

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

Machine Learning
2024/2025

AMCO
ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

Lecture #05 Multi- dimensional Data Visualization

Gian Antonio Susto

Before starting: Lab

Audio is not the best! We are trying to find a solution... in the meantime: bring your own headphones!

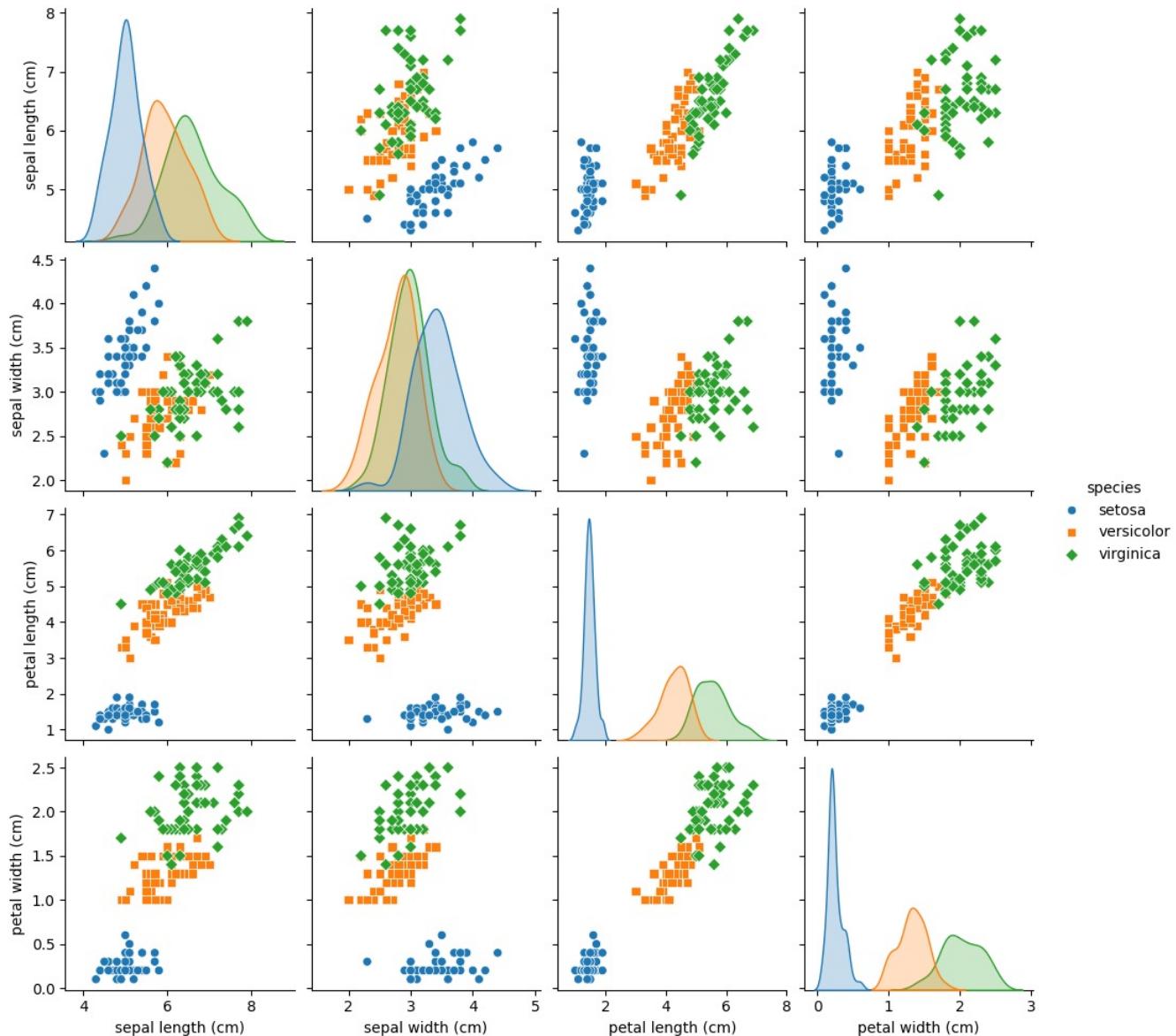
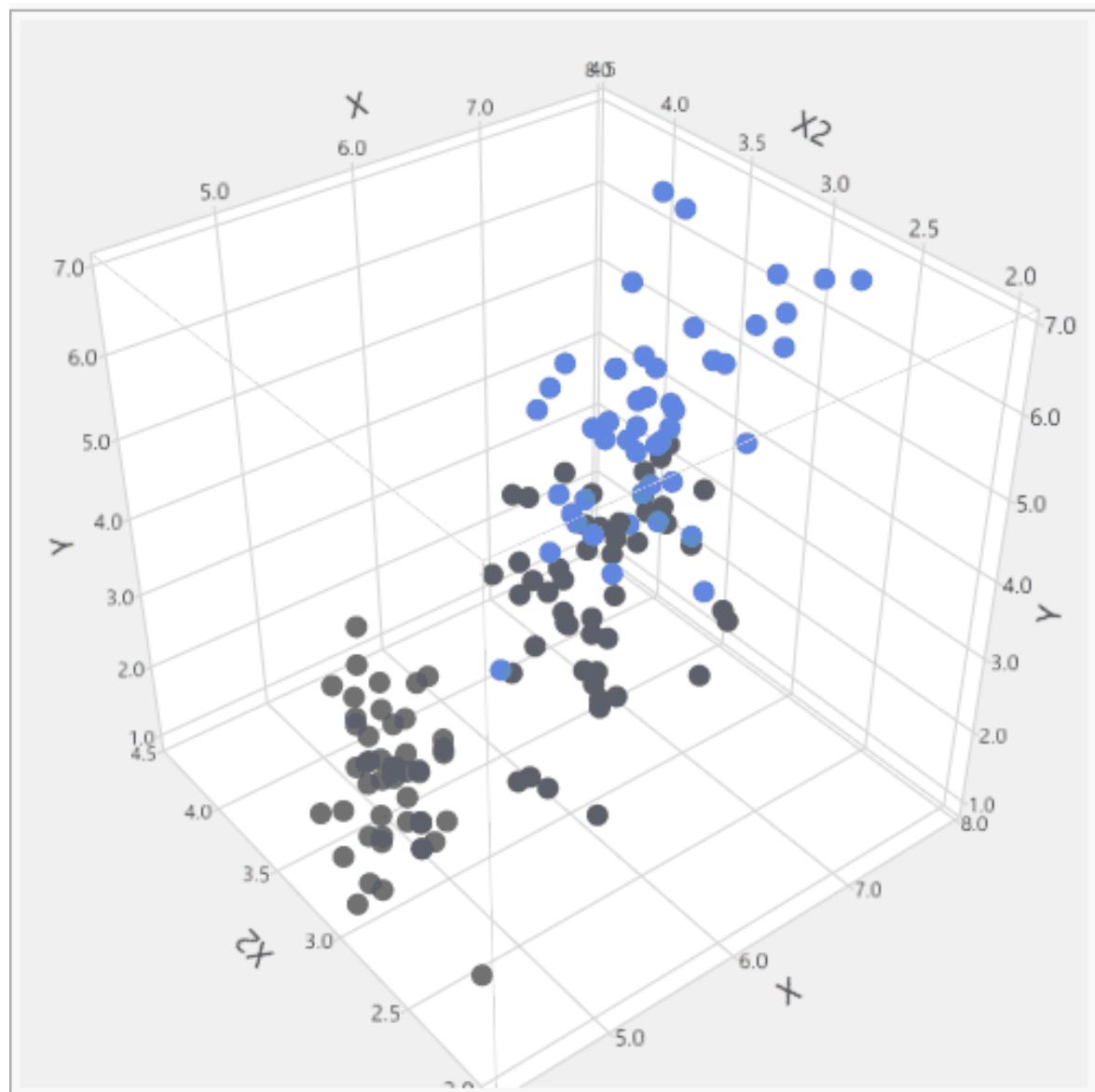
Recap – Tabular Data (the ‘design matrix’) - x

p attributes (variables, features) potentially related to the phenomenon under examination

n
observations:
the number
of times the
phenomenon
we need to
'describe' is
available in
our data
through
historical
examples

39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United-States	<=50K
50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13	United-States	<=50K
38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40	United-States	<=50K
53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40	United-States	<=50K
28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=50K
37	Private	284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40	United-States	<=50K
49	Private	160187	9th	5	Married-spouse-absent	Other-service	Not-in-family	Black	Female	0	0	16	Jamaica	<=50K
52	Self-emp-not-inc	209642	HS-grad	9	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	45	United-States	>50K
31	Private	45781	Masters	14	Never-married	Prof-specialty	Not-in-family	White	Female	14084	0	50	United-States	>50K
42	Private	159449	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	5178	0	40	United-States	>50K
37	Private	280464	Some-college	10	Married-civ-spouse	Exec-managerial	Husband	Black	Male	0	0	80	United-States	>50K
30	State-gov	141297	Bachelors	13	Married-civ-spouse	Prof-specialty	Husband	Asian-Pac-Islander	Male	0	0	40	India	>50K
23	Private	122272	Bachelors	13	Never-married	Adm-clerical	Own-child	White	Female	0	0	30	United-States	<=50K
32	Private	205019	Assoc-acdm	12	Never-married	Sales	Not-in-family	Black	Male	0	0	50	United-States	<=50K
40	Private	121772	Assoc-voc	11	Married-civ-spouse	Craft-repair	Husband	Asian-Pac-Islander	Male	0	0	40	?	>50K
34	Private	245487	7th-8th	4	Married-civ-spouse	Transport-moving	Husband	Amer-Indian-Eskimo	Male	0	0	45	Mexico	<=50K
25	Self-emp-not-inc	176756	HS-grad	9	Never-married	Farming-fishing	Own-child	White	Male	0	0	35	United-States	<=50K
32	Private	186824	HS-grad	9	Never-married	Machine-op-inspct	Unmarried	White	Male	0	0	40	United-States	<=50K
38	Private	28887	11th	7	Married-civ-spouse	Sales	Husband	White	Male	0	0	50	United-States	<=50K
43	Self-emp-not-inc	292175	Masters	14	Divorced	Exec-managerial	Unmarried	White	Female	0	0	45	United-States	>50K
40	Private	193524	Doctorate	16	Married-civ-spouse	Prof-specialty	Husband	White	Male	0	0	60	United-States	>50K
54	Private	302146	HS-grad	9	Separated	Other-service	Unmarried	Black	Female	0	0	20	United-States	<=50K
35	Federal-gov	76845	9th	5	Married-civ-spouse	Farming-fishing	Husband	Black	Male	0	0	40	United-States	<=50K
43	Private	117037	11th	7	Married-civ-spouse	Transport-moving	Husband	White	Male	0	2042	40	United-States	<=50K
59	Private	109015	HS-grad	9	Divorced	Tech-support	Unmarried	White	Female	0	0	40	United-States	<=50K

Recap – 1D, 2D, 3D Plots... and then?

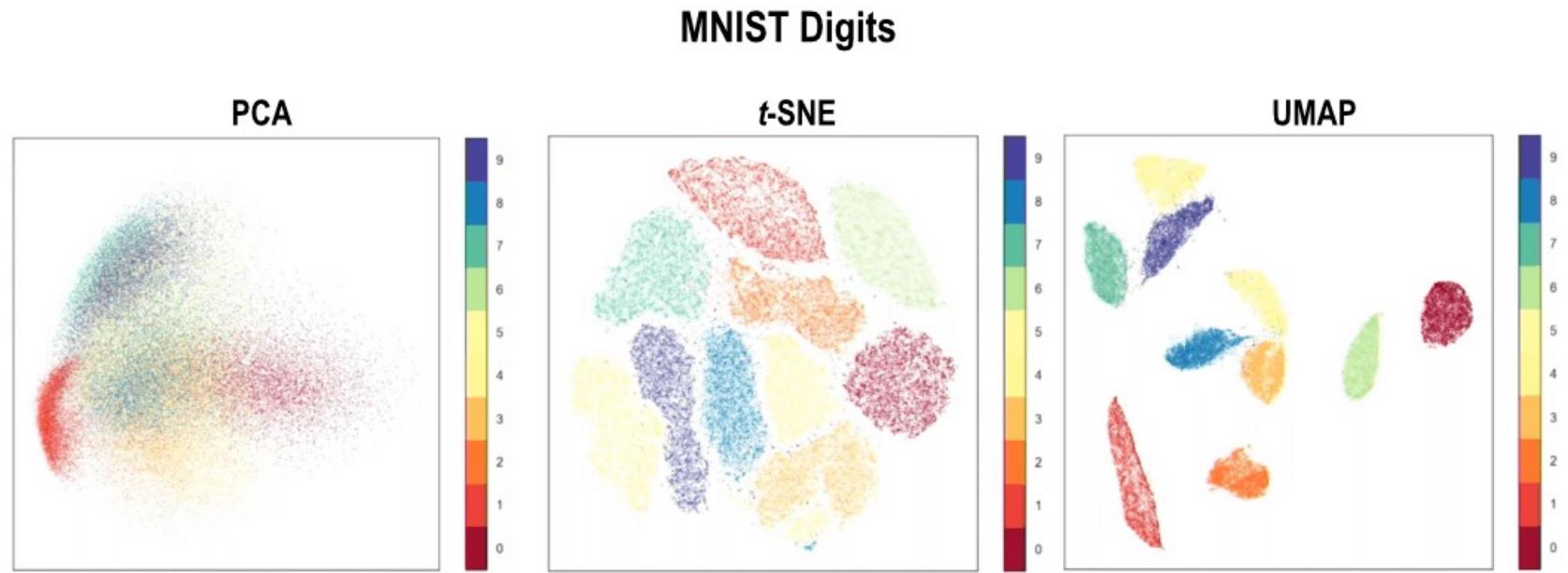
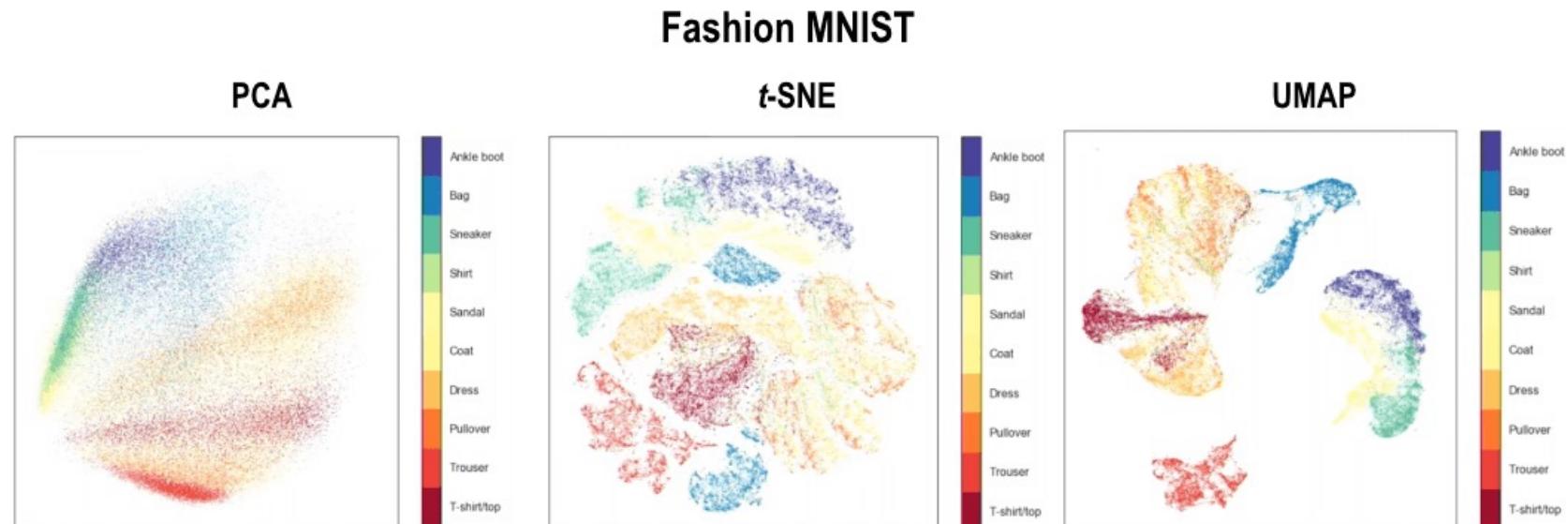


Recap – 1D, 2D, 3D Plots... and then?

There are several techniques that allow to visualize multi-dimensional data ($p > 3$)!

We will see today:

- PCA
- t-SNE
- UMAP

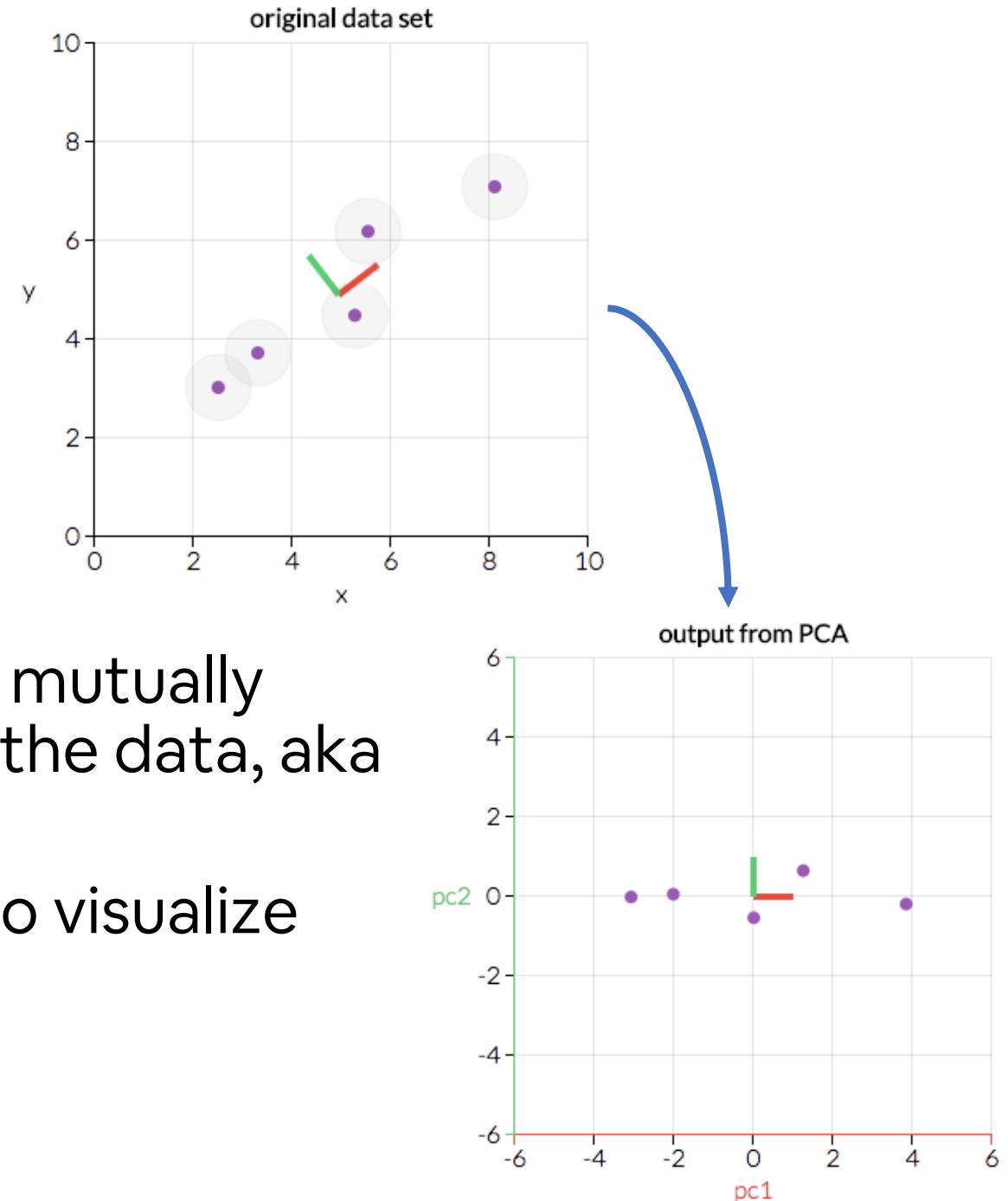


Principal Component Analysis (PCA)

Huge kudos to Joshua Starmer!

Principal Component Analysis (PCA)

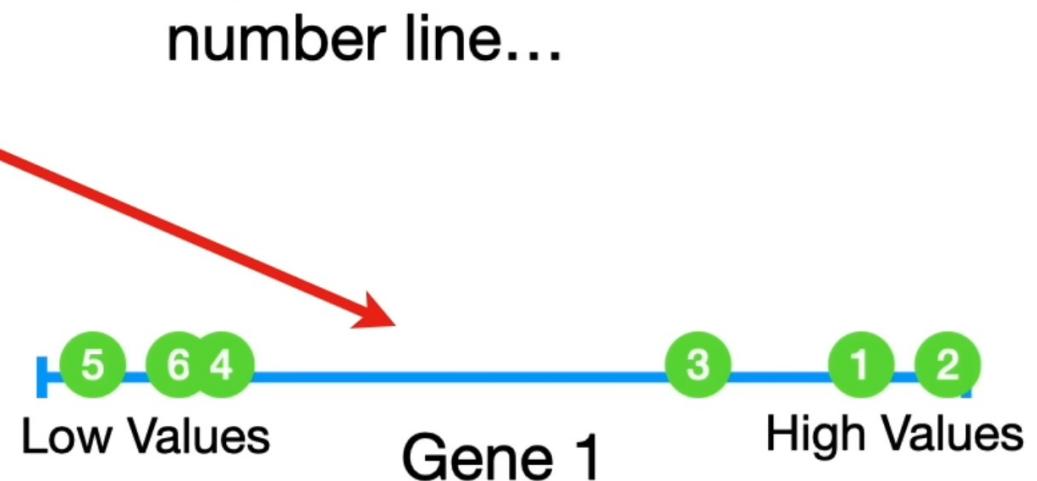
- PCA computes the sequence of mutually orthogonal vectors that best fit the data, aka the **principal components**.
- We can use the first 2 or 3 PCs to visualize the data... **lossy compression!**
- PCA preserves **global structure**



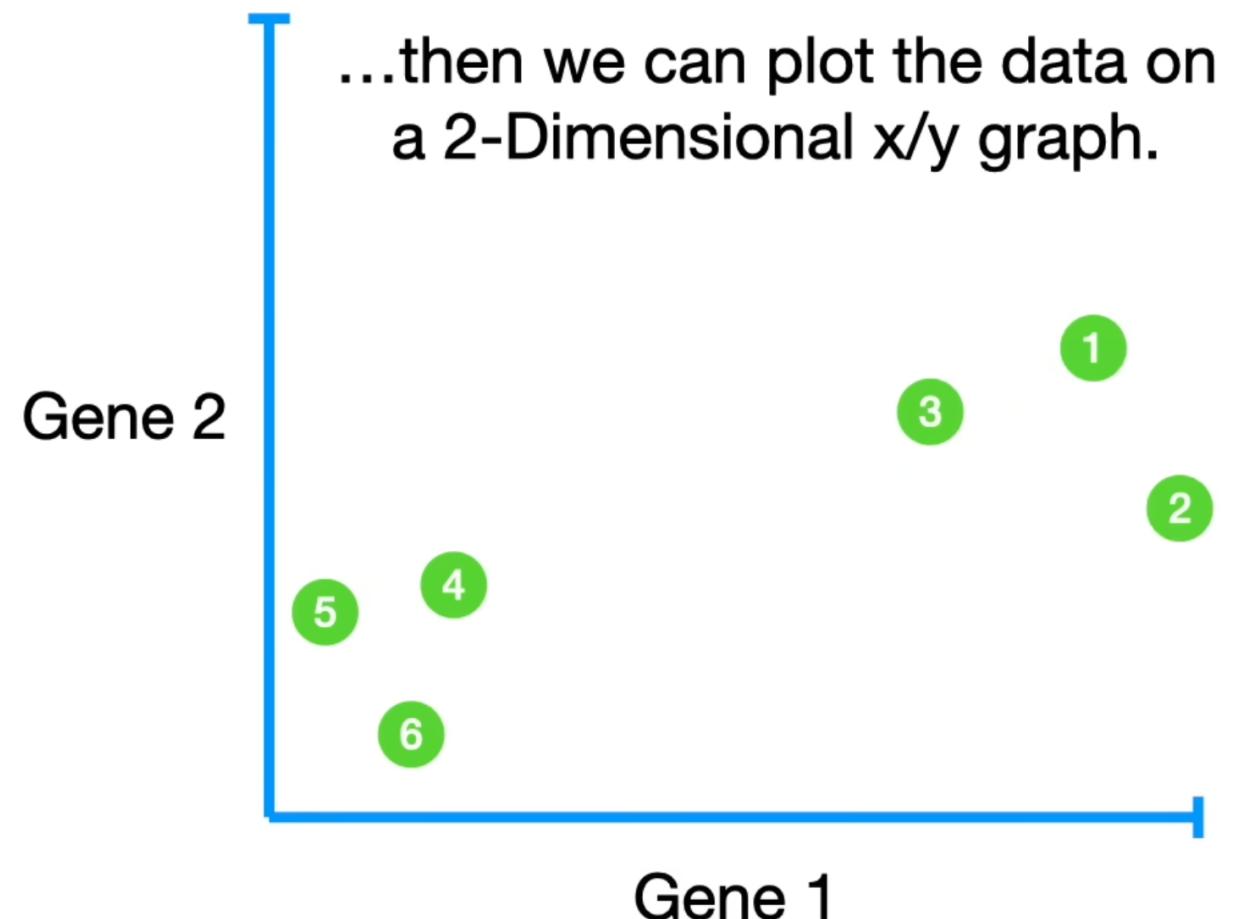
	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	1	2
Gene 2	6	4	5	3	2.8	1

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	1	2

If we only measure 1 gene, we can plot the data on a number line...

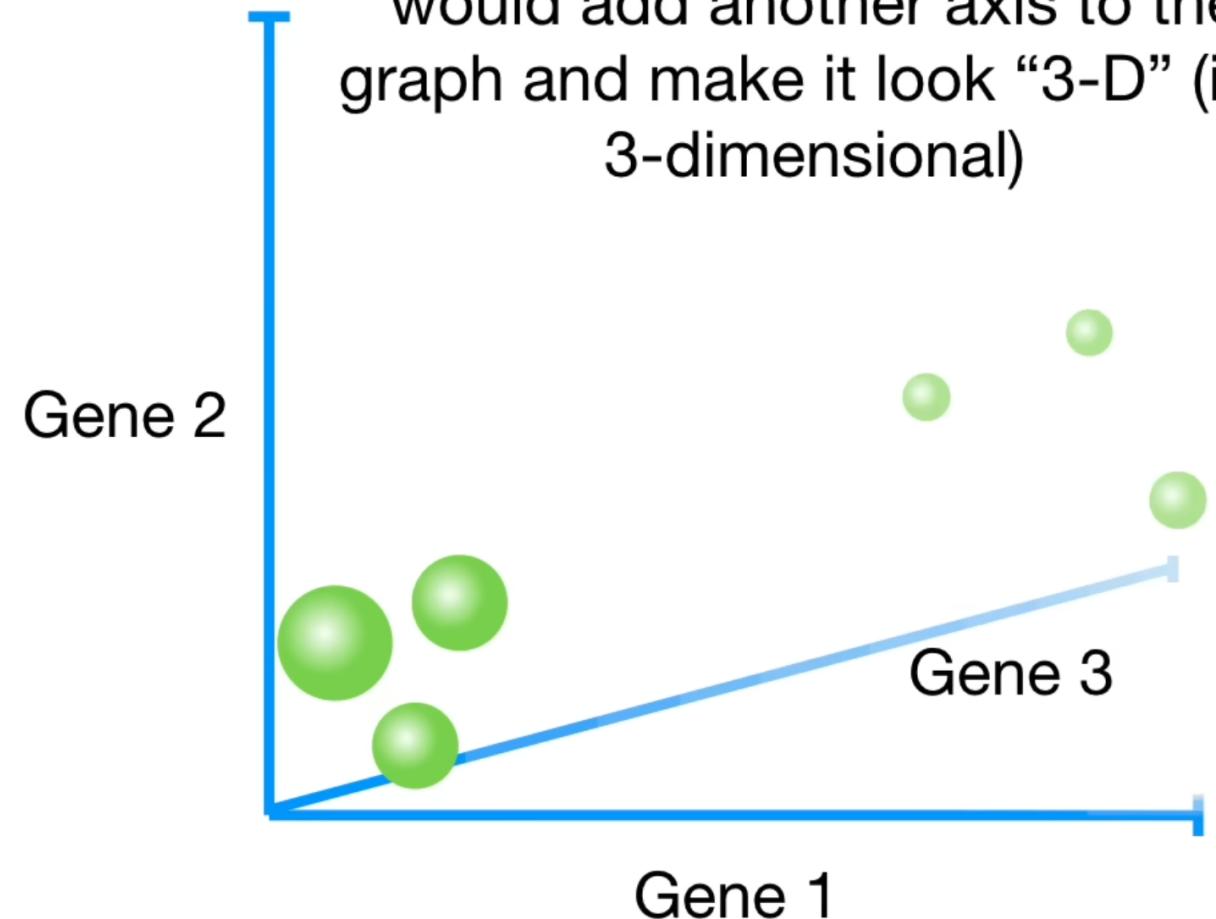


	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	1	2
Gene 2	6	4	5	3	2.8	1

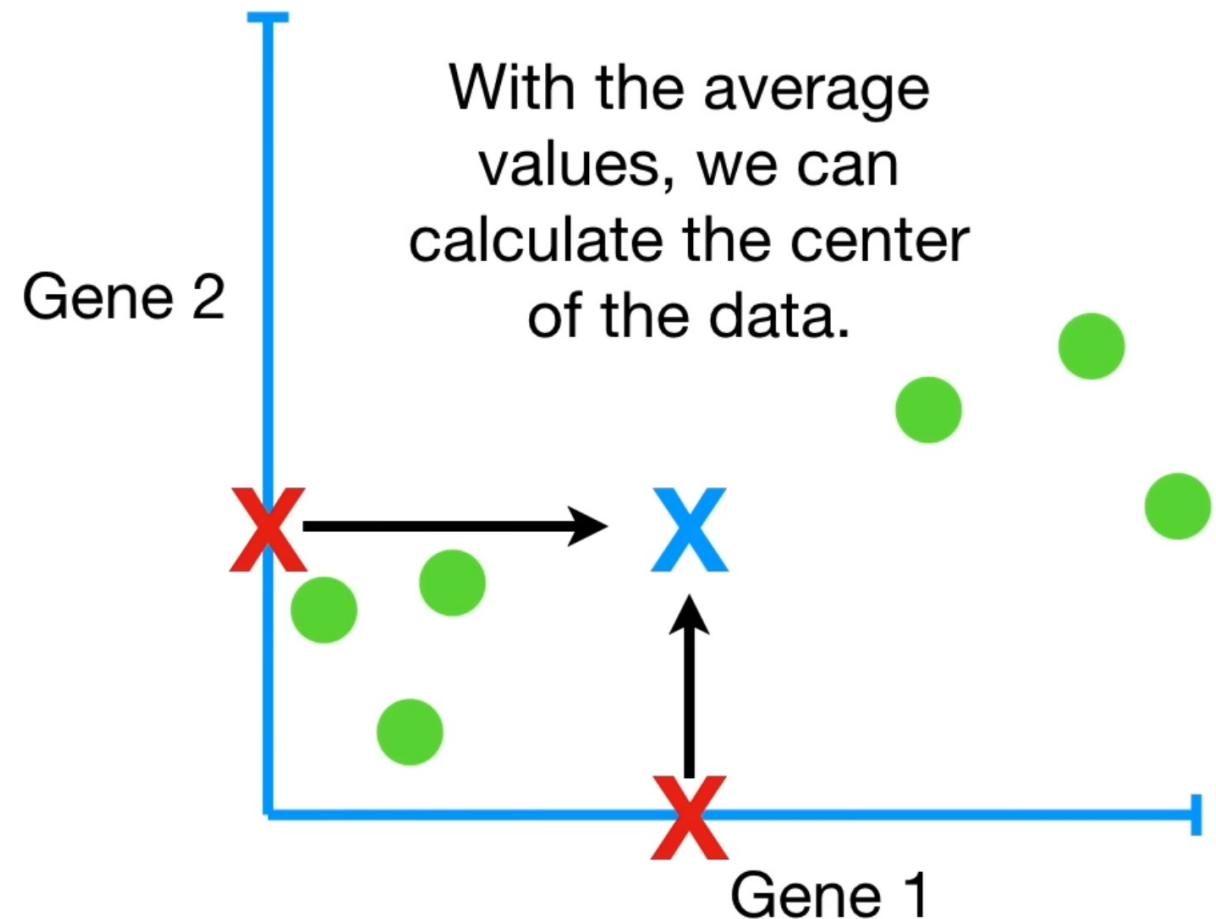


	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1
Gene 3	12	9	10	2.5	1.3	2

If we measured 3 genes, we would add another axis to the graph and make it look “3-D” (i.e. 3-dimensional)



	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1

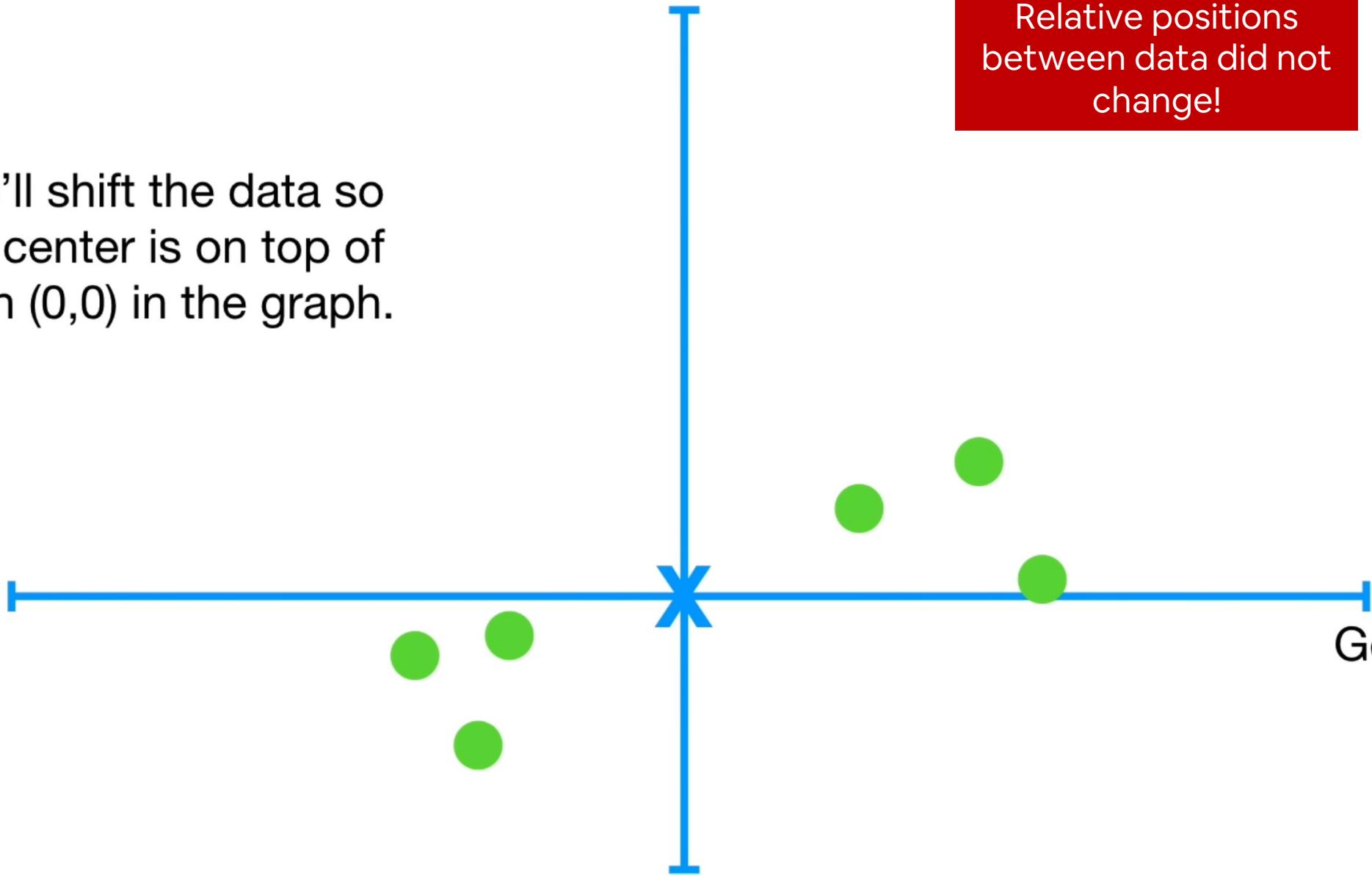


Now we'll shift the data so that the center is on top of the origin (0,0) in the graph.

Gene 2

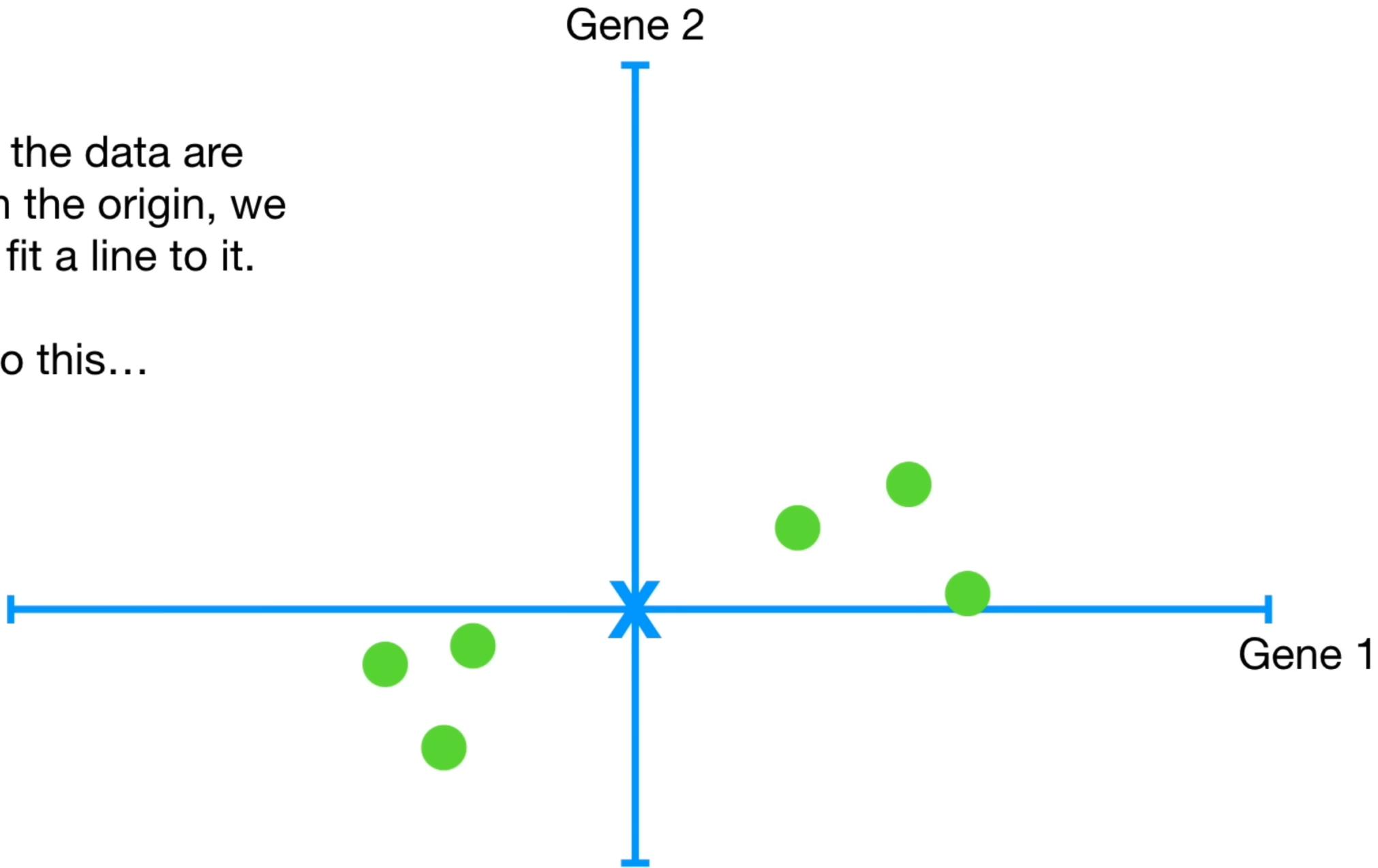
Gene 1

Relative positions between data did not change!



Now that the data are centered on the origin, we can try to fit a line to it.

To do this...



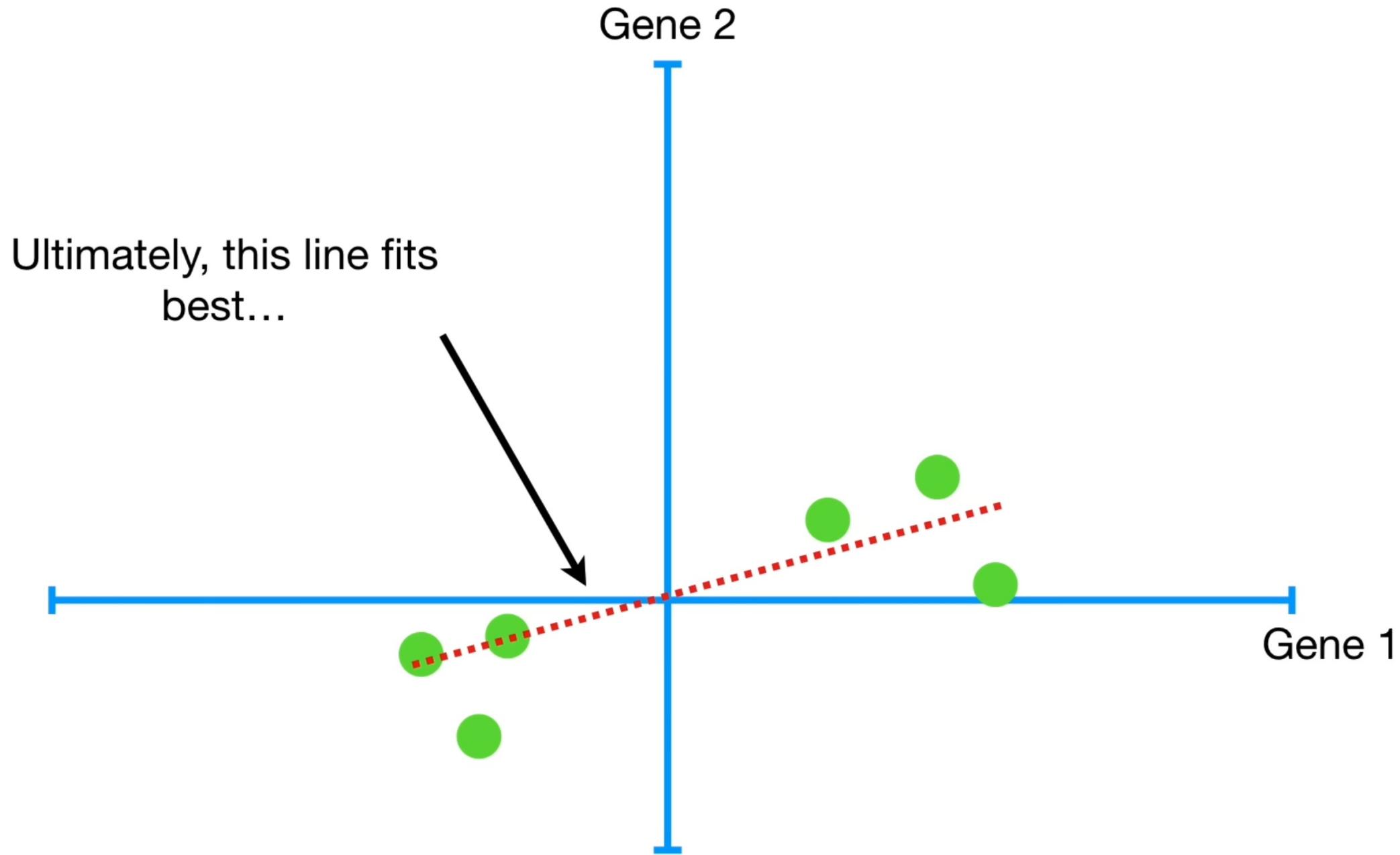
Gene 2

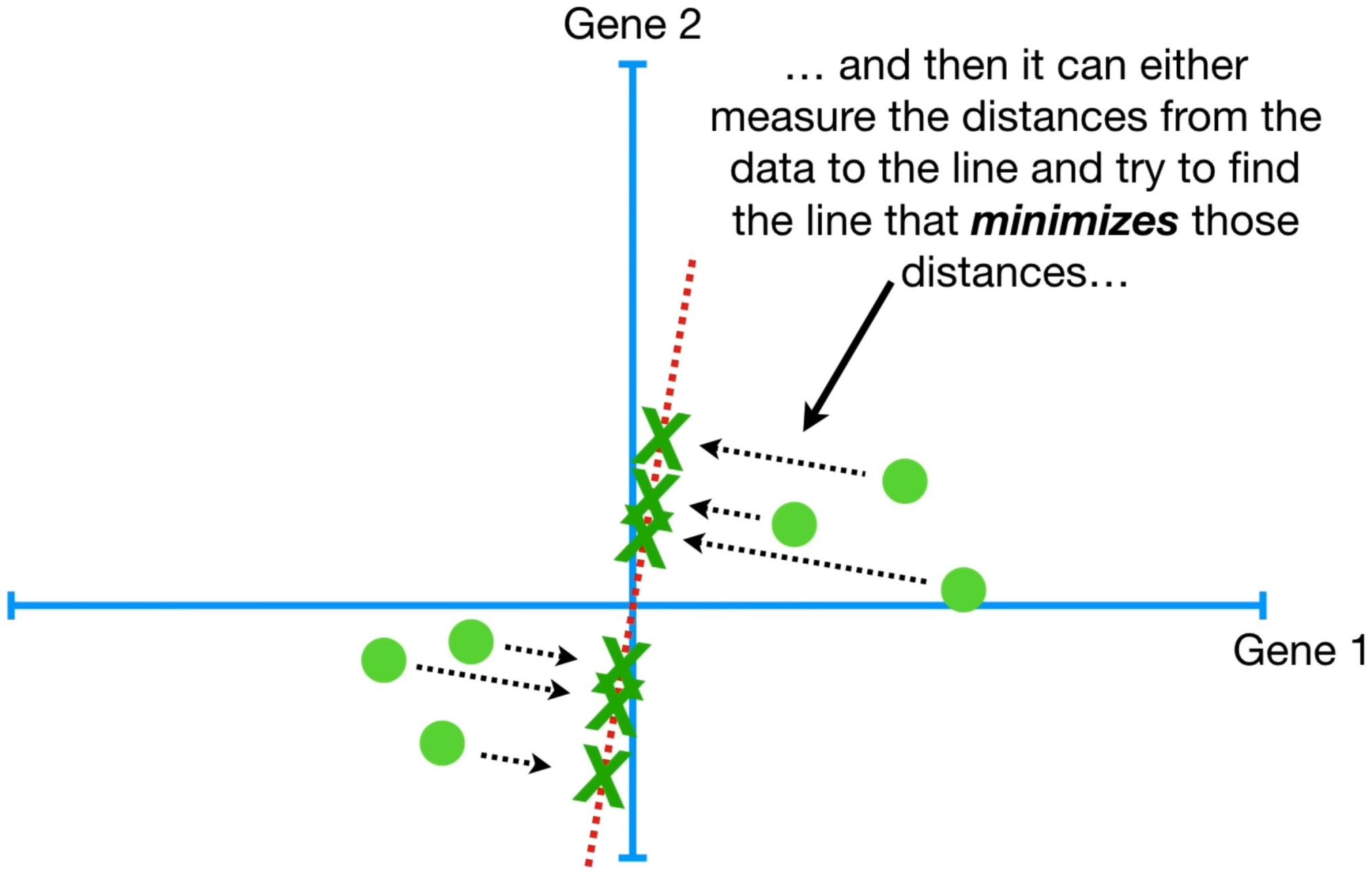
...then we rotate the line until it fits the data as well as it can, given that it has to go through the origin.

How to do this, will be clearer from next week! We provide now an intuition.

