
− Median price house (output - Y)
− # Rooms (input - X) 
− Squared meters (input - X) 
− Built year (input - X)
− Address (input - X)

[1] Machine Learning and the Spatial Structure of House Prices and 
Housing Returns – A. Caplin et al.

www.immobiliare.it

An example of a Regression Task

http://www.immobiliare.it/


• Goal: estimating the Iris type
• Thanks to an historical data of 

n data sample with 
information such as
− Class (‘setosa’, ‘virginica’, 

’versicolur’) (output - Y)
− Sepal length (input - X) 
− Sepal width (input - X) 
− Petal length (input - X) 
− Petal width (input - X) 

An example of a Classification Task



• Goal: recognizing a song from 
a small (3-4 sec.) data sample
• Currently handling a 100 

million class problem
• Historically, first results on 

Shazam talked about a ‘digital 
footprint (X)’: mainly a feature 
engineering approach made 
the solution feasible!

An example of a Classification Task



Supervised 
Tasks

Setup:  available historical data

Data: (x – ‘input’, y – ‘output’)

Objective: earn a map/function 
that, when fed with new 'x', 

provides output estimates of 'y'

- If y is a continuous variable -> Regression

- If y is a categorical variable -> 
Classification

Note #01: We will initially concentrate on 
Regression

Note #02: With small changes, regression 
approaches can be adapted to Classification 
(and vice versa) 
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We’ll talk a lot of supervised learning
WEEK 01
2025-02-24 Monday - Lecture 01: Course introduction & Motivation & Taxonomy of ML
2025-02-27 Thursday - Lecture 02: Introduction to Statistics for Machine Learning
2025-02-28 Friday - Lecture 03 (Lab 01): Introduction to Python

WEEK 02
2025-03-01 Monday - Lecture 04: Data Visualization
2025-03-04 Thursday - Lecture 05: Principal Component Analysis & Multivariate modeling
2025-03-05 Friday - Lecture 06 (Lab 02): Elaborate and Visualize data

WEEK 03
2025-03-10 Monday - Lecture 07: Supervised Learning, linear regression, training vs testing
2025-03-13 Thursday - Lecture 08: Overfitting and Ridge Regression, crossvalidation
2025-03-14 Friday - Lecture 09 (Lab 03): Linear Regression and Ridge Regression

WEEK 04
2025-03-17 Monday - Lecture 10: Ridge Regression vs LASSO, gradient descent
2025-03-20 Thursday - Lecture 11: Classification, Logistic Regression
2025-03-21 Friday - Lecture 12 (Lab 04): Regularization & Classification



WEEK 05
2025-03-24 Monday - Lecture 13: Multiclass Classification and Softmax Regression, Introduction to 
performance metrics: accuracy, precision, recall, F1-score / Handling unbalanced data
2025-03-27 Thursday - Lecture 14: Decision trees, overfitting and pruning
2025-03-28 Friday - Lecture 15 (Lab 05): Decision Trees

WEEK 06
2025-03-31 Monday - Lecture 16: Ensemble Methods: Bagging, Random Forests, bootstrap aggregating
2025-04-03 Thursday - Lecture 17: AdaBoost, XGBoost, Catboost
2025-04-04 Friday - Lecture 18 (Lab 06): Ensemble approaches

WEEK 07
2025-03-17 Monday - Lecture 19: Support Vector Machines (SVM), Linear and kernel-based 
approaches, Concept of the margin and kernel trick
2025-04-10 Thursday - Lecture 20: Unsupervised Learning: K-Means Clustering. Evaluating clustering 
performance.
2025-04-11 Friday - Lecture 21 (Lab 07): SVM and Clustering

We’ll talk a lot of supervised learning



WEEK 08
2025-04-14 Monday - Lecture 22: Anomaly Detection
2025-04-17 Thursday - Lecture 23: Introduction to Neural Networks, Activation functions (ReLU, 
sigmoid, softmax), Perceptrons

