Reti

Le reti (Networks)

- "We live in a connected world": crescente interesse per il termine Network.
- Sei gradi di separazione: teoria sociologica secondo la quale chiunque può essere connesso attraverso una catena di conoscenze con non più di 5 intermediari. (https://oracleofbacon.org/ Leonardo di Caprio-Paolo Villaggio?).

Definizione:

- Network: "A collection of interconnected things"
- Rete: "Insieme di persone o cose il cui collegamento consente di svolgere compiti di collaborazione o cooperazione"
- Una rete è caratterizzata da un insieme di connessioni (archi) che misurano relazioni di prossimità, interazione, vicinanza ... tra un gruppo di unità (nodi) come persone, oggetti, luoghi ...

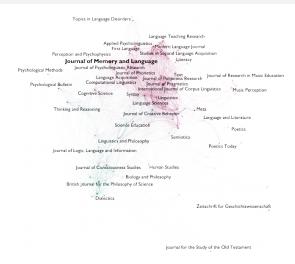
Importanti campi di applicazione

Alcune macro aree di applicazione:

- Reti tecnologiche
- Reti biologiche
- Reti dell'informazione
- Reti sociali
- Reti economiche

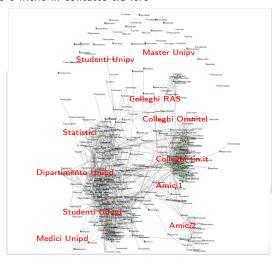
Reti tecnologiche

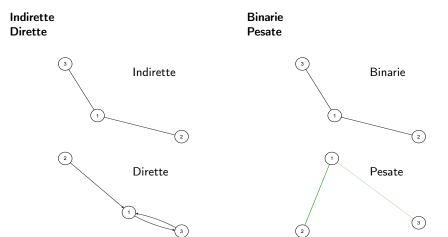
• Nodi: Aeroporti


• Archi: Presenza di tratte aeree

Reti biologiche

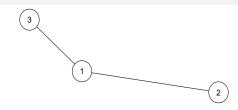
- Nodi: Regioni cerebrali
- Archi: Presenza di almeno un fibra cerebrale


Reti dell'informazione


- Nodi: Riviste di arte e discipline umanistiche
- Archi: Citazioni da una rivista all'altra

Reti sociali

- Nodi: Contatti in Linkedin di una persona
- Archi: Sono o meno in contatto tra loro



Classificazione principale delle tipologie di reti

Le tecniche statistiche richieste variano al variare della tipologia di rete.

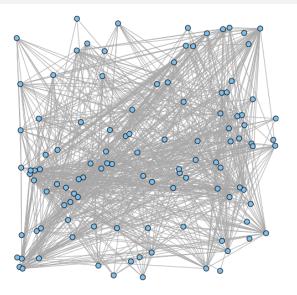
Reti: concetti di base

Grafi,
$$\mathcal{G} = (\mathcal{N}, \mathcal{A})$$

- Insieme dei nodi $\mathcal{N} = \{1, \dots, V\}$
- Un arco è definito come una coppia $\{i,j\}:i,j\in\mathcal{N}$
- Insieme degli archi $\mathcal{A} \subseteq \{i, j\} : i, j \in \mathcal{N}$

Nell'esempio:

- $\mathcal{N} = \{1, 2, 3\}$
- $\mathcal{A} = \{\{2,1\}; \{3,1\}\}$

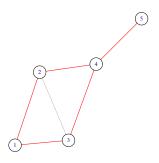

Matrici (di adiacenza), Y

- Y matrice quadrata simmetrica di dimensioni $V \times V$
- Nodi disposti in riga e colonna
- $Y_{ij} = Y_{ji} = 1$ se $\{i, j\} \in \mathcal{A}$ ($i \in j$ sono connessi), 0 altrimenti

Nell'esempio:

$$Y = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

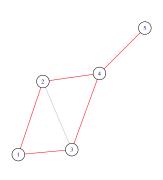
Un esempio di rete sociale


- Rete Facebook degli studenti di un corso universitario
- V = 111 nodi
- Informazioni di nodo:
 - Residenza
 - Genere