Let's rotate the line that goes through the origin

Gene 1

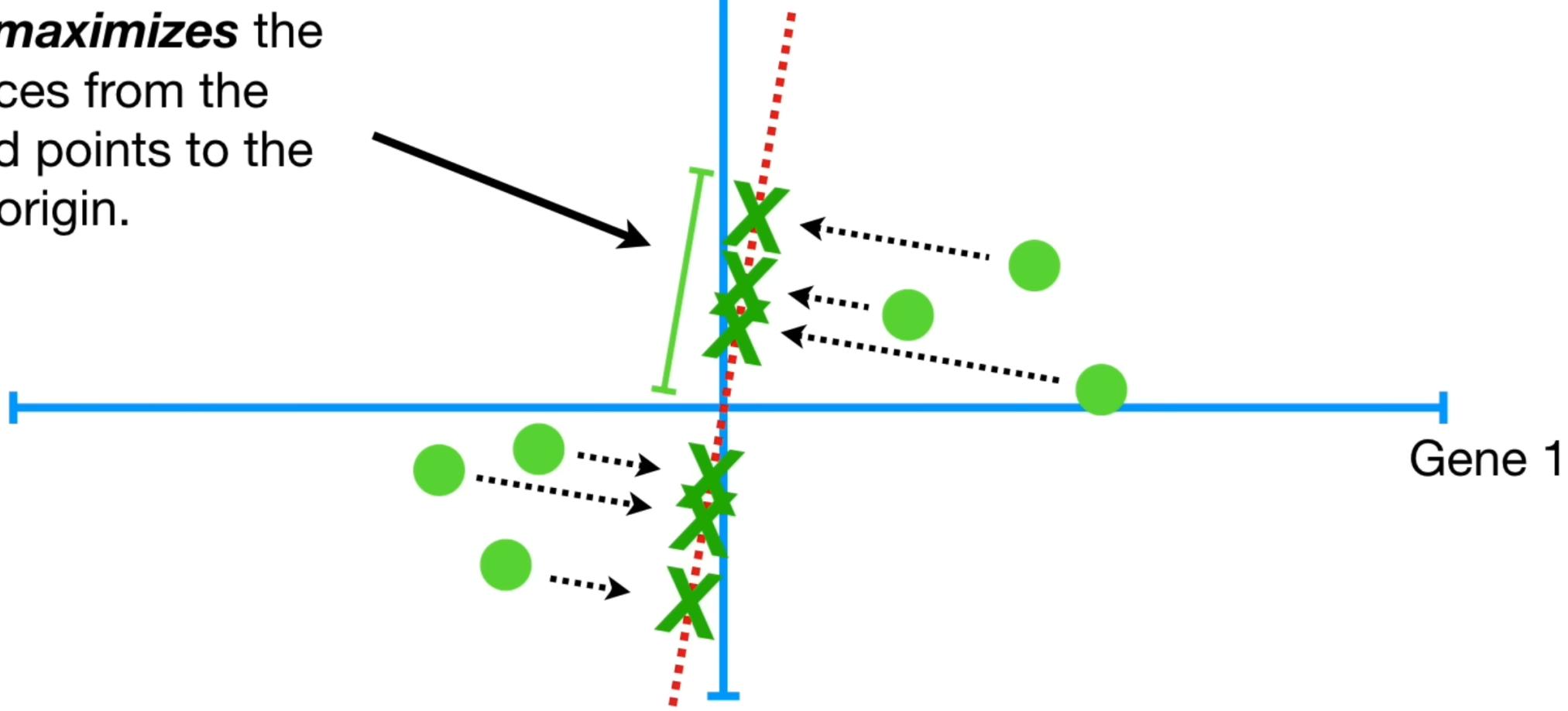




Gene 2

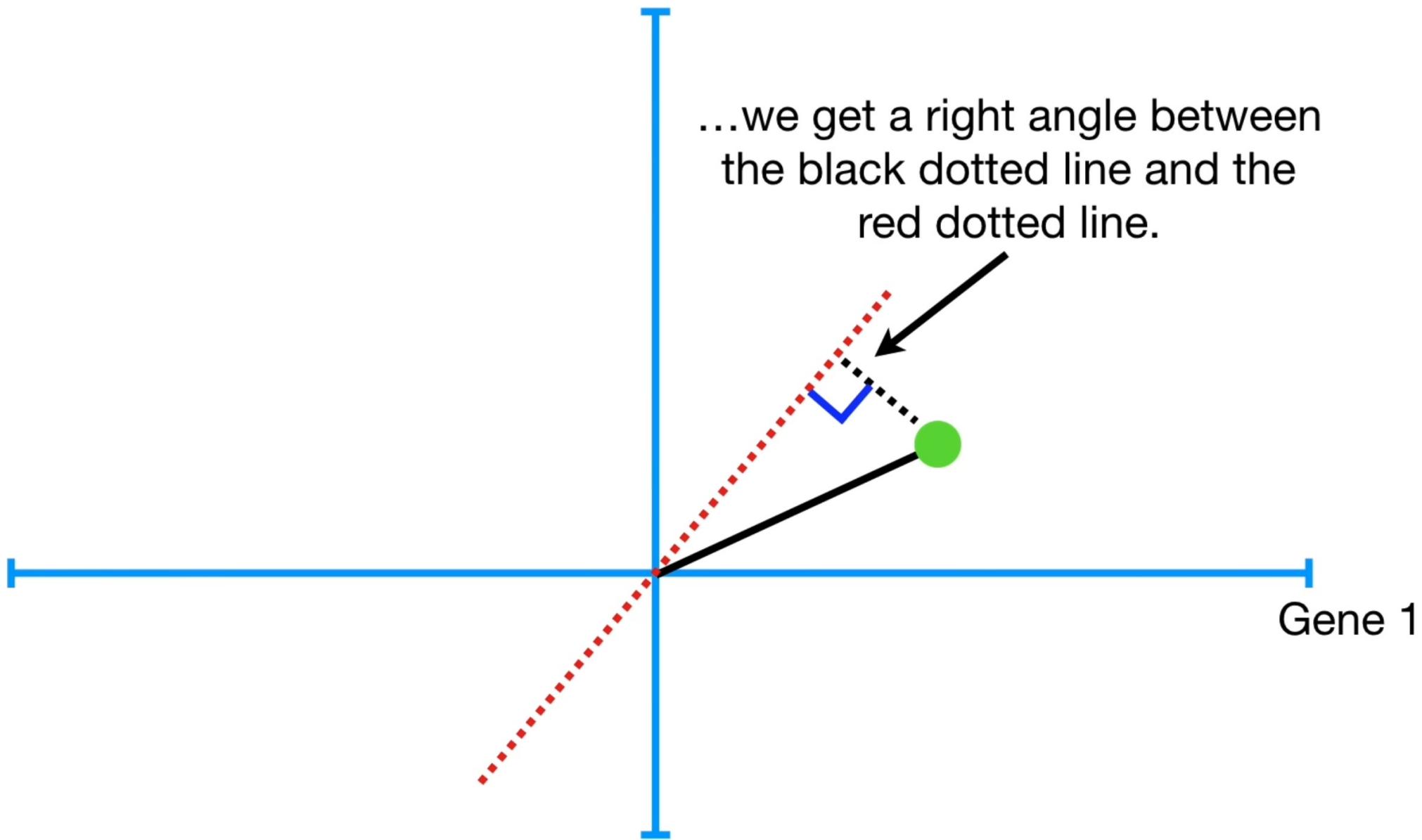
Are these 2 concepts
equivalent?

...or it can try to find the line that ***maximizes*** the distances from the projected points to the origin.

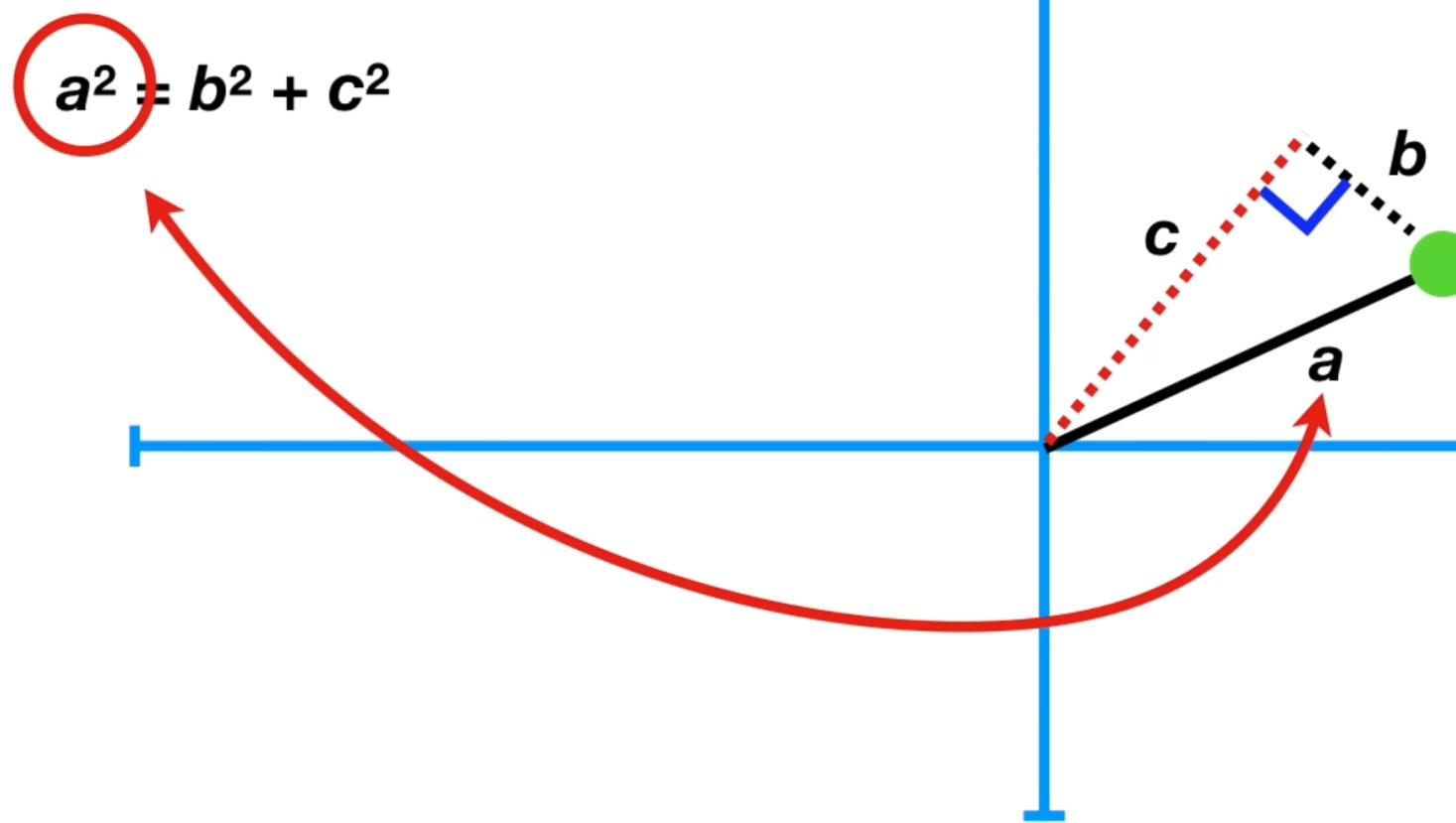


Gene 2

...we get a right angle between
the black dotted line and the
red dotted line.



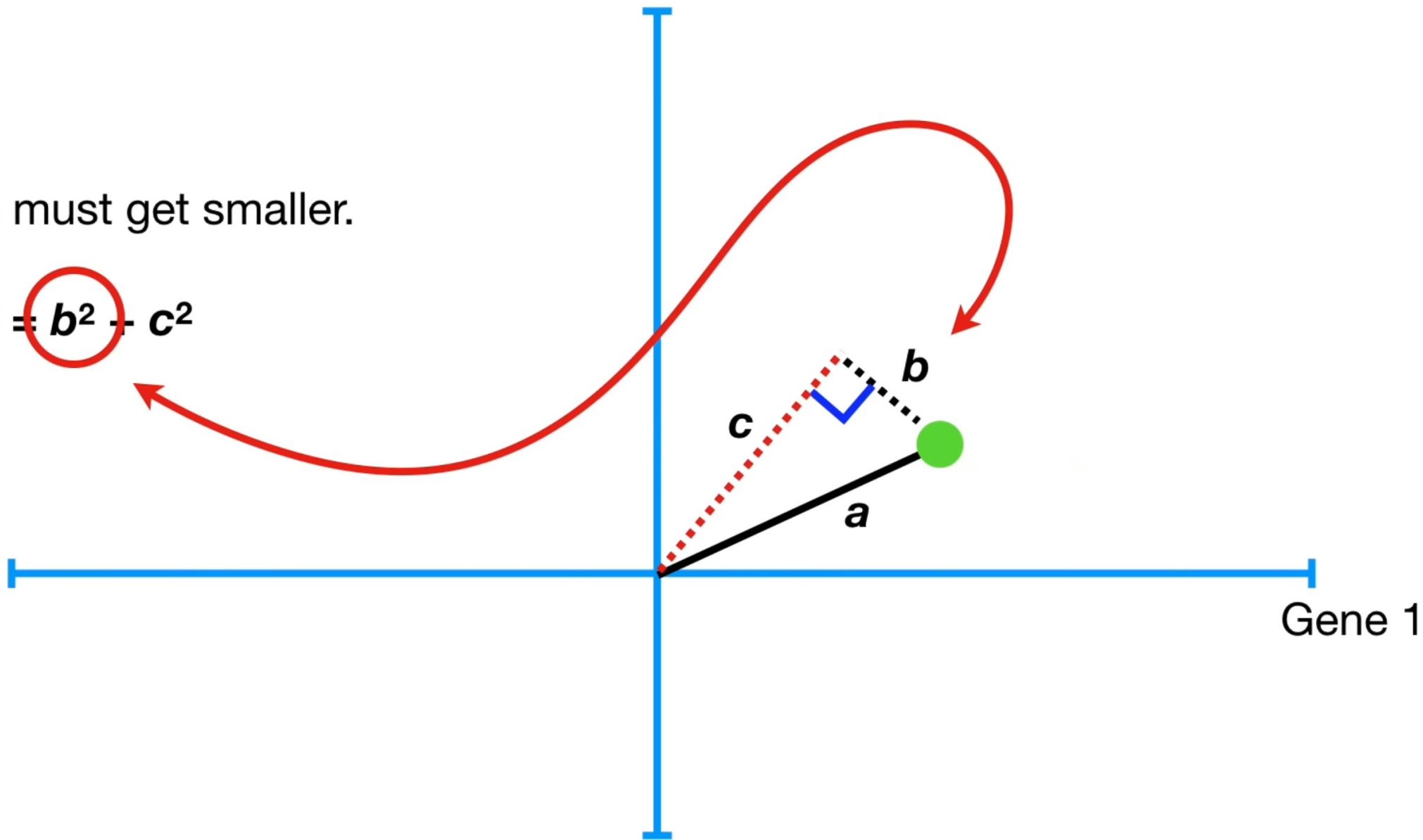
Since a (and thus a^2)
doesn't change...



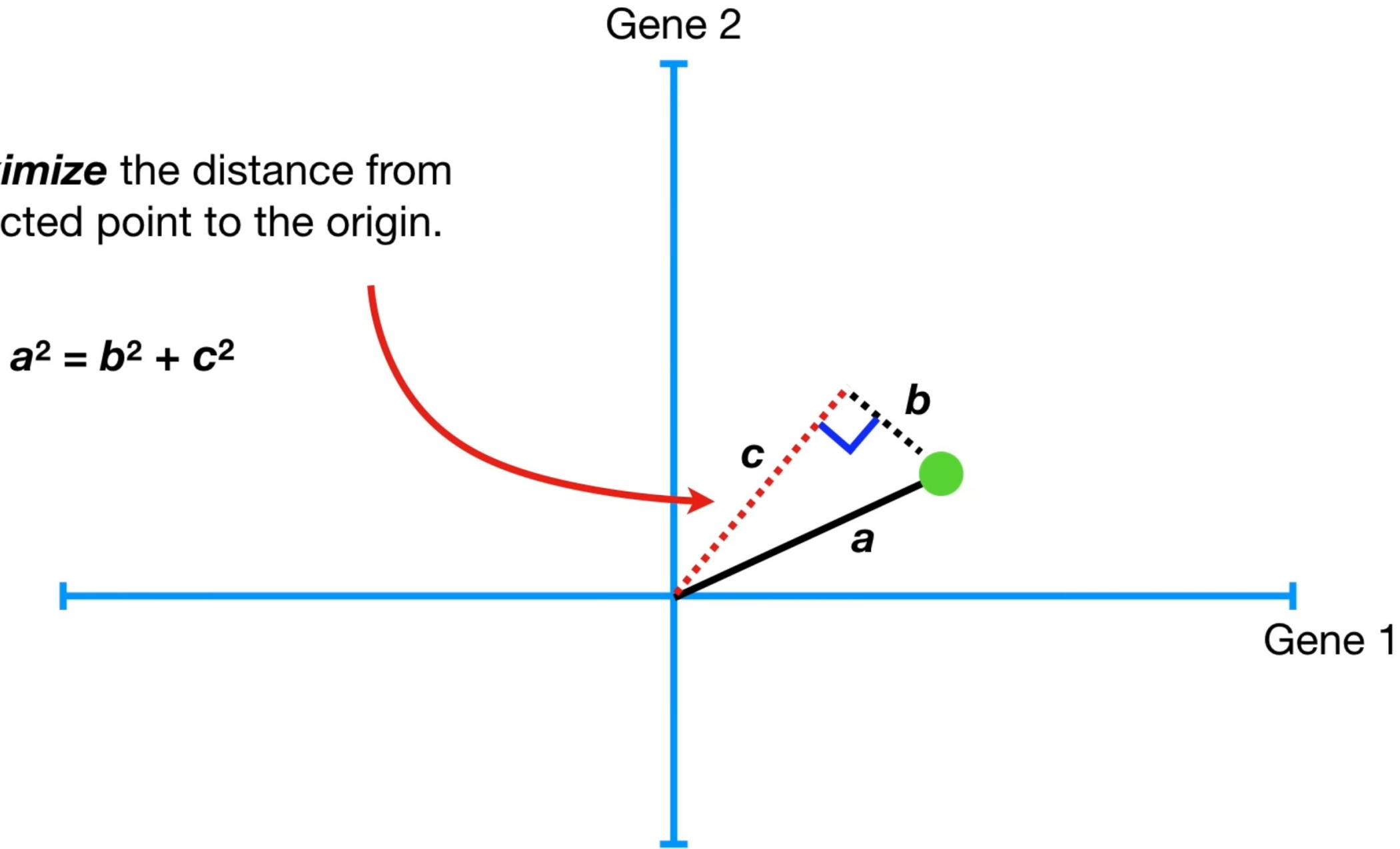
Gene 2

...then b must get smaller.

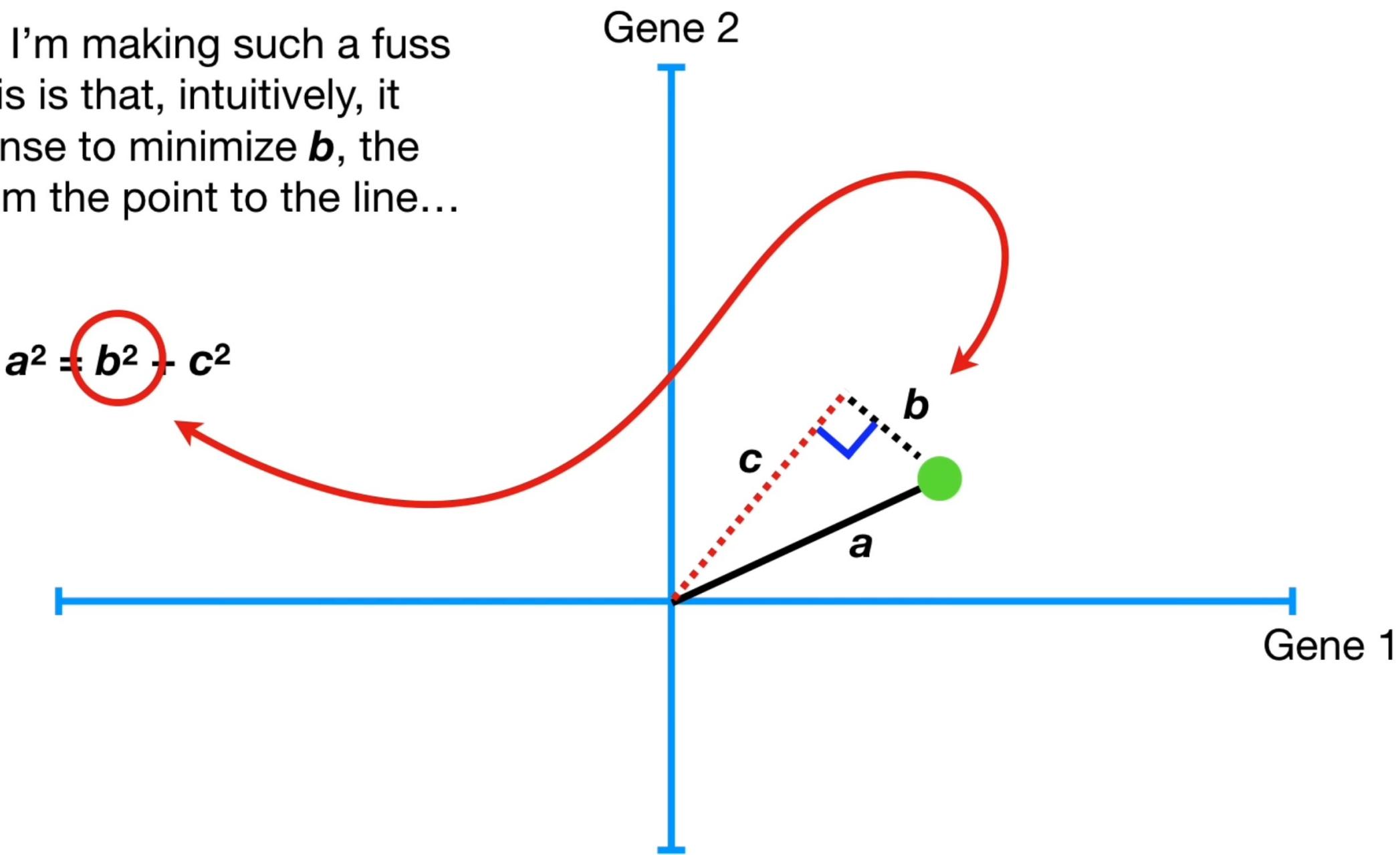
$$a^2 = b^2 + c^2$$



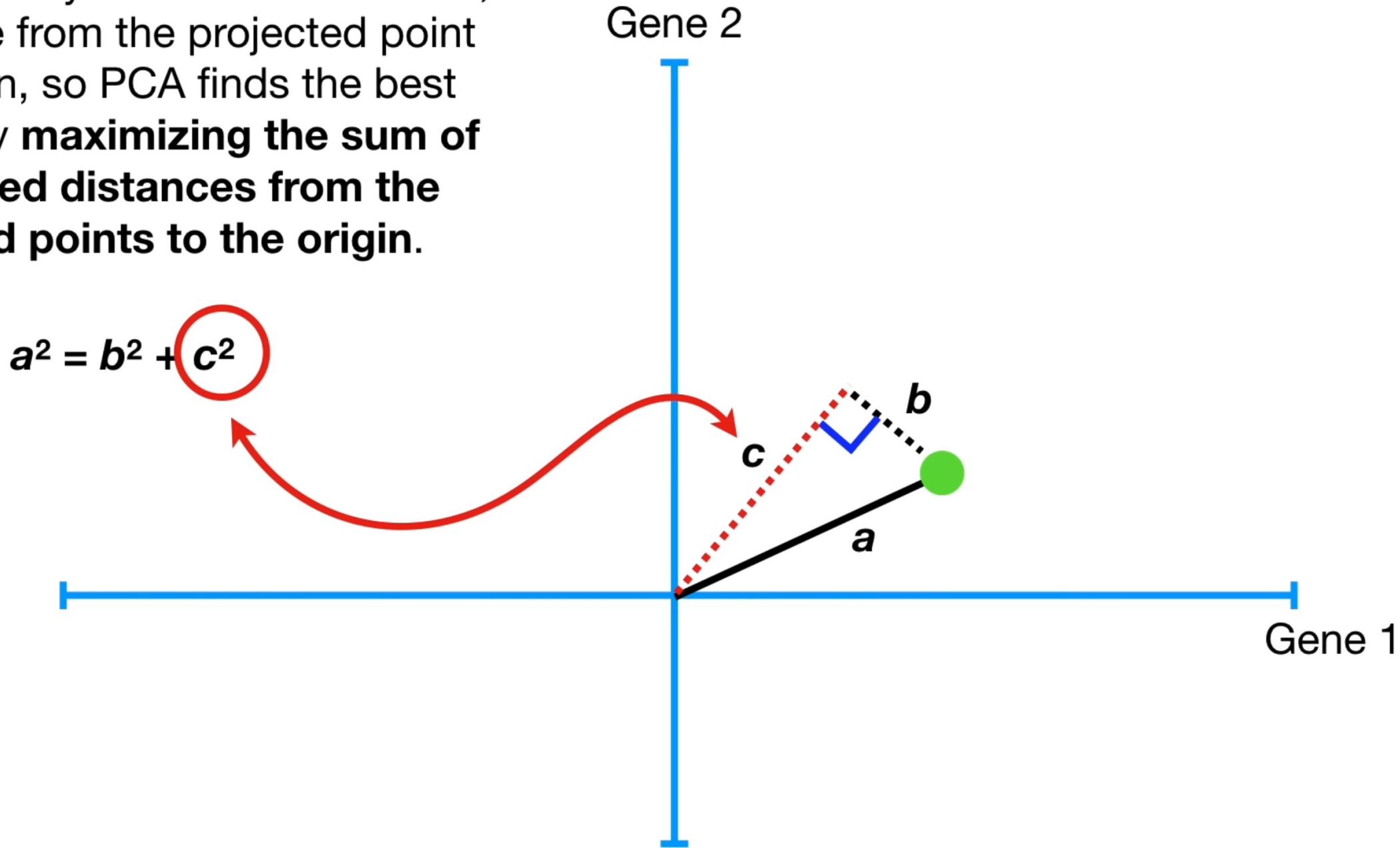
...or **maximize** the distance from the projected point to the origin.



The reason I'm making such a fuss about this is that, intuitively, it makes sense to minimize b , the distance from the point to the line...



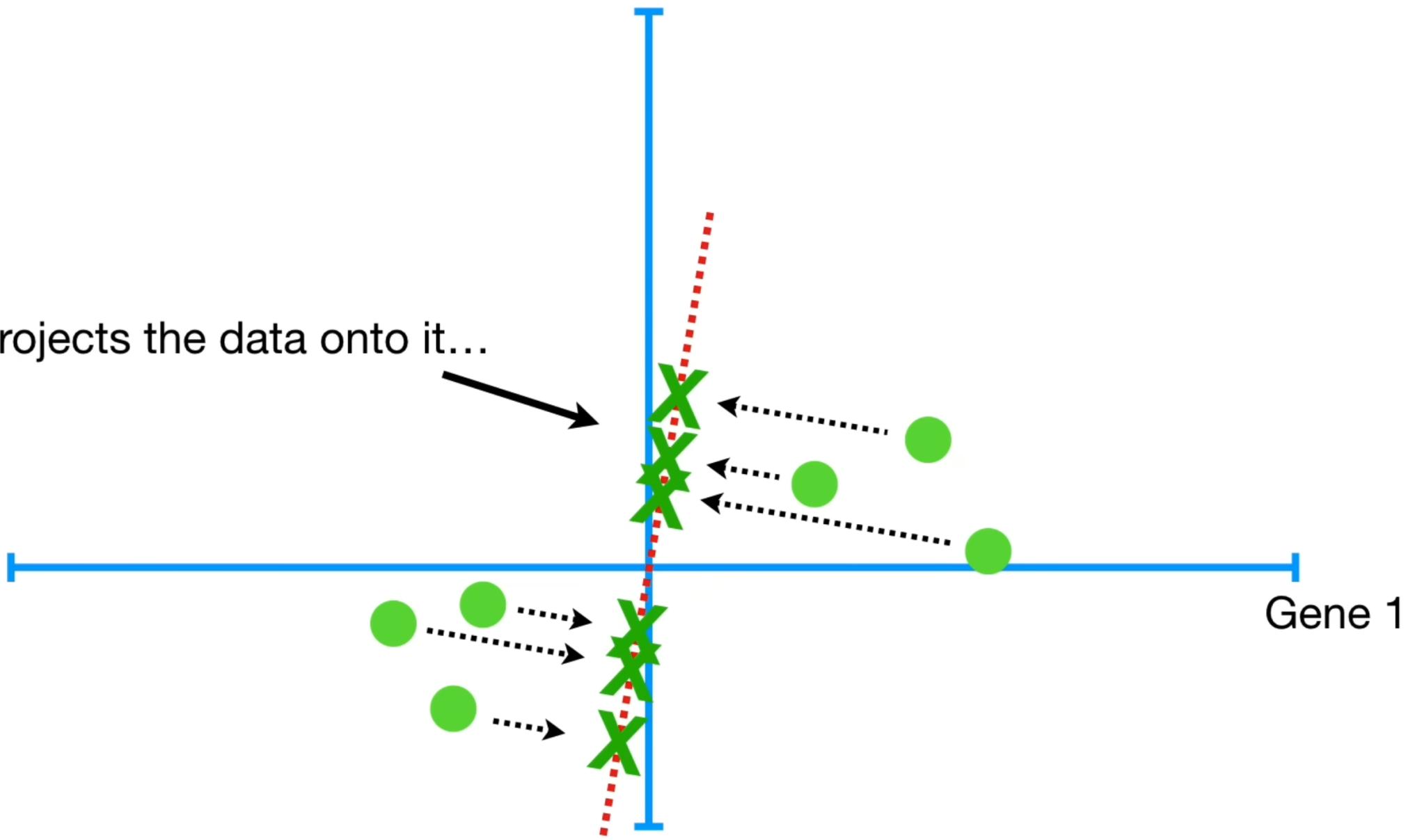
...but it's actually easier to calculate c , the distance from the projected point to the origin, so PCA finds the best fitting line by **maximizing the sum of the squared distances from the projected points to the origin**.



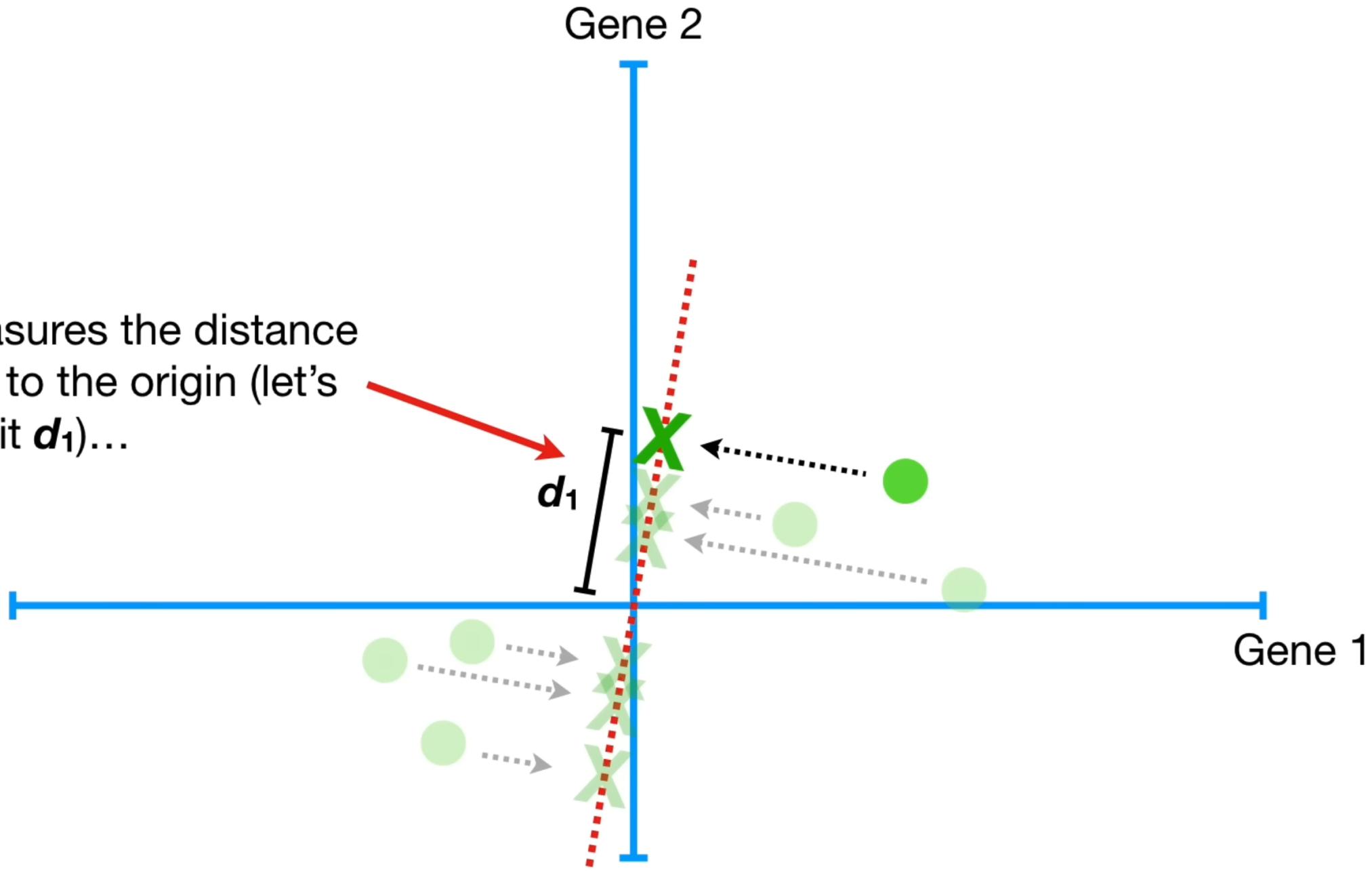
Gene 2

Gene 1

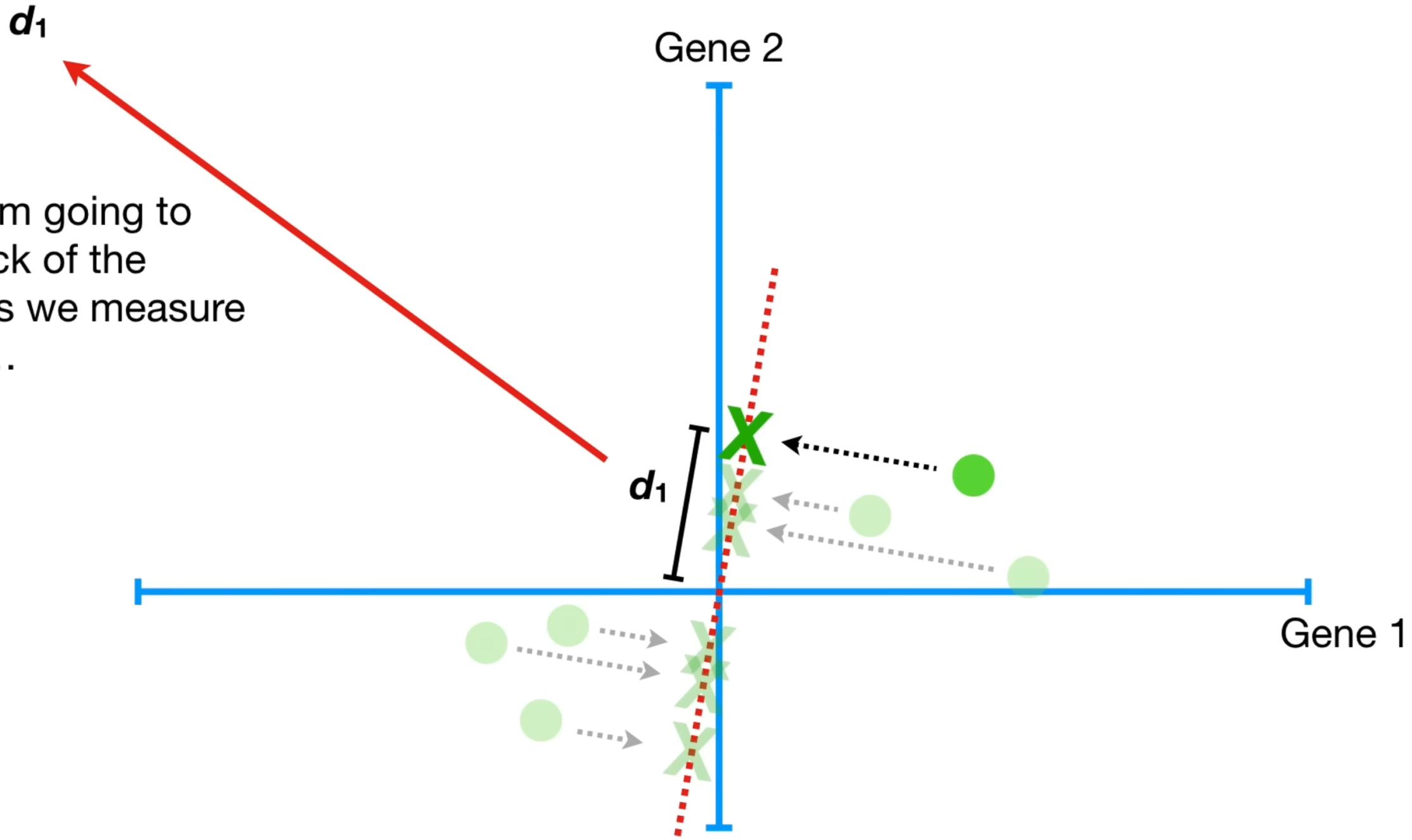
...PCA projects the data onto it...



...and then measures the distance from this point to the origin (let's call it d_1)...



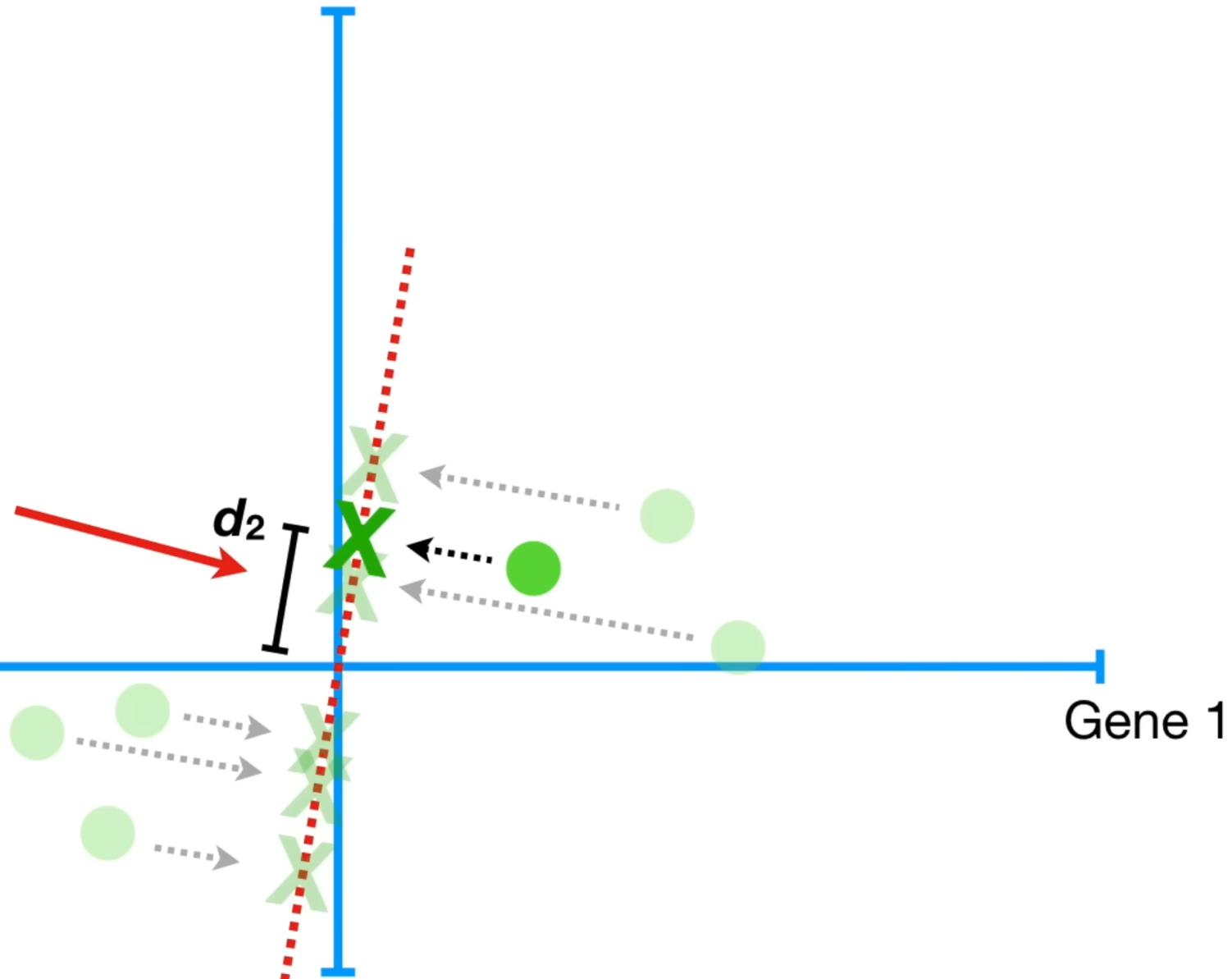
NOTE: I'm going to keep track of the distances we measure up here...



d_1 d_2

Gene 2

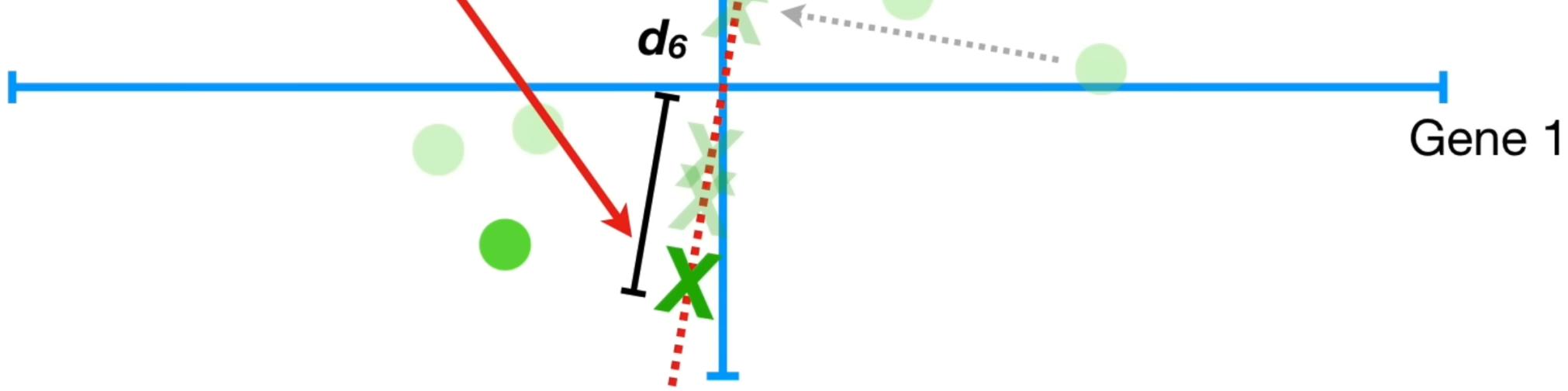
...and then PCA measures the distance from this point to the origin...



$$d_1 \quad d_2 \quad d_3 \quad d_4 \quad d_5 \quad d_6$$

Gene 2

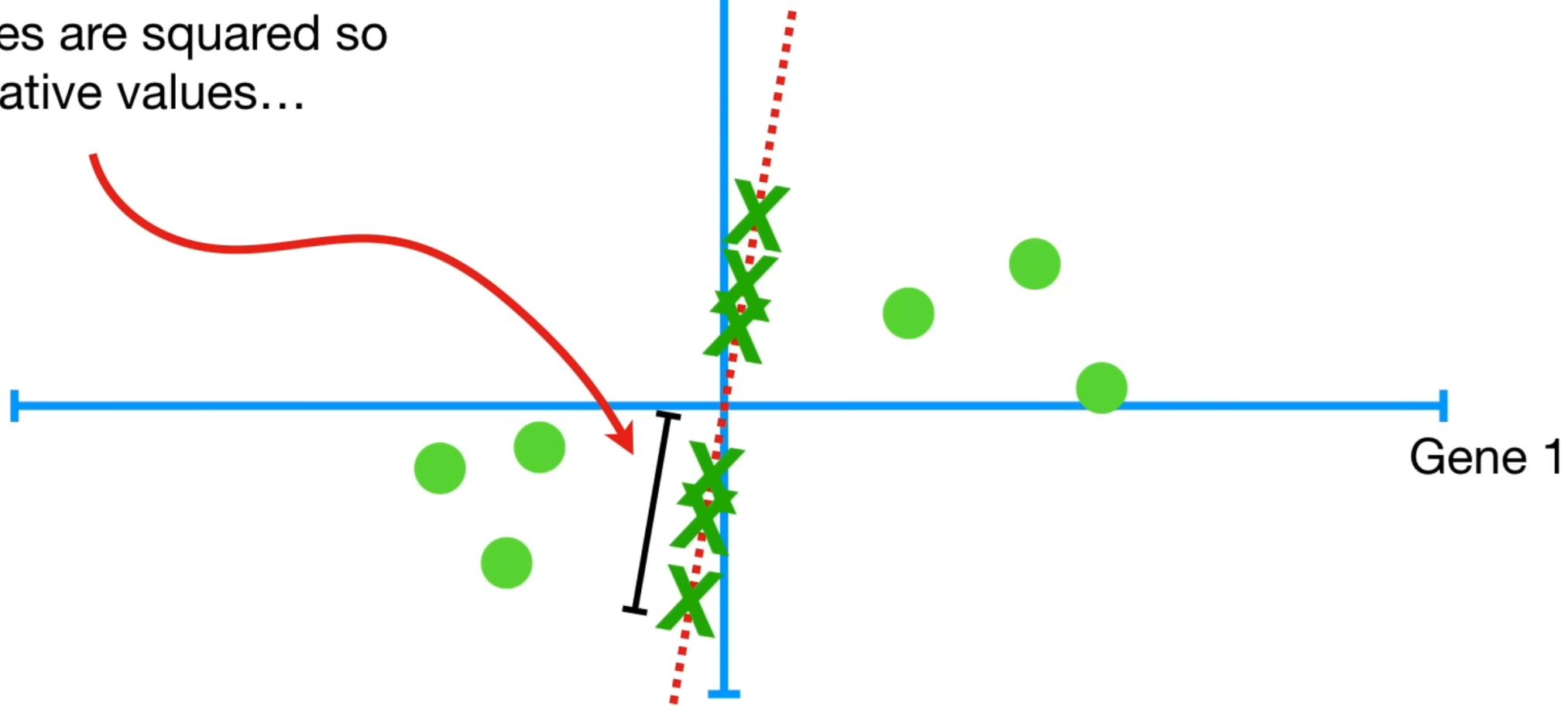
...and then PCA measures the distance from this point to the origin...



$$d_1^2 \quad d_2^2 \quad d_3^2 \quad d_4^2 \quad d_5^2 \quad d_6^2$$

Gene 2

The distances are squared so
that negative values...