WEEK 09
2025-04-24 Thursday - Lecture 24: Training of NN #01

WEEK 10
2025-04-28 Monday - Lecture 25: Training of NN #02

WEEK 11
2025-05-05 Monday - Lecture 26: CNN
2025-05-08 Thursday - Lecture 27: Autoencoders
2025-05-09 Friday - Lecture 28 (Lab 08): NN #01

WEEK 12
2025-05-13 Monday - Lecture 29: RNN
2025-05-16 Friday - Lecture 30 (Lab 09): NN #02

We’ll talk a lot of supervised learning



WEEK 14
2025-05-26 Monday - Lecture 31: XAI #01
2025-05-29 Thursday - Lecture 32: XAI #02
2025-05-30 Friday - Lecture 33 (Lab 10): XAI

WEEK 15
2025-06-05 Thursday - Lecture 34: Fairness in ML
2025-06-06 Friday - Lecture 35: Real-world Applications and MLOps

WEEK 16
2025-06-09 Monday - Lecture 36: What’s next

We’ll talk a lot of supervised learning



Regression Approaches



Regression Approaches



We are looking for a model F(x) that 
allows us to make predictions 
(estimates) of a target variable y based 
on the features x = [x1 x2 … xp]

We initially consider linear models, ie. 
models with the form:

F(x) = β0 + β1x1 + β2x2 + … + βpxp

- These are called parameters/coefficients

- One the parameter is the so-called 
intercept, the ‘constant’ coefficient

Linear Regression

x y
F(x)

Ie.  House Price = 150k$ + 10k$*[# 
bathrooms] + … - 1k$*[house age] 
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How to choose the ‘best’ parameters

Fβ (x) = β0 + β1x1 + β2x2 + … + βpxp ?

Data will tell us!

We need a criterium (an objective) to 
choose such parameters: we will 
choose the ‘best’ parameters to 
optimized our objective. Ideas?

A common objective is to minimize 
the sum of (squared) prediction errors, 
ie. I will choose β s.t.
∑!"#$ [𝑦(!) − Fβ (𝑥(!))]' is the possible 
lowest value!

Linear Regression: Parameters Search and 
Objective Function
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Linear Regression: Parameters Search and 
Objective Function

We have already seen 
something similar in PCA

How to choose the ‘best’ parameters

Fβ (x) = β0 + β1x1 + β2x2 + … + βpxp ?

Data will tell us!

We need a criterium (an objective) to 
choose such parameters: we will 
choose the ‘best’ parameters to 
optimized our objective. Ideas?

A common objective is to minimize 
the sum of (squared) prediction errors, 
ie. I will choose β s.t.
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$
is 

the possible lowest value!



Linear Regression: Parameters Search and 
Objective Function

How to choose the ‘best’ parameters

Fβ (x) = β0 + β1x1 + β2x2 + … + βpxp ?

Data will tell us!

We need a criterium (an objective) to 
choose such parameters: we will 
choose the ‘best’ parameters to 
optimized our objective. Ideas?

A common objective is to minimize 
the sum of (squared) prediction errors, 
ie. I will choose β s.t.

∑!"#
$ [* ! +Fβ (, ! )]%

$
is 

the possible lowest value!

This metric is called 
Mean Squared Error 
(MSE), and it is widely 
used in regression.

The Root Mean Squared 
Error RMSE = √𝑀𝑆𝐸 is 
also widely used

We will shortly see why 
we use the ‘squared’ 
version of the error



Linear Regression: Parameters Search and 
Objective Function

How to choose the ‘best’ parameters

Fβ (x) = β0 + β1x1 + β2x2 + … + βpxp ?

Data will tell us!

We need a criterium (an objective) to 
choose such parameters: we will 
choose the ‘best’ parameters to 
optimized our objective. Ideas?