Alcune proprietà tipiche nelle reti

- Mondo piccolo (Small world): La maggior parte dei nodi non è connessa a molti altri, ma (quasi) ogni nodo può essere raggiunto partendo da qualsiasi altro attraverso un piccolo numero di collegamenti.
- Invarianza di scala (Scale free): Un nuovo nodo tende a connettersi con nodi che hanno più collegamenti nella rete: il ricco diventa sempre più ricco mentre il povero sempre più povero (in proporzione).
- Hub: Nodi (tipicamente pochi) con molte connessioni e che spesso fungono da ponti nel mondo piccolo.
- Omofilia (Homophily): Tendenza di un nodo a connettersi con nodi simili per alcune caratteristiche. Ad esempio genere, regione geografica, interessi

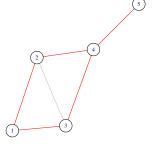
Il cammino più corto (shortest path)


Abbiamo visto nello *small world* che la possibilità di collegare nodi attraverso percorsi tra nodi interconnessi è un importante aspetto nelle reti. Questo concetto si esplicita (statisticamente parlando) nello studio degli *shortest paths*

- Per ogni coppia di nodi i e j gli shortest paths sono i cammini più corti tra nodi interconnessi che uniscono i a j.
- Possono essere molteplici: nell'esempio gli shortest paths tra 1 e 5 sono: {1; 2; 4; 5} e {1; 3; 4; 5}
- Lunghezza dello *shortest path*: numero di archi di cui si compone. Nell'esempio è 3.

 Mariangela Guidolin
 SSADA
 aa 2024-25
 386 / 529

Utili indici descrittivi


A livello di nodo

- Grado di *i*. Numero di nodi con cui è connesso: $d_i = \sum_{j=1}^{V} Y_{ij}$. Nell'esempio $d_1 = 2$, $d_2 = 3$, $d_3 = 3$, $d_4 = 3$, $d_5 = 1$.
- Livello di betweenness di i. È la somma (fatta su tutte le coppie di nodi u e v diversi da i) del rapporto tra il numero degli shortest paths tra u e v che passano per i $n_{uv}(i)$ ed il totale degli shortest paths tra u e v n_{uv} : $a_i = \sum_{v \in \mathcal{V}} \frac{n_{uv}(i)}{n_{uv}(i)}.$ Nell'esempio

$$g_i = \sum_{u \neq i \neq v} \frac{n_{uv}(i)}{n_{uv}}$$
. Nell'esempio $g_1 = 0, \ g_2 = 1, \ g_3 = 1, \ g_4 = 3, \ g_5 = 0.$

• E altri: Transitività locale, Vicinanza, Centralità di autovettore, ...

Utili indici descrittivi

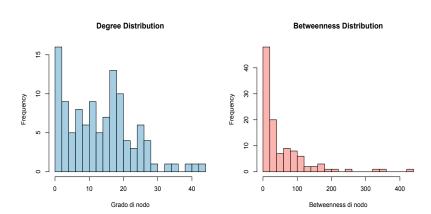


A livello di coppie di nodi

• Lunghezza minima di path di (i,j), s_{ij} (shortest path). Il minor numero di archi da attraversare per giungere ad i partendo da j. Nell'esempio

	1	2		4	5
1	0	1	1	2 1 1 0 1	3
2	1	0	1	1	2
3	1	1	0	1	2
4	2	1	1	0	1
5	3	2	2	1	0

Utili indici descrittivi


Matrice di adiacenza

	1	2	3	4	5
1	-	1	1	0	0
2	1	-	1	1	0
3	1	1	-	1	0
4	0	1	1	-	1
5	0	1 - 1 1 0	0	1	-

A livello di rete

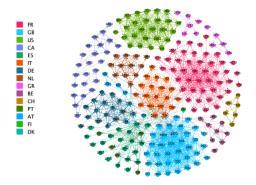
- Densità di Y. Frequenza relativa del numero totale di archi diretti osservati, sul totale degli archi diretti possibili: $D=\frac{1}{V(V-1)}\sum Y_{ij}$. $D=\frac{12}{20}=0.6$
- Diametro di Y. Lunghezza del più lungo shortest path: $\max\{s_{ij}\}=3$
- Lunghezza media di *shortest path*. Media delle lunghezze minime di *path*. $L=\frac{1}{V(V-1)}\sum s_{ij}.\ L=1.5$