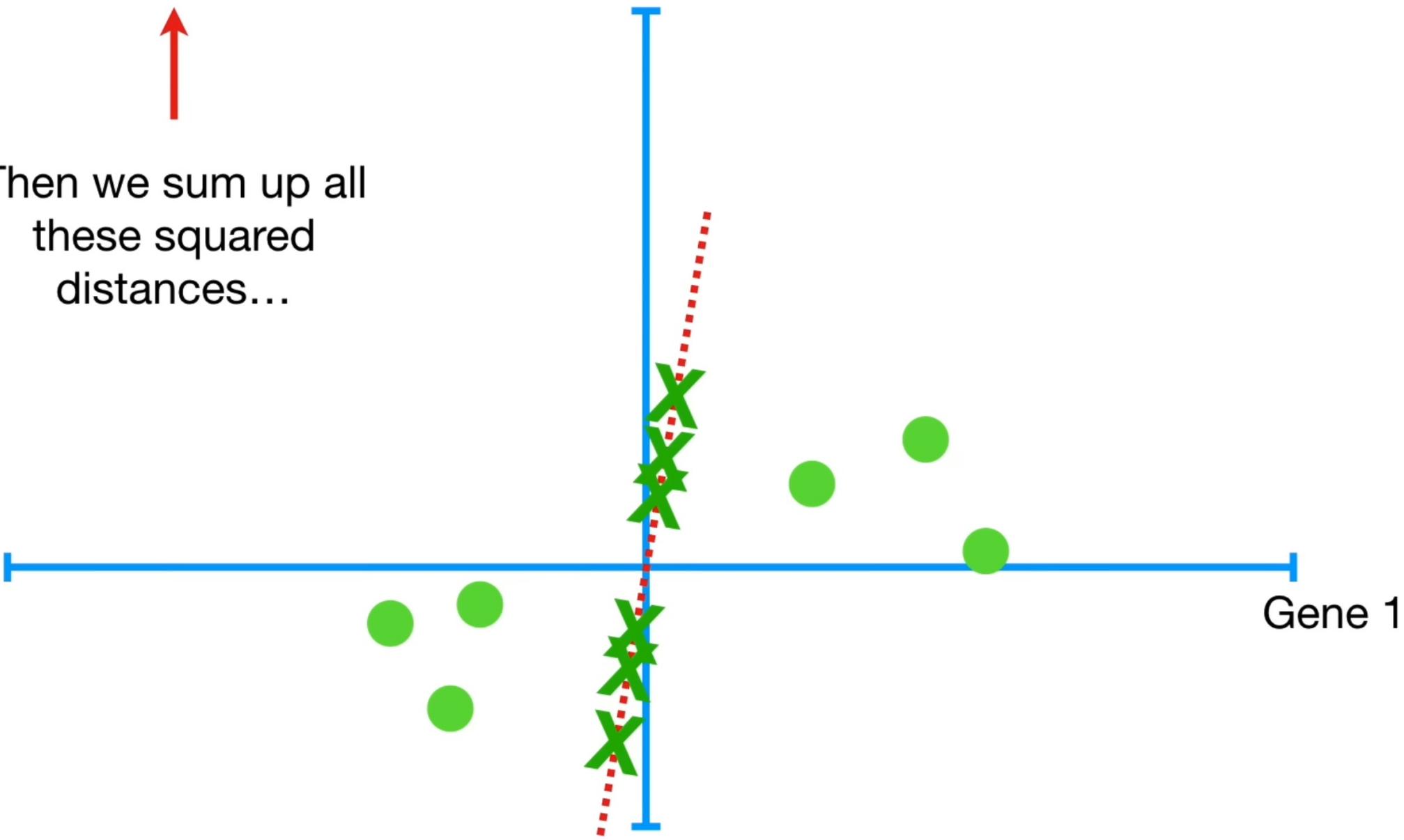


$$d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2$$

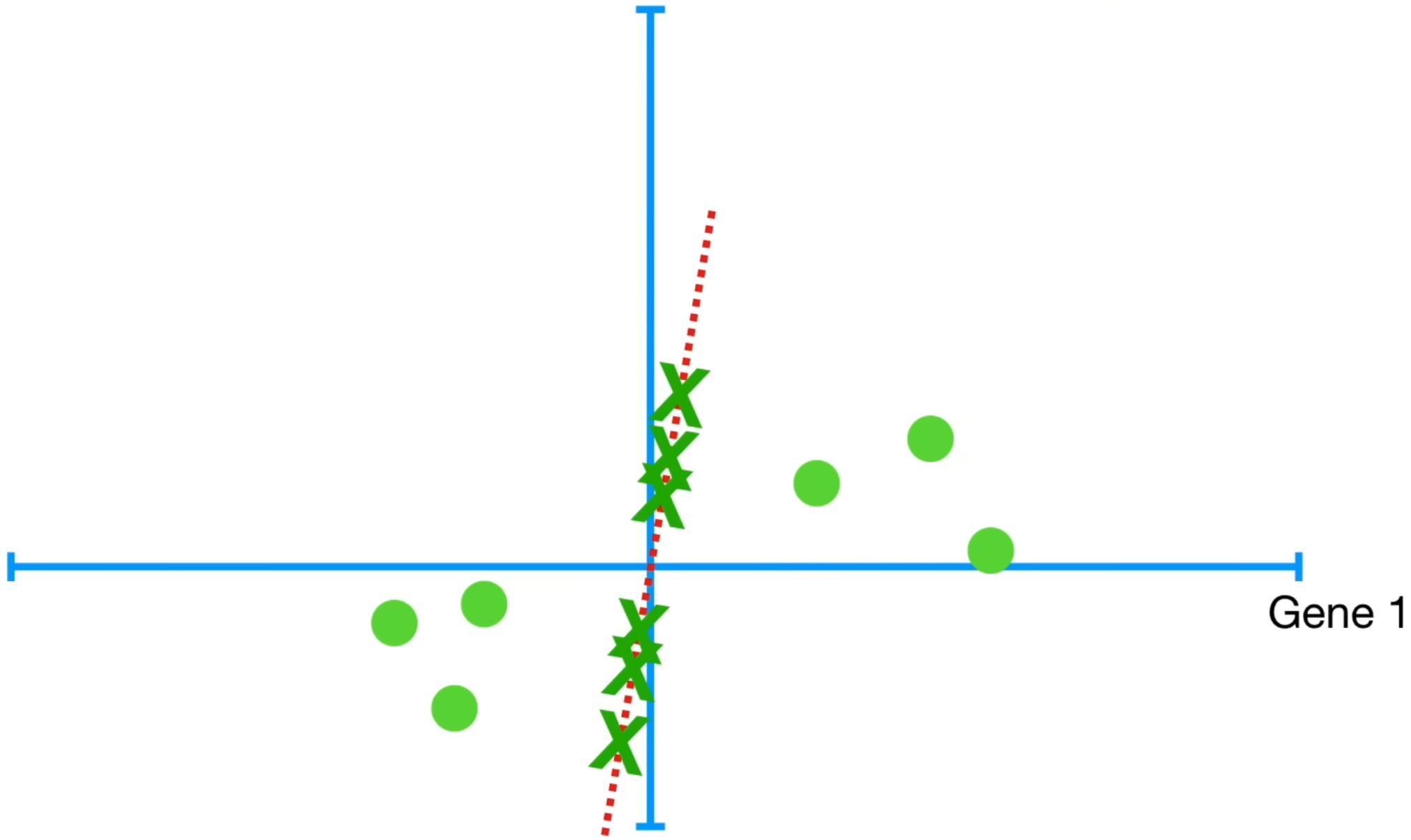
Then we sum up all
these squared
distances...

Gene 2

Gene 1

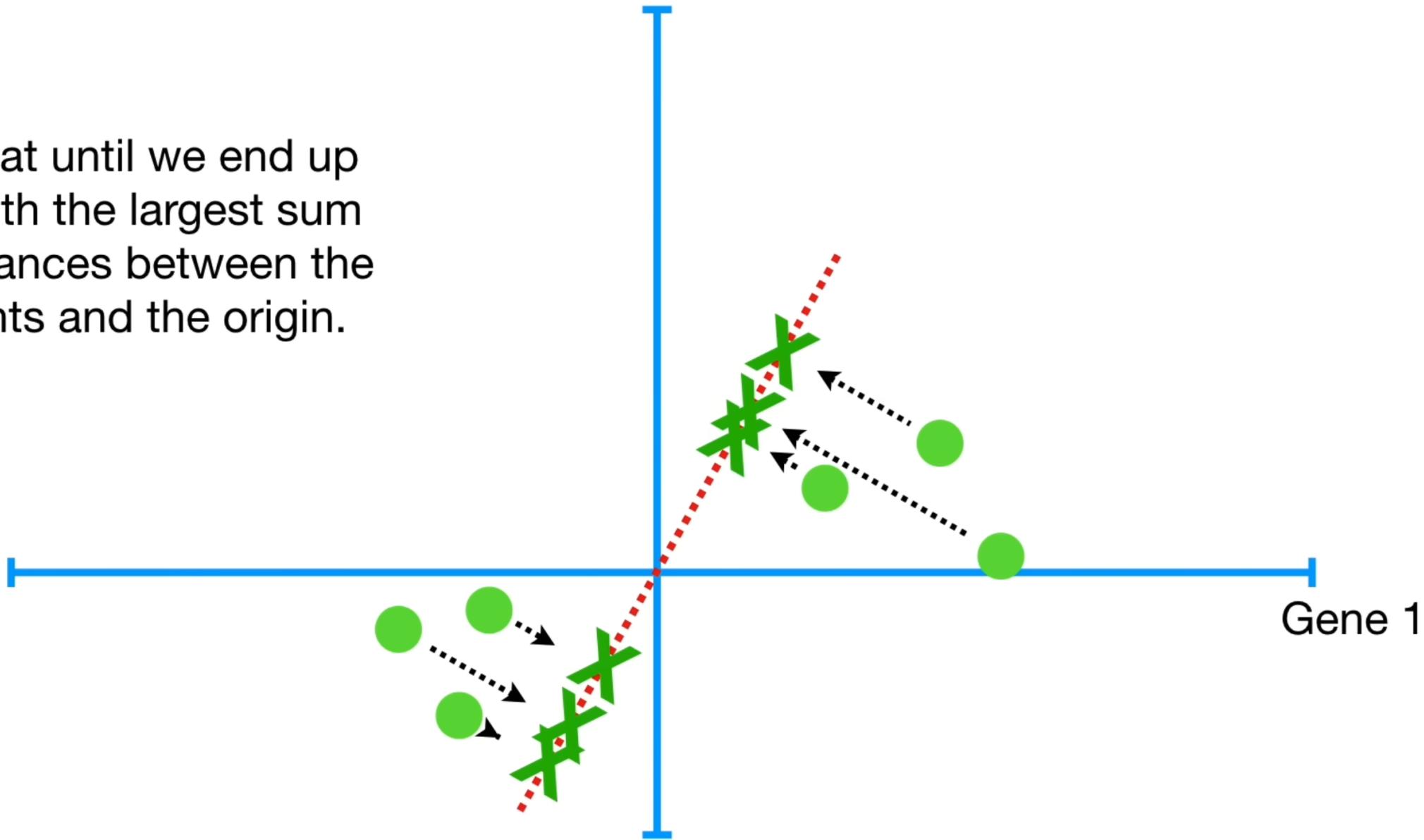


$$d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2 = \text{sum of squared distances} = \text{SS(distances)}$$



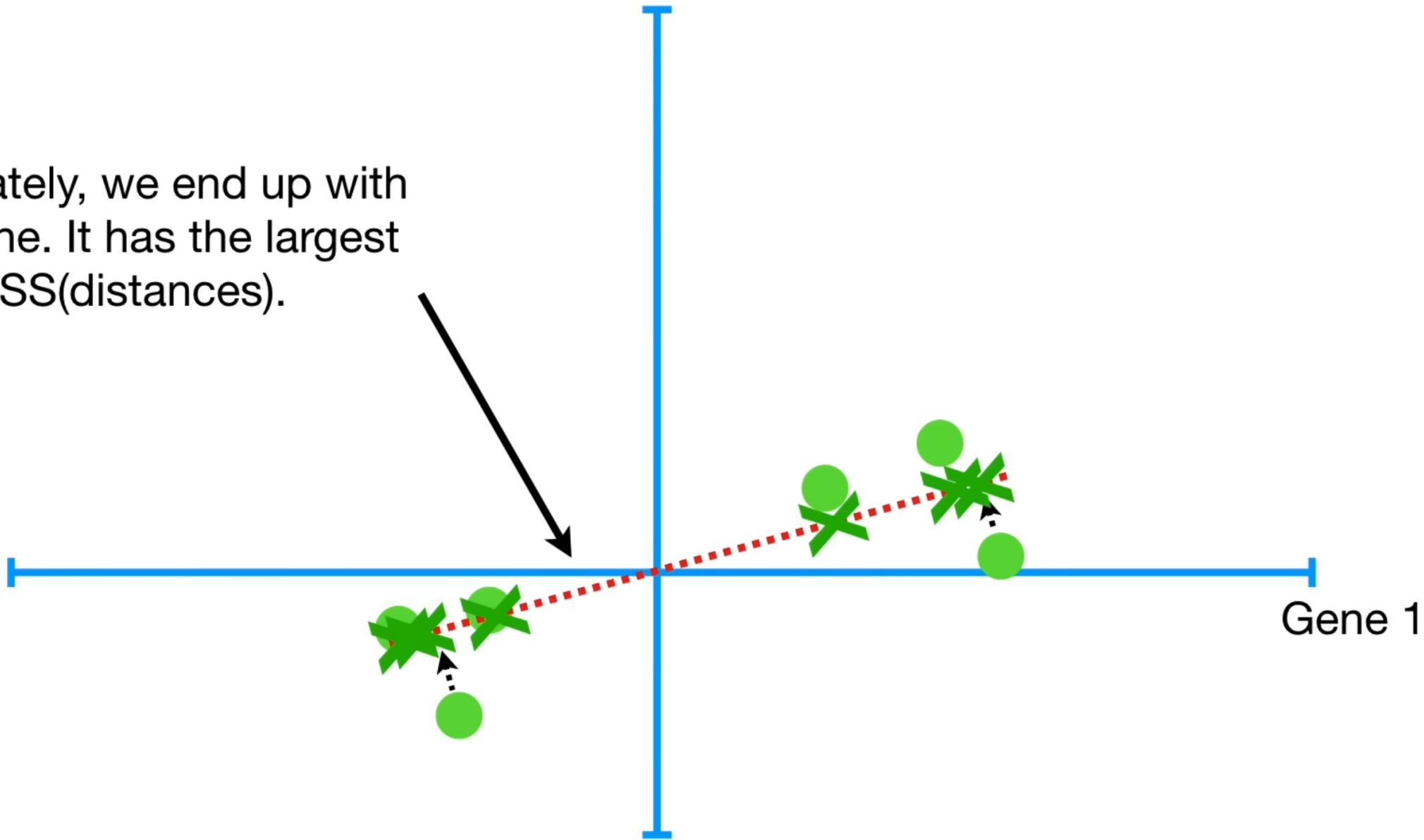
$$d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2 = \text{sum of squared distances} = \text{SS(distances)}$$

...and we repeat until we end up with the line with the largest sum of squared distances between the projected points and the origin.

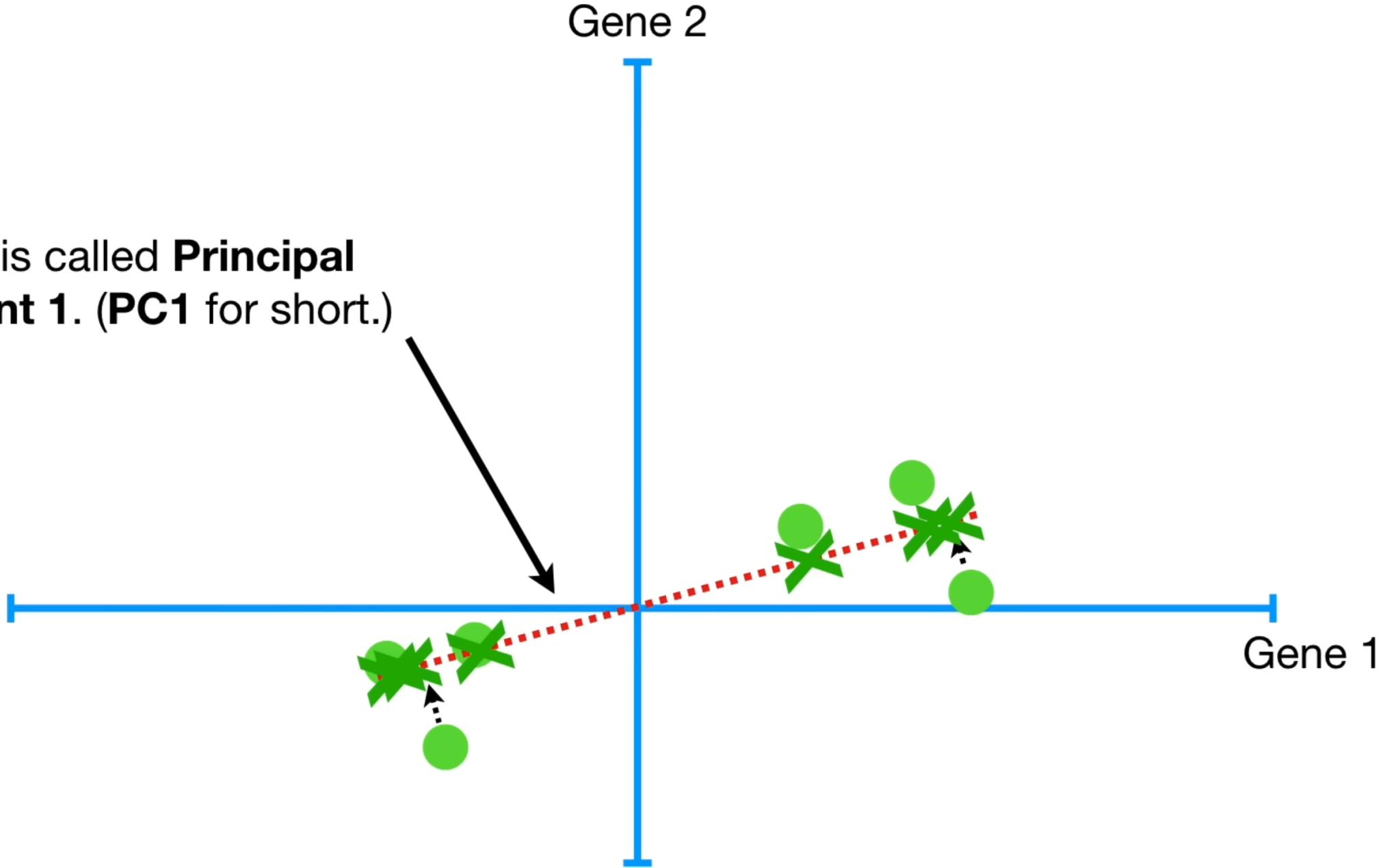


$$d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2 = \text{sum of squared distances} = \text{SS}(distances)$$

Ultimately, we end up with this line. It has the largest SS(distances).



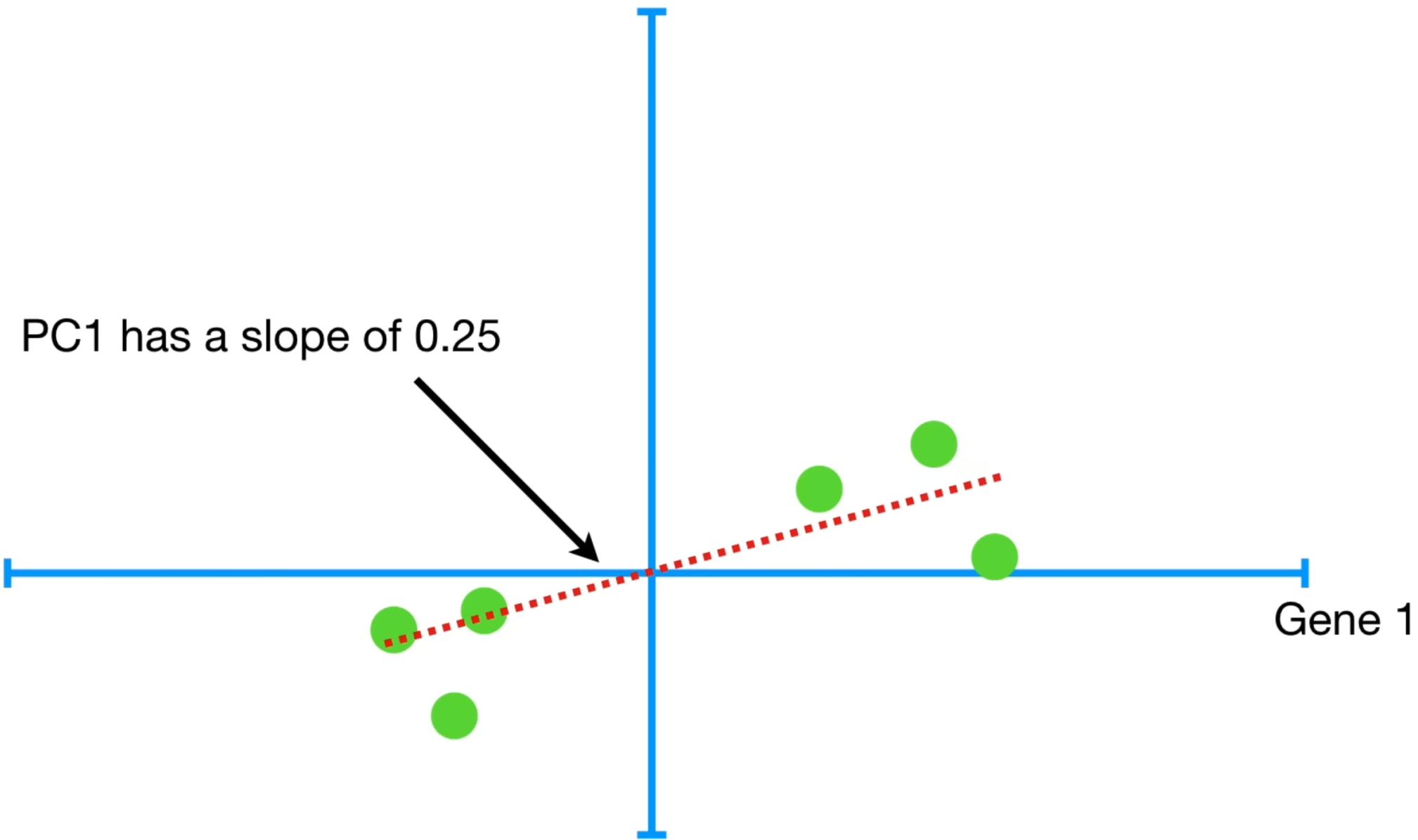
This line is called **Principal Component 1. (PC1 for short.)**



Gene 2

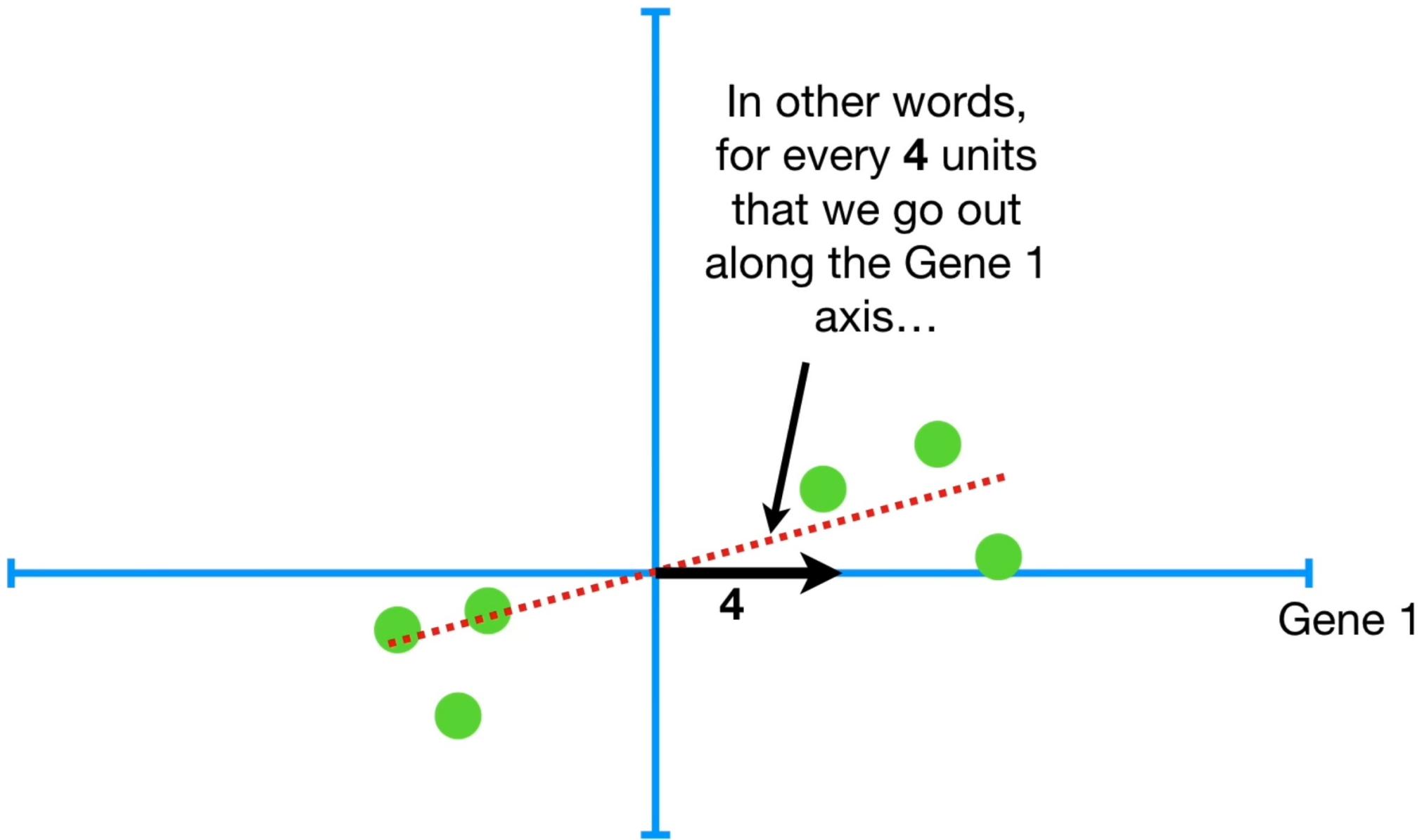
PC1 has a slope of 0.25

Gene 1

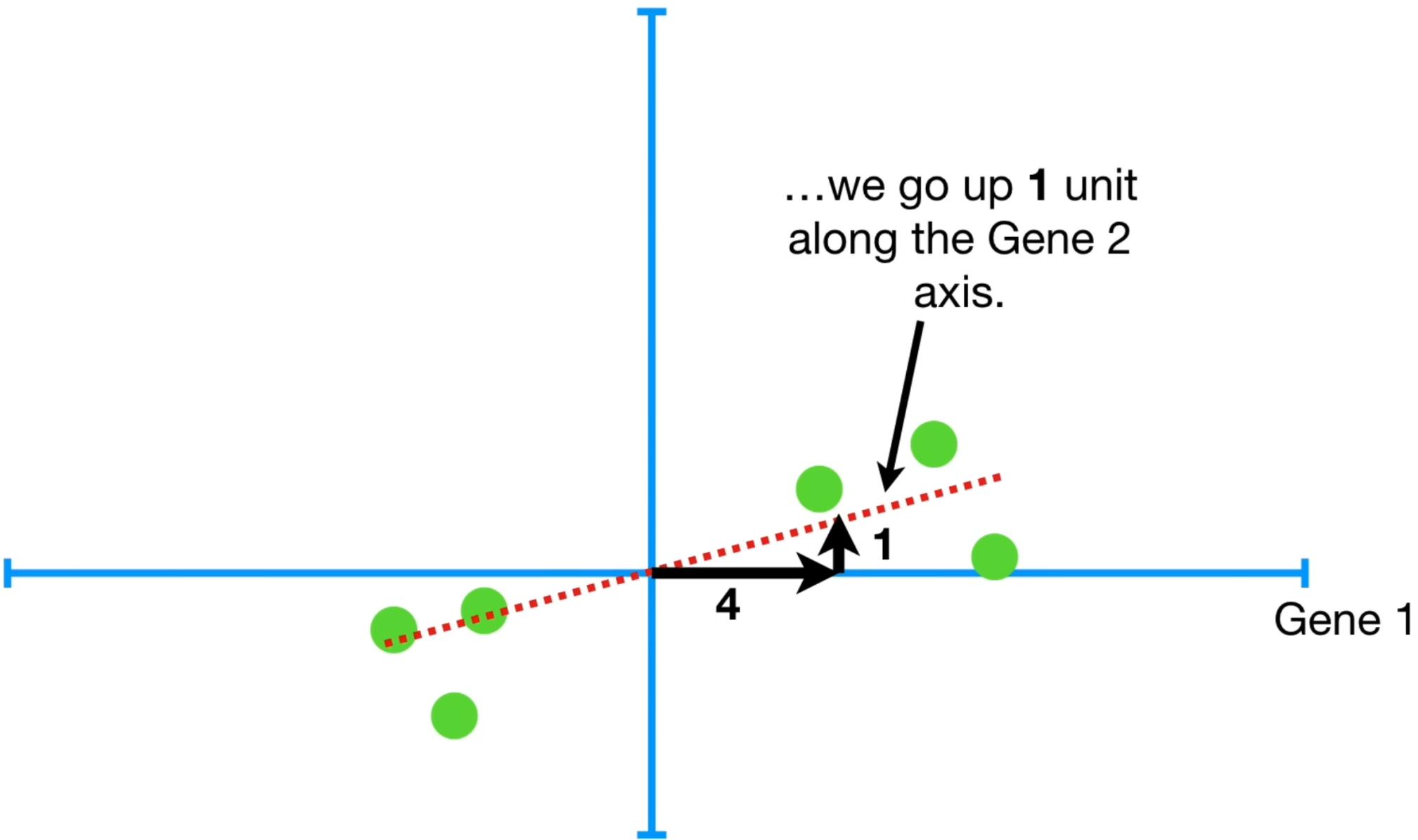


Gene 2

In other words,
for every **4** units
that we go out
along the Gene 1
axis...



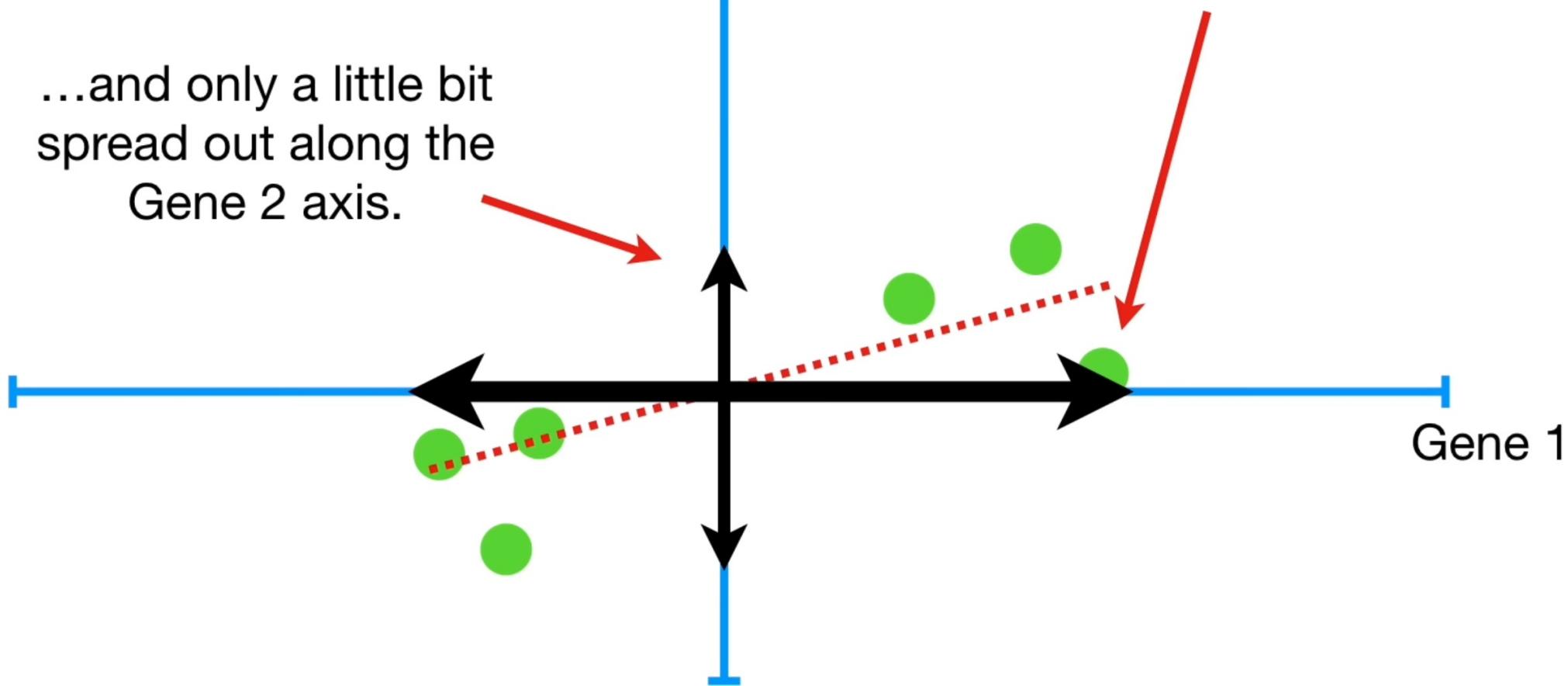
Gene 2



Gene 2

That means that the data are mostly spread out along the Gene 1 axis...

...and only a little bit spread out along the Gene 2 axis.



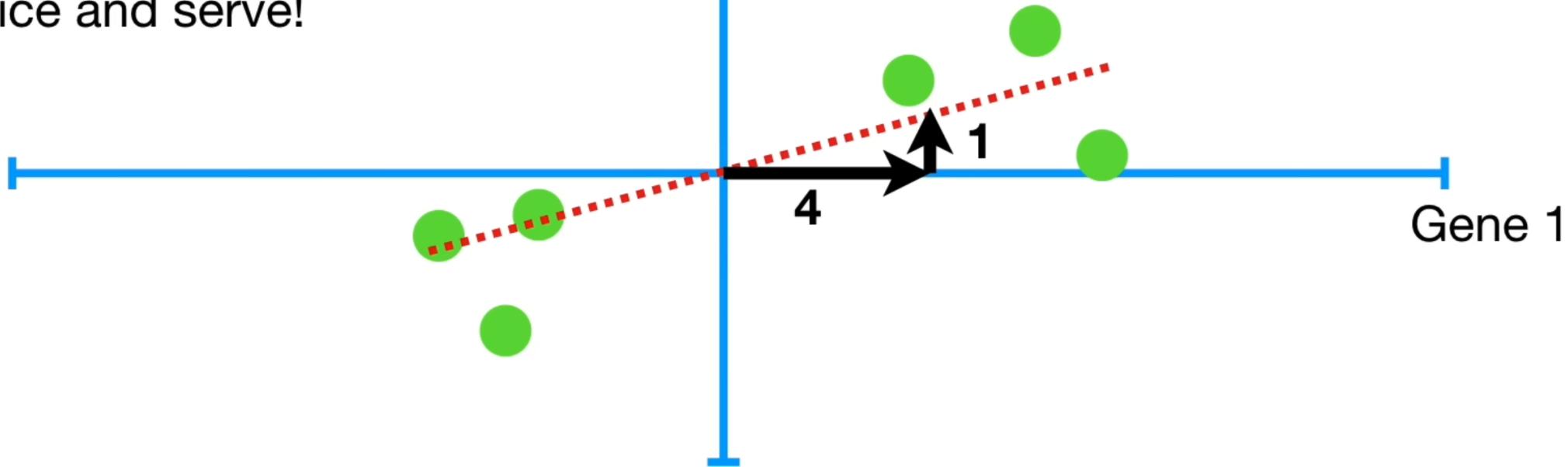
One way to think about PC1 is in terms of a cocktail recipe...

To make PC1
Mix **4** parts Gene 1
with **1** part Gene 2

Pour over ice and serve!

Gene 2

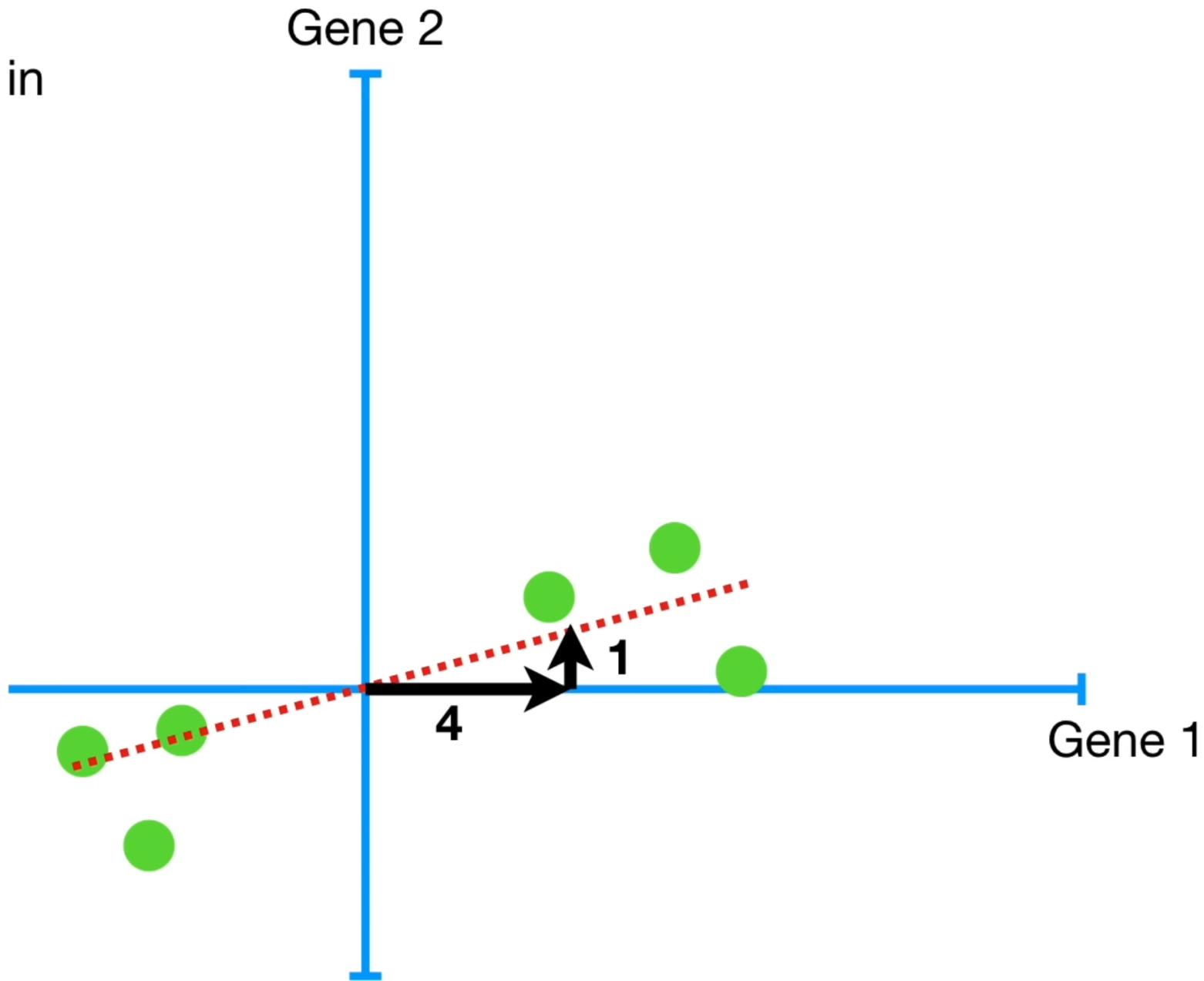
Gene 1



One way to think about PC1 is in terms of a cocktail recipe...

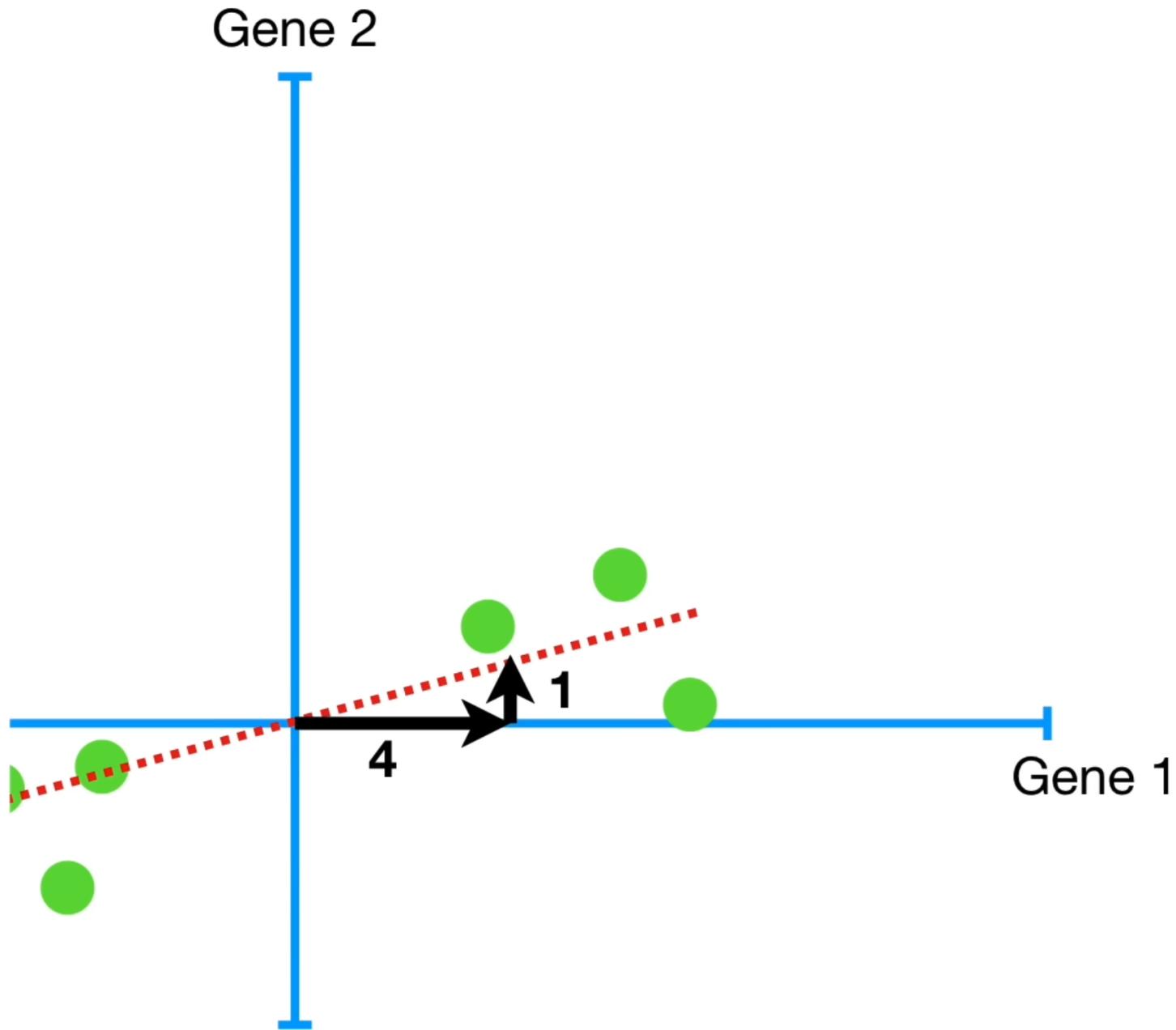
To make PC1
Mix **4** parts Gene 1
with **1** part Gene 2

The ratio of Gene 1 to Gene 2 tells you that Gene 1 is more important when it comes to describing how the data are spread out..

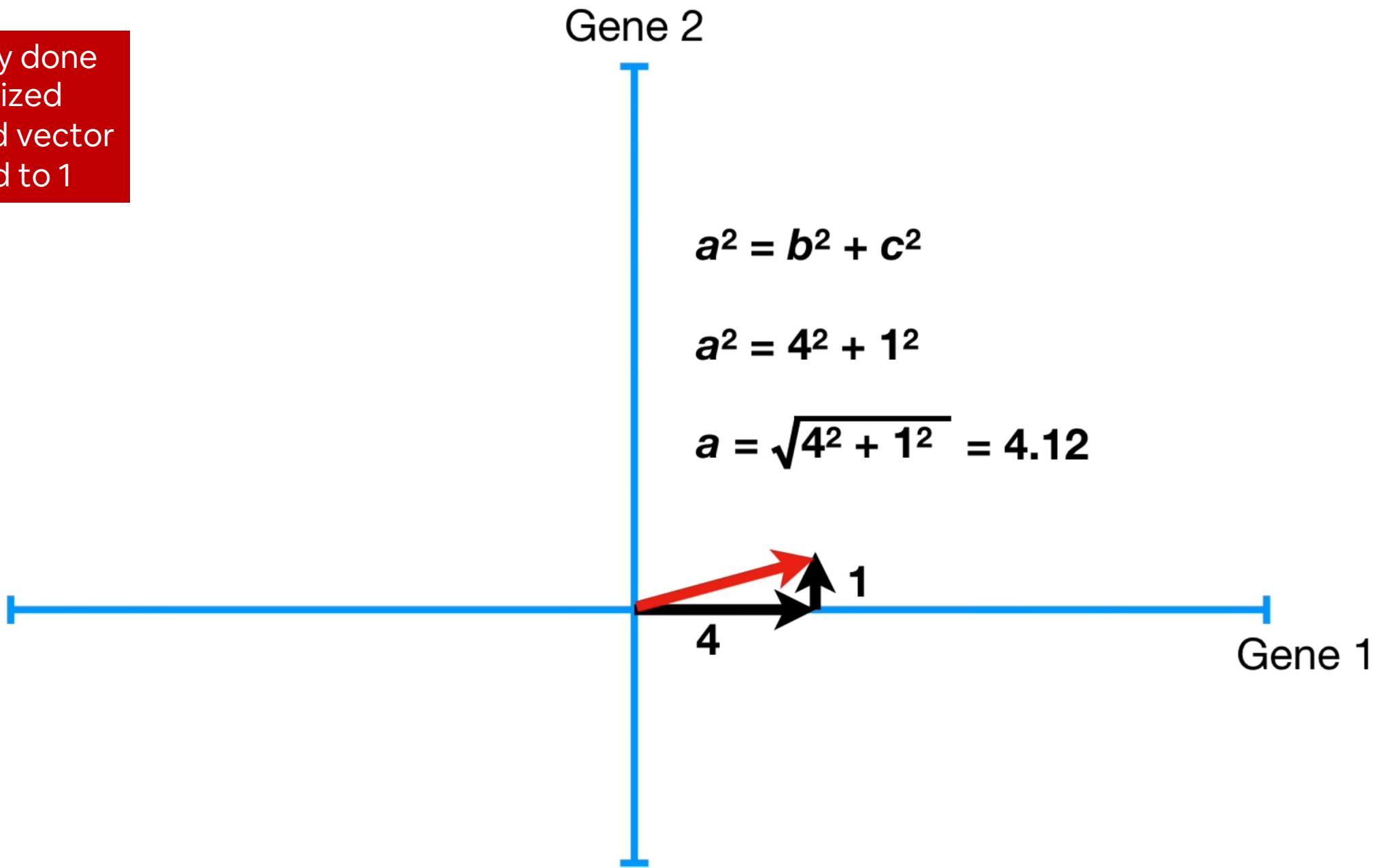


To make PC1
Mix **4** parts Gene 1
with **1** part Gene 2

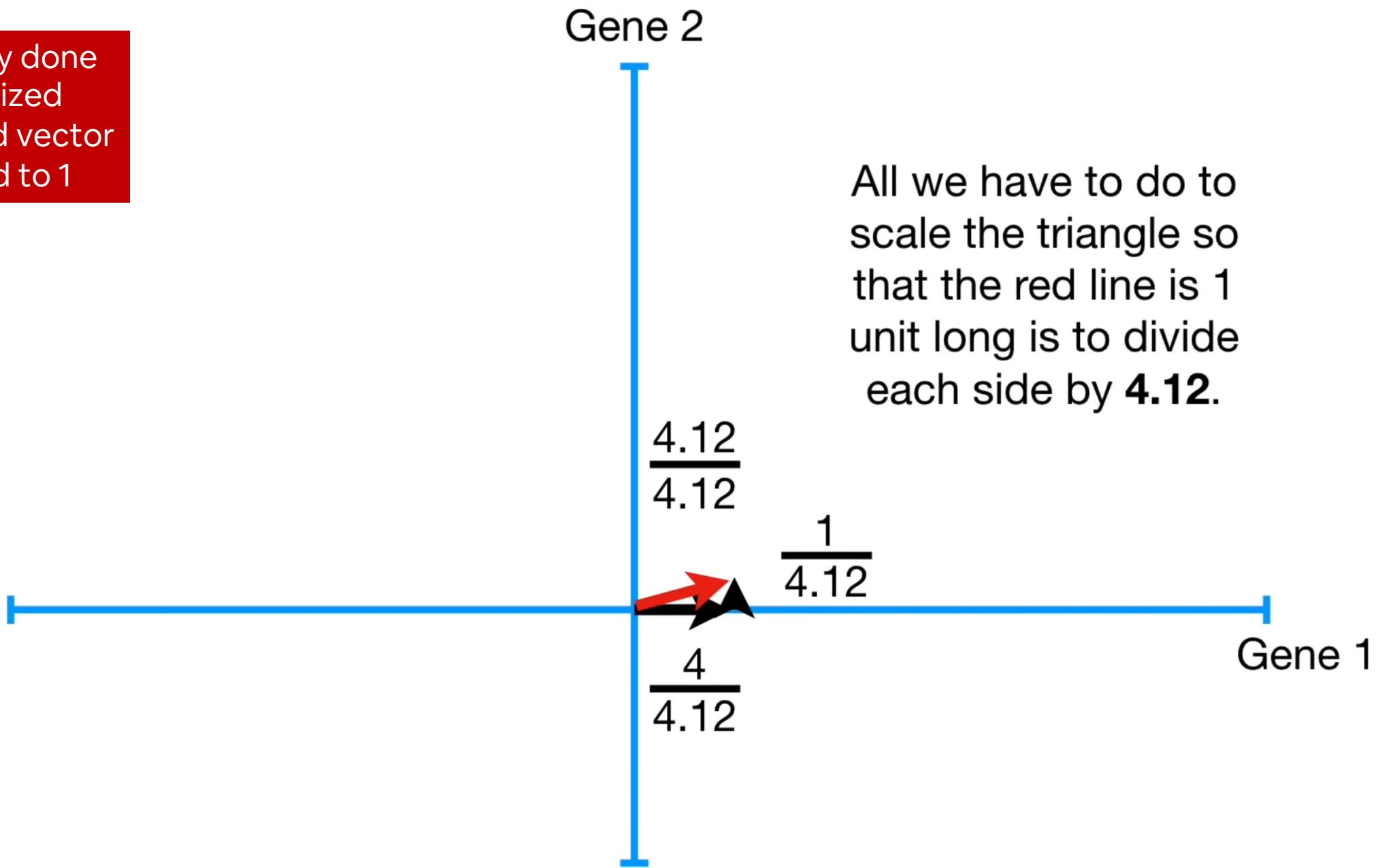
Terminology Alert!!!!
Mathematicians call this cocktail
recipe a “*linear combination*” of
Genes 1 and 2.



PCA is formally done with normalized vectors: the red vector is normalized to 1



PCA is formally done with normalized vectors: the red vector is normalized to 1



$$\frac{4.12}{4.12} = \frac{\sqrt{4^2 + 1^2}}{4.12} = \sqrt{\left(\frac{4^2 + 1^2}{4.12^2}\right)}$$

$$= \sqrt{\left(\frac{4}{4.12}\right)^2 + \left(\frac{1}{4.12}\right)^2}$$

For those of you keeping score,
here's the math worked out that
shows that all we need to do is
divide all 3 sides by **4.12**.