A common objective is to minimize 
the sum of (squared) prediction errors, 
ie. I will choose β s.t.

∑!"#
$ [* ! +Fβ (, ! )]%

$
is 

the possible lowest value!

At the change of parameters 
combinations, different MSE are 
achieved (our predictions will become 
better or worse)

A nice property of regression 
approaches is that the cost function is 
convex in the space of the parameters 
(a line segment connecting any two 
points on the function's graph never lies 
below the function itself): this will 
become extremely useful later!



Linear Regression: Parameters Search and 
Objective Function

How to choose the ‘best’ parameters

Fβ (x) = β0 + β1x1 + β2x2 + … + βpxp ?

Data will tell us!

We need a criterium (an objective) to 
choose such parameters: we will 
choose the ‘best’ parameters to 
optimized our objective. Ideas?

A common objective is to minimize 
the sum of (squared) prediction errors, 
ie. I will choose β s.t.

∑!"#
$ [* ! +Fβ (, ! )]%

$
is 

the possible lowest value!

We have a unique set of 
‘optimal’ parameters that 
minimizes the cost 
function

We indicate with β* the set 
of ‘optimal’ parameters



Linear Regression: Parameters Search and 
Objective Function – Ideas?



An approach called ’grid 
search’ consists in trying 
all possible combination 
of parameters β and then 
choose β* that minimizes 
the cost function

This is a costly approach; 
instead in ML we use 
‘optimization’ approaches 
that will find such 
parameters in a ‘fast’ way

Linear Regression: Parameters Search and 
Objective Function
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Linear regression has a really simple 
way to find the optimal parameters: a 
closed-form solution!

We need to minimize this cost 
function, by smart choices of the 
parameters

How to do that? Let’s compute the 
derivative of J w.r.t. the coefficients!

Linear regression: a closed-form solution (1/3)
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Linear regression has a really simple 
way to find the optimal parameters: a 
closed-form solution!

We need to minimize this cost 
function, by smart choices of the 
parameters

How to do that? Let’s compute the 
derivative of J w.r.t. the coefficients!

Linear regression: a closed-form solution (1/3)
In the following we will use matrix 
manipulations: in the case you need a 
refresh, refer to:

https://www.math.uwaterloo.ca/~hwol
kowi/matrixcookbook.pdf
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Linear regression: a closed-form solution (2/3)
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Linear regression: a closed-form solution (3/3)



Linear regression: a closed-form solution (3/3)

Coefficients are derived from data! We see that both input and 
output data are necessary to derive the coefficients.

The equation reported above is the closed-form solution for 
Ordinary Least Squares (OLS) regression.
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assuming X’X 
is invertible for 
the moment



Linear regression: a closed-form solution (3/3)

Coefficients are derived from data! We see that both input and 
output data are necessary to derive the coefficients.

The equation reported above is the closed-form solution for 
Ordinary Least Squares (OLS) regression.

We are 
assuming X’X 
is invertible for 
the moment

There is also a 
model called 
‘Partial Least 
Squares’ (PLS): 
we are probably 
not going to see 
this in the course



Example on California Housing dataset
Target (Y): 

- MedHouseVal (Median House Value in block group) Represents the 
median house price in the block group. Measured in hundreds of 
thousands of dollars (capped at $500,000 in the dataset).

Inputs:*

- MedInc (Median Income in block group). Represents the median income 
of households in the block group. Measured in tens of thousands of 
dollars.

- HouseAge (Median House Age in block group). Represents the median 
age of houses in the area. Measured in years.

- AveRooms (Average Number of Rooms per Dwelling). Computed as the 
total number of rooms in the block group divided by the number of 
households. Helps indicate the general size of homes in an area.

- AveOccup (Average Number of Occupants per Household). Computed 
as the total population in the block group divided by the number of 
households.

* A subset of the available inputs
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Example on California Housing dataset
Target (Y): 

- MedHouseVal (Median House Value in block group) Represents 
the median house price in the block group. Measured in hundreds 
of thousands of dollars (capped at $500,000 in the dataset).