Esempio della rete di Facebook

- Invarianza di scala sembra in parte sensata: Betweenness distribution $\approx x^{-\gamma}$. Degree distribution un pò meno (varie persone con \approx 20 amici).
- Ci sono alcuni (pochi) hubs: alto grado e alta betweenness

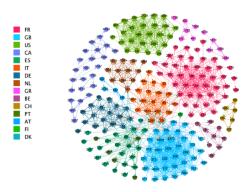
 Mariangela Guidolin
 SSADA
 aa 2024-25
 390 / 529

Case Study

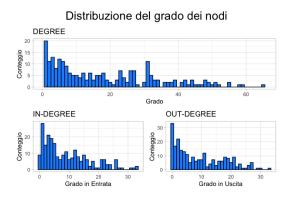

- Azienda italiana che opera nel settore della moda
- Diffusione internazionale, presente in 15 paesi diversi (Europa, US, Canada)
- Tipi di 'store': 'department store', 'monobrand', 'outlet'

- Problema: come vengono riforniti i negozi?
- Magazzini centrali che conservano quantità destinata a punti vendita

 . . .
- Ma quando i magazzini terminano le scorte?
- Figura chiave: allocators
- Gestiscono allocazione iniziale di ogni prodotto in ogni store e la successiva fase di riassortimento
- Merce viene spedita da altri store che hanno un surplus di scorte


- I trasferimenti di merce da un punto vendita all'altro disegnano una rete
- Punti vendita: nodi
- Spedizioni di merce: archi
- Rete particolare: spostamenti decisi da allocators secondo strategie definite . . . c'è quindi una mente che regola la rete!
- Obiettivo: studiare coinvolgimento di punti vendita in allocazioni di merce . . .
- e capire se caratteristiche di punti vendita (tipo di negozio, Paese di appartenenza) hanno impatto sulla decisione di allocazione

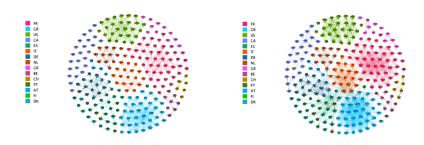
Rete di trasferimenti di merce


Periodo di riferimento: 2018-2019

Numero di nodi: 235 Numero di archi: 2126

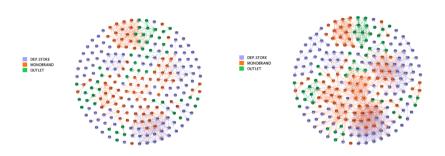
Densità della rete: 3.9% sono quindi presenti solo meno del 4% degli archi possibili

Distribuzione del grado dei nodi


Mediana: 14

Indici di centralità per Paese grado di nodo decrescente

Country	Degree	In-Degree	Out-Degree	Betweenness
GB	37.83	18.71	19.11	417.56
US	27.77	13.88	13.88	33.23
IT	21.84	11.68	10.16	627.91
DE	19.11	9.56	9.56	199.72
FR	18.09	8.98	9.11	311.23
NL	15.08	7.67	7.42	292.88
ES	8.80	4.30	4.50	328.48
PT	7.20	3.80	3.40	49.63
BE	6.78	3.22	3.56	303.24
CH	6.67	3.33	3.33	3.67
AT	5.00	1.75	3.25	0.25
GR	4.18	2.09	2.09	0.64
CA	3.67	1.83	1.83	3.10
$_{ m FI}$	3.00	1.00	2.00	74.23


Ragionevolmente il più alto livello di betwenness si registra in Italia

- Tra il 2018 e il 2019 c'è stata una ri-organizzazione del lavoro degli allocators . . .
- fino al 2018 ciascun allocator si occupava di una singola collezione
- a partire dal 2019 invece tutti hanno accesso a tutte le collezioni

La rete sembra cambiata dal 2018 al 2019 ...come? I trasferimenti cross-country sono aumentati: da 32 a 148

Si possono inoltre osservare delle differenze riferite al tipo di 'store'

La ri-organizzazione sembra aver comportato una maggior coinvolgimento dei 'department store'

Per ciascun punto vendita (nodo) si conoscono inoltre alcune variabili potenzialmente utili:

- quantità di merce venduta in un dato mese
- superficie (m^2)
- numero di visite ricevute dallo store in un dato mese

Sono informazioni utili? questi fattori hanno un impatto sulla dinamica dei trasferimenti?