Gene 2

$$\frac{4.12}{4.12}$$

$$\frac{1}{4.12}$$

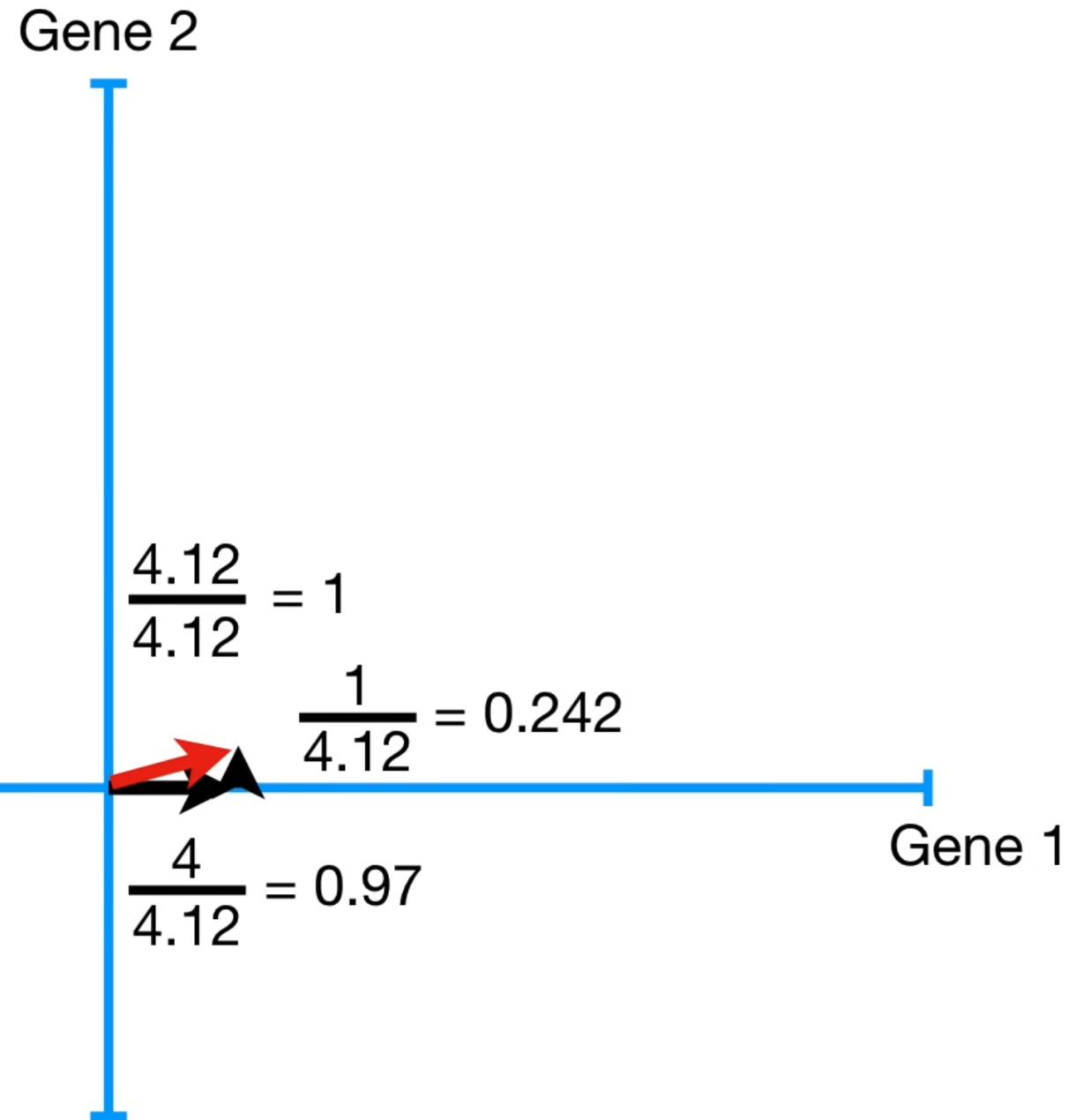
$$\frac{4}{4.12}$$

Gene 1

The new values change our recipe...

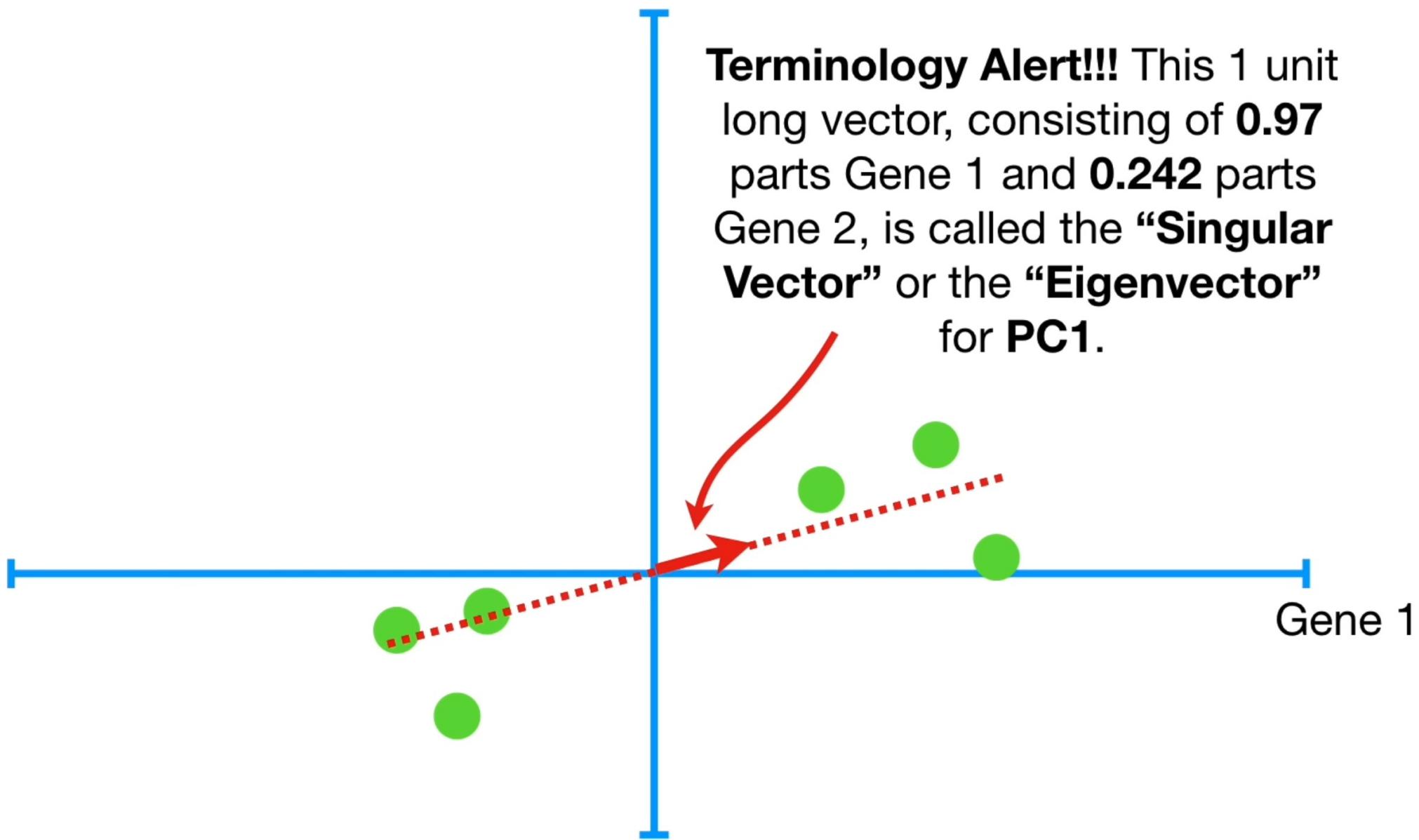
To make PC1
Mix **0.97** parts Gene 1
with **0.242** parts Gene 2

...but the ratio is the same: we still use 4 times as much Gene 1 as Gene 2.



Gene 2

Terminology Alert!!! This 1 unit long vector, consisting of **0.97** parts Gene 1 and **0.242** parts Gene 2, is called the **“Singular Vector”** or the **“Eigenvector”** for **PC1**.



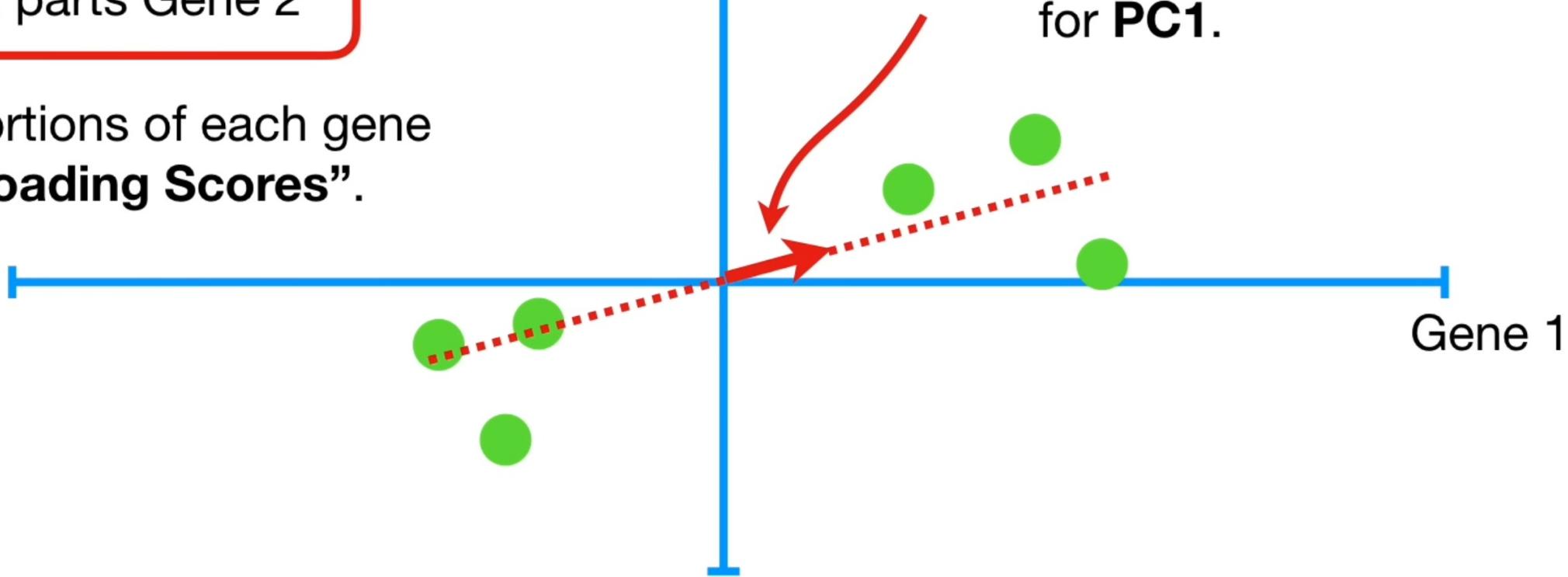
To make PC1

Mix 0.97 parts Gene 1
with 0.242 parts Gene 2

...and the proportions of each gene
are called “**Loading Scores**”.

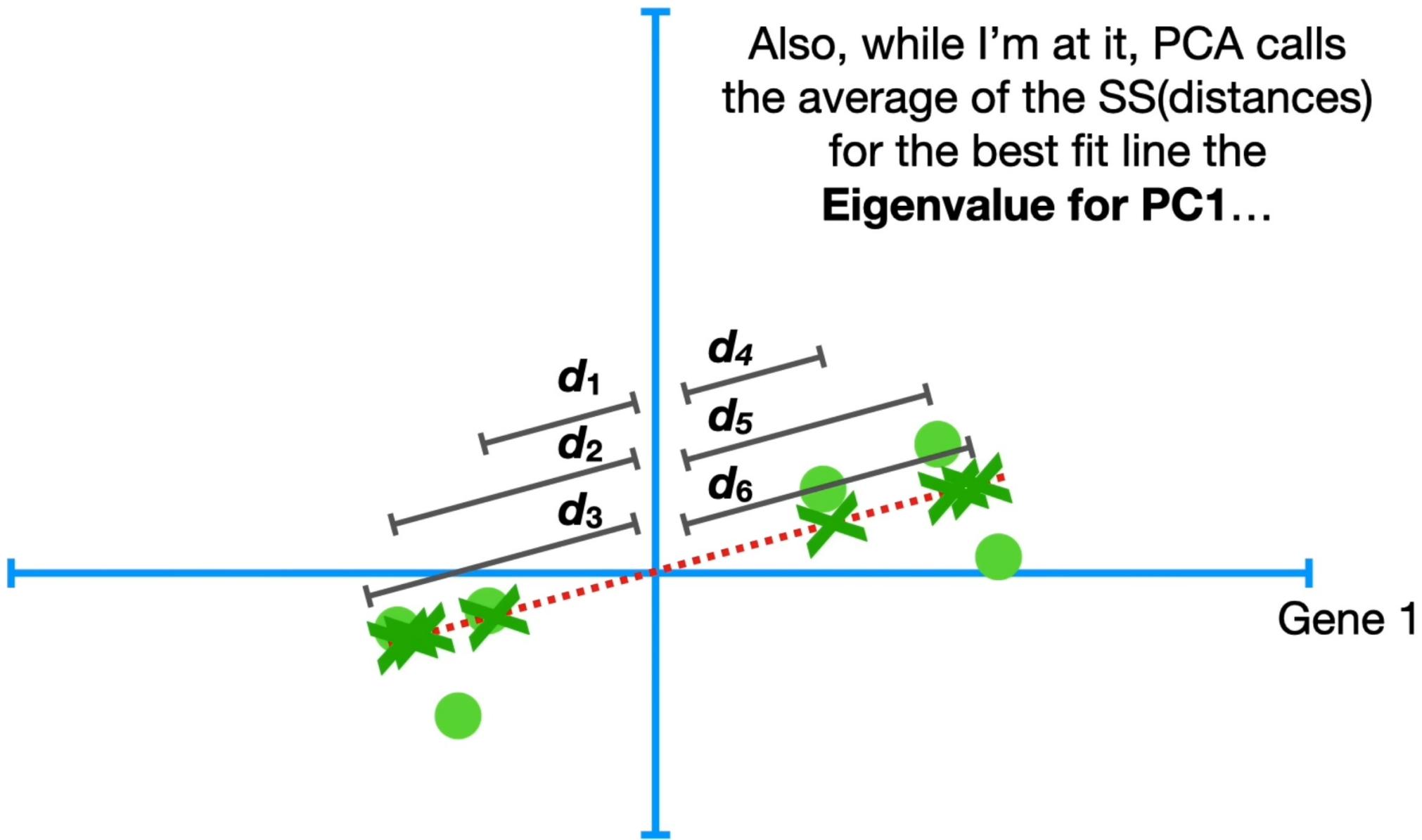
Gene 2

Terminology Alert!!! This 1 unit long vector, consisting of **0.97** parts Gene 1 and **0.242** parts Gene 2, is called the “**Singular Vector**” or the “**Eigenvector**” for **PC1**.



$$d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2 = \text{sum of squared distances} = \text{SS(distances)}$$

Also, while I'm at it, PCA calls the average of the SS(distances) for the best fit line the **Eigenvalue for PC1...**

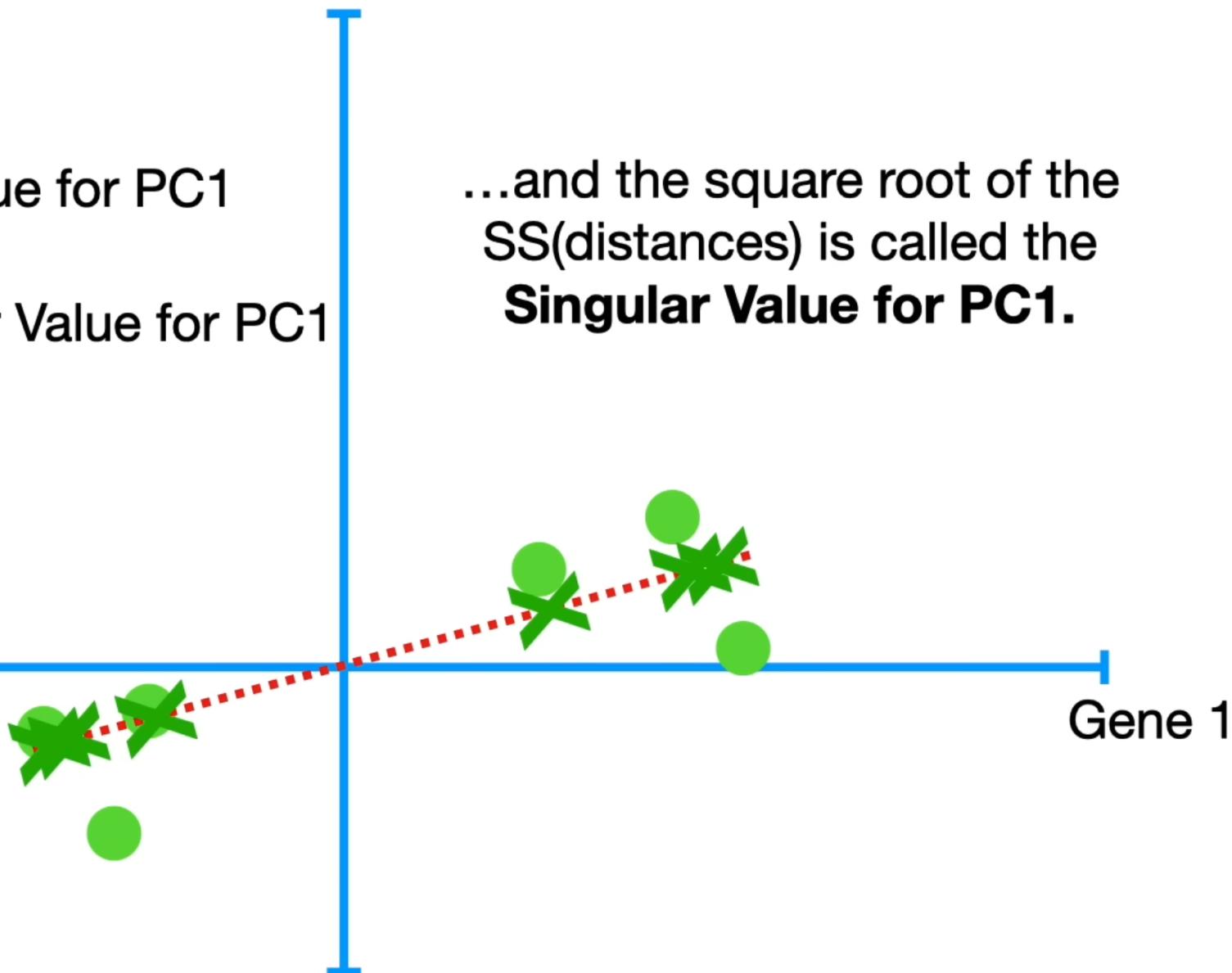


$$d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2 = \text{sum of squared distances} = \text{SS(distances)}$$

$$\frac{\text{SS(distances for PC1)}}{n - 1} = \text{Eigenvalue for PC1}$$

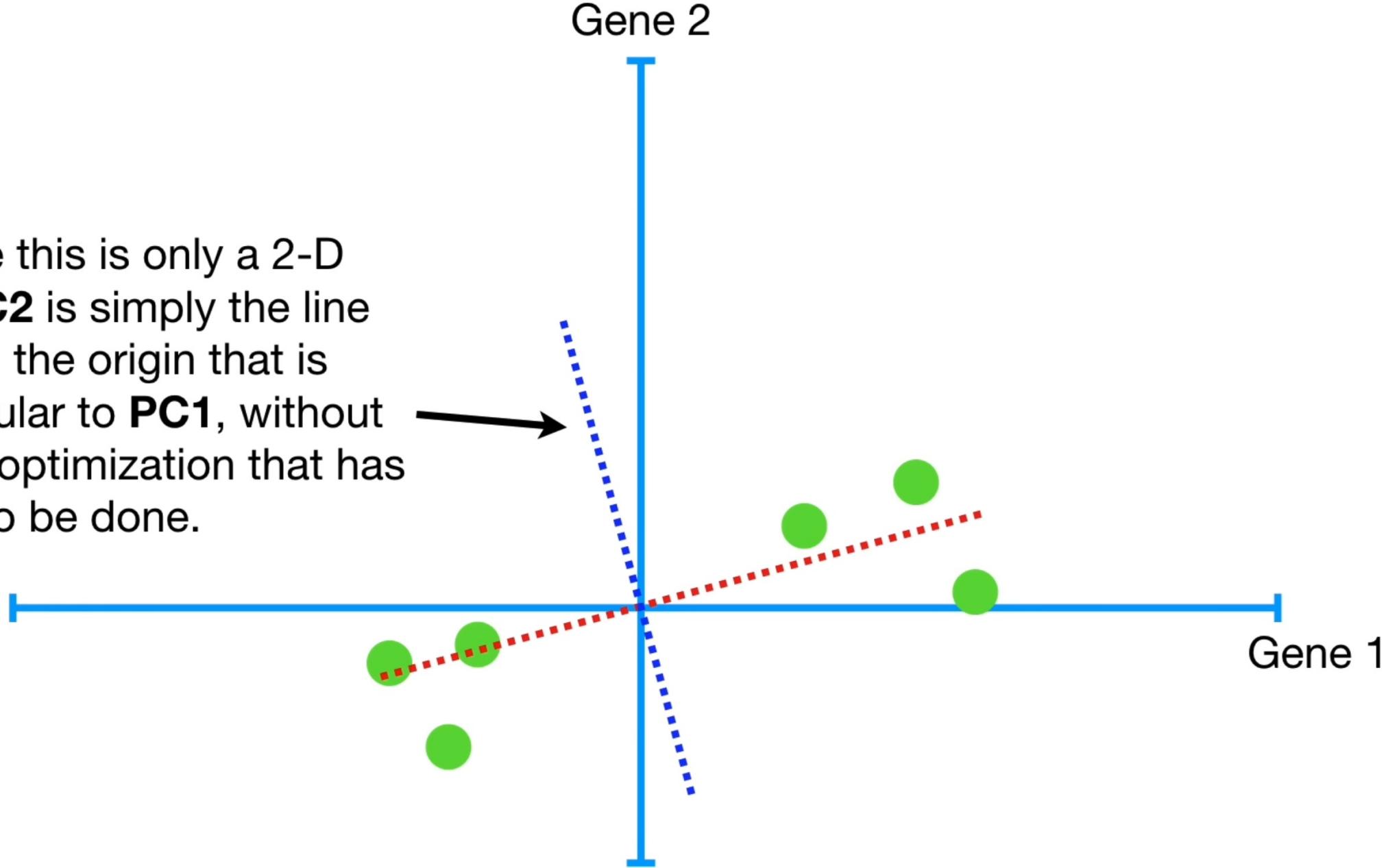
$$\sqrt{\text{SS(distances for PC1)}} = \text{Singular Value for PC1}$$

...and the square root of the SS(distances) is called the **Singular Value for PC1**.



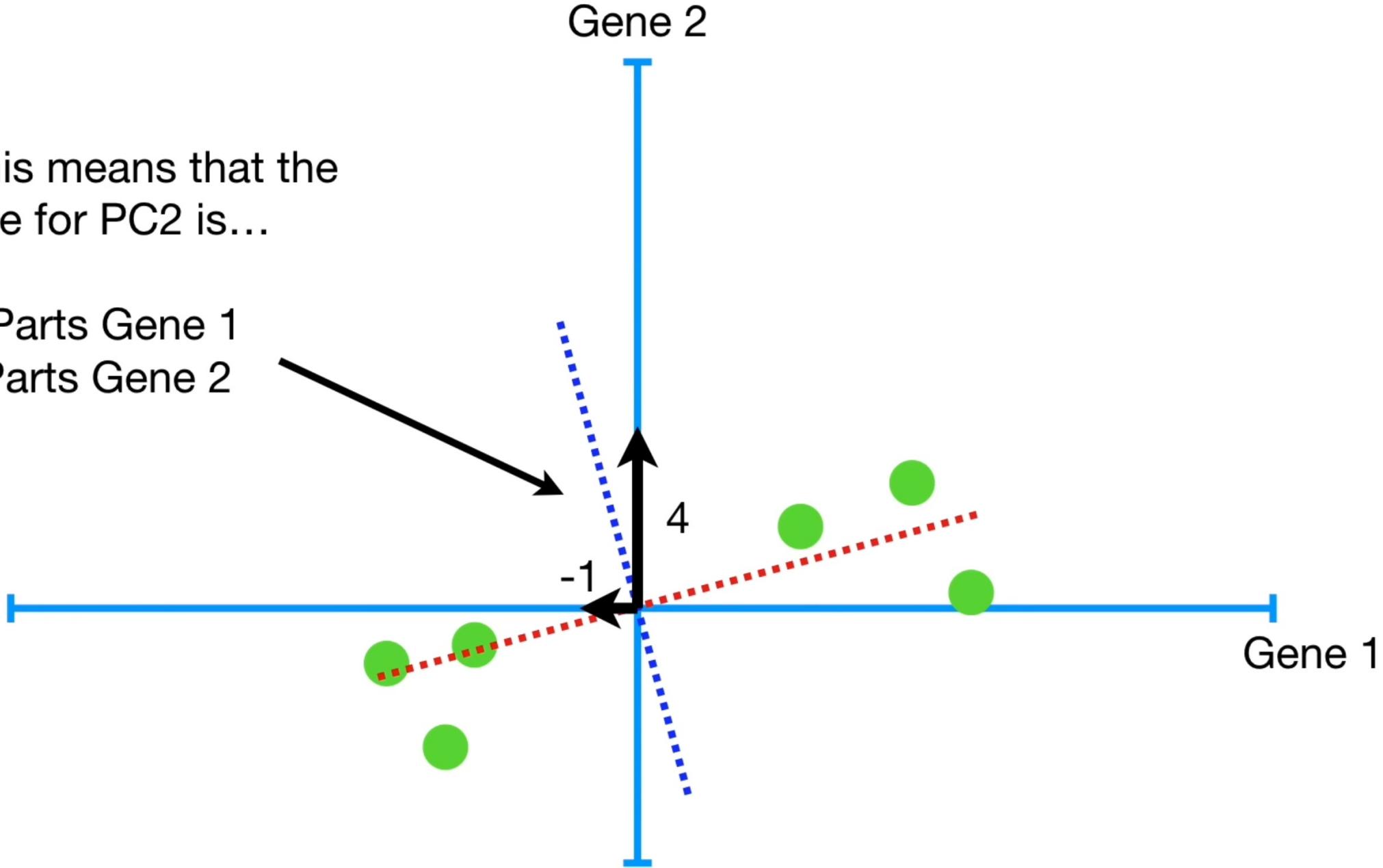
Under the hood of PCA
there is a procedure called
'Singular Value
Decomposition'

Because this is only a 2-D graph, **PC2** is simply the line through the origin that is perpendicular to **PC1**, without any further optimization that has to be done.



...and this means that the
recipe for PC2 is...

-1 Parts Gene 1
4 Parts Gene 2

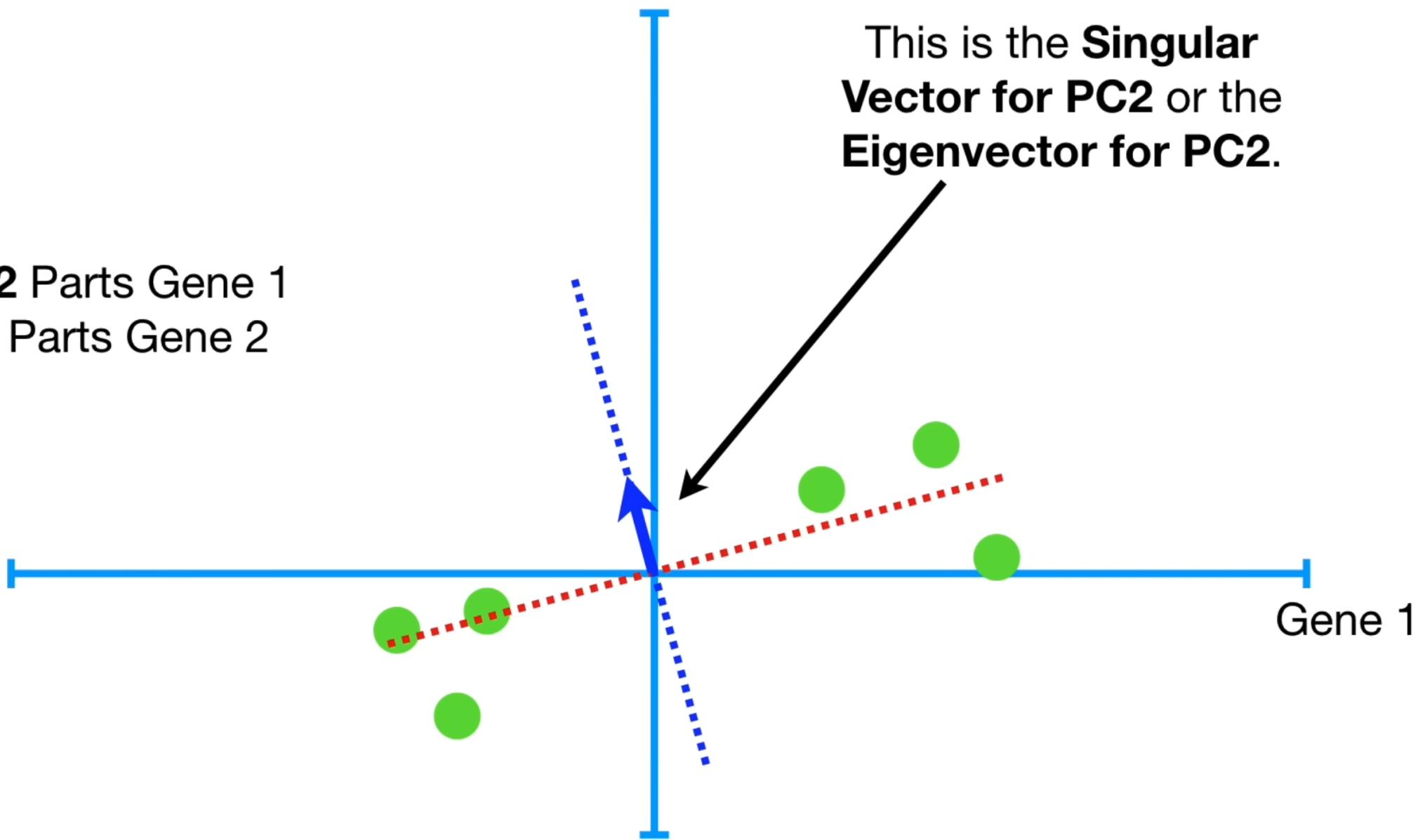


-0.242 Parts Gene 1
0.97 Parts Gene 2

Gene 2

This is the **Singular
Vector for PC2** or the
Eigenvector for PC2.

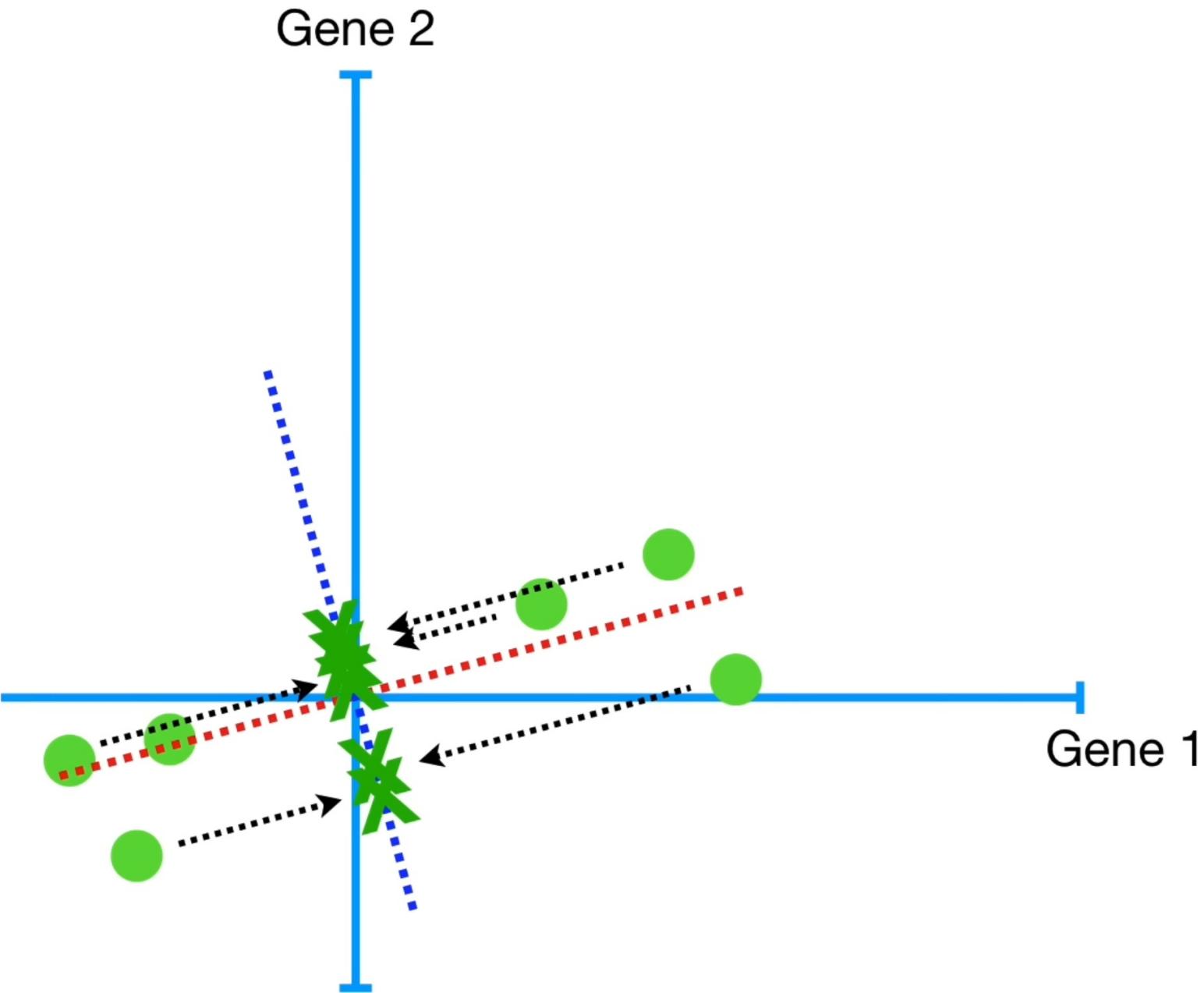
Gene 1



These are the **Loading Scores for PC2**.

-0.242 Parts Gene 1
0.97 Parts Gene 2

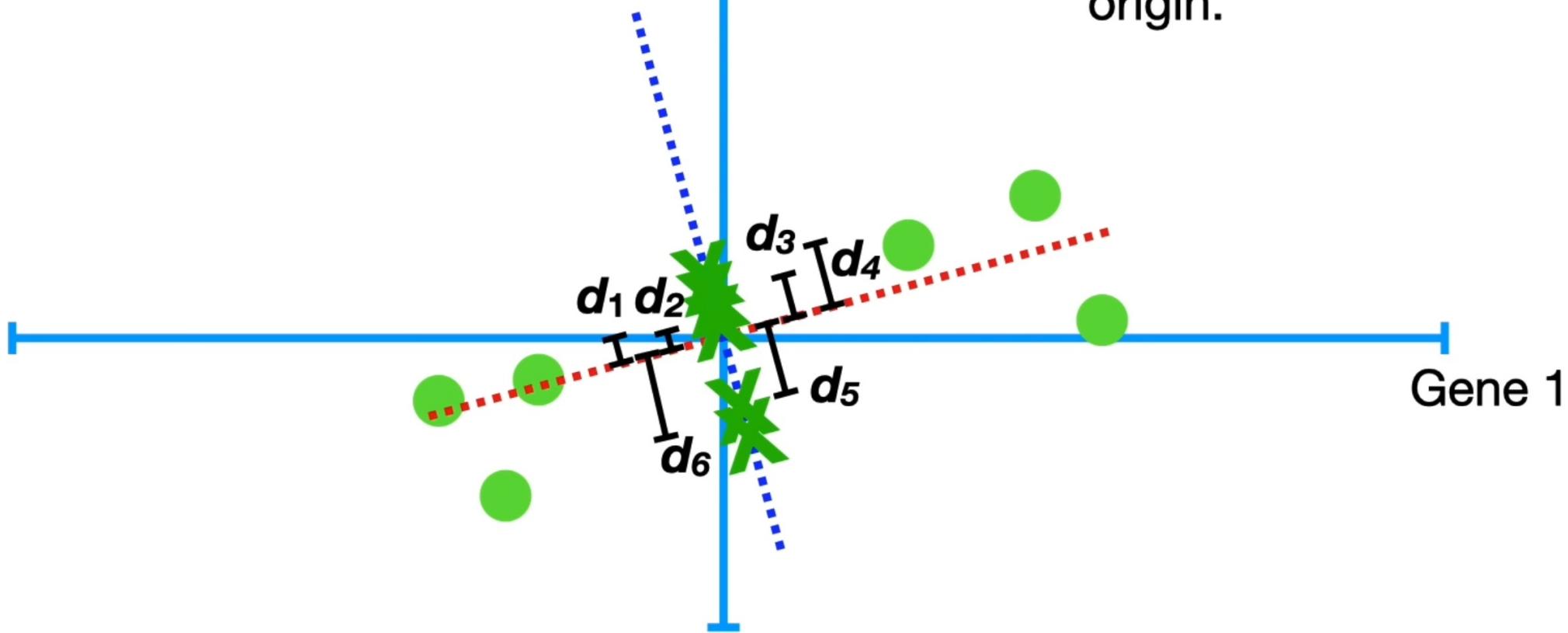
They tell us that, in terms of how the values are projected onto PC2, Gene 2 is 4 times as important as Gene 1.



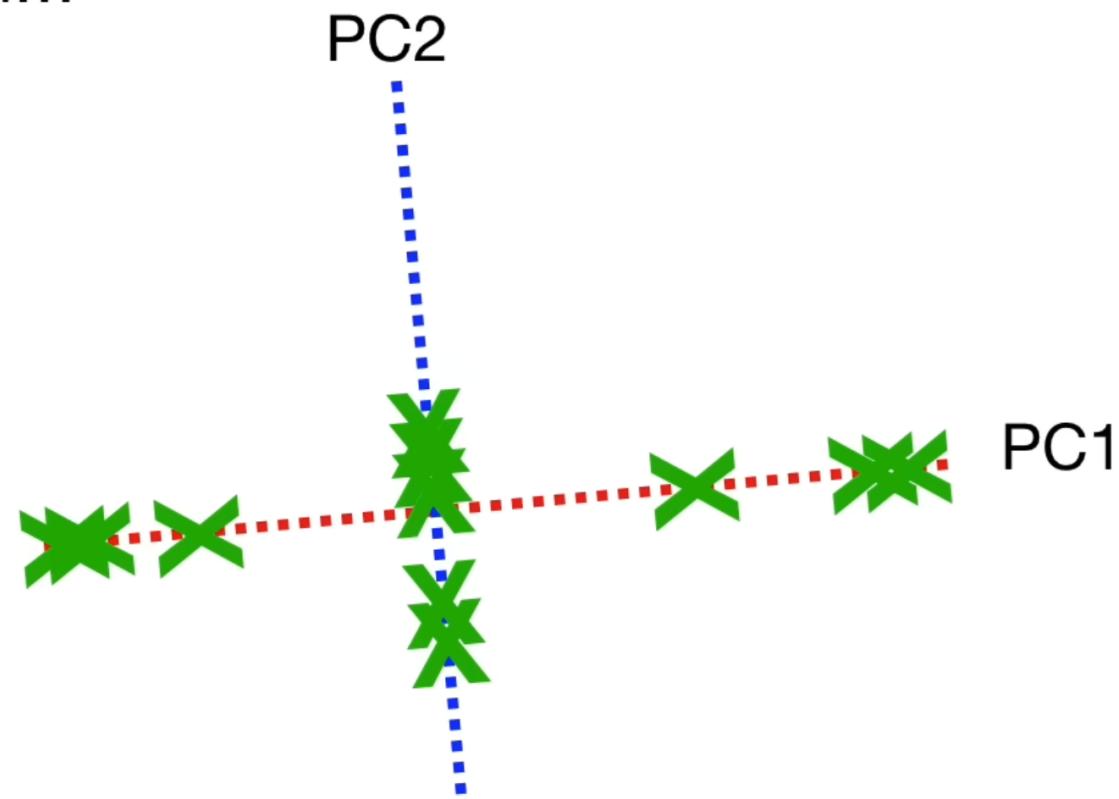
$$d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2 = \text{sum of squared distances} = \text{SS(distances)}$$

$$\frac{\text{SS(distances for PC2)}}{n - 1} = \text{Eigenvalue for PC2}$$

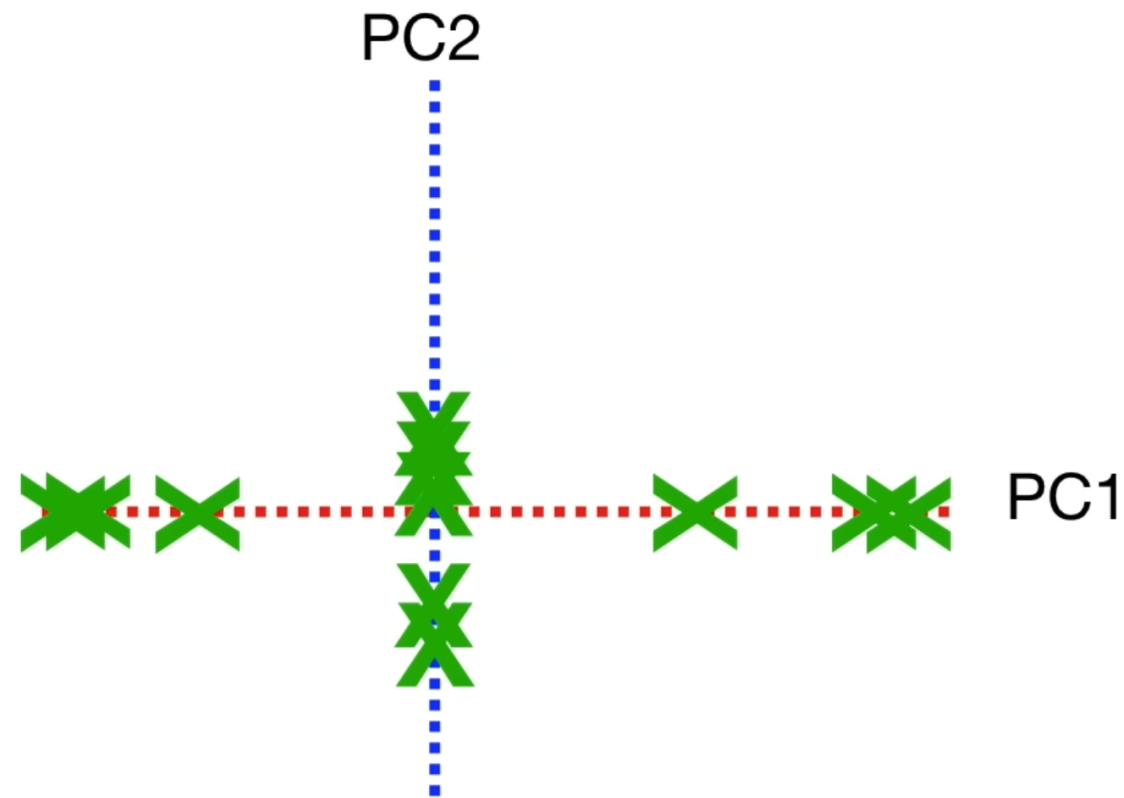
Lastly, the **Eigenvalue for PC2** is the average of the sum of squares of the distances between the projected points and the origin.



We simply rotate everything so
that PC1 is horizontal...



...then we use the projected points
to find where the samples go in
the PCA plot.

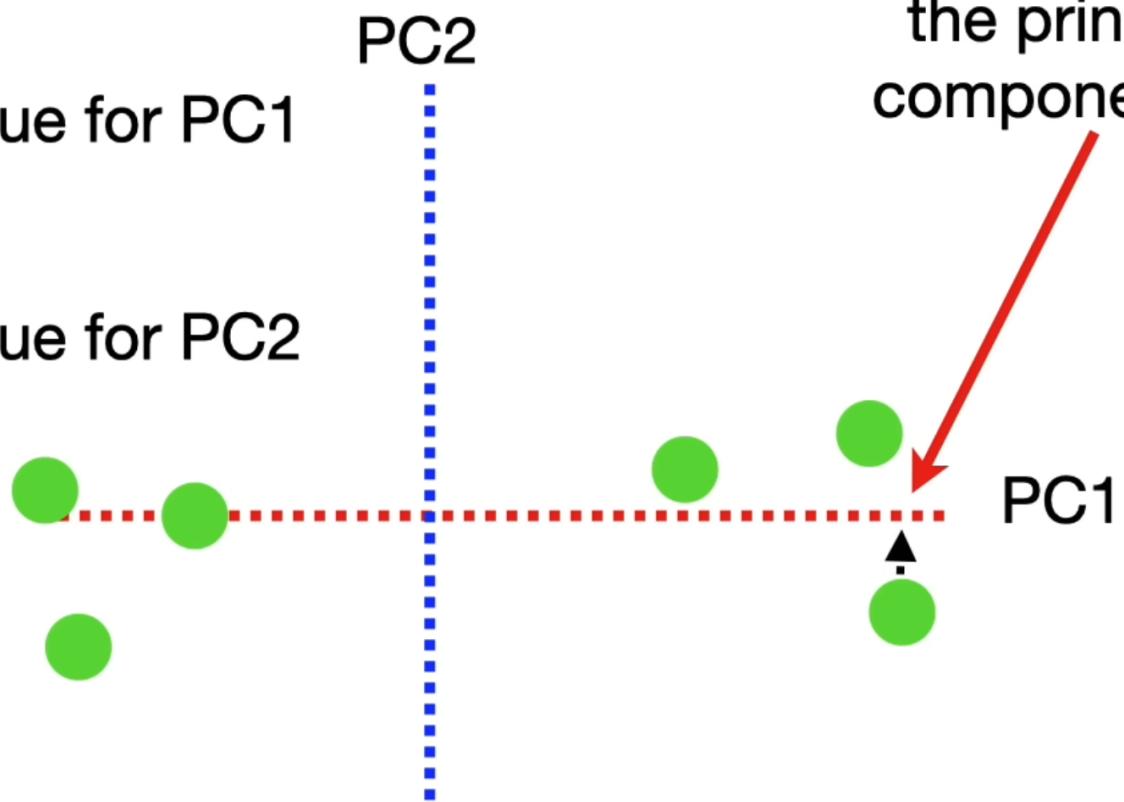


Remember the eigenvalues?

$$\frac{\text{SS(distances for PC1)}}{n - 1} = \text{Eigenvalue for PC1}$$

$$\frac{\text{SS(distances for PC2)}}{n - 1} = \text{Eigenvalue for PC2}$$

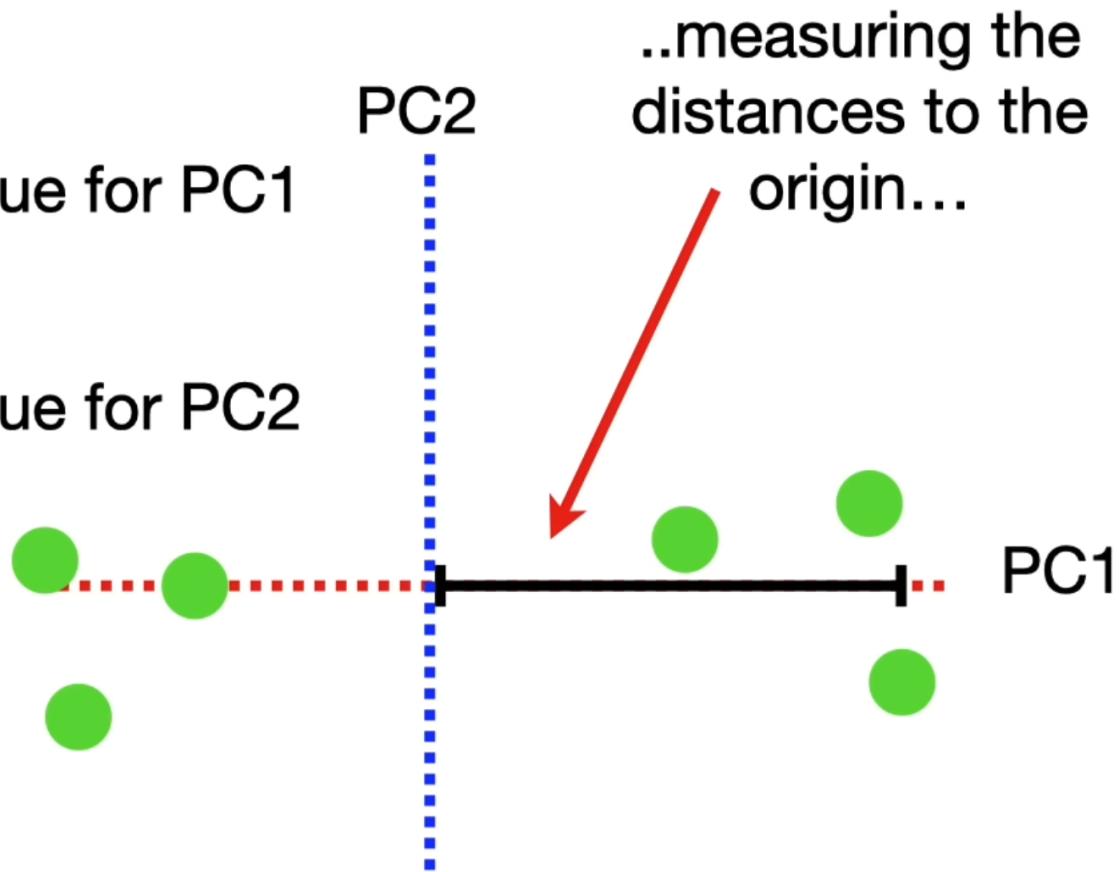
We got those by
projecting the data onto
the principal
components...