Inputs: 
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number of households. Helps indicate the general size of homes 
in an area.

- AveOccup (Average Number of Occupants per Household). 
Computed as the total population in the block group divided by 
the number of households.

Is it ’good’?



R-Squared
R-squared (𝑅&), or the Coefficient of Determination, is a 
statistical measure that indicates how well a regression 
model explains the variance in the target variable. Where:

- Residual Sum of Squares, measures the total squared 
difference between the actual and predicted values

- Total Sum of Squares, measures the total variance in 
the target variable

Interpretation:

- R-squared = 1, perfect fit!

- R-squared = 0, the model does no better than simply 
predicting the mean 

- R-squared < 0, the model performs worse than a simple 
average prediction
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Let’s consider a univariate example: 

47

Minimization of MSE on training data



OLS: linear coefficients to variable X and to the intercept (constant): 

Y = a+bX

48

Minimization of MSE on training data



OLS: linear coefficients to variable X and to the intercept (constant): 

Y = a+bX
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Minimization of MSE on training data

Can we do better?



Let’s also consider a transformation of the input data!

Y = a+bX+cX2

50

Minimization of MSE on training data

Can we do better?This approach is 
called ‘basis 
expansion’ and it is 
a popular feature 
engineering step!



Let’s also consider a transformation of the input data!

Y = a+bX+cX2

51

Minimization of MSE on training data

Can we do better 
again?



Extension to the 20-th order

Y = a+bX+cX2+ ... +vX20

52

Minimization of MSE on training data



Which one is more ‘reasonable’?
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Which one is more ‘reasonable’?
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Minimization of MSE on training data
Complicating a model does not always 
improve its accuracy on new data! 
(lack of generalization)



Which one is more ‘reasonable’?
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Minimization of MSE on training data
Complicating a model does not always 
improve its accuracy on new data! 
(lack of generalization)
-> We need an ‘independent’ dataset, 
known as a validation set, where we 
see performances on new cases!
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• To understand how good a model is in 
generalizing, we need a test set: a set of 
data that was not used to find the model 
parameters. 

• Such data should not share data sample with 
the training set: a set of data used to builing 
a model, finding the ‘best’ parameters

Training vs. Test 



Example on California Housing dataset

We put randomly 20% of the dataset in testing, 
while keeping the rest in training



Example on California Housing dataset

We put randomly 20% of the dataset in testing, 
while keeping the rest in training

Arbitrary choice: 
random choices are 

always safe?



•As said, in modeling we divide data into:
• Training & Validation for model building

• Test for performance estimation

• Based on the random choice, performance can 

dramatically change! Especially with ‘small’ datasets

60

t

Y

Cross-Validation
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•As said, in modeling we divide data into:
• Training & Validation for model building

• Test for performance estimation

• Based on the random choice, performance can 

dramatically change! Especially with ‘small’ datasets

Cross-Validation



• To avoid biases in performance evaluation we 

use cross-validation

•Approaches

- K-fold

62

Test Data

Training & Validation Data

Cross-Validation
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Test Data

Training & Validation Data

Cross-Validation

1MSE (Mean Squared Error)… or other performance metric!

• To avoid biases in performance evaluation we 

use cross-validation

•Approaches

- K-fold
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Test Data

Training & Validation Data

Cross-Validation

• To avoid biases in performance evaluation we 

use cross-validation

•Approaches

- K-fold 1MSE 2MSE 3MSE 4MSE 5MSE

AVERAGED MSE
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Test Data

Training and Validation Data

1MSE 2MSEkMSE

AVERAGED 
MSE

Cross-Validation

• To avoid biases in performance evaluation we 

use cross-validation

•Approaches

- K-fold

- MonteCarlo



Thank you!

Gian Antonio Susto 

Machine Learning
2024/2025