Remember the eigenvalues?

$$\frac{\text{SS}(\text{distances for PC1})}{n - 1} = \text{Eigenvalue for PC1}$$

$$\frac{\text{SS}(\text{distances for PC2})}{n - 1} = \text{Eigenvalue for PC2}$$

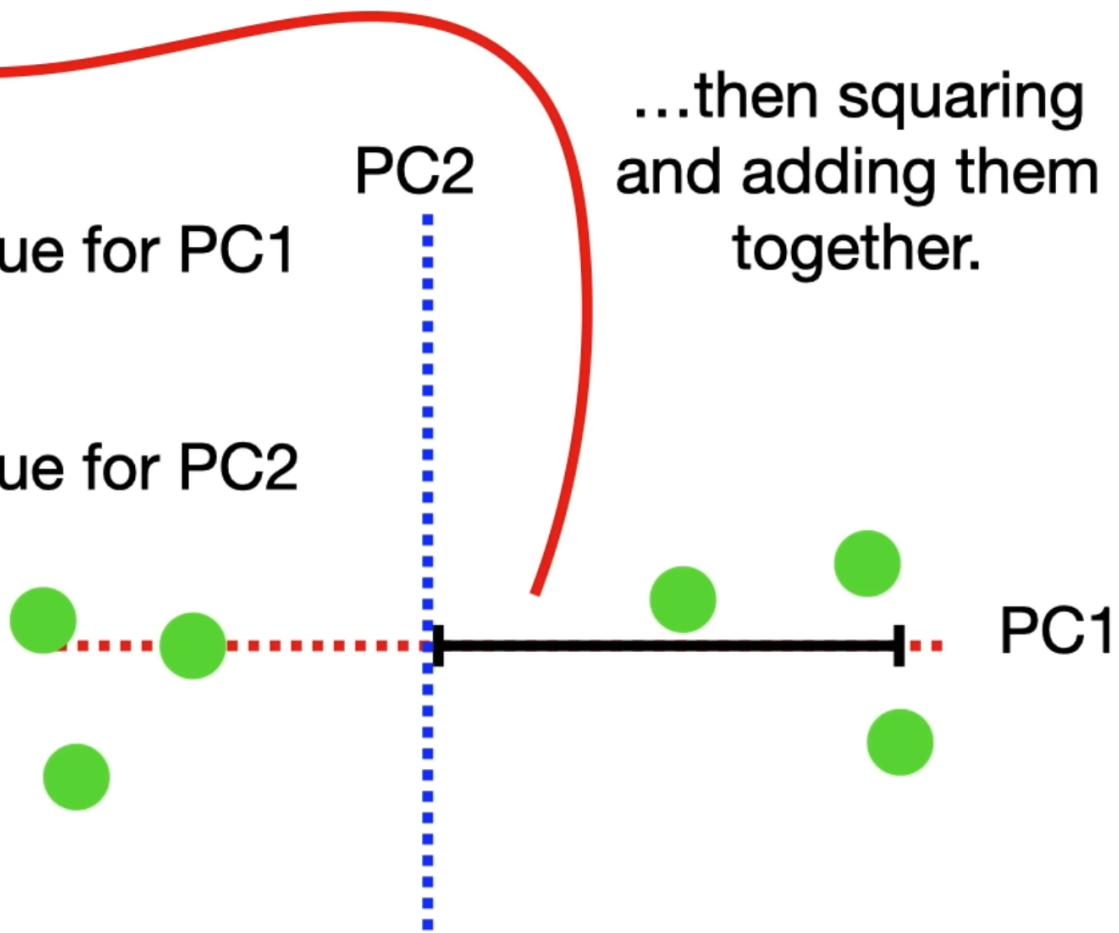


Remember the eigenvalues?

$$\frac{\text{SS}(\text{distances for PC1})}{n - 1} = \text{Eigenvalue for PC1}$$

$$\frac{\text{SS}(\text{distances for PC2})}{n - 1} = \text{Eigenvalue for PC2}$$

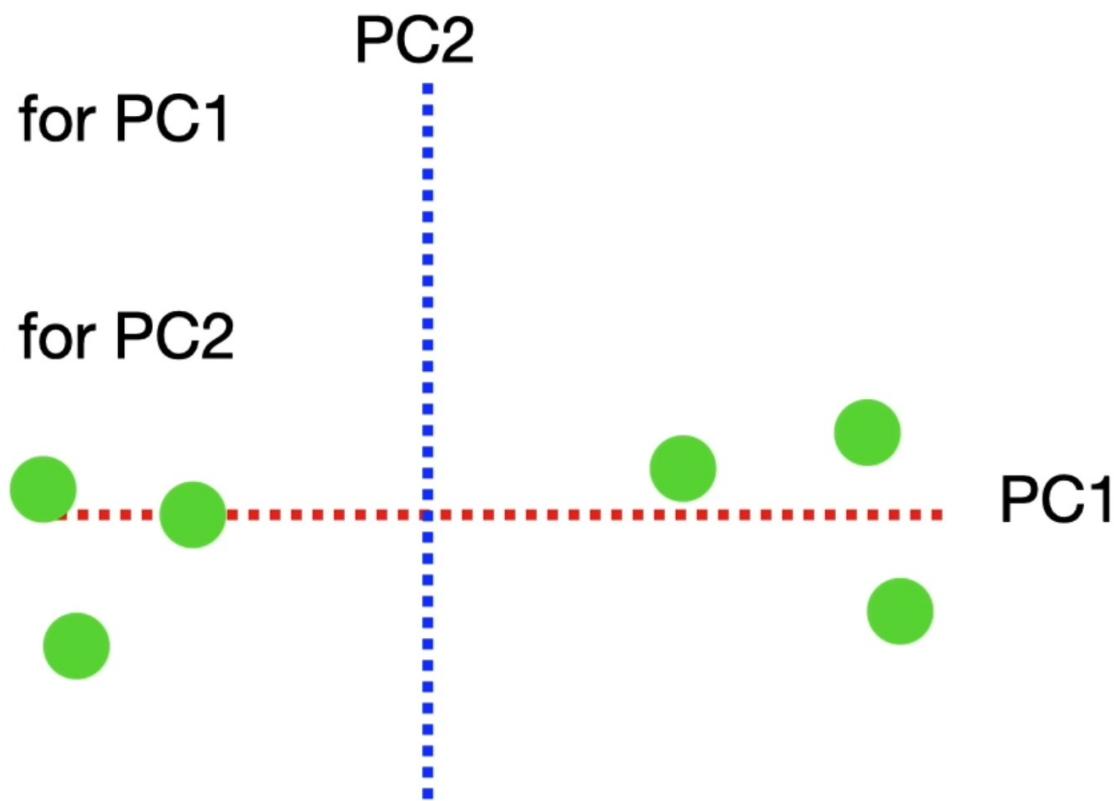
...then squaring
and adding them
together.



Well, if you are familiar with the equation for variation, you will notice **Eigenvalues** are just measures of variation.

$$\frac{\text{SS}(\text{distances for PC1})}{n - 1} = \text{Variation for PC1}$$

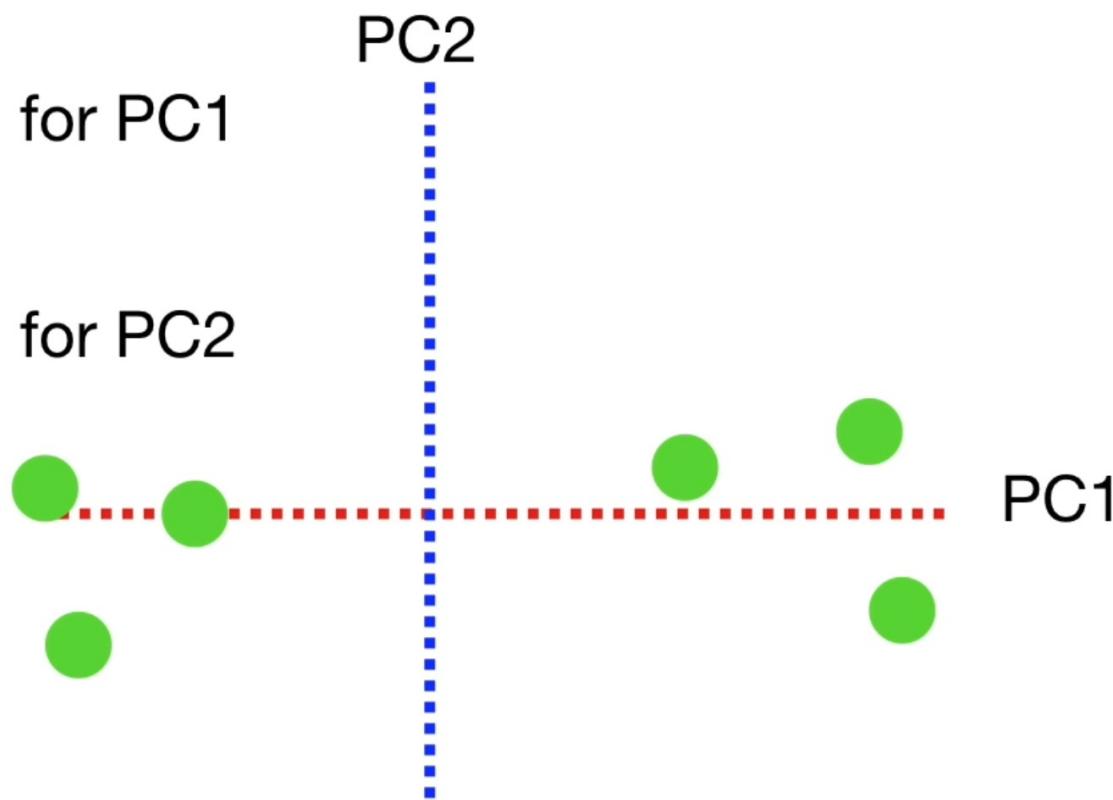
$$\frac{\text{SS}(\text{distances for PC2})}{n - 1} = \text{Variation for PC2}$$



For the sake of the example, imagine that the Variation for **PC1** = 15, and the variation for **PC2** = 3.

$$\frac{\text{SS}(\text{distances for PC1})}{n - 1} = \text{Variation for PC1}$$

$$\frac{\text{SS}(\text{distances for PC2})}{n - 1} = \text{Variation for PC2}$$

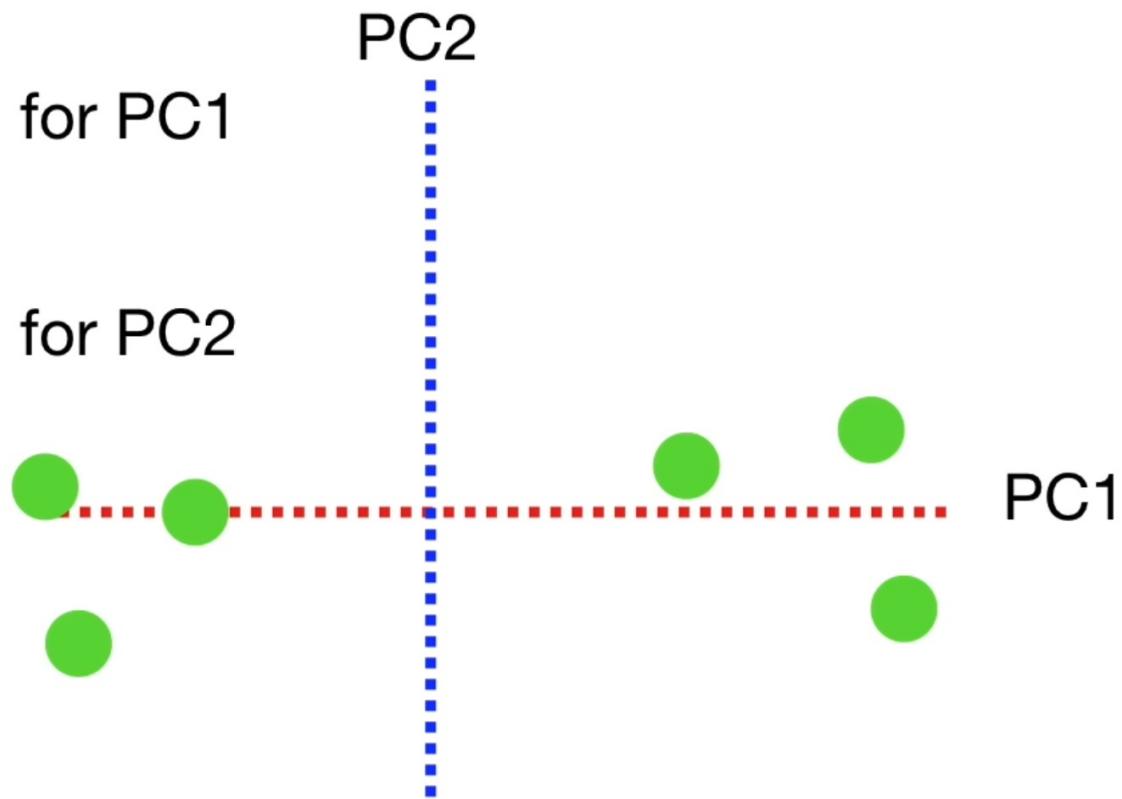


For the sake of the example, imagine that the Variation for **PC1 = 15**, and the variation for **PC2 = 3**.

$$\frac{\text{SS(distances for PC1)}}{n - 1} = \text{Variation for PC1}$$

$$\frac{\text{SS(distances for PC2)}}{n - 1} = \text{Variation for PC2}$$

That means that the total variation around both PCs is **$15 + 3 = 18$** ...



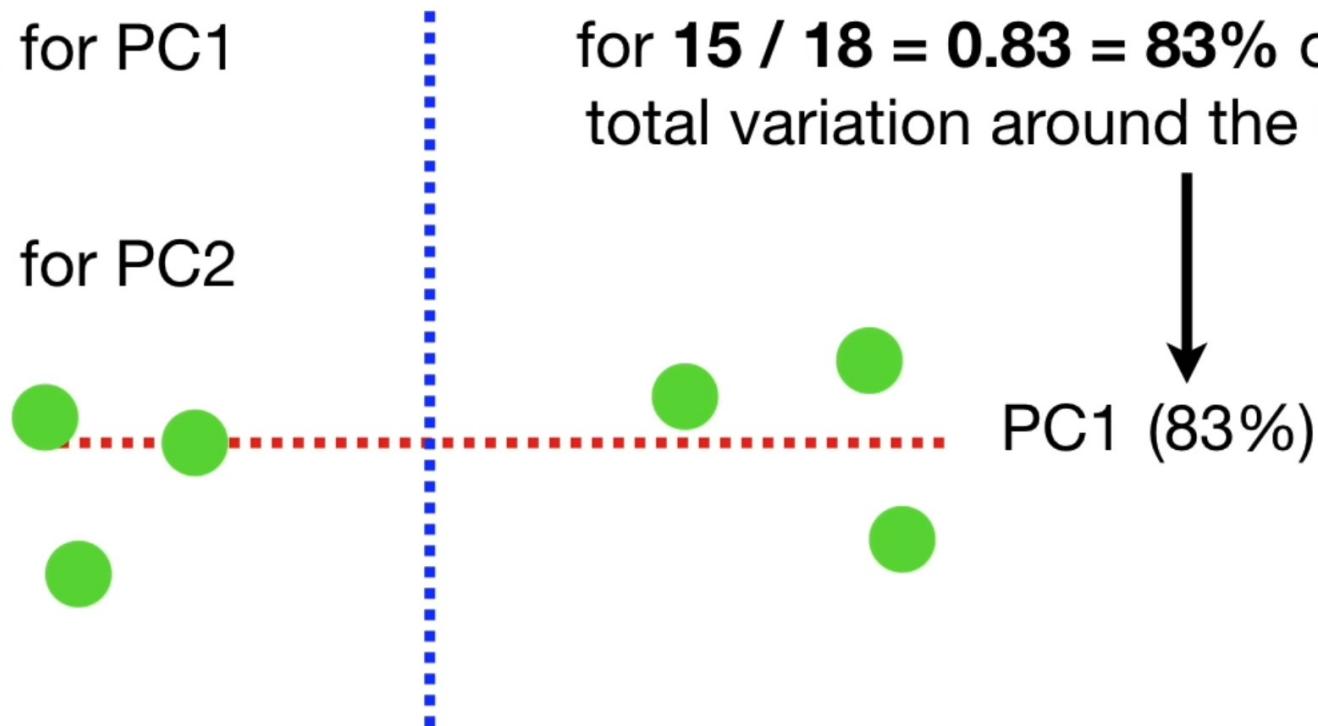
For the sake of the example, imagine that the Variation for **PC1 = 15**, and the variation for **PC2 = 3**.

$$\frac{\text{SS(distances for PC1)}}{n - 1} = \text{Variation for PC1}$$

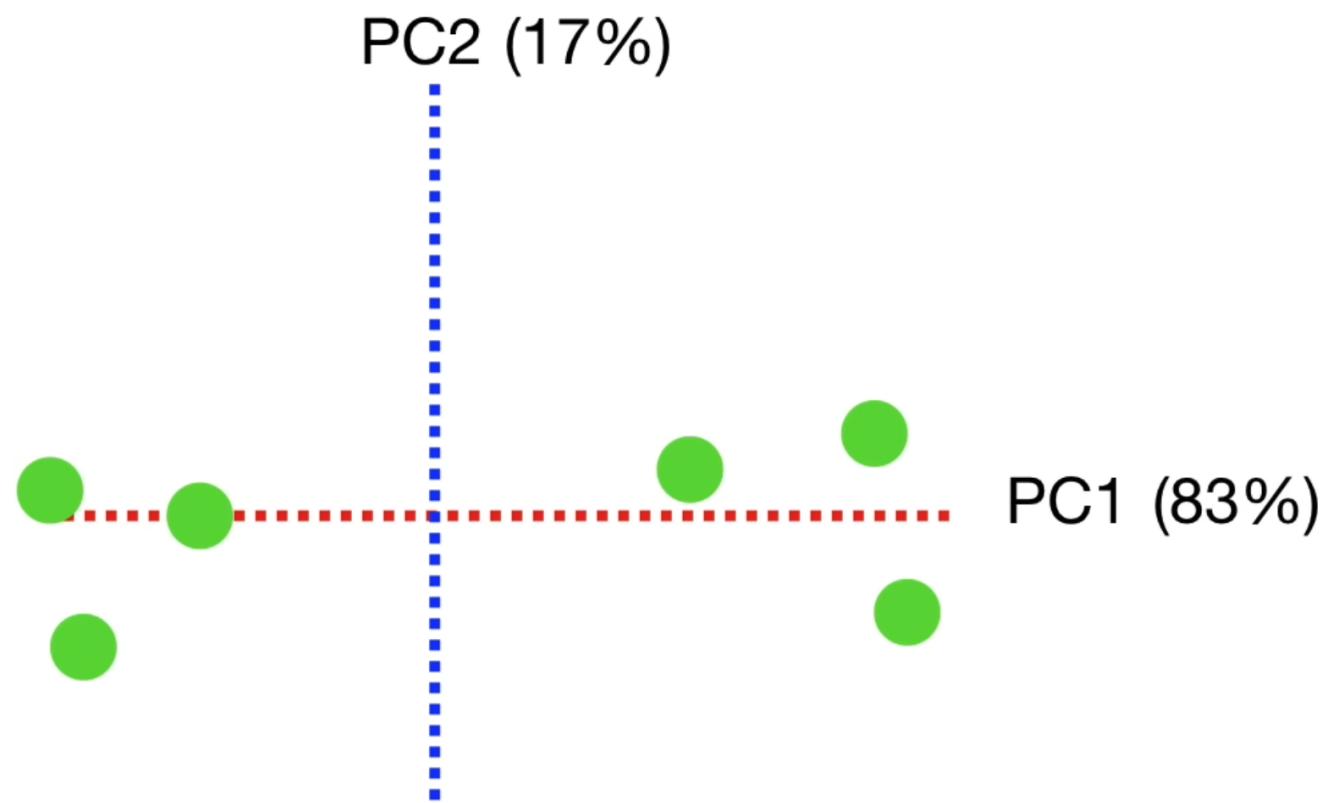
$$\frac{\text{SS(distances for PC2)}}{n - 1} = \text{Variation for PC2}$$

That means that the total variation around both PCs is **$15 + 3 = 18$** ...

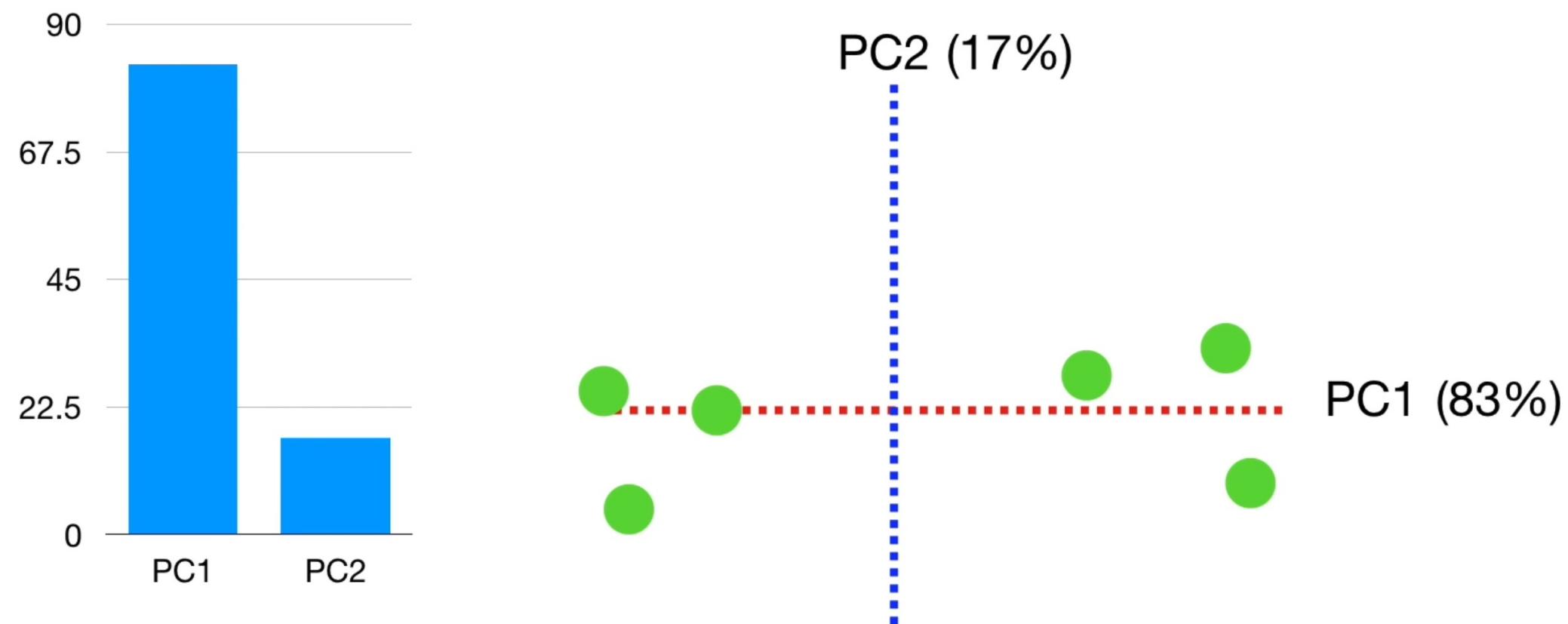
PC2 ...and that means PC1 accounts for **$15 / 18 = 0.83 = 83\%$** of the total variation around the PCs.



PC2 accounts for $3 / 18 = 0.17 = 17\%$ of the total variation around the PCs.

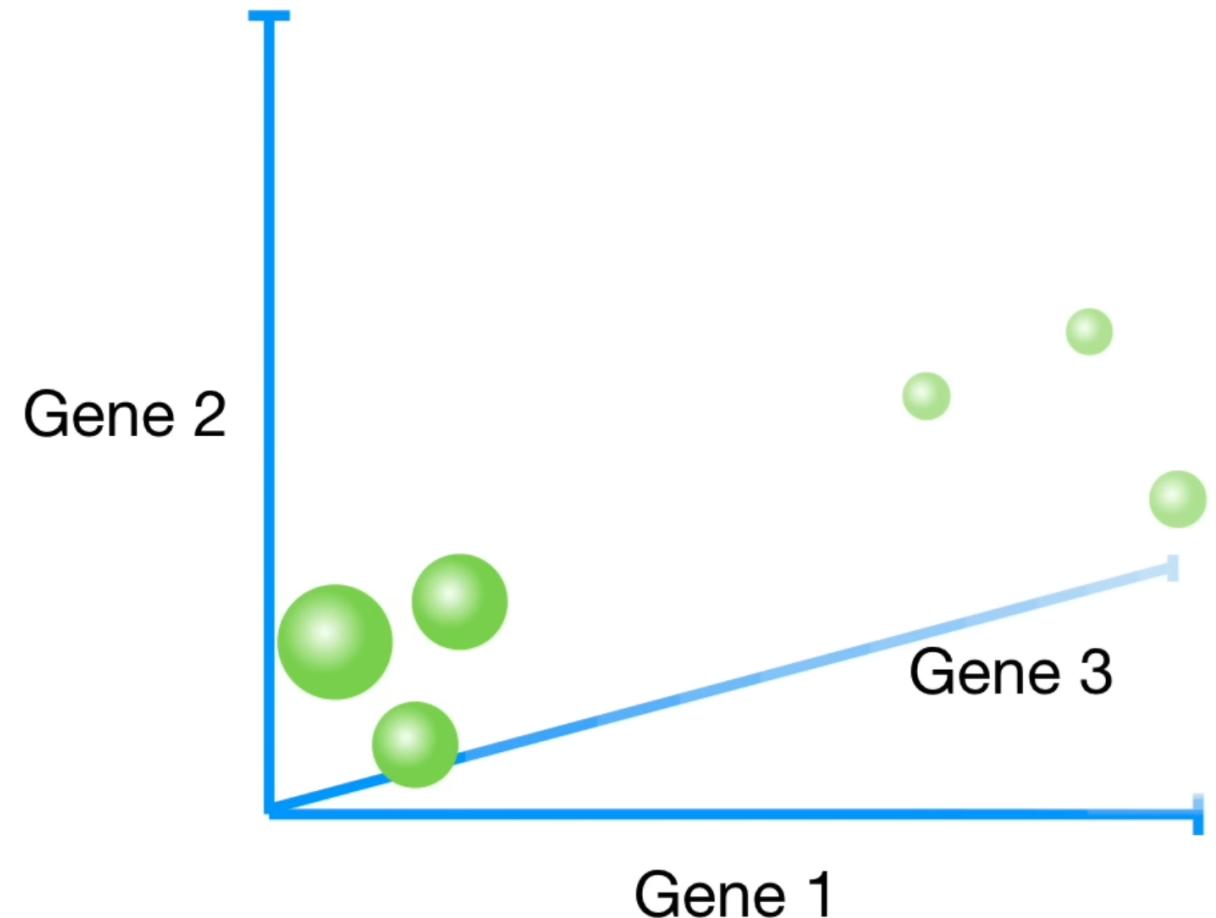


TERMINOLOGY ALERT!!!! A Scree Plot is a graphical representation of the percentages of variation that each PC accounts for.



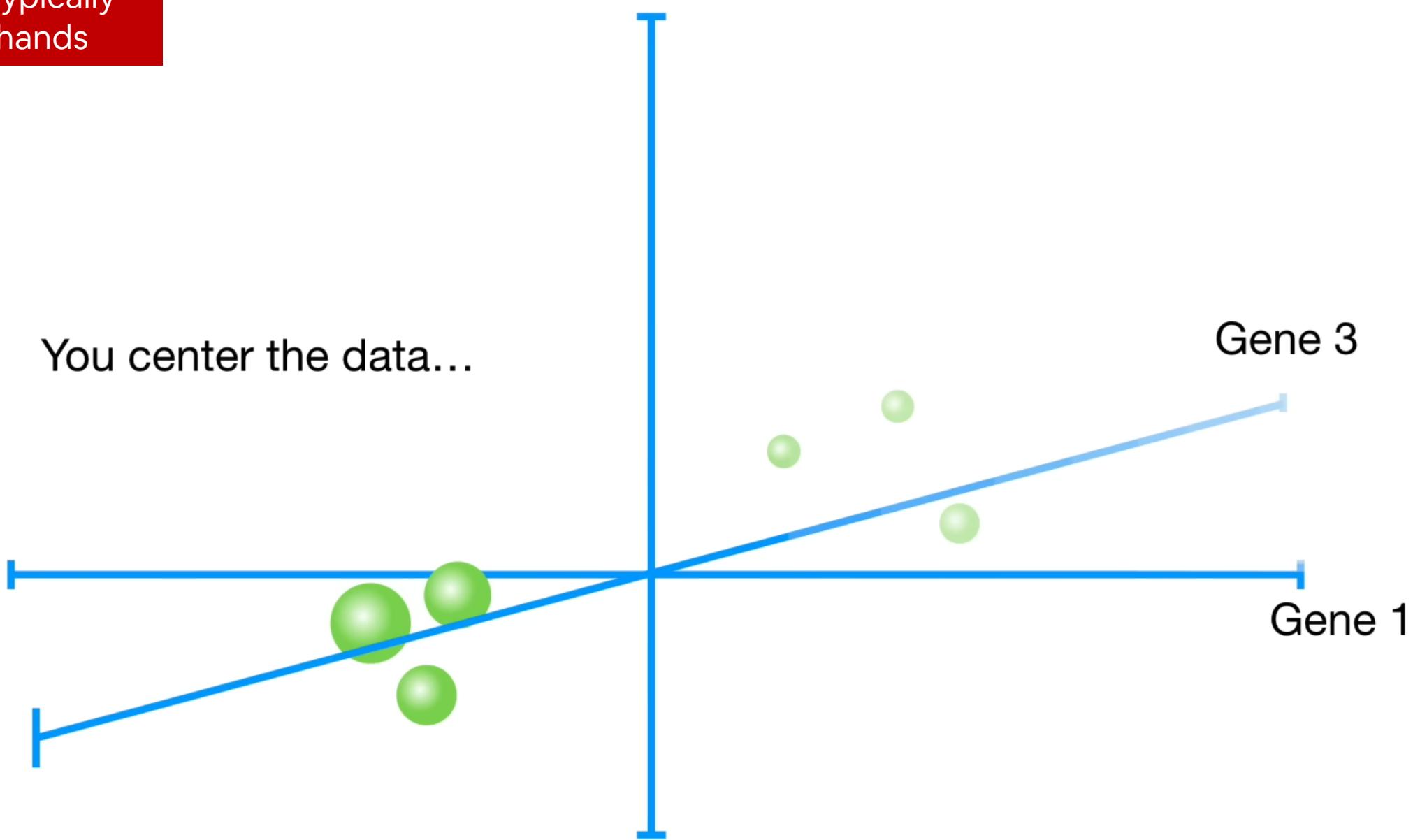
PCA with 3 variables (in this case, that means 3 genes) is pretty much the same as 2 variables...

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1
Gene 3	12	9	10	2.5	1.3	2

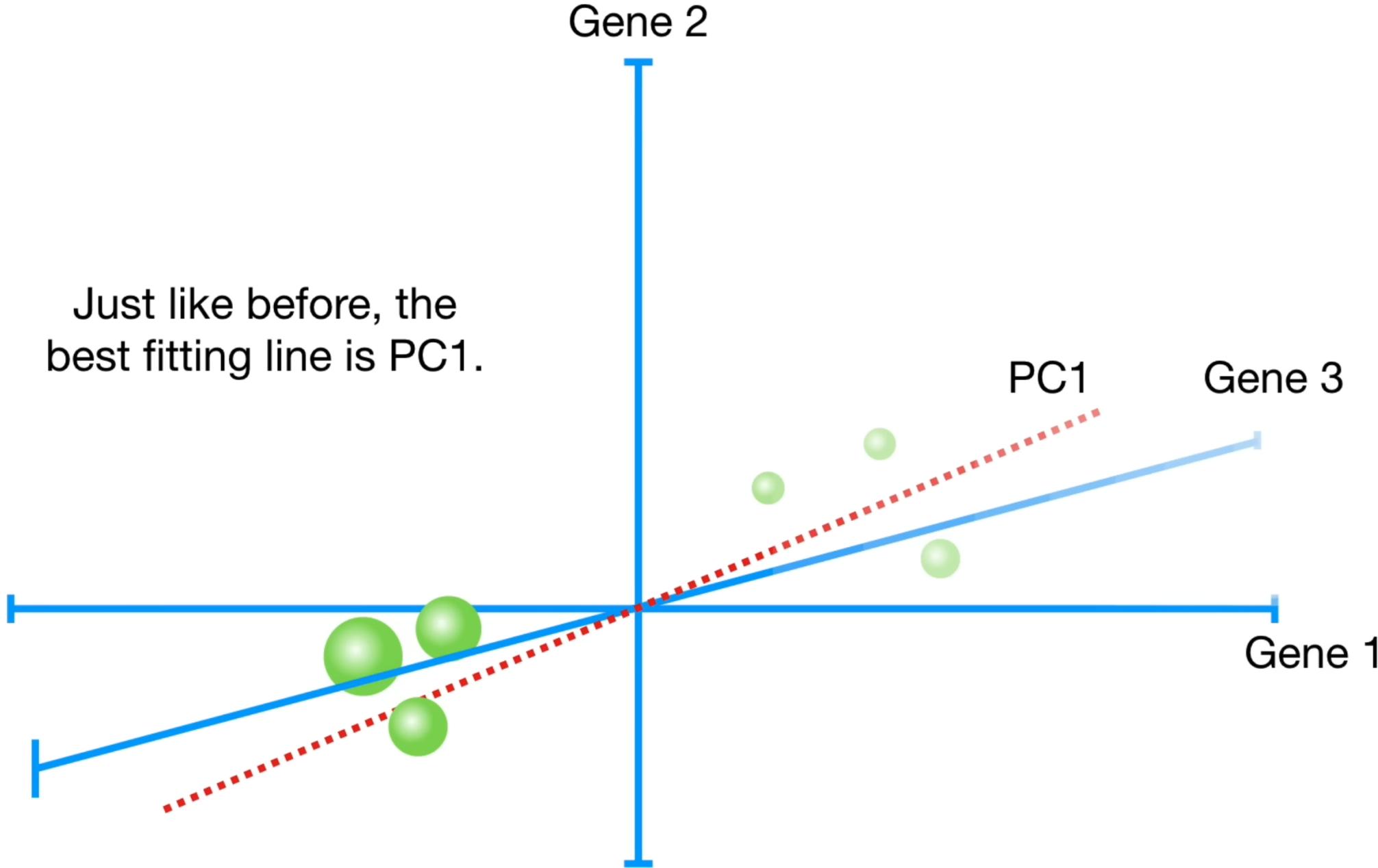


Pay attention: scaling is something you typically have to do by hands

You center the data...

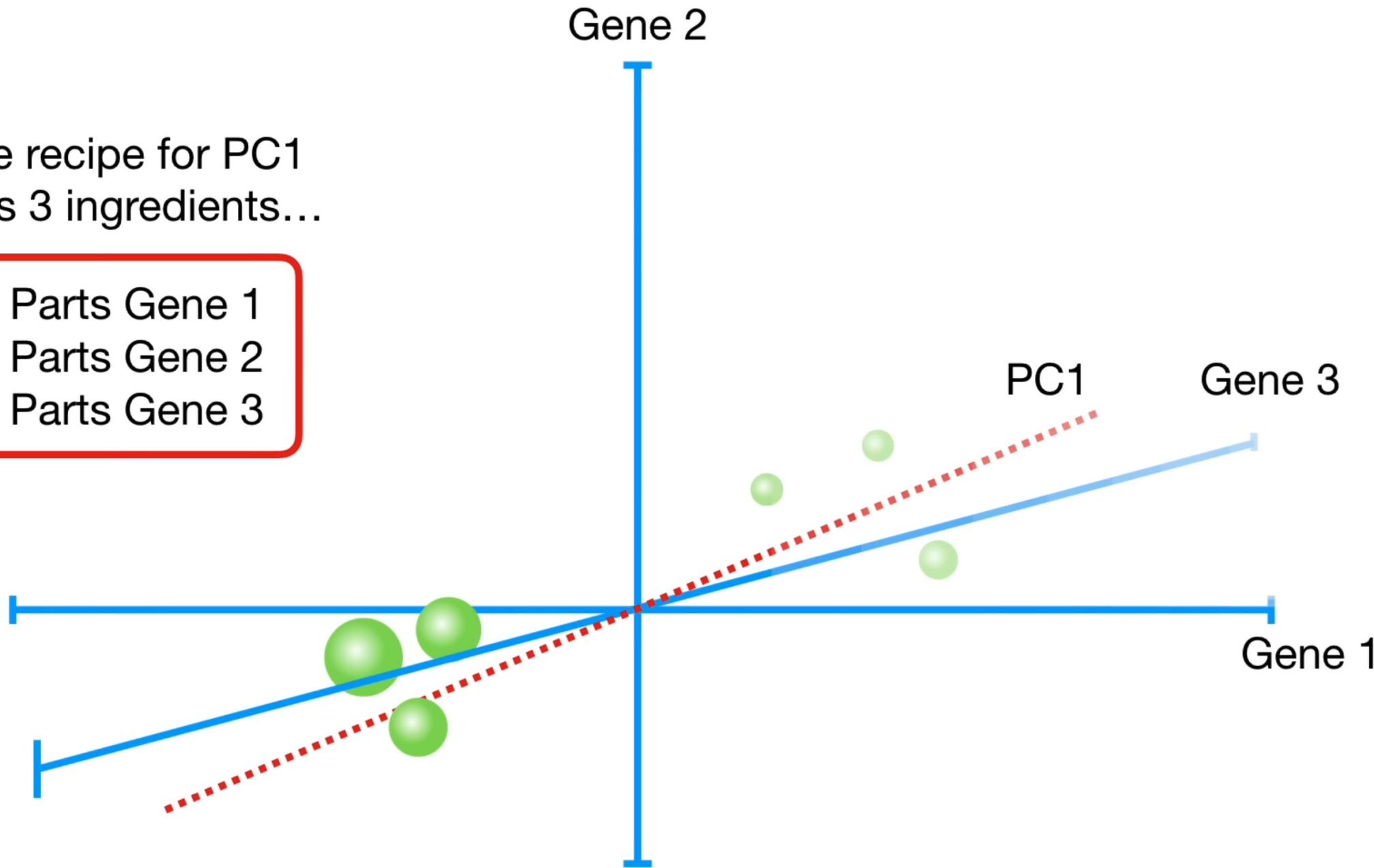


Just like before, the best fitting line is PC1.



But the recipe for PC1
now has 3 ingredients...

0.62 Parts Gene 1
0.15 Parts Gene 2
0.77 Parts Gene 3



0.62 Parts Gene 1
0.15 Parts Gene 2
0.77 Parts Gene 3

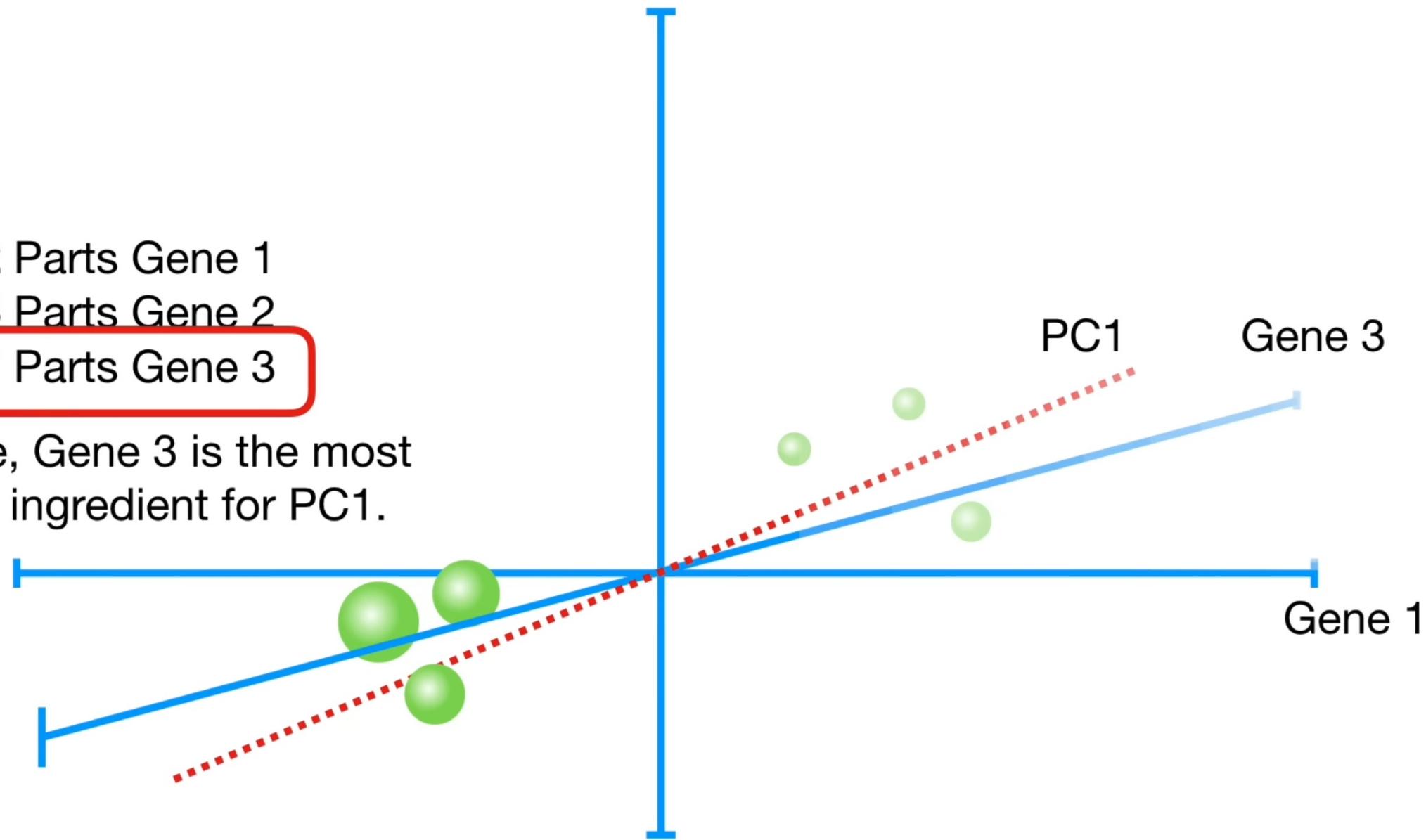
In this case, Gene 3 is the most important ingredient for PC1.

Gene 2

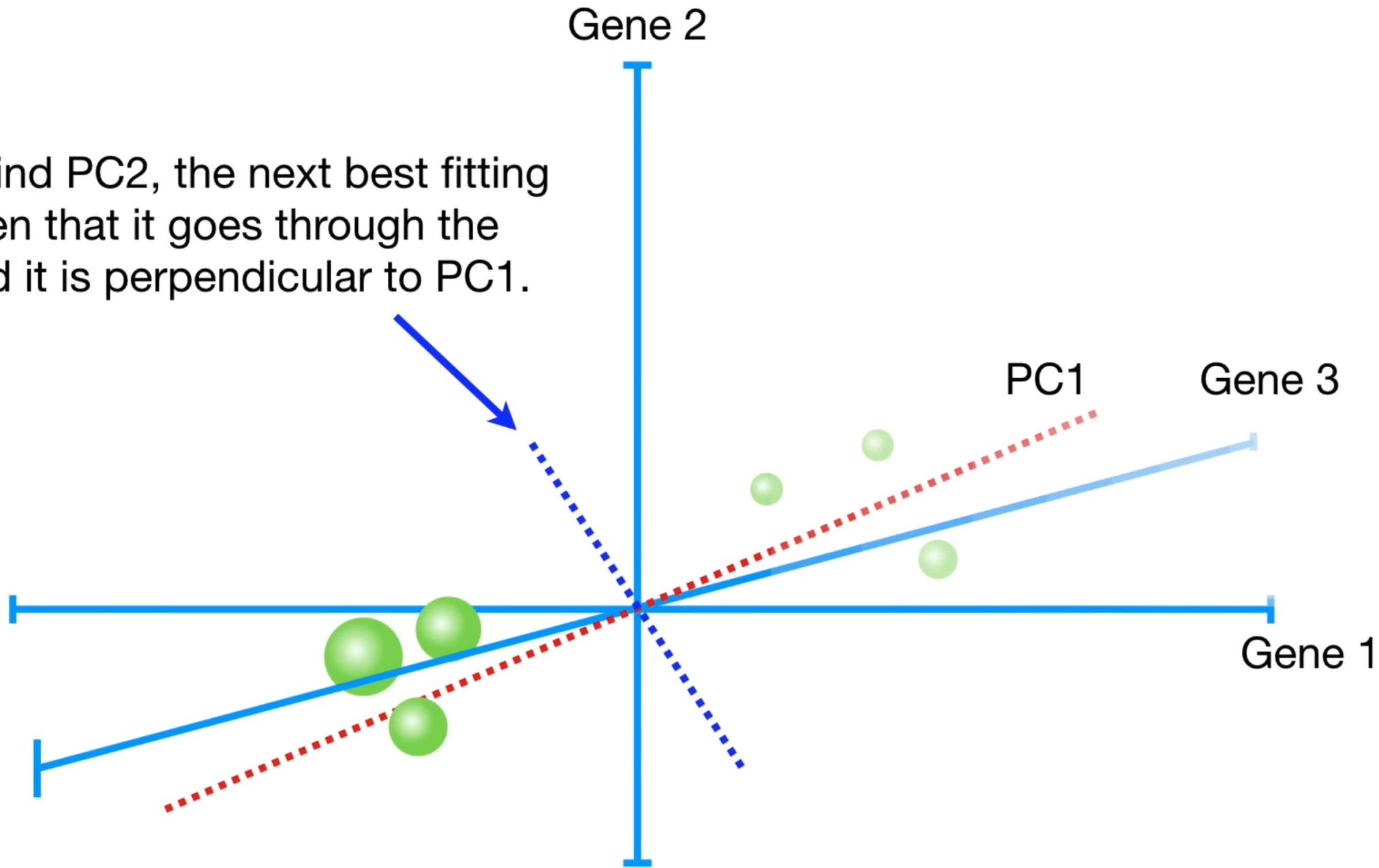
Gene 3

PC1

Gene 1



You then find PC2, the next best fitting line given that it goes through the origin and it is perpendicular to PC1.



0.77 Parts Gene 1
0.62 Parts Gene 2
0.15 Parts Gene 3

In this case, Gene 1 is the most important ingredient for PC2.

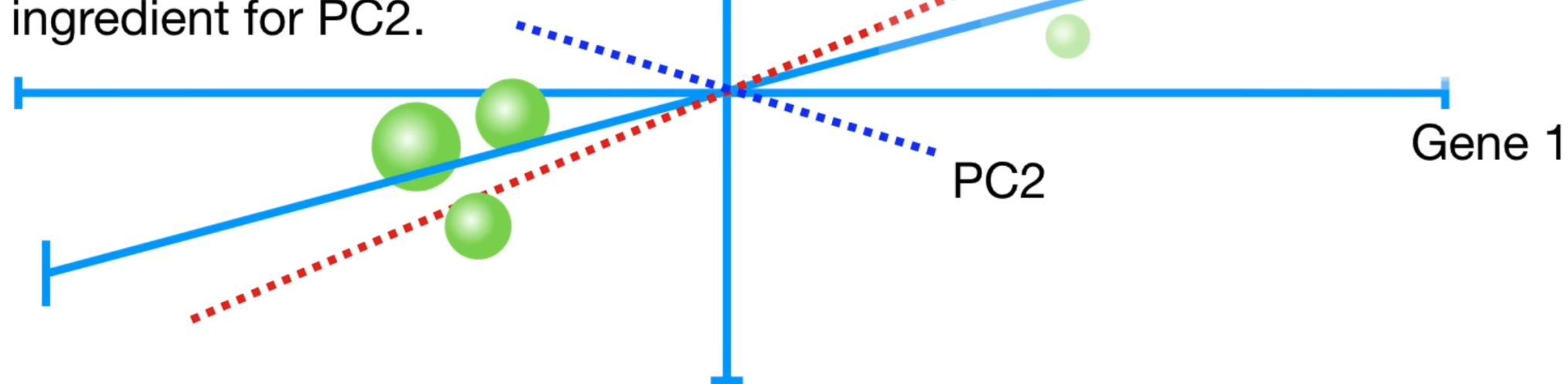
Gene 2

Gene 3

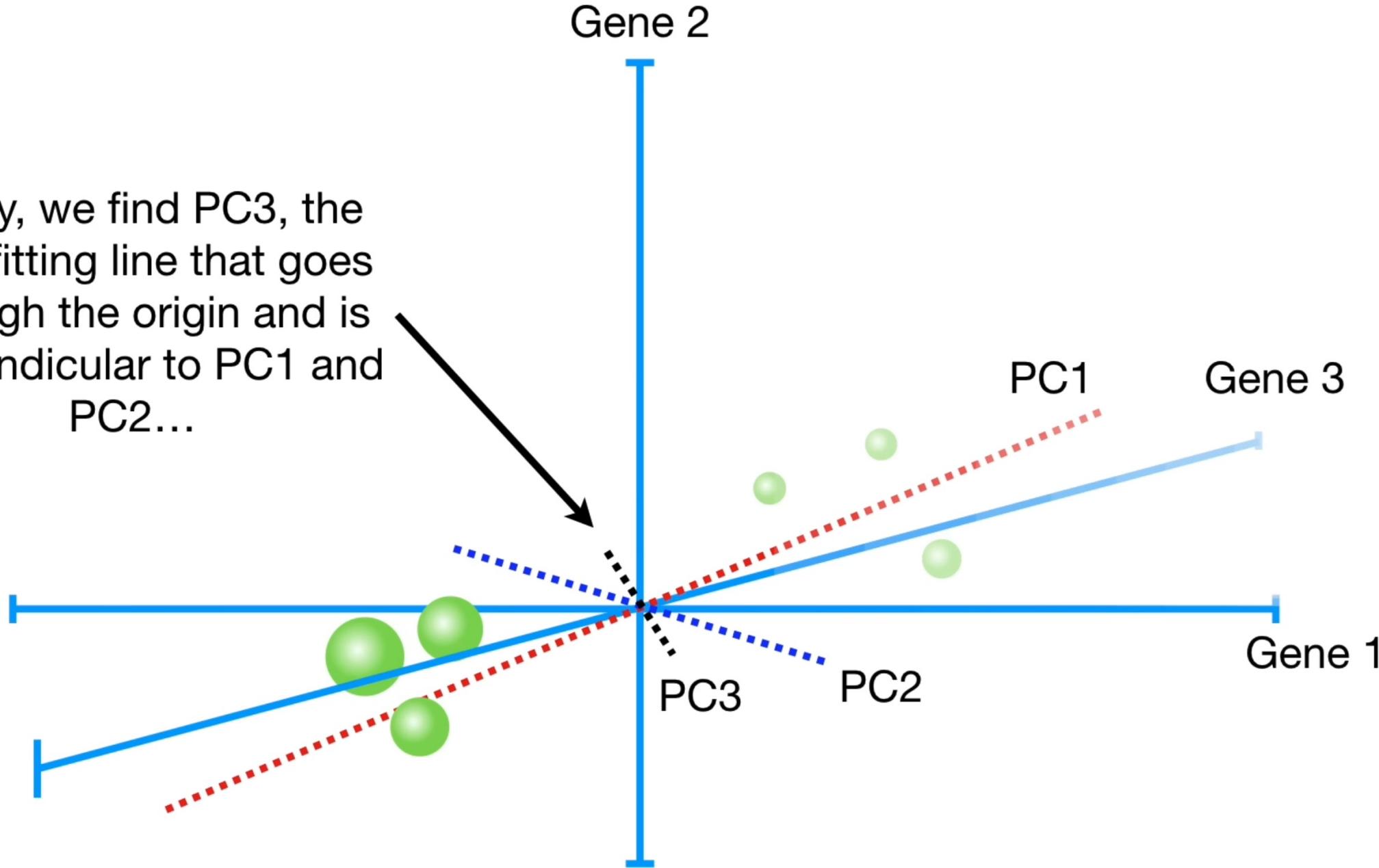
PC2

PC1

Gene 1

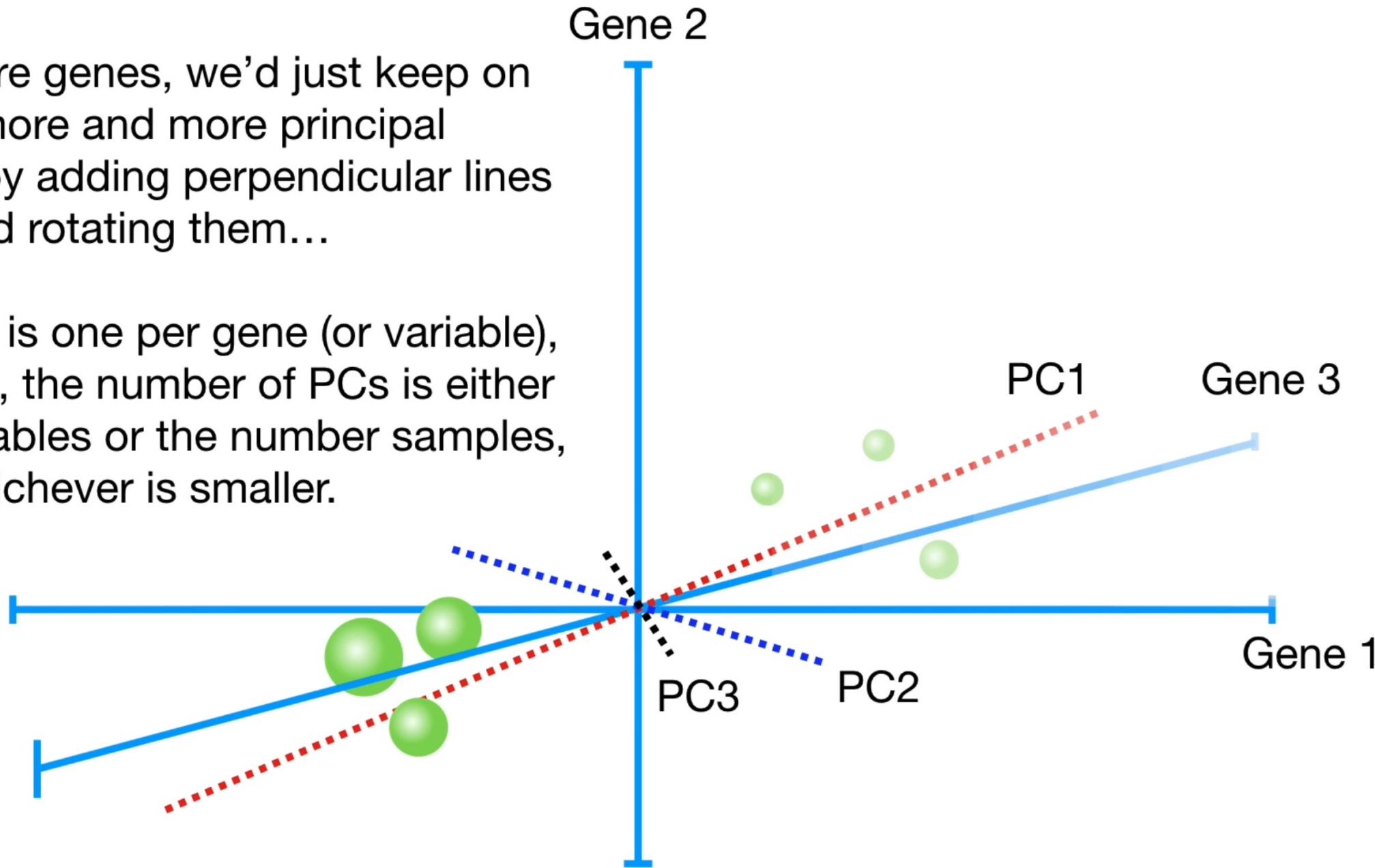


Lastly, we find PC3, the best fitting line that goes through the origin and is perpendicular to PC1 and PC2...

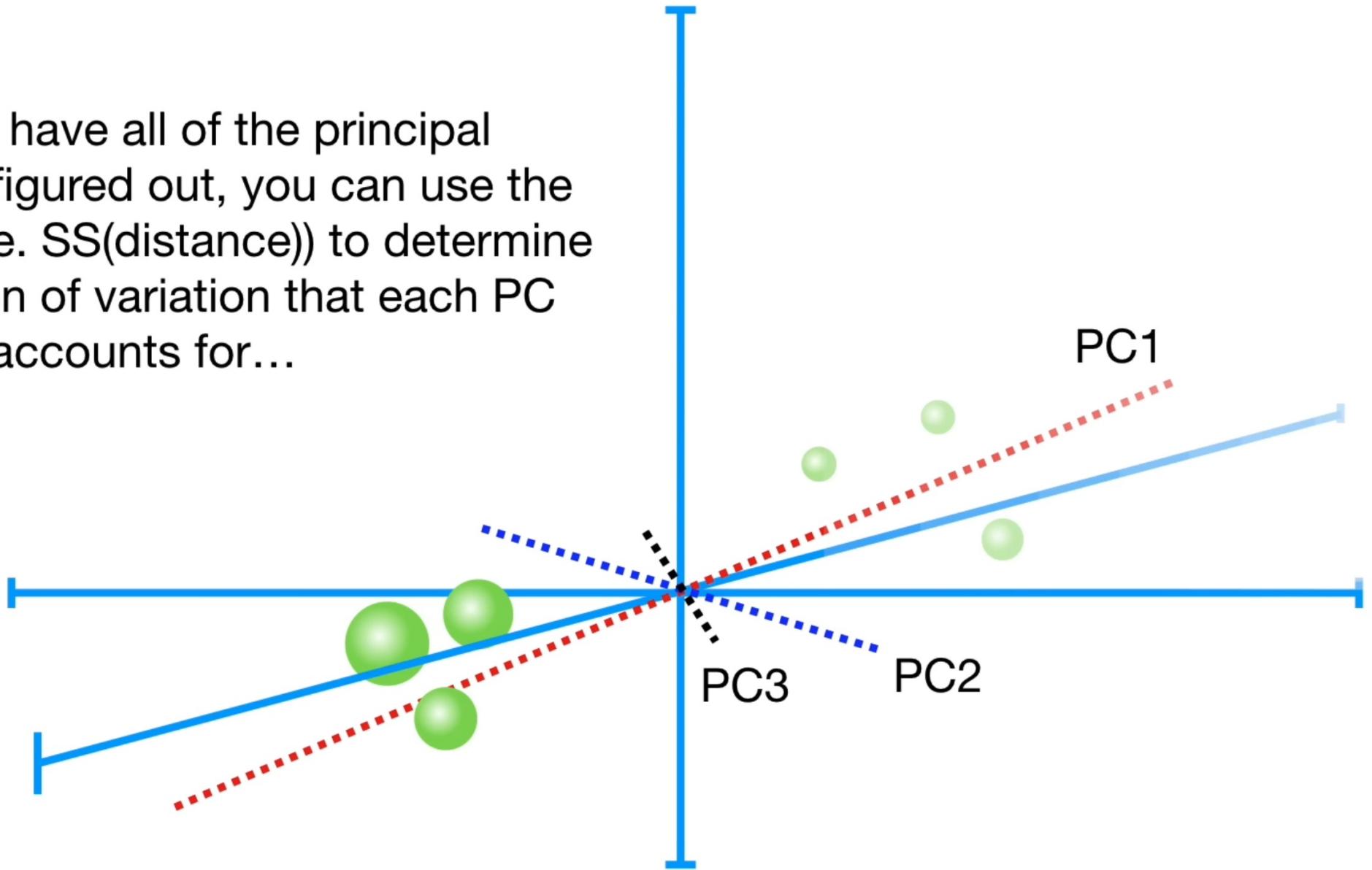


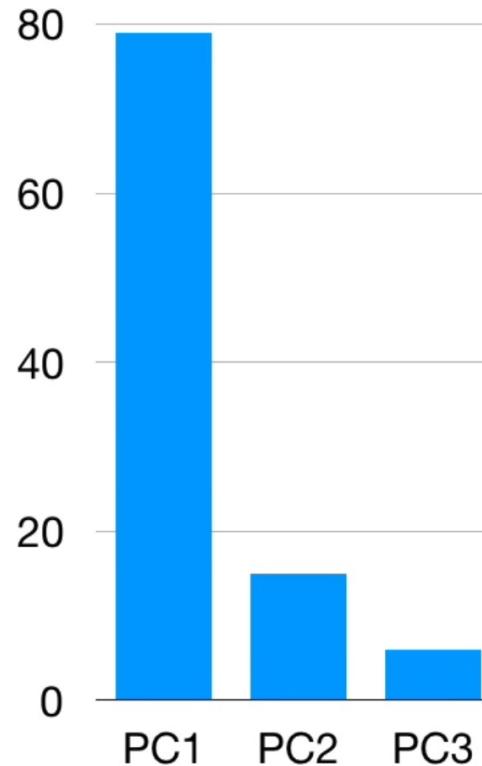
If we had more genes, we'd just keep on finding more and more principal components by adding perpendicular lines and rotating them...

In theory there is one per gene (or variable), but in practice, the number of PCs is either number of variables or the number samples, whichever is smaller.

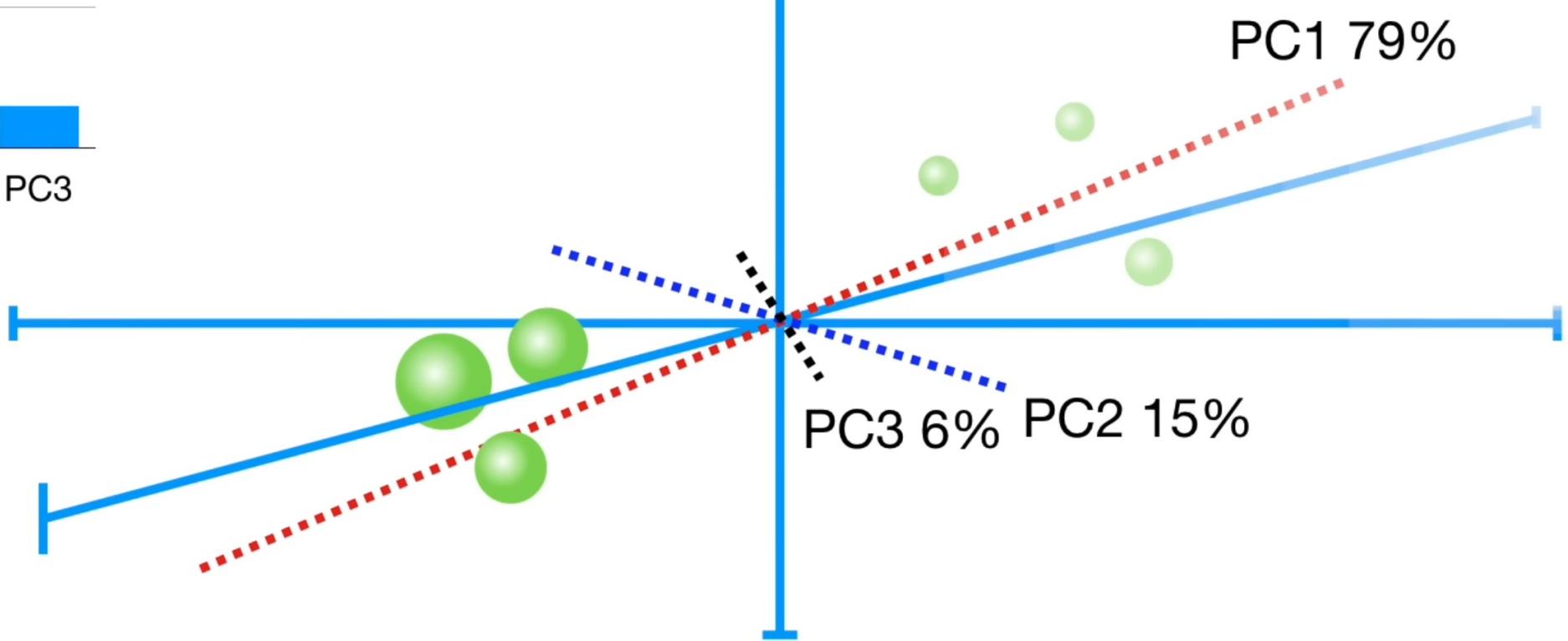


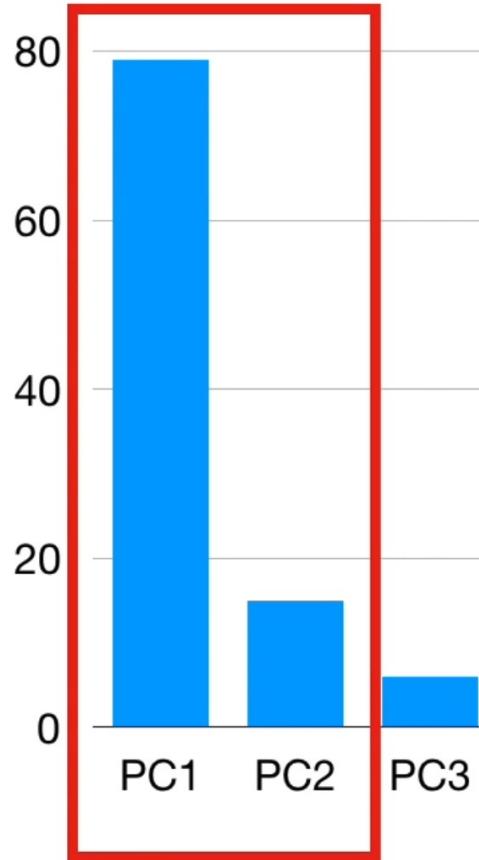
Once you have all of the principal components figured out, you can use the eigenvalues (i.e. $SS(\text{distance})$) to determine the proportion of variation that each PC accounts for...



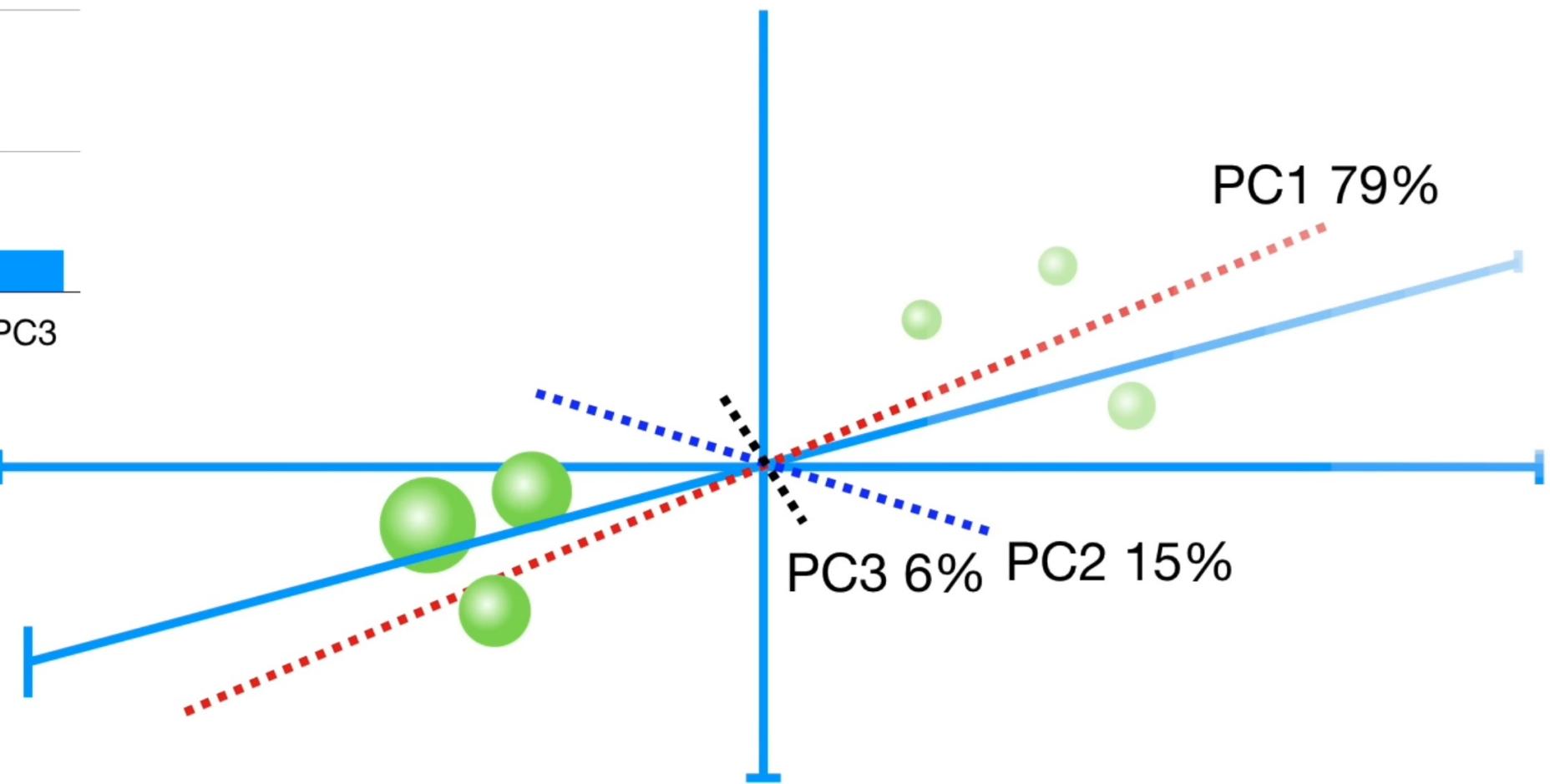


Here's the scree plot...

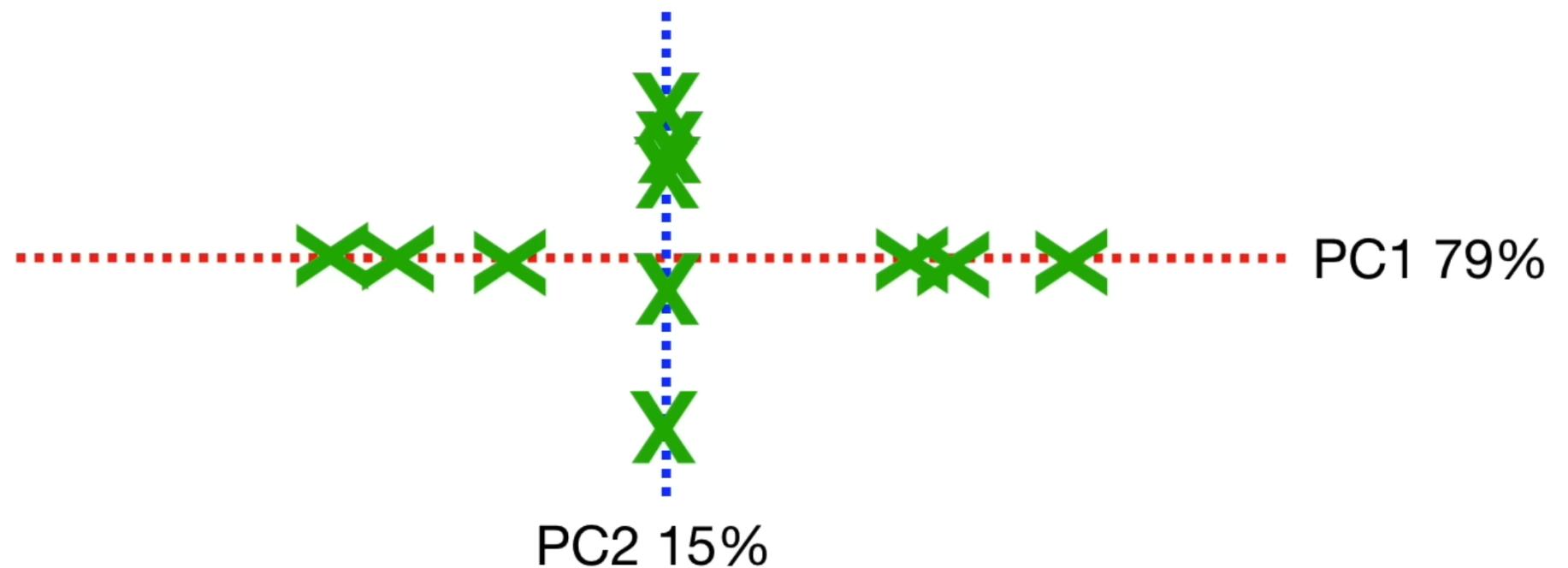




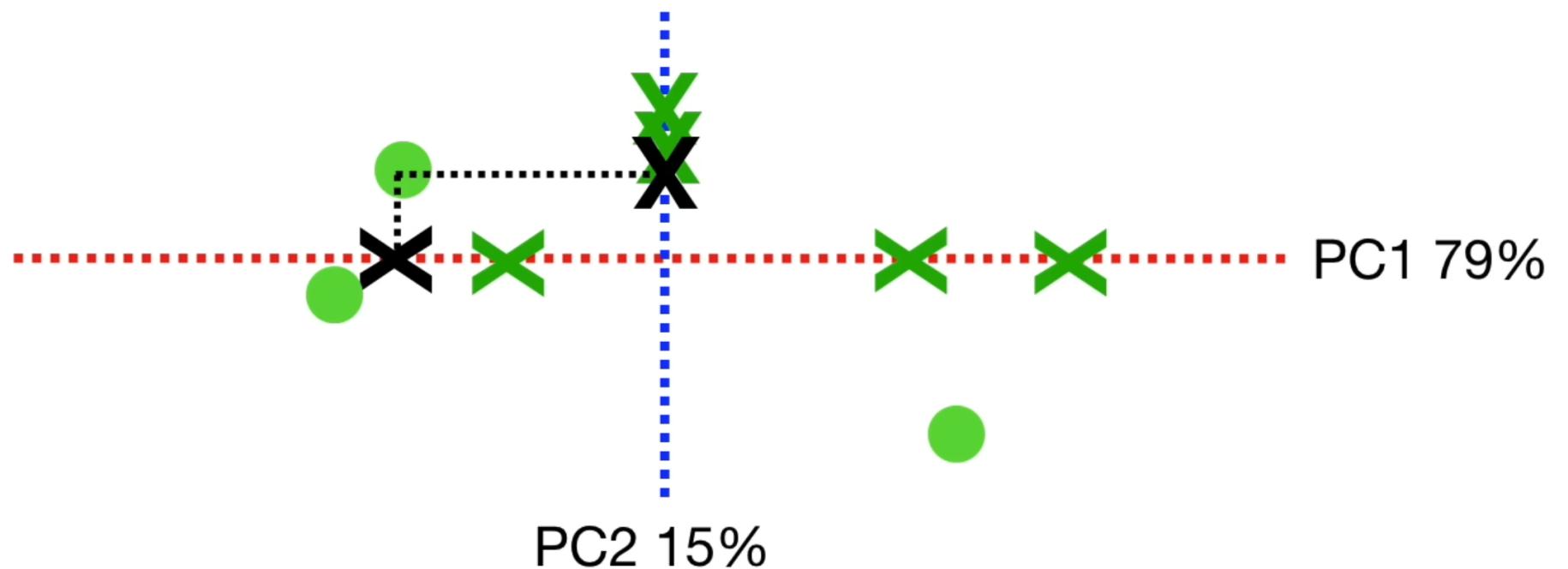
That means that a 2-D graph, using just PC1 and PC2, would be a good approximation of this 3-D graph since it would account for 94% of the variation in the data.



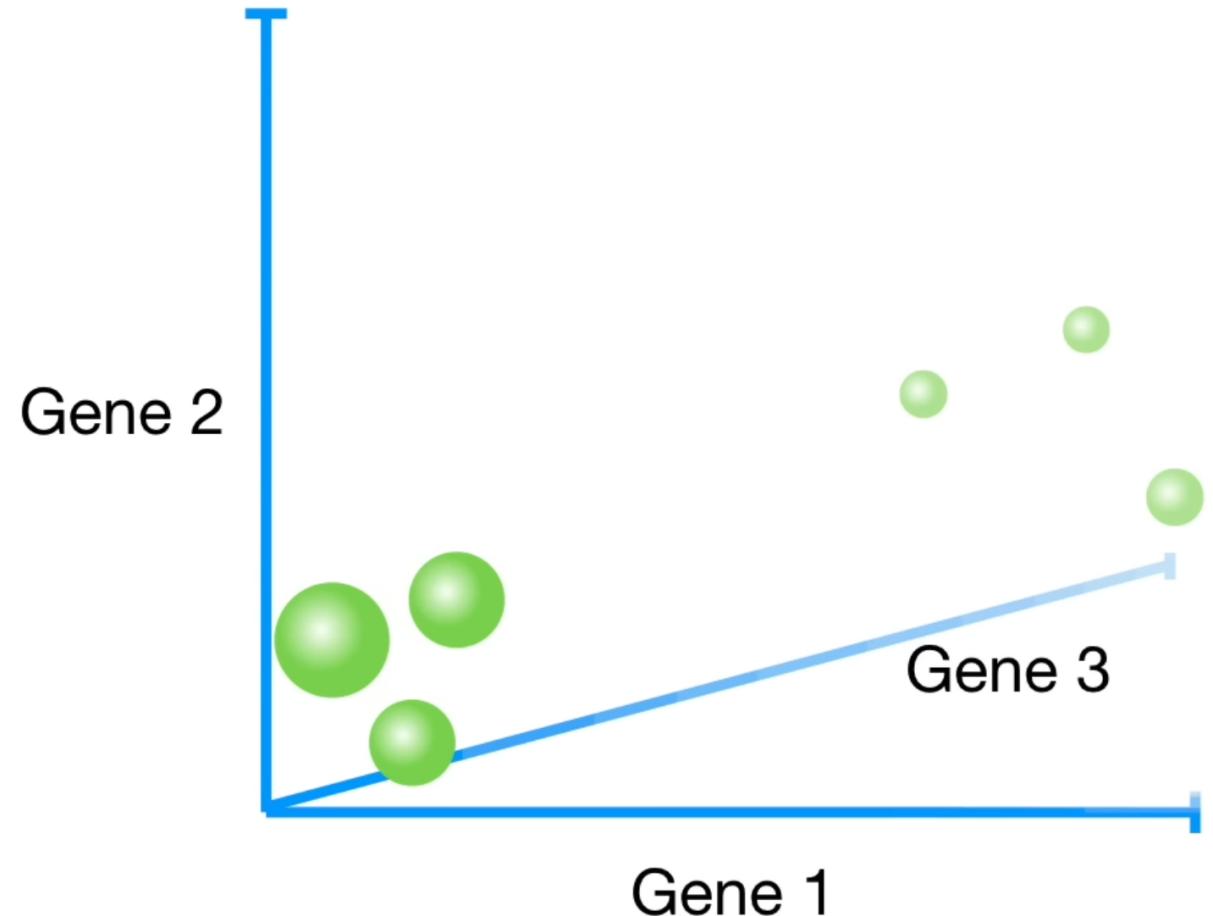
Then we rotate so that PC1 is horizontal and PC2 is vertical (this just makes it easier to look at).



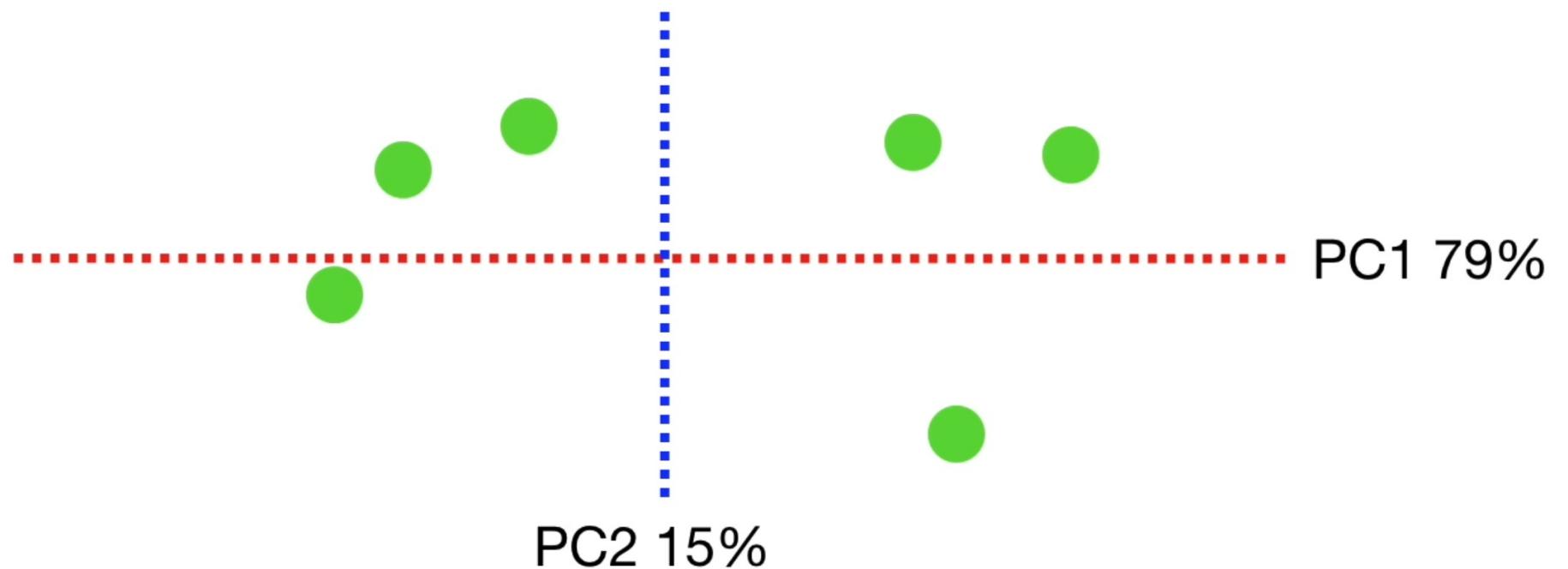
etc...etc...



To review, we started with an awkward 3-D graph that was kind of hard to read...

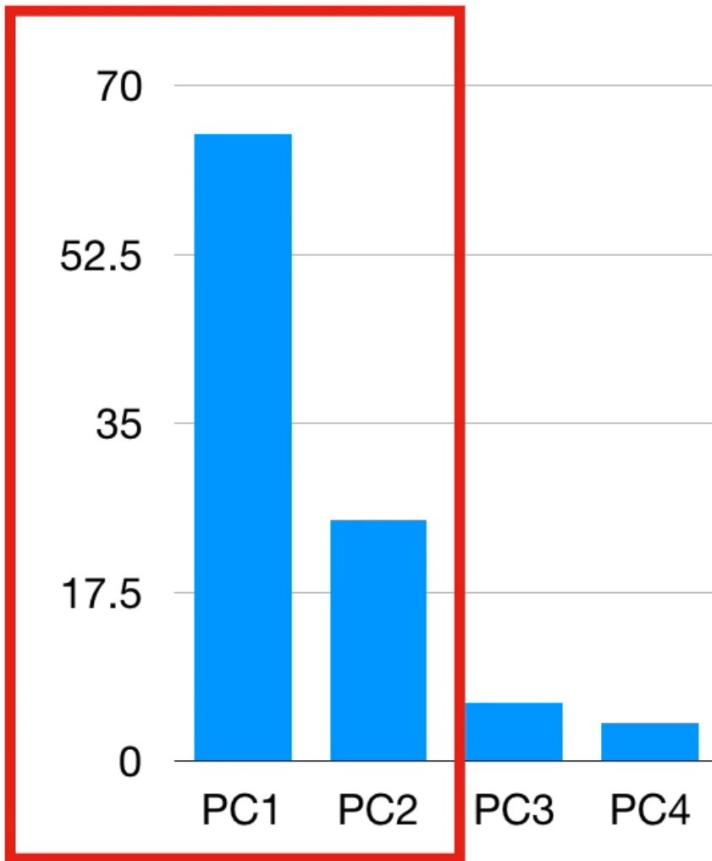


...lastly, we used PC1
and PC2 to draw a 2-
Dimensional graph with
the data.

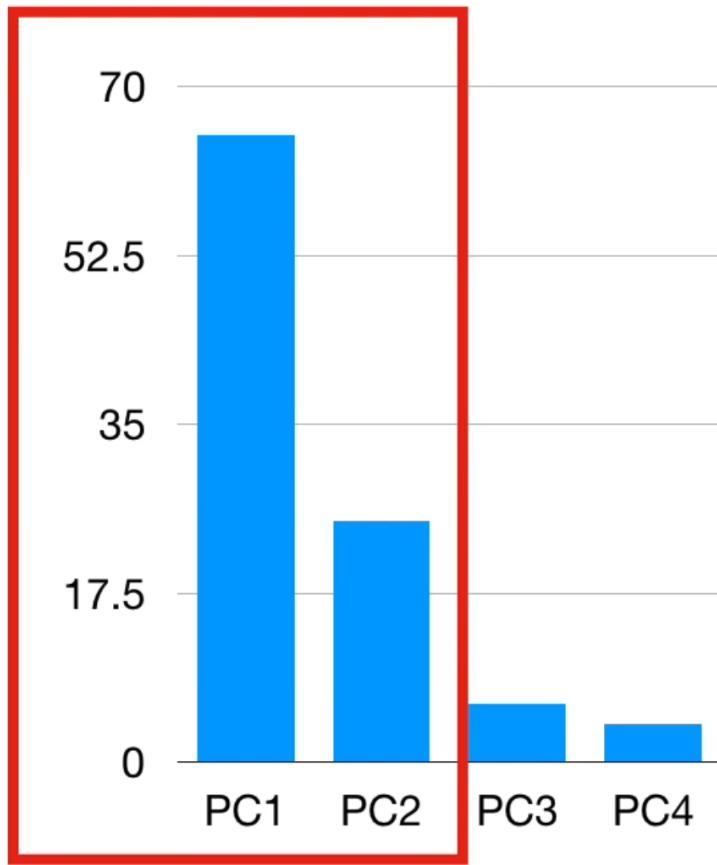
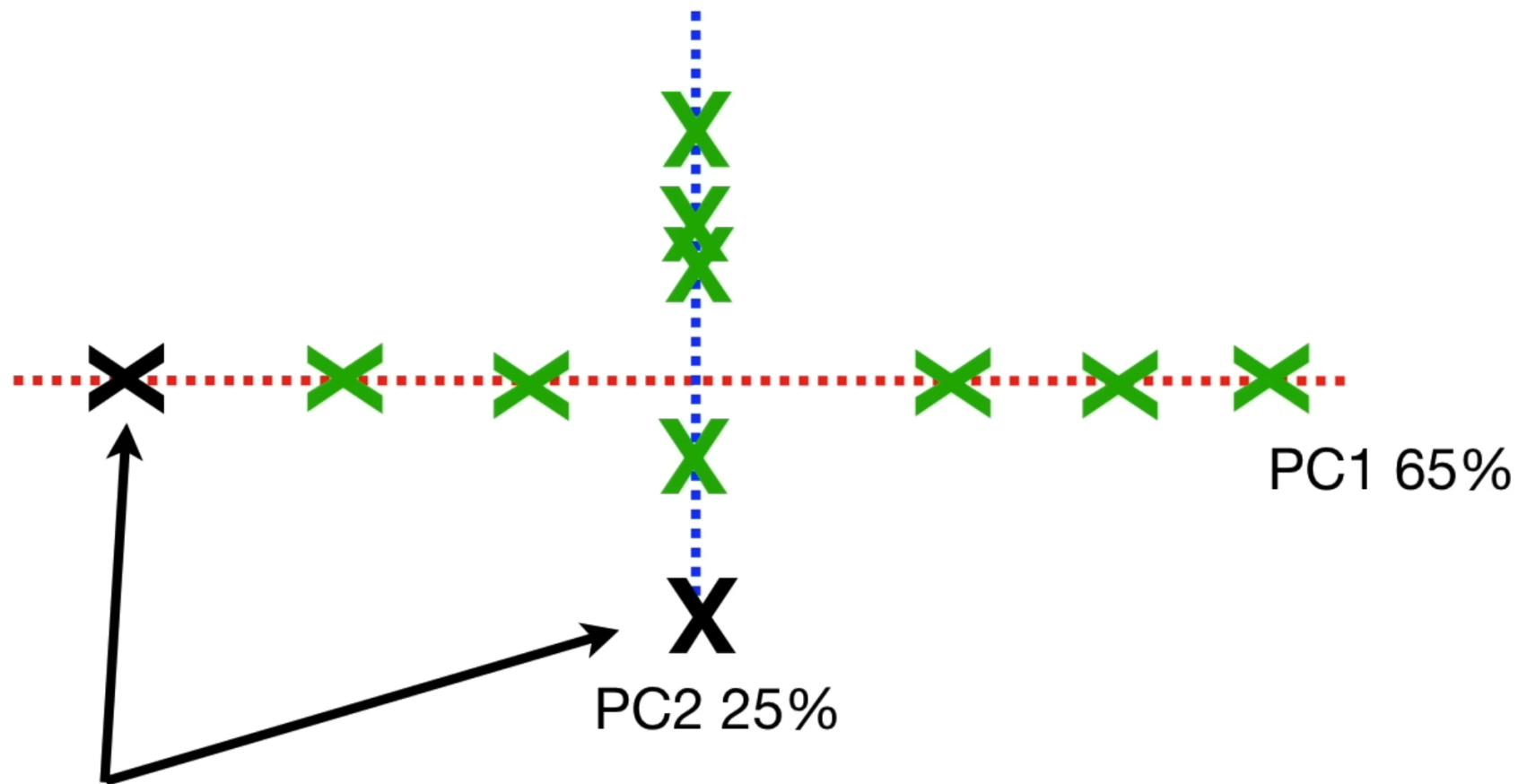


	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	10	11	8	3	2	1
Gene 2	6	4	5	3	2.8	1
Gene 3	12	9	10	2.5	1.3	2
Gene 4	5	20	6	2	18	19

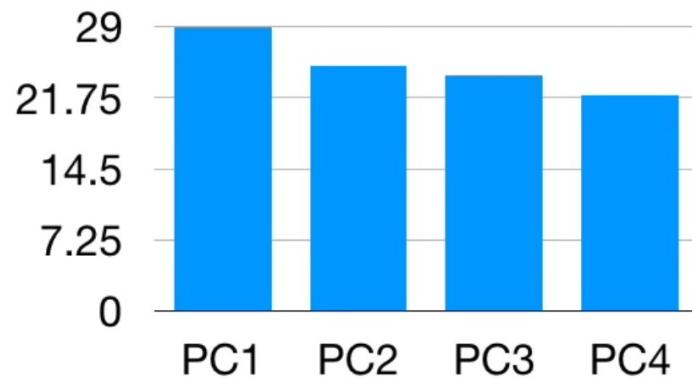
If we measured 4 genes per mouse, we would not be able to draw a 4-dimensional graph of the data...



...in this case, PC1 and PC2 account for 90% of the variation, so we can just use those to draw a 2-dimensional PCA graph.

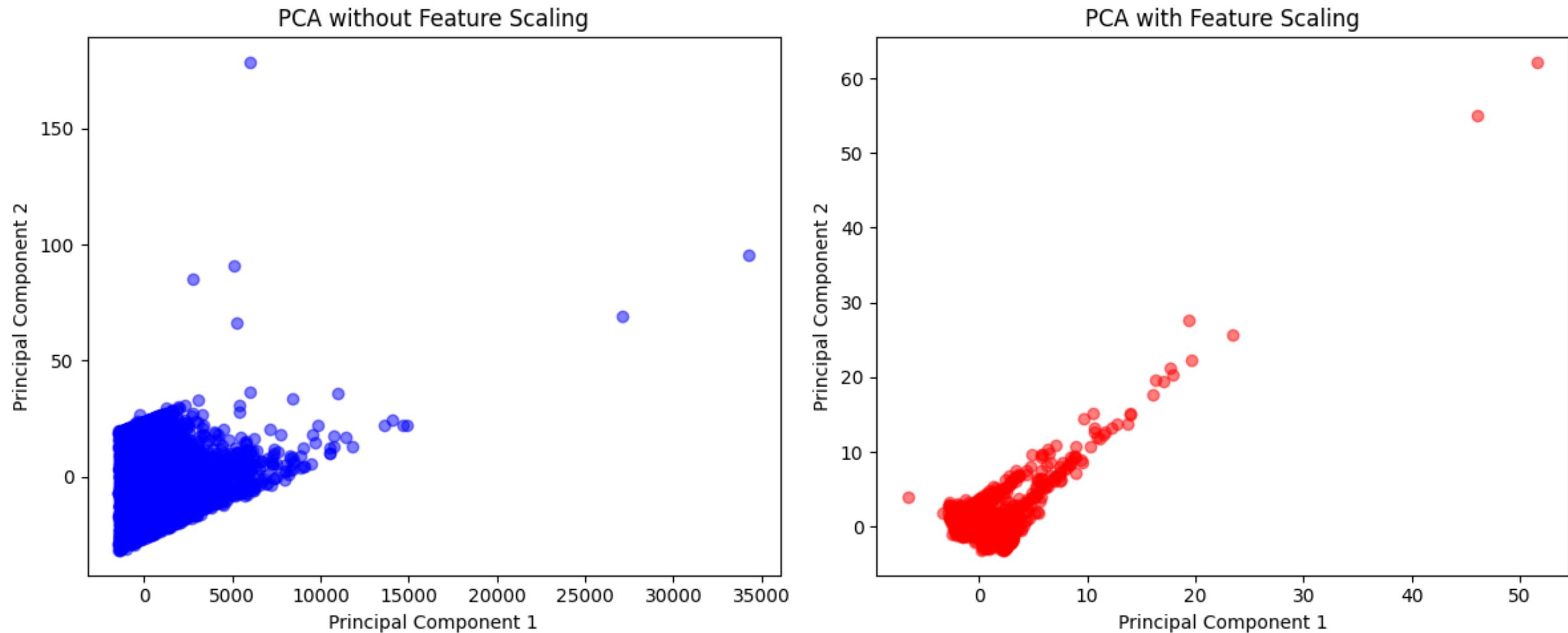


These two projected
points correspond to
Sample 2.



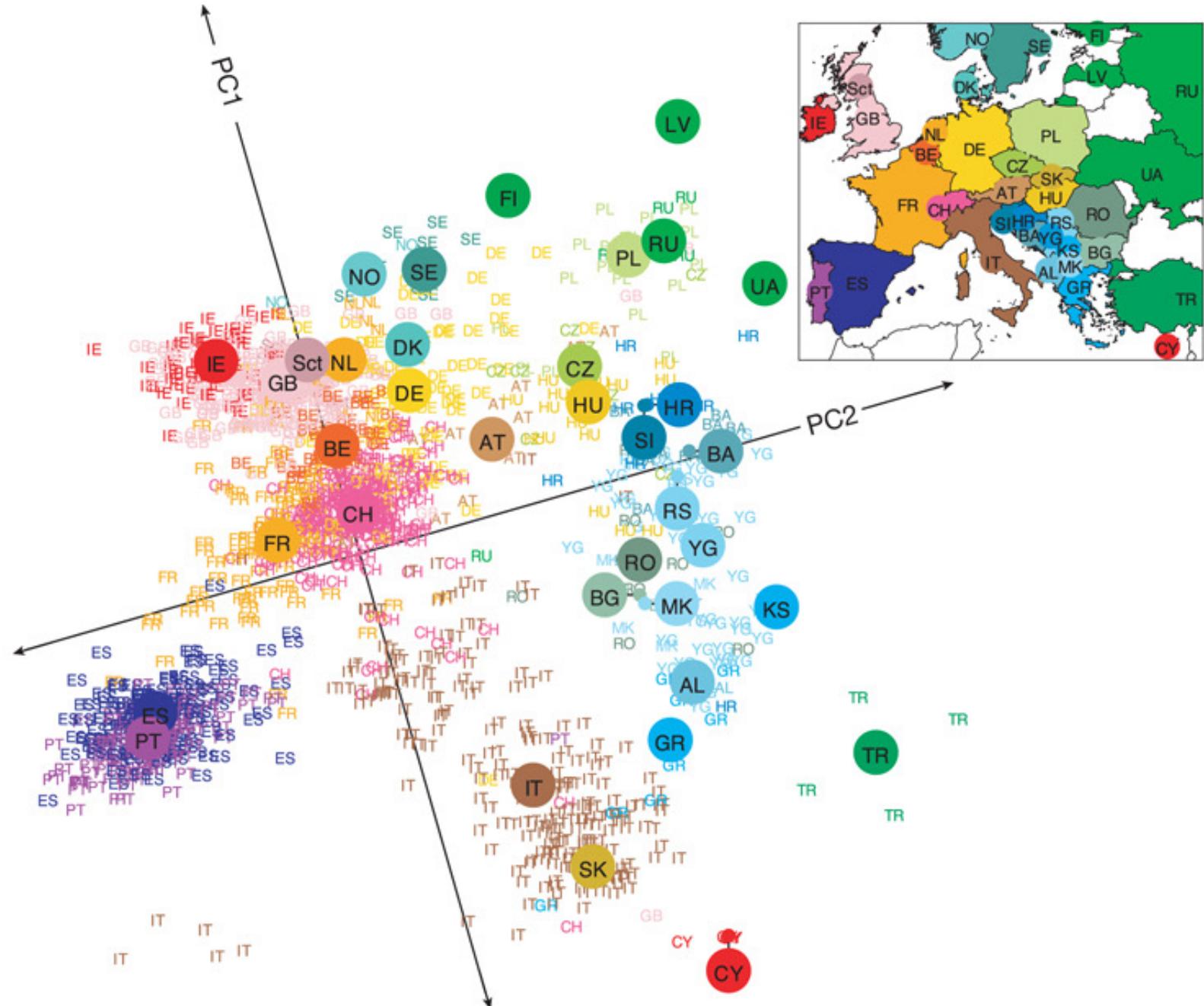
NOTE: If the scree plot looked like this, where PC3 and PC4 account for a substantial amount of variation, then just using the first 2 PCs would not create a very accurate representation of the data.

First example in which standardization matters! (California housing dataset)



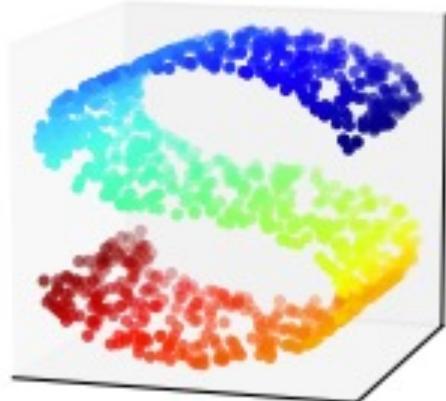
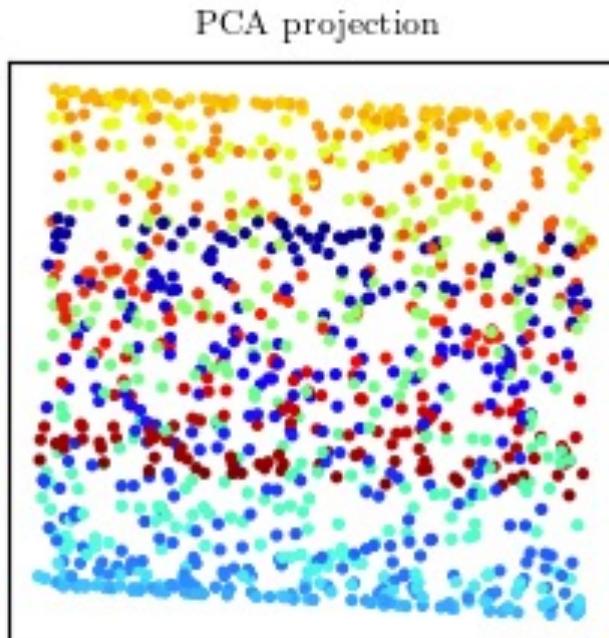
A high-dimensional example

p = 197k (loci)
n = 1387
(individuals)



Issues with PCA

- PCA takes care of mapping distant objects far from each other: local structure is not preserved!
- PCA does not take manifolds into account...PCA does not take manifolds into account...



T-SNE

t-Distributed Stochastic Neighbor Embedding

Huge kudos to Joshua Starmer!

T-SNE in a nutshell

- T-distributed Stochastic Neighbor Embedding (2008).
- Idea: map similar objects in the high dimensional space into close points in a low dimensional space
- t-SNE Takes care of small local distances (focus on local structure)
- Open-source code. For instance, it is available in [scikit-learn](#).

van der Maaten, L. & Hinton, G. (2008). Visualizing Data using t-SNE . *Journal of Machine Learning Research*, 9, 2579—260,
<https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf>

Theory behind T-SNE – 1 (optional)

- Starting point: N high-dim objects $\mathbf{x}_1, \dots, \mathbf{x}_N$
- We consider this “distance” in high-dim space (it only cares about local similarity):

$$p_{ij} = \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma^2)}{\sum_k \sum_{l \neq k} \exp(-\|\mathbf{x}_k - \mathbf{x}_l\|^2/2\sigma^2)}$$

- If you look at it as a probability, it means that **the probability of picking two points is higher when they are closer**

Theory behind T-SNE – 2 (optional)

- Actually, we consider this conditional distribution:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2/2\sigma_i^2)}$$

- We set the σ_i so that the conditional has a fixed perplexity (fixed number of points in the mode of the Gaussian to account for different densities of points in space)

Theory behind T-SNE – 3 (optional)

- We make the “distance” symmetric:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$

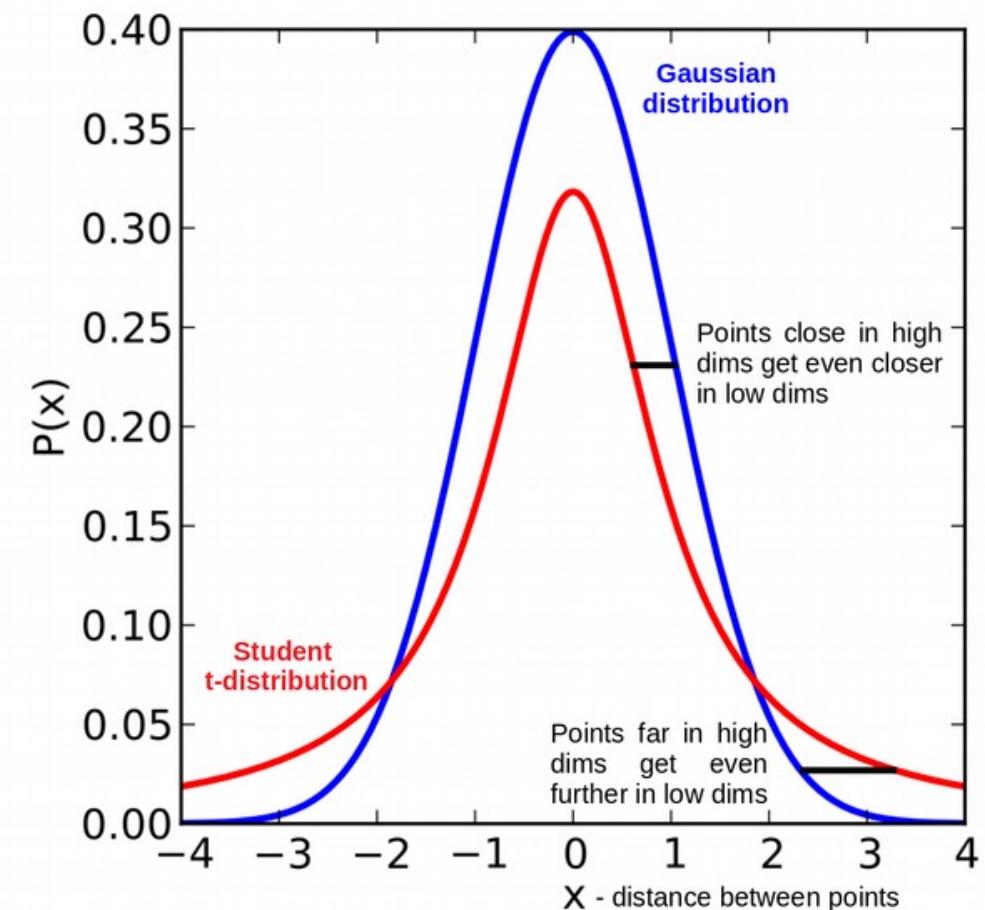
- Now, let's look at the target low dimensional space...

Theory behind T-SNE – 4 (optional)

- We introduce a distance based on Student-t distribution:

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_k \sum_{l \neq k} (1 + \|y_k - y_l\|^2)^{-1}}$$

Heavy tails, q_{ij} should account for global structure, too...



Theory behind T-SNE – 5 (optional)

- We want to make p_{ij} and q_{ij} as similar as possible, so the low dim space has a similar structure. KL divergence:

$$KL(p\|q) = \sum_i \sum_{j \neq i} p_{ij} \log \left(\frac{p_{ij}}{q_{ij}} \right)$$

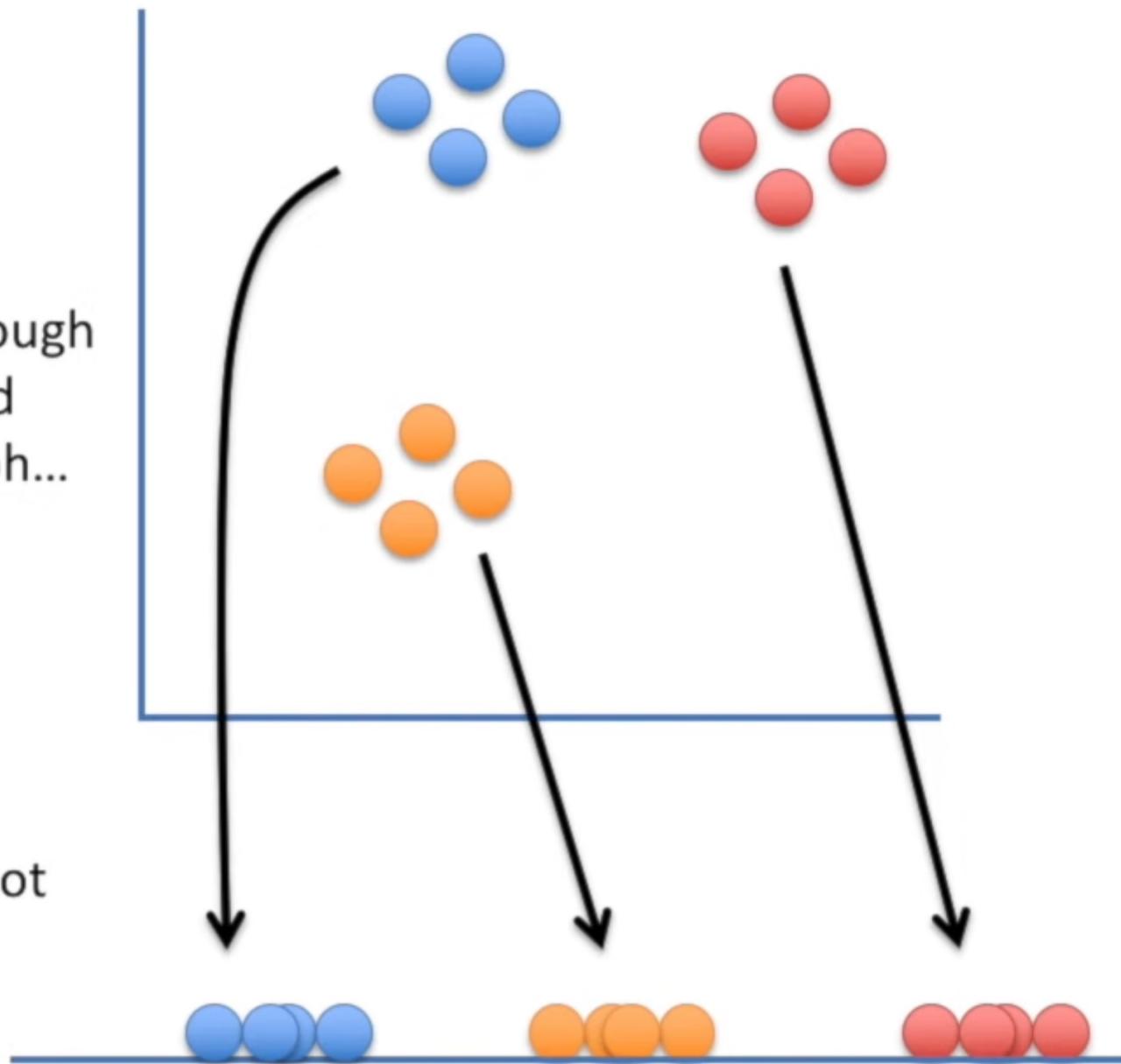
- Intuition:
 - Large p_{ij} modelled by small q_{ij} ? Big penalty: **close points are mapped to close points**
 - Small p_{ij} modelled by large q_{ij} ? Small penalty: **far points may end up close in the low dimensional space**

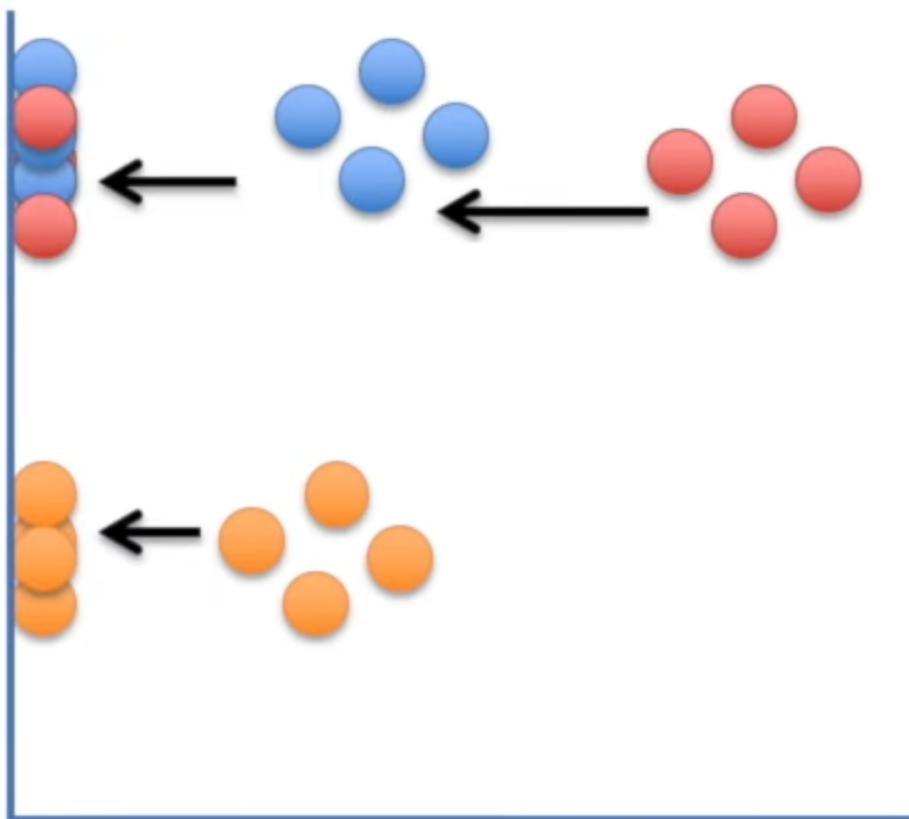
T-SNE mainly preserves local similarity structure!

Here's a basic 2-D scatter plot.

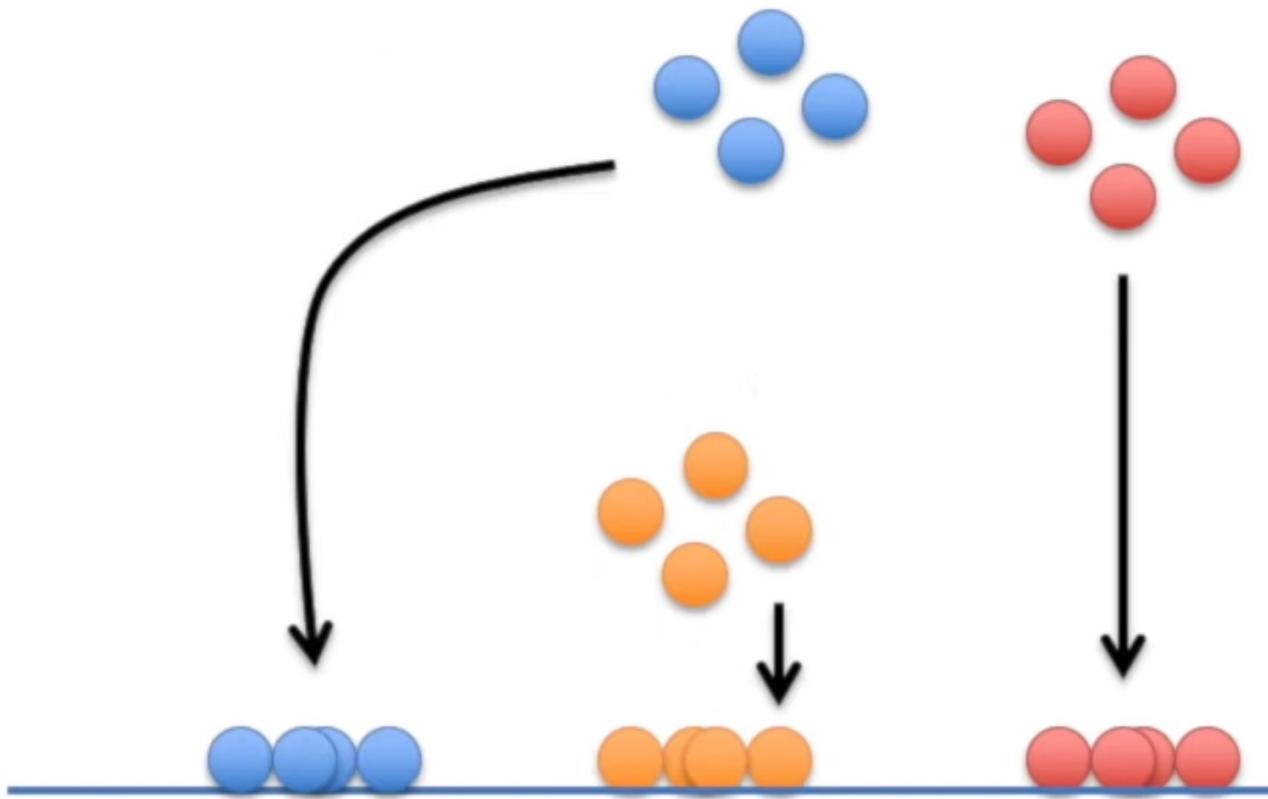
Let's do a walk through of how t-SNE would transform this graph...

...into a flat, 1-D plot on a number line.





NOTE: If we just projected the data onto one of the axes, we'd just get a big mess that doesn't preserve the original clustering.

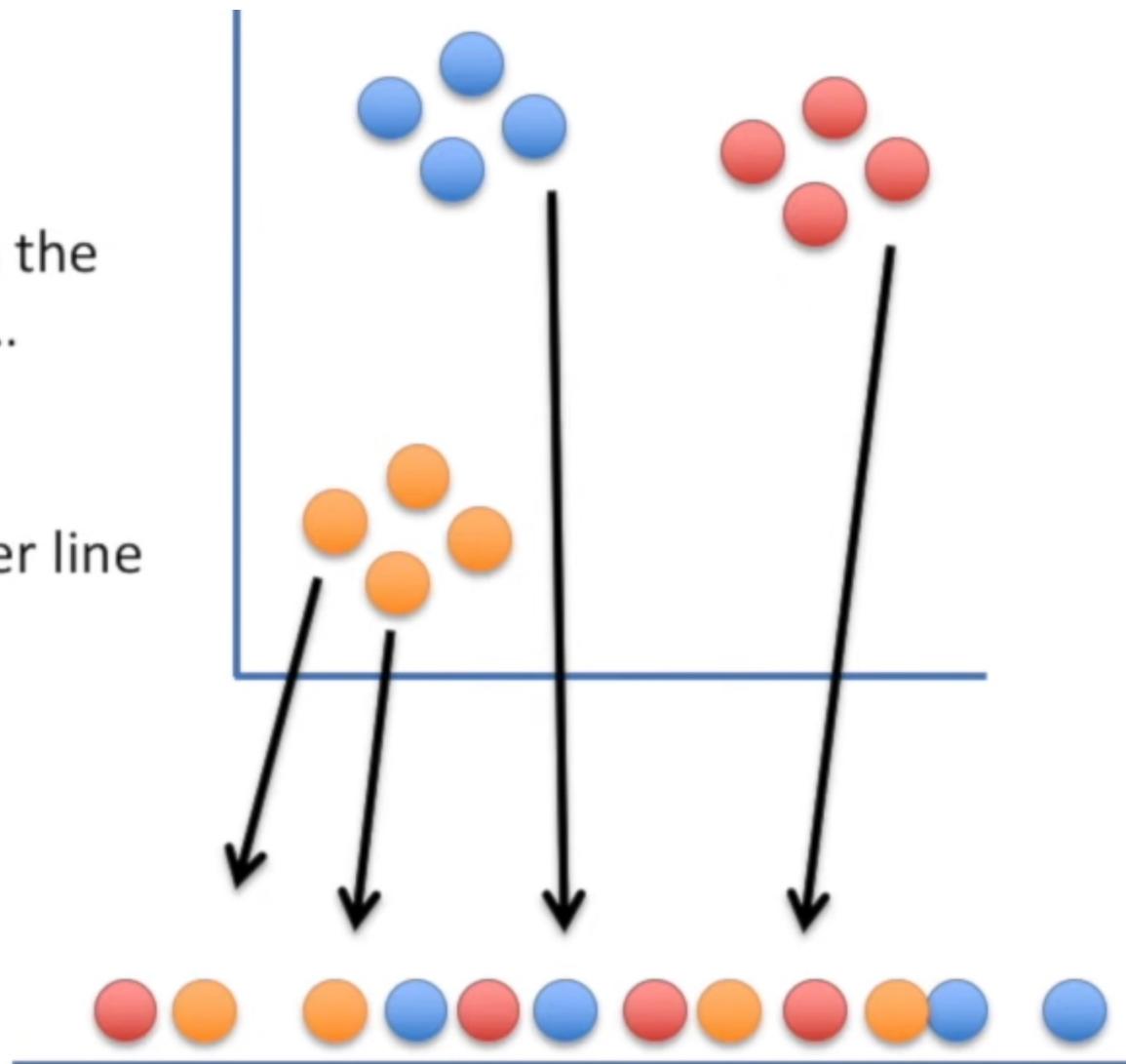


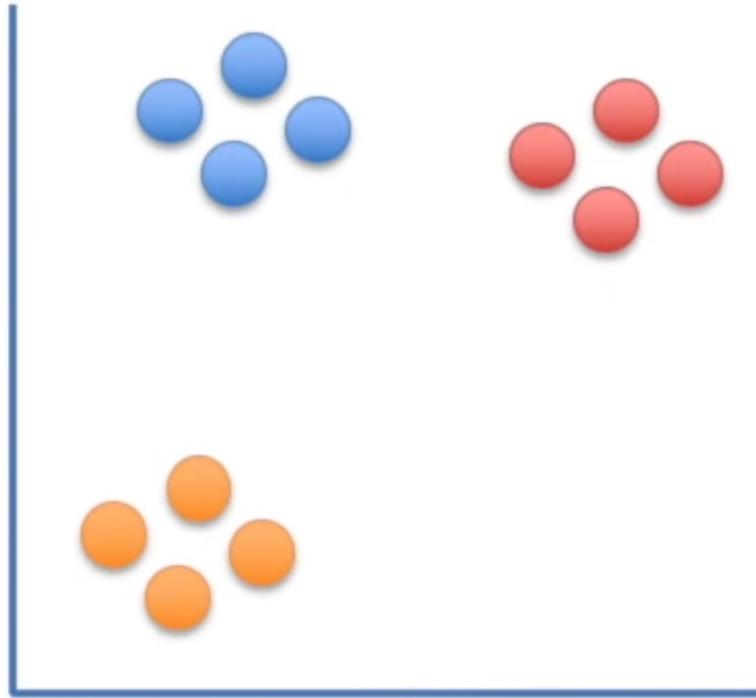
Think of this as a really high-dimensional problem!

What t-SNE does is find a way to project data into a low dimensional space (in this case, the 1-D number line) so that the clustering in the high dimensional space (in this case, the 2-D scatter plot) is preserved.

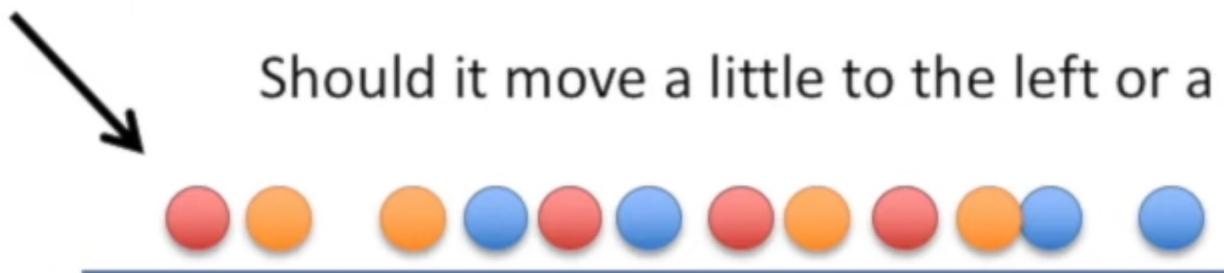
We'll start with the original scatter plot...

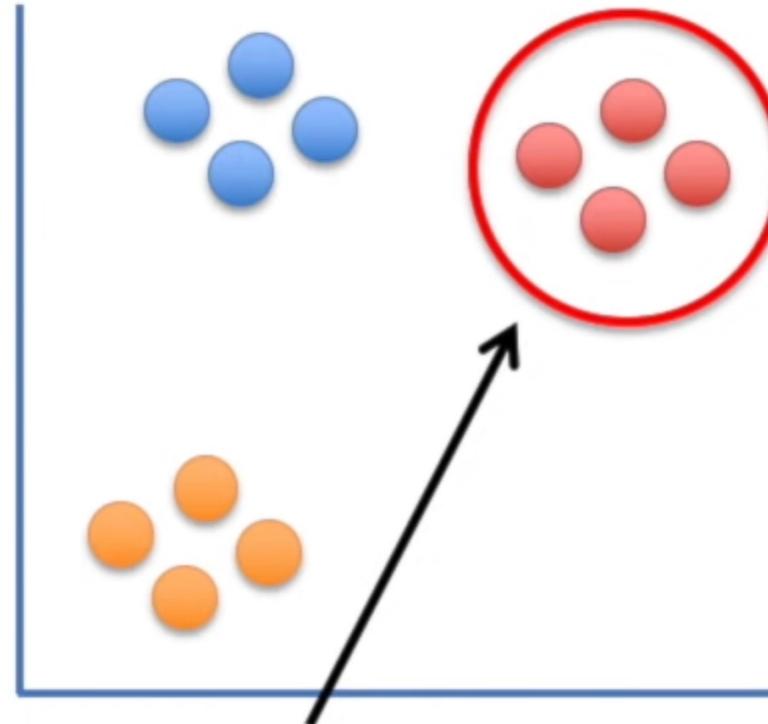
... then we'll put the points on the number line in a random order.





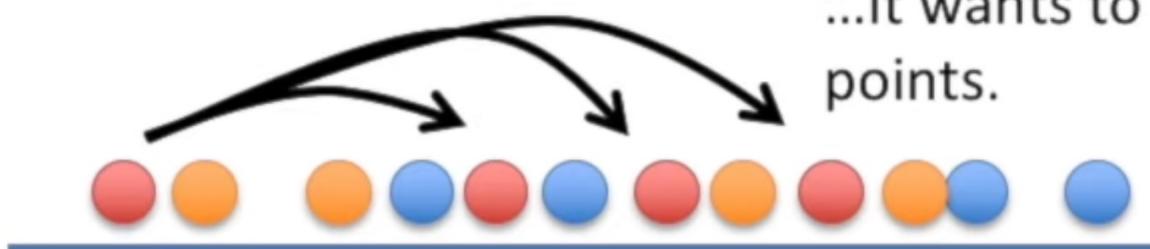
Let's figure out where to move this first point...

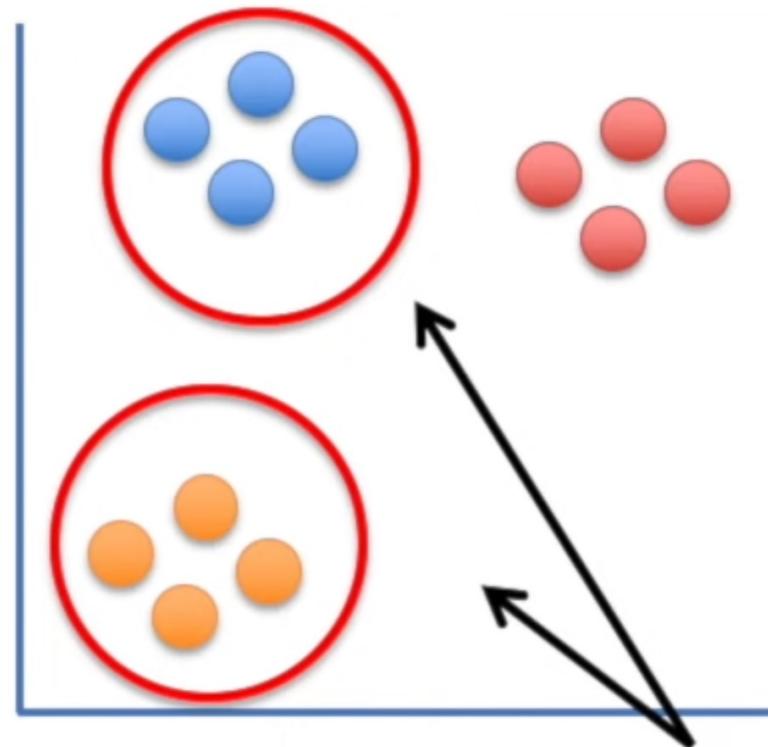




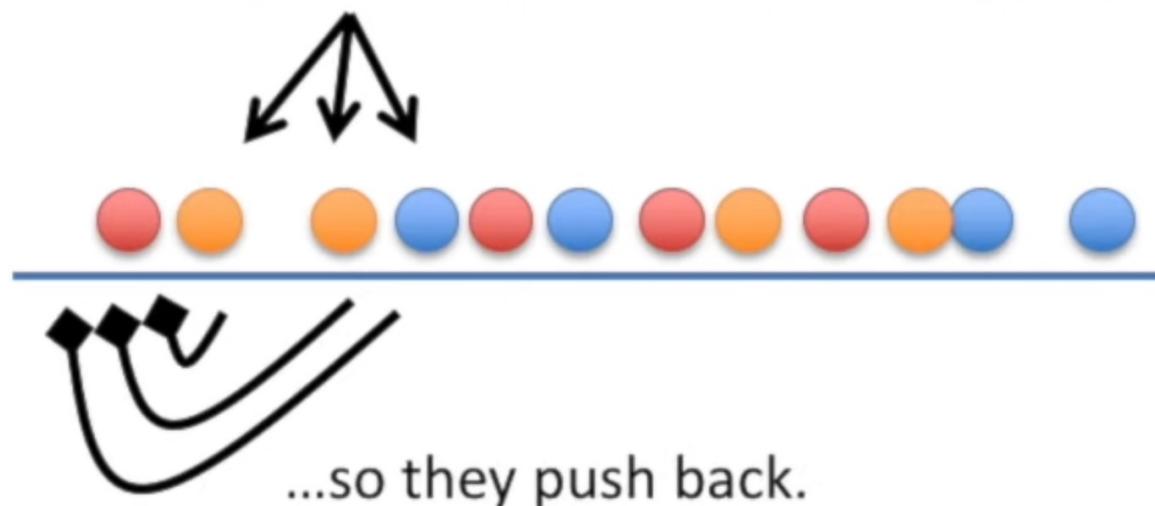
Because it is part of this cluster...

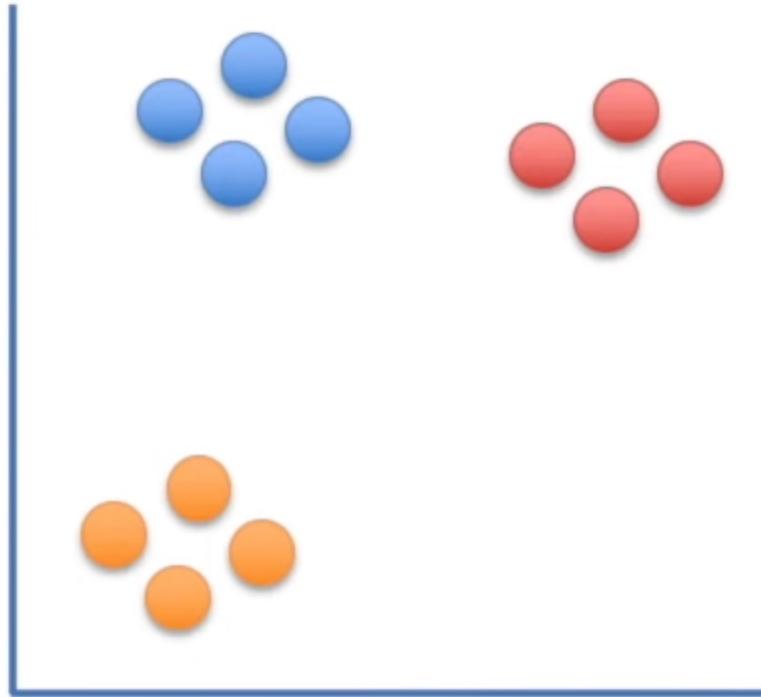
...it wants to move closer to these points.



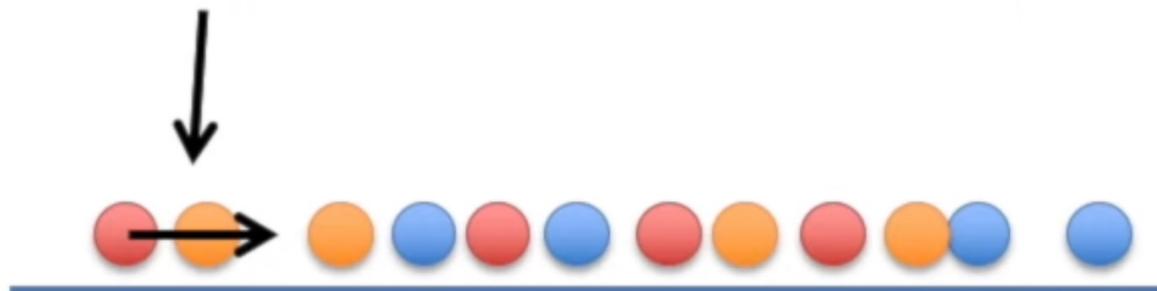


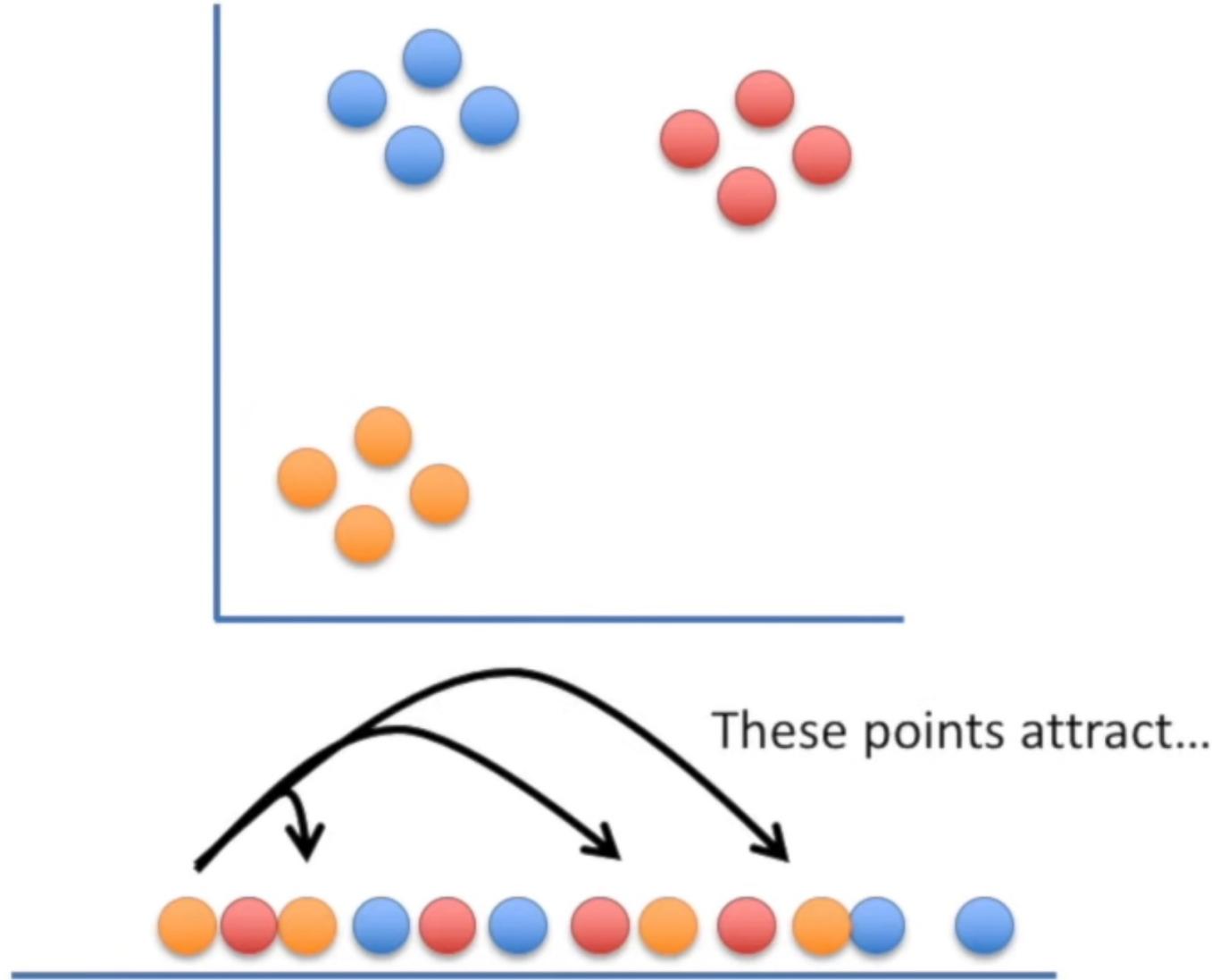
But at the same time, these points... ...are far away in the scatter plot...

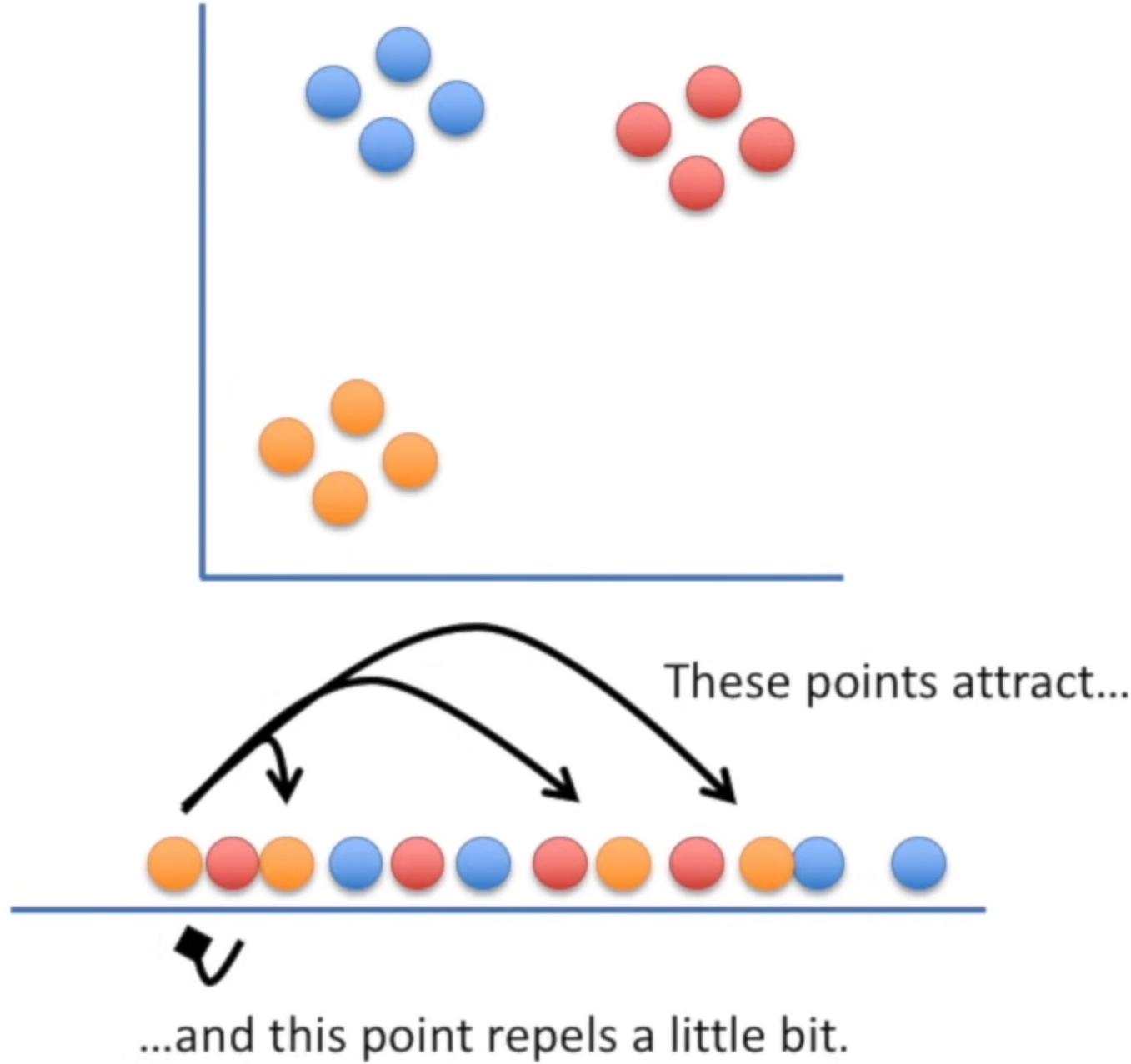


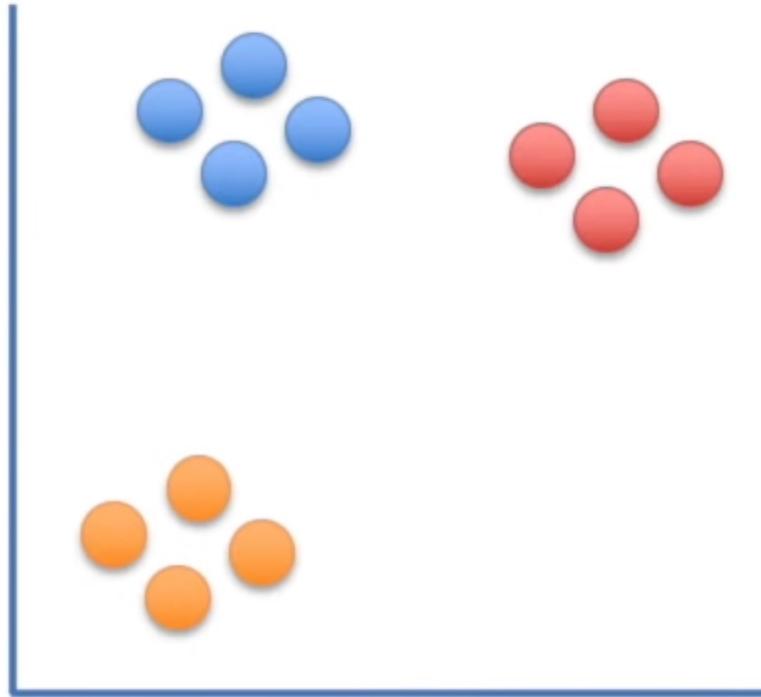


In this case, the attraction is strongest, so the point moves a little to the right.

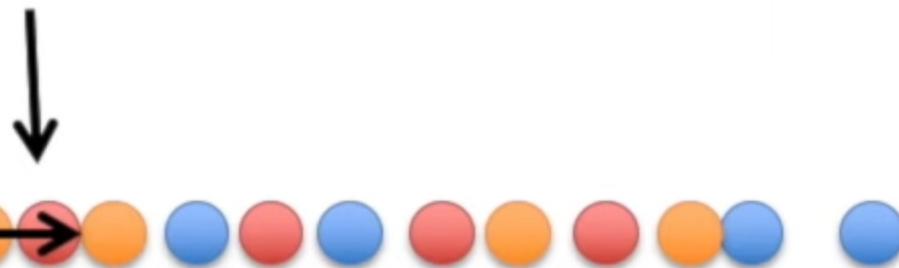


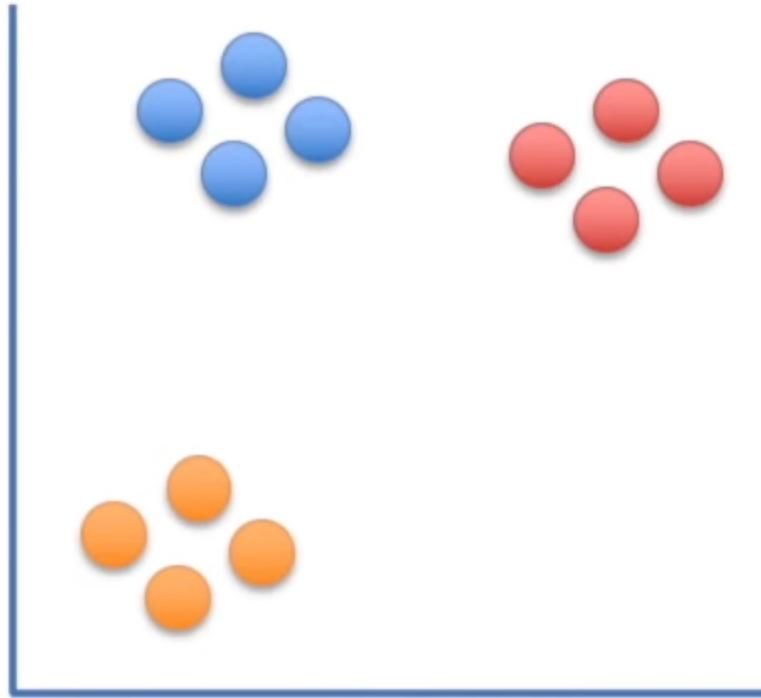




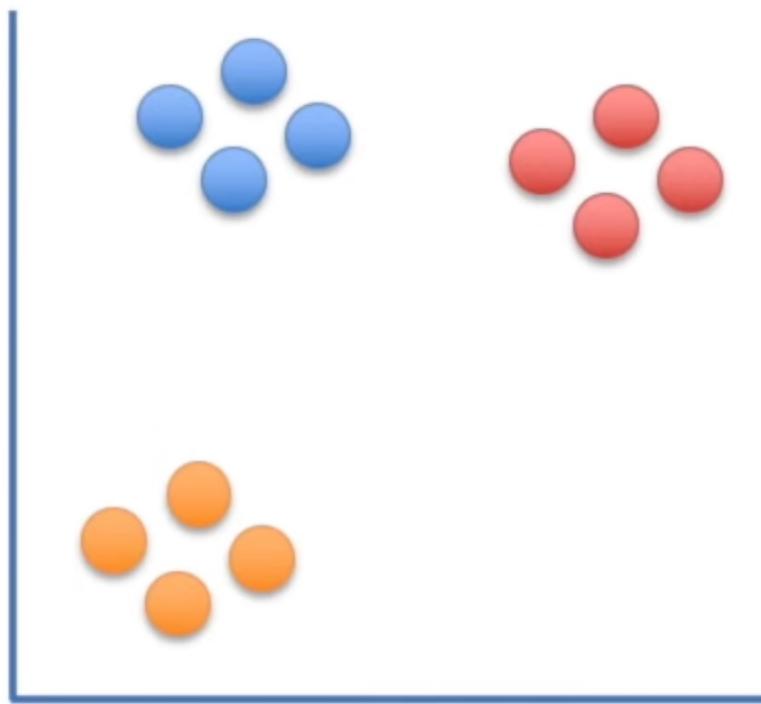


So it moves a little to closer to the other orange points.



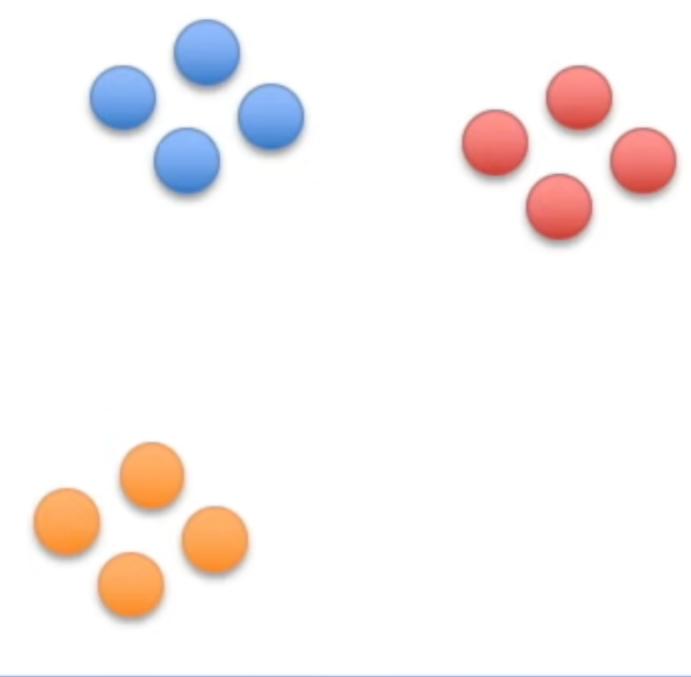


At each step, a point on the line is attracted to points it is near in the scatter plot, and repelled by points it is far from...



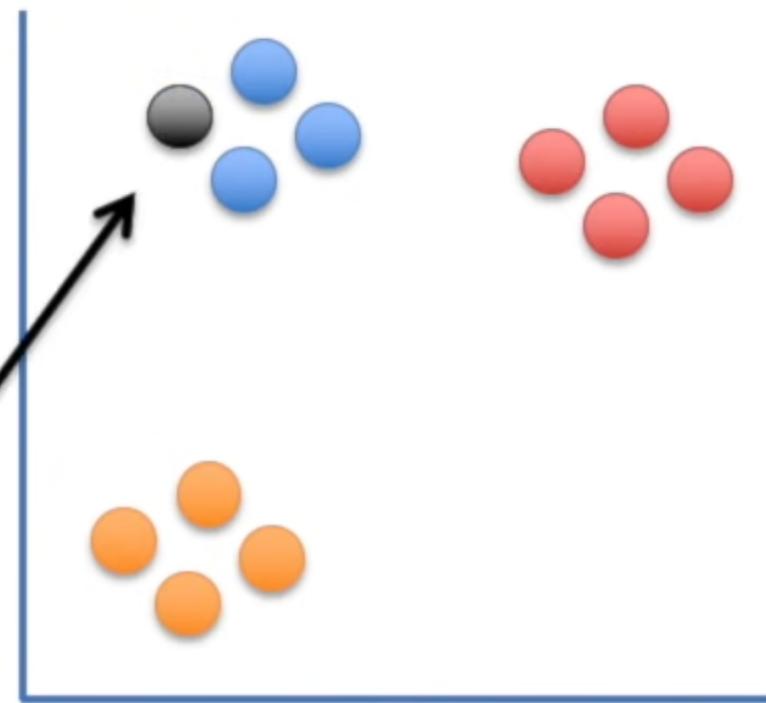
At each step, a point on the line is attracted to points it is near in the scatter plot, and repelled by points it is far from...

Now that we've seen the what t-SNE tries to do, let's dive into the nitty-gritty details of how it does what it does.

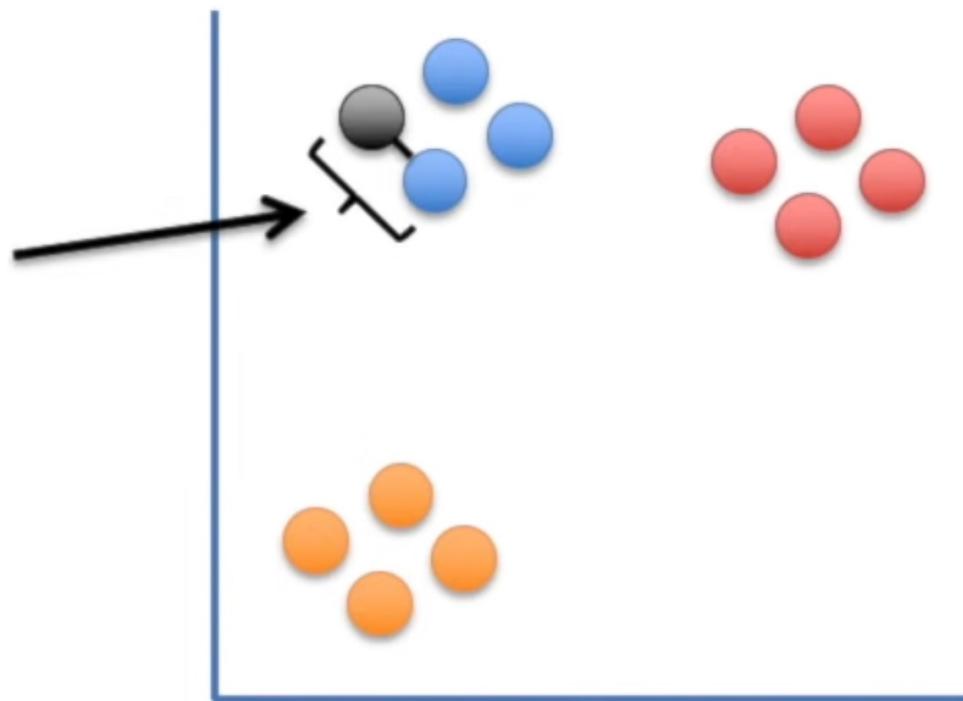


Step 1: Determine the “similarity” of all the points in the scatter plot.

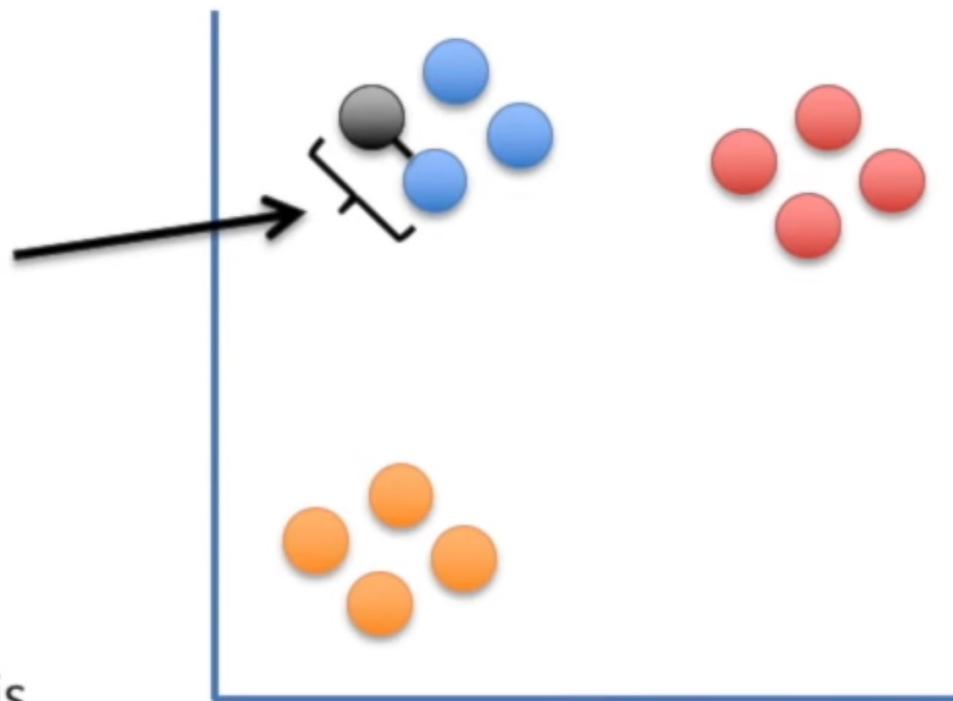
For this example, let's focus on determining the similarities between this point and all of the other points.



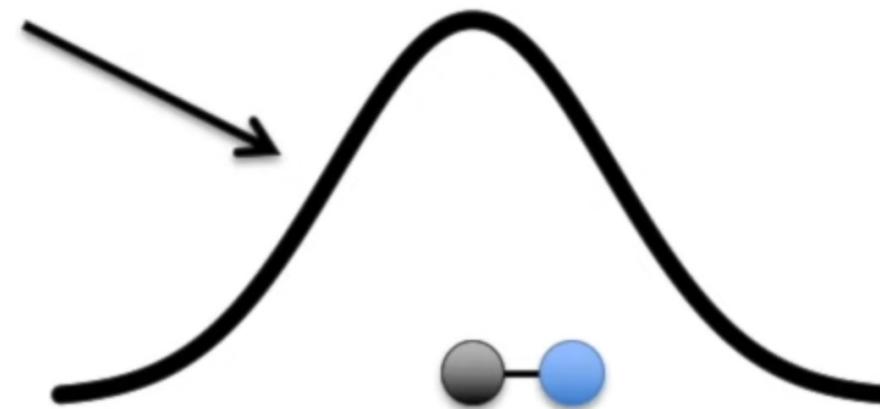
First, measure the distance between two points...



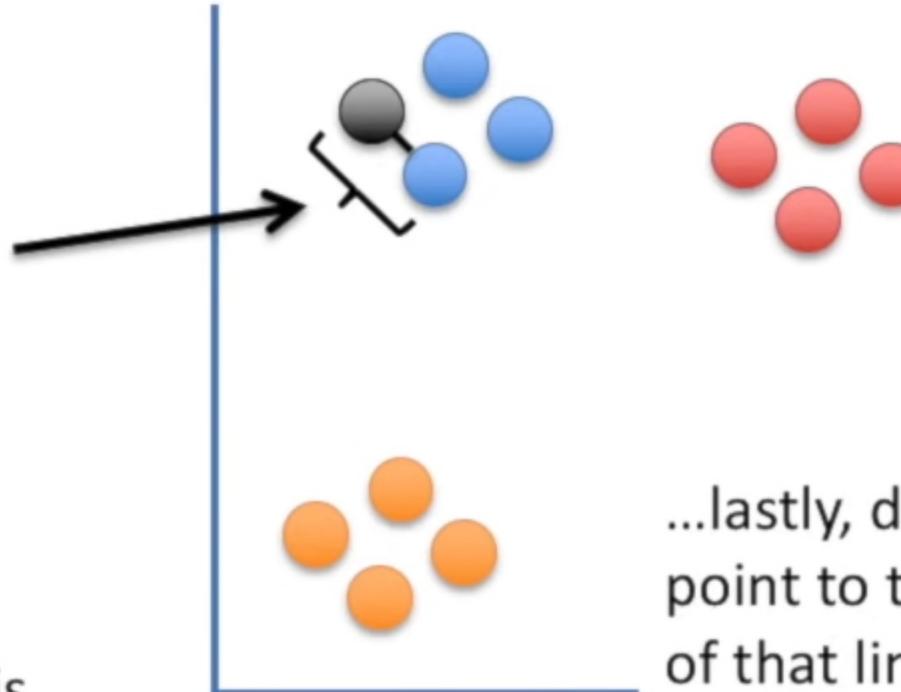
First, measure the distance between two points...



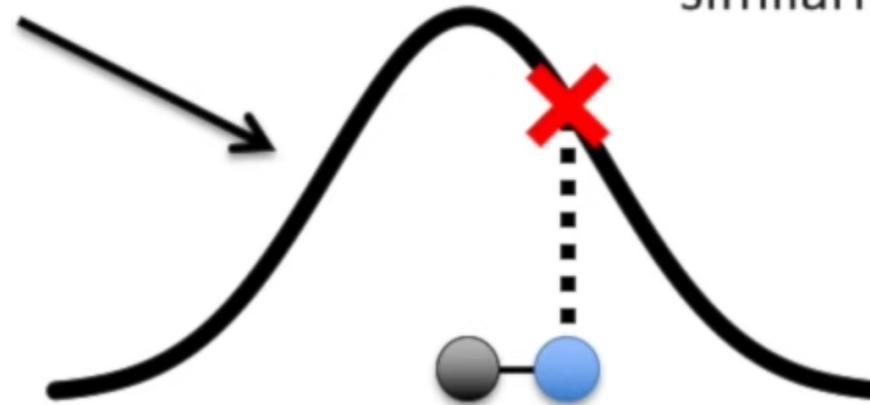
Then plot that distance on a normal curve that is centered on the point of interest...



First, measure the distance between two points...

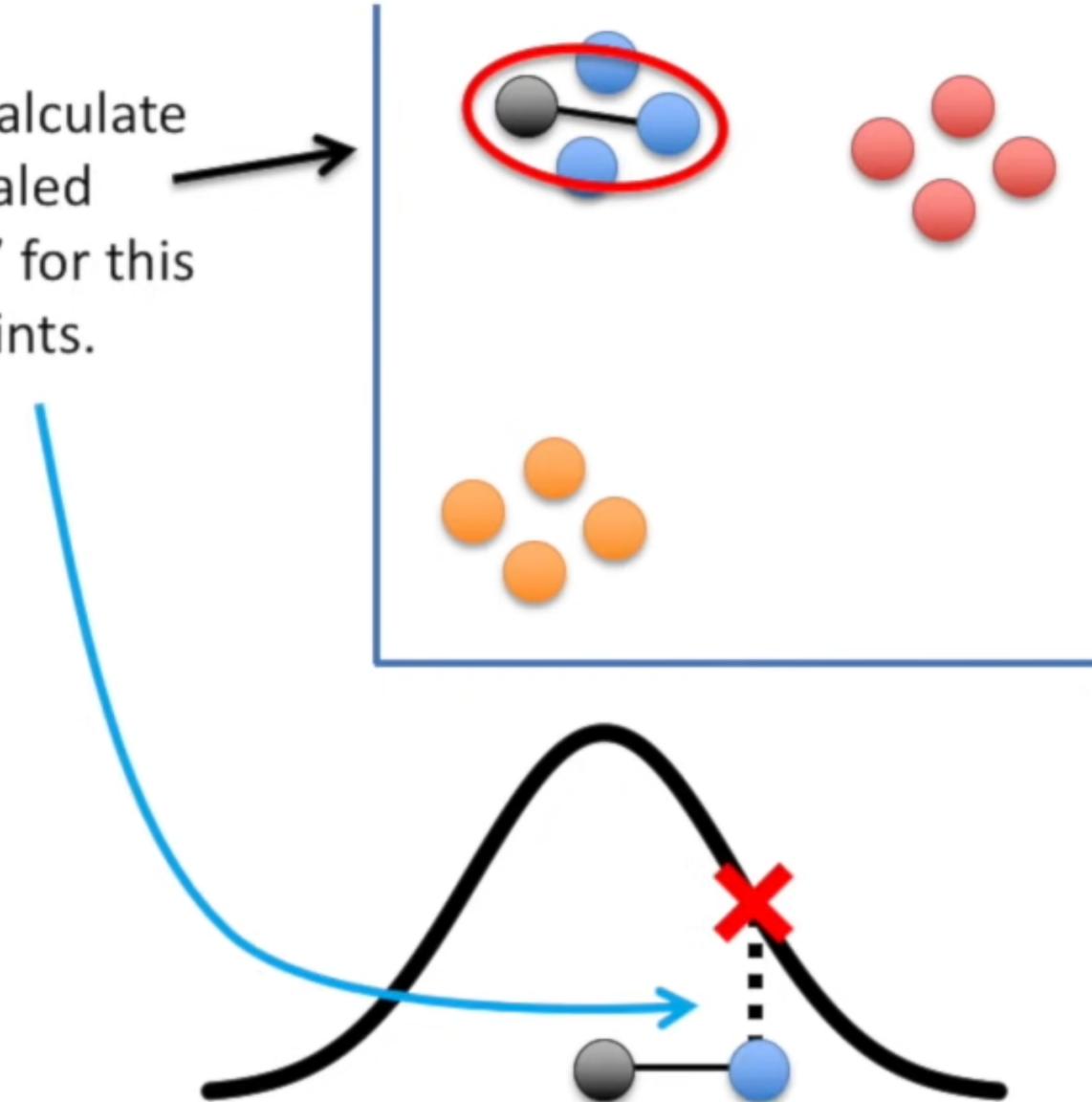


Then plot that distance on a normal curve that is centered on the point of interest...

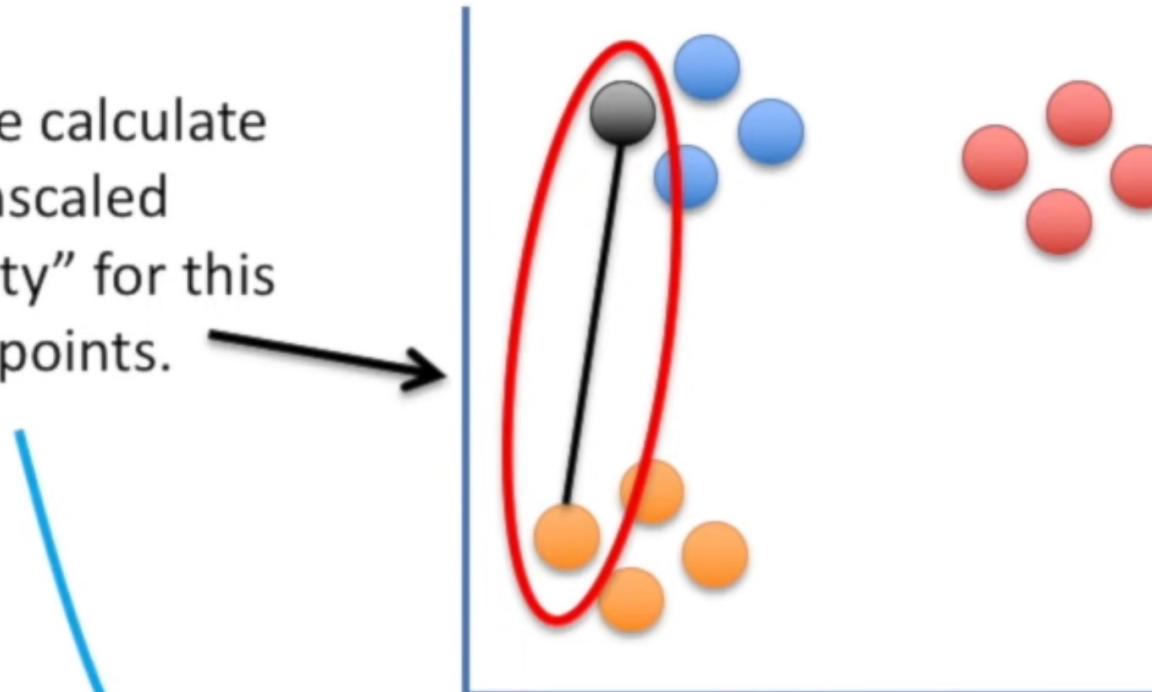
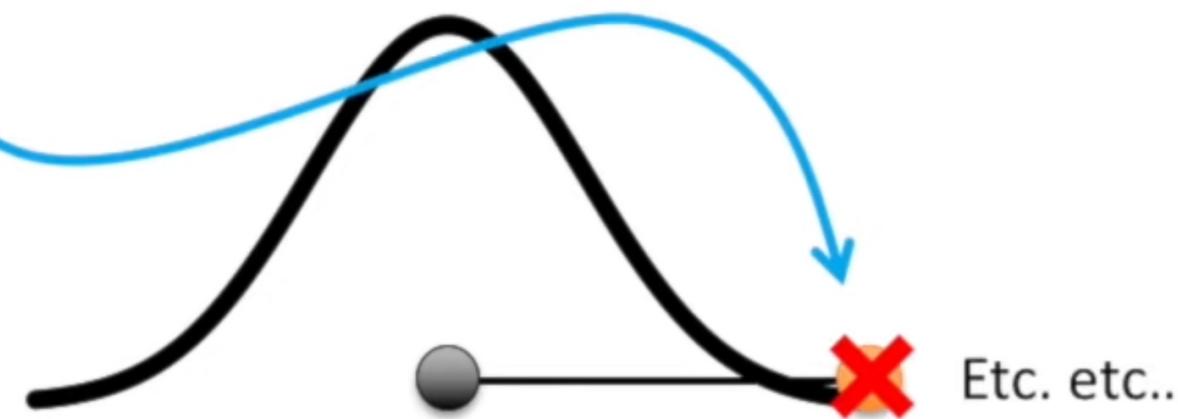


...lastly, draw a line from the point to the curve. The length of that line is the “unscaled similarity”.

Now we calculate
the “unscaled
similarity” for this
pair of points.

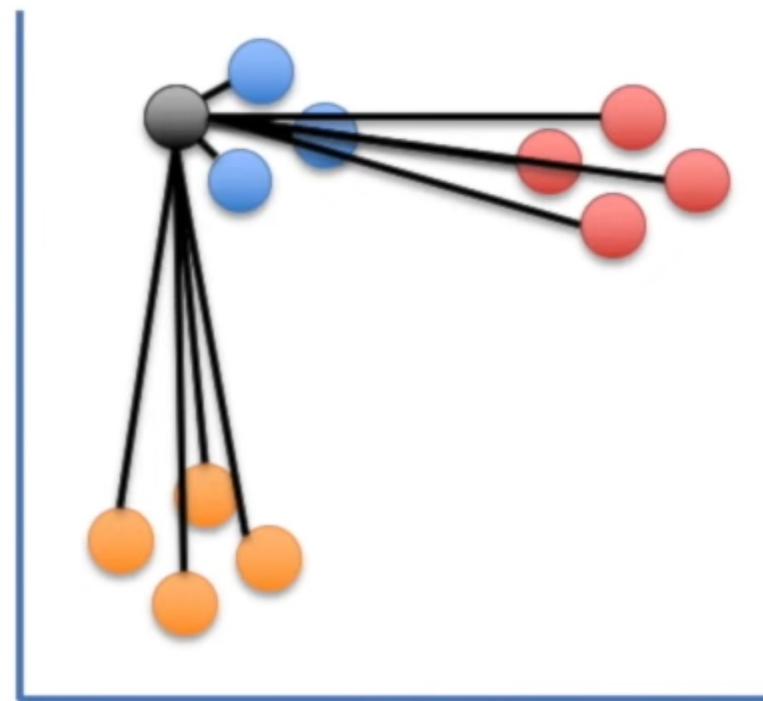


Now we calculate
the “unscaled
similarity” for this
pair of points.

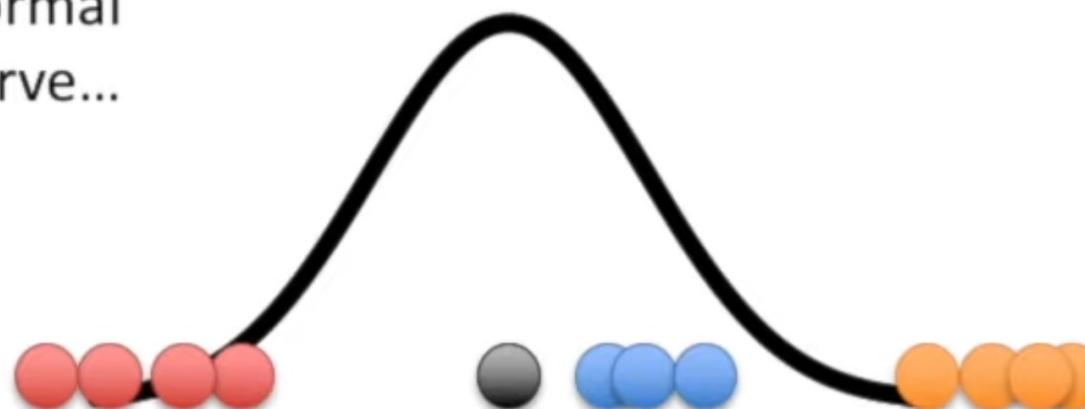


Etc. etc...

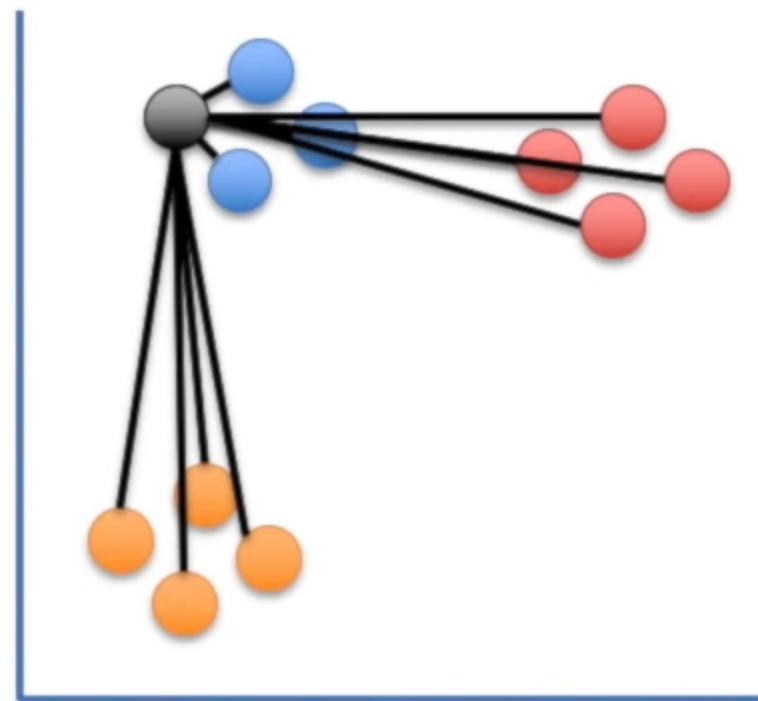
Ultimately, we measure
the distances between
all of the points and the
point of interest...



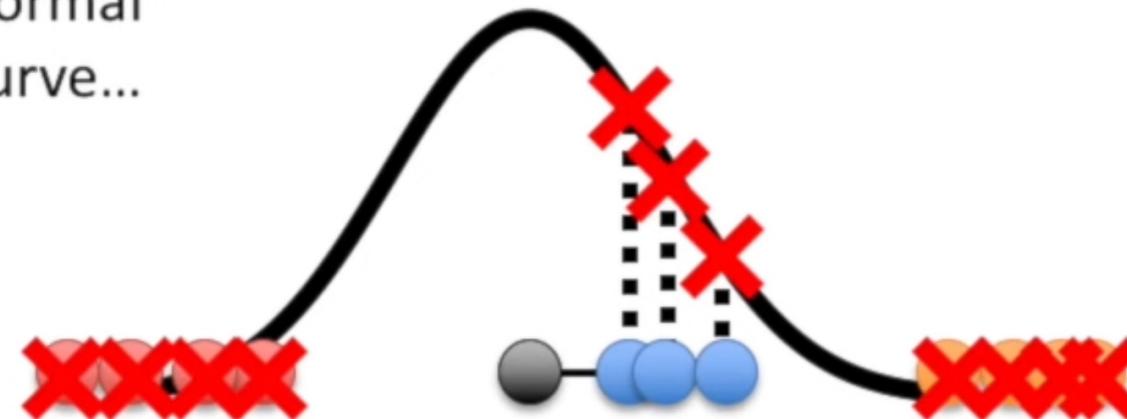
Plot them on the normal
curve...



Ultimately, we measure the distances between all of the points and the point of interest...

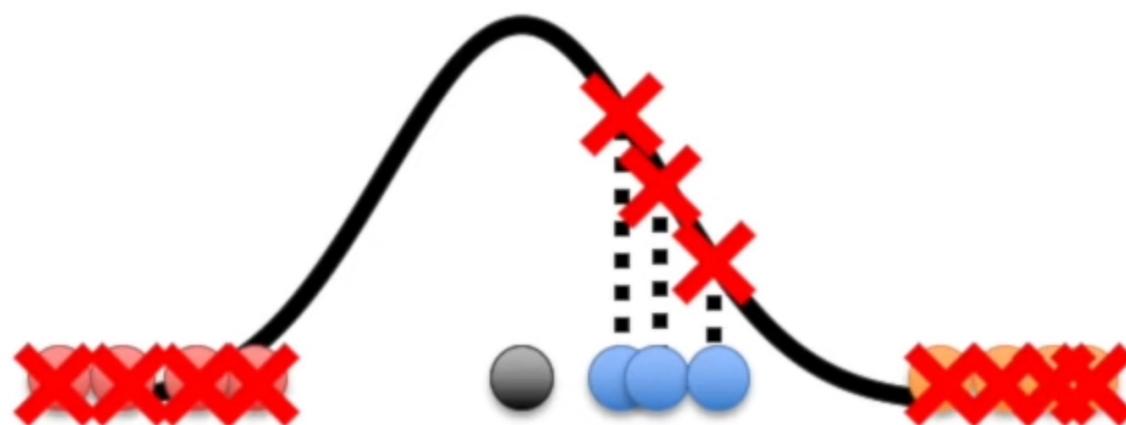


Plot them on the normal curve...

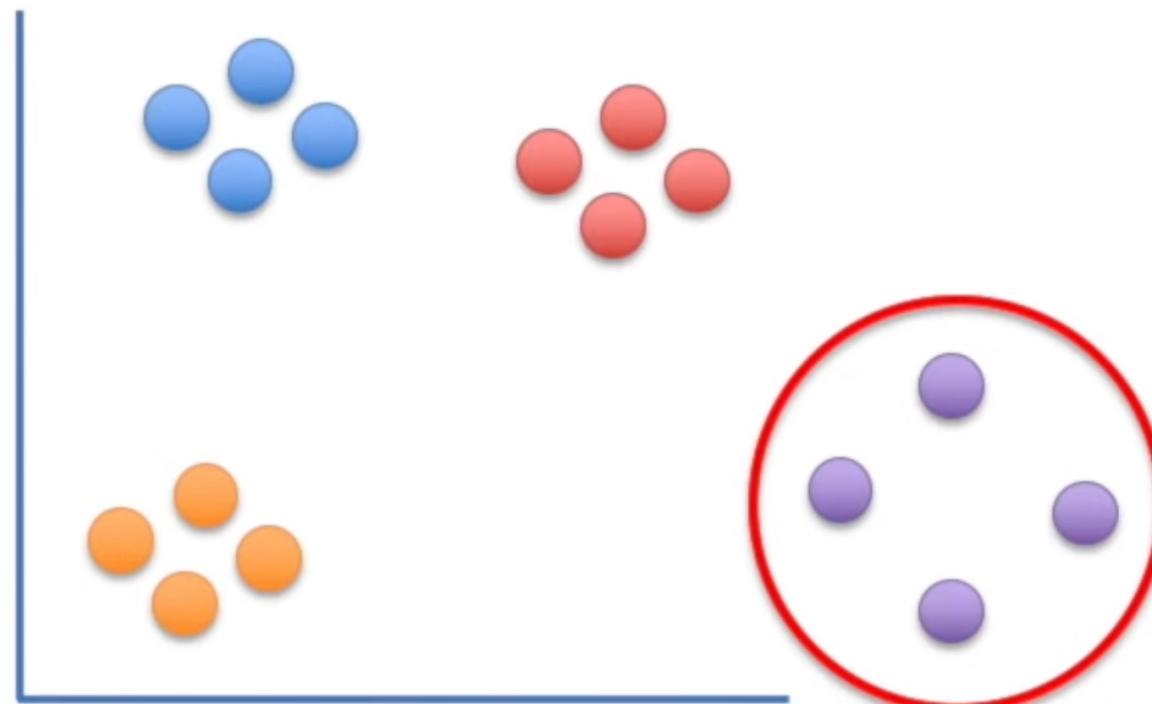


...and then measure the distances from the points to the curve to get the unscaled similarity scores with respect to the point of interest.

The next step is to scale the unscaled similarities so that they add up to 1.

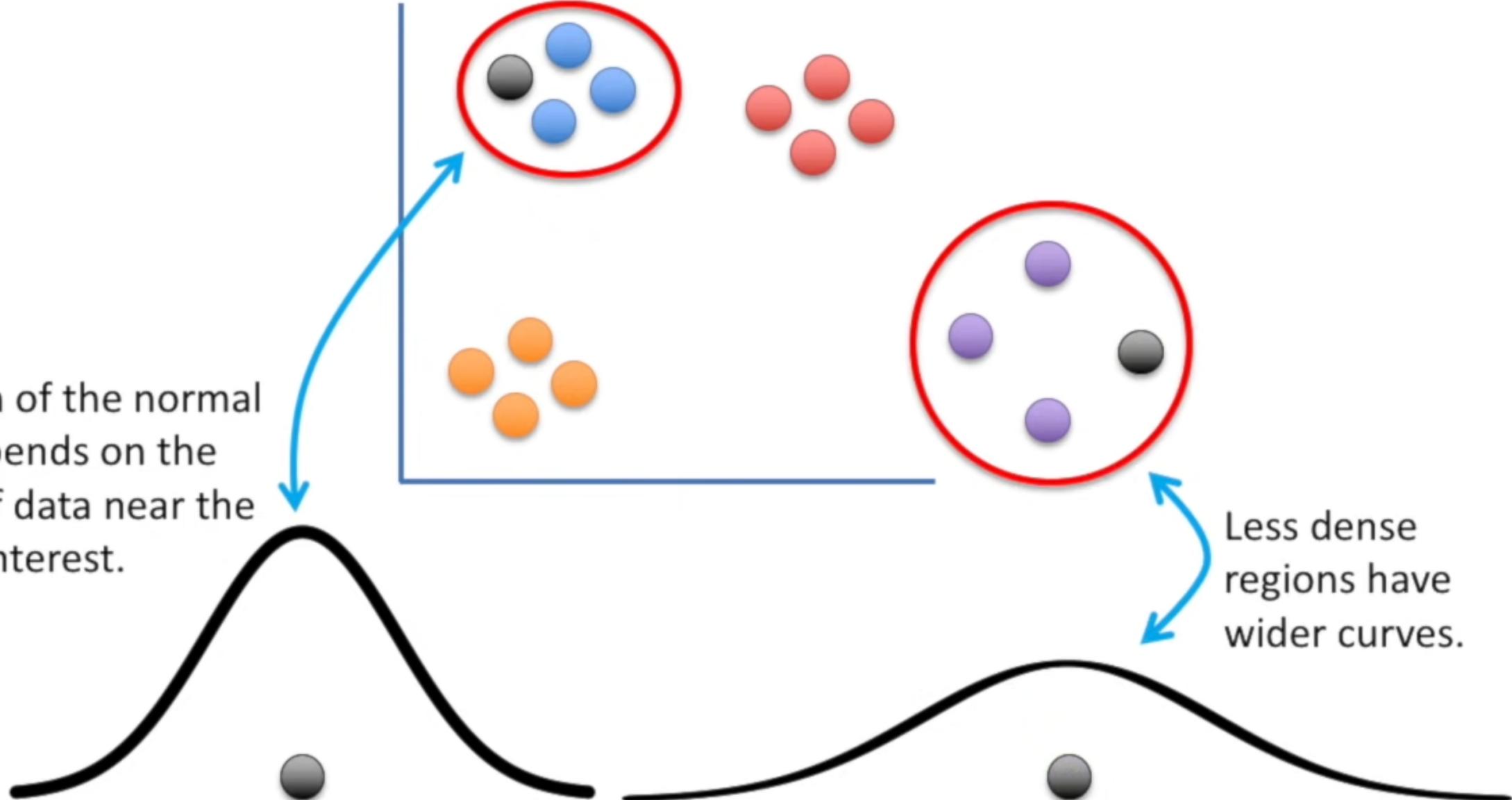


It has to do with something
I didn't tell you earlier...

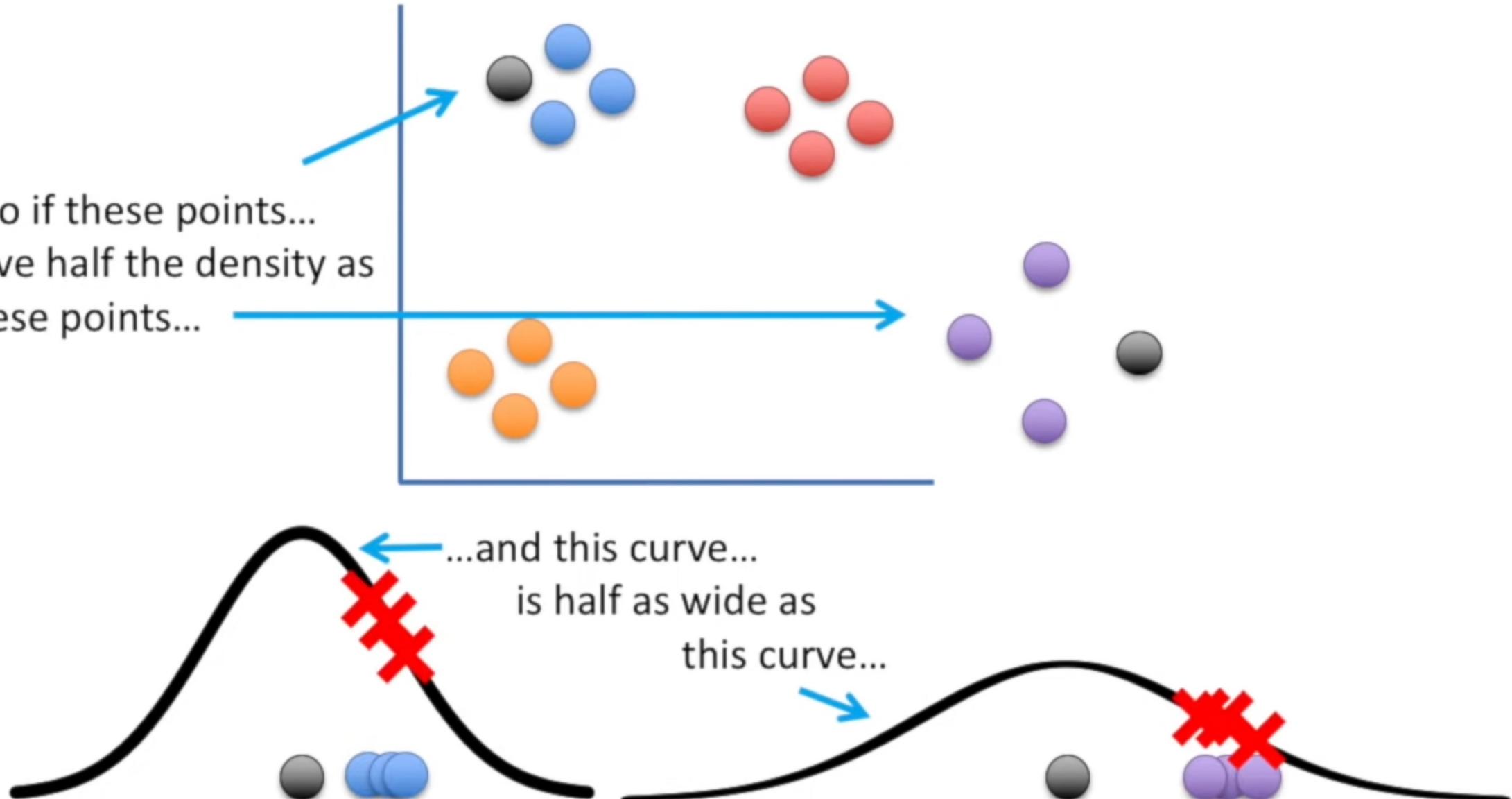


...and to illustrate the concept, I
need to add a cluster that is half
as dense as the others.

The width of the normal curve depends on the density of data near the point of interest.



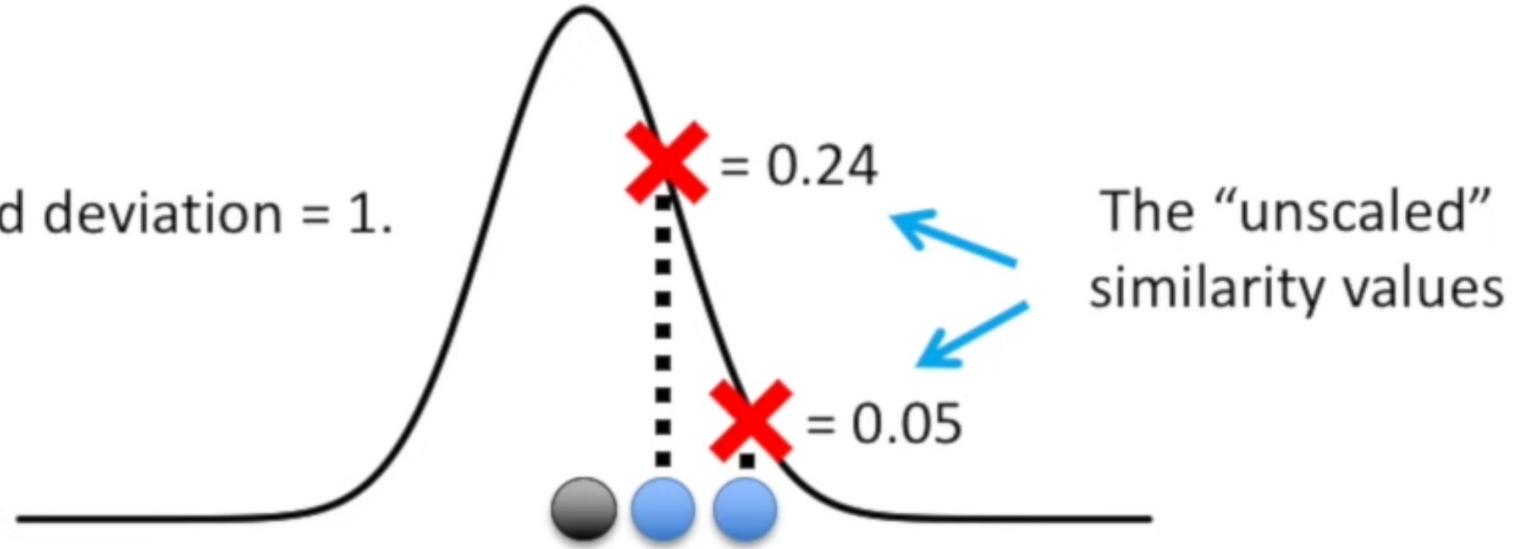
...so if these points...
have half the density as
these points...



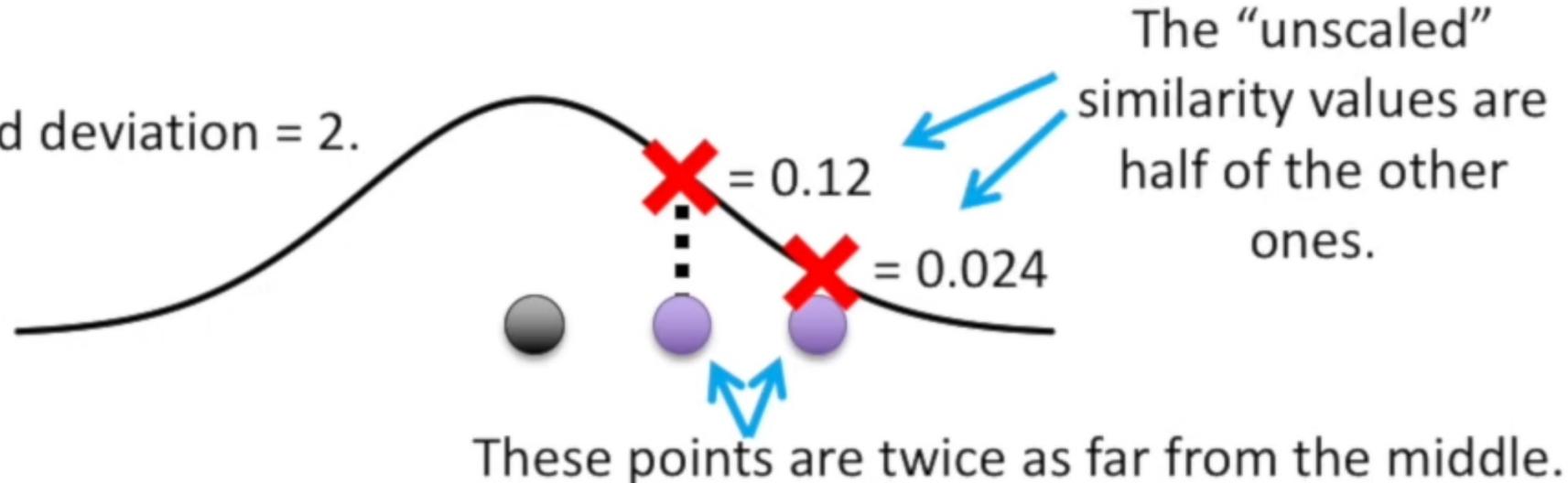
...then scaling the similarity scores will
make them the same for both clusters.

Here's an example...

This curve has a standard deviation = 1.

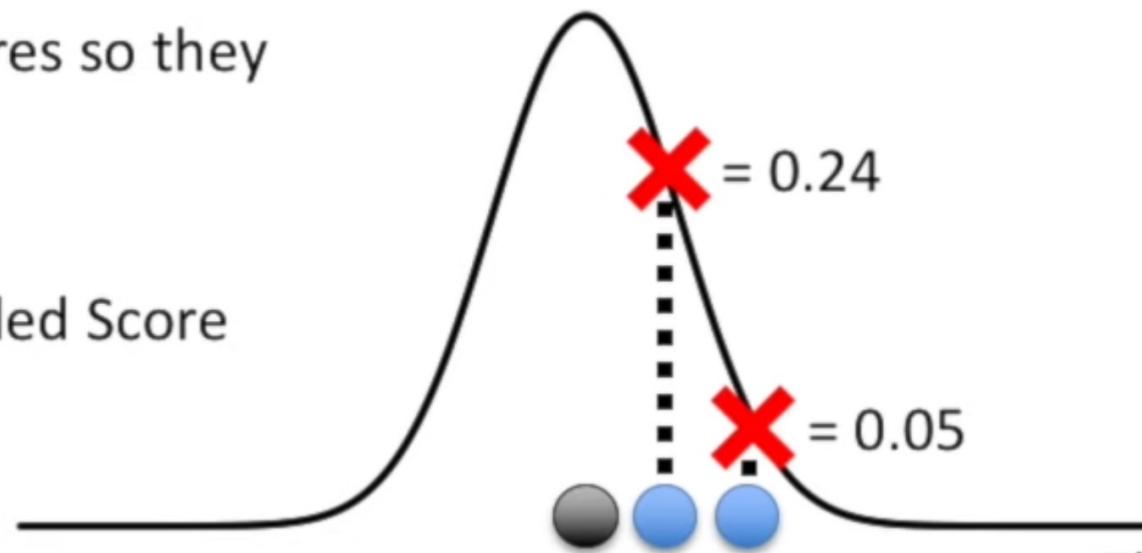


This curve has a standard deviation = 2.



To scale the similarity scores so they sum to 1:

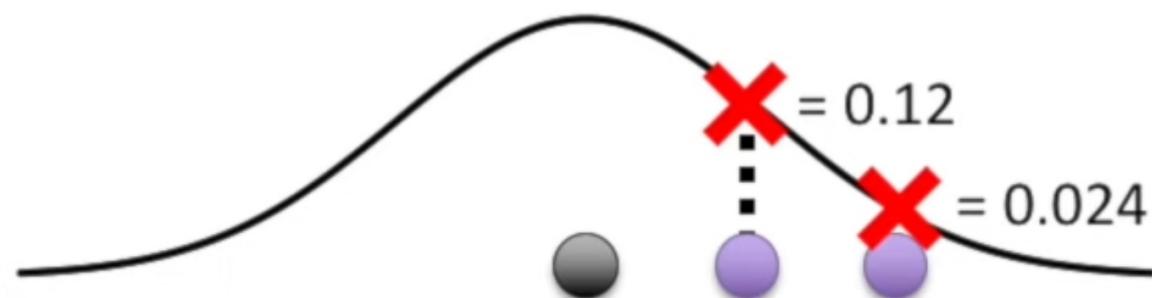
$$\frac{\text{Score}}{\text{Sum of all scores}} = \text{Scaled Score}$$



$$\frac{0.24}{0.24 + 0.5} = 0.82$$

$$\frac{0.05}{0.24 + 0.5} = 0.18$$

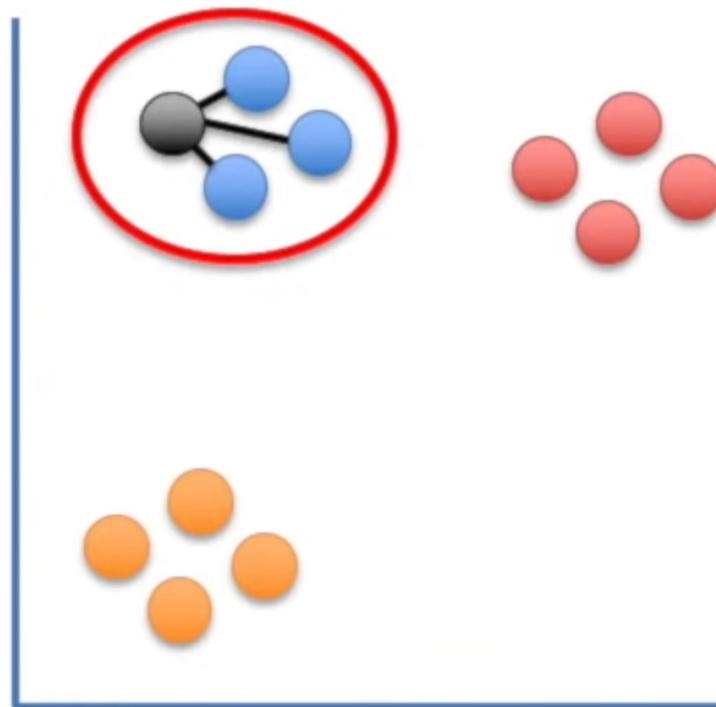
These are the same as these!



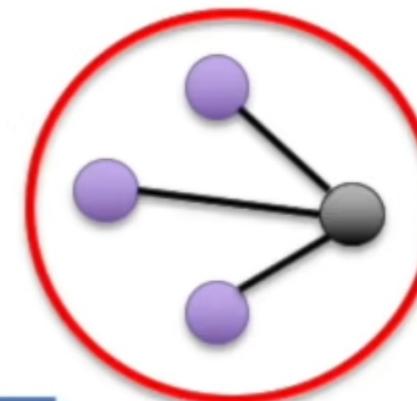
$$\frac{0.12}{0.12 + 0.024} = 0.82$$

$$\frac{0.024}{0.12 + 0.024} = 0.18$$

That implies that the scaled similarity scores for this relatively tight cluster...



...are the same for this relatively loose cluster!



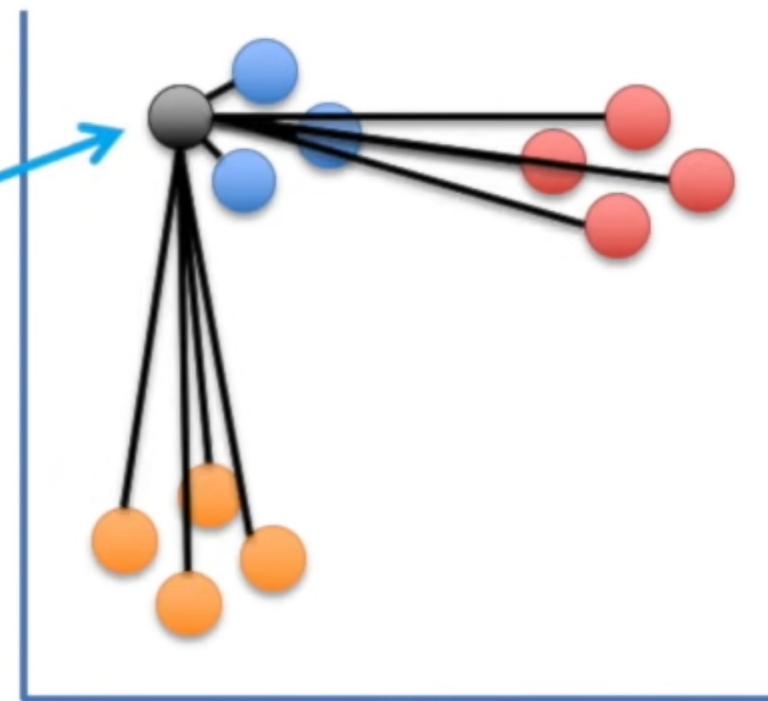
$$\frac{0.24}{0.24 + 0.5} = 0.82$$

$$\frac{0.05}{0.24 + 0.5} = 0.18$$

$$\frac{0.12}{0.12 + 0.024} = 0.82$$

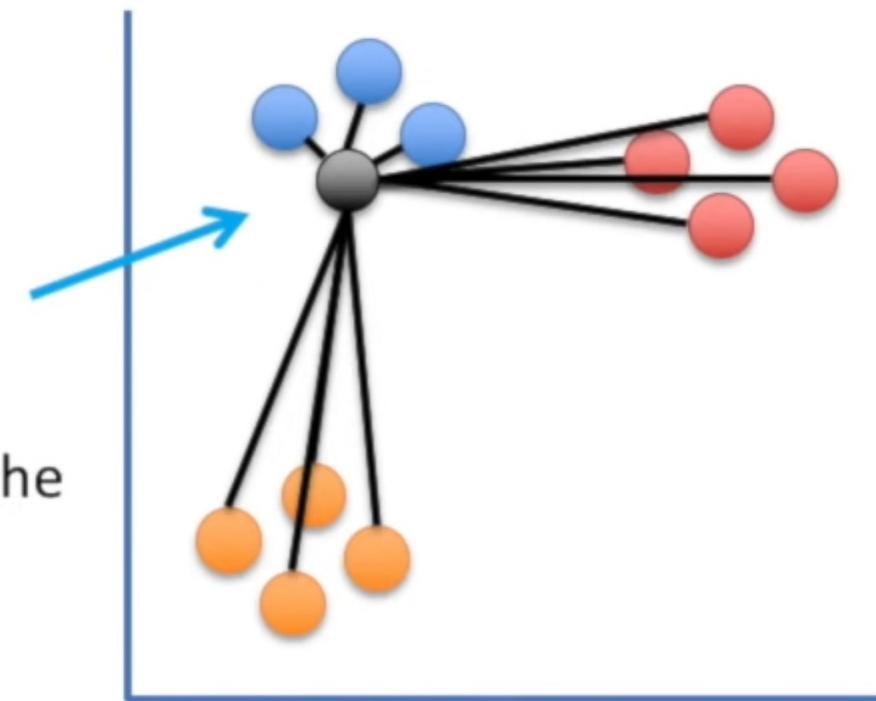
$$\frac{0.024}{0.12 + 0.024} = 0.18$$

We've calculated
similarity scores for this
point.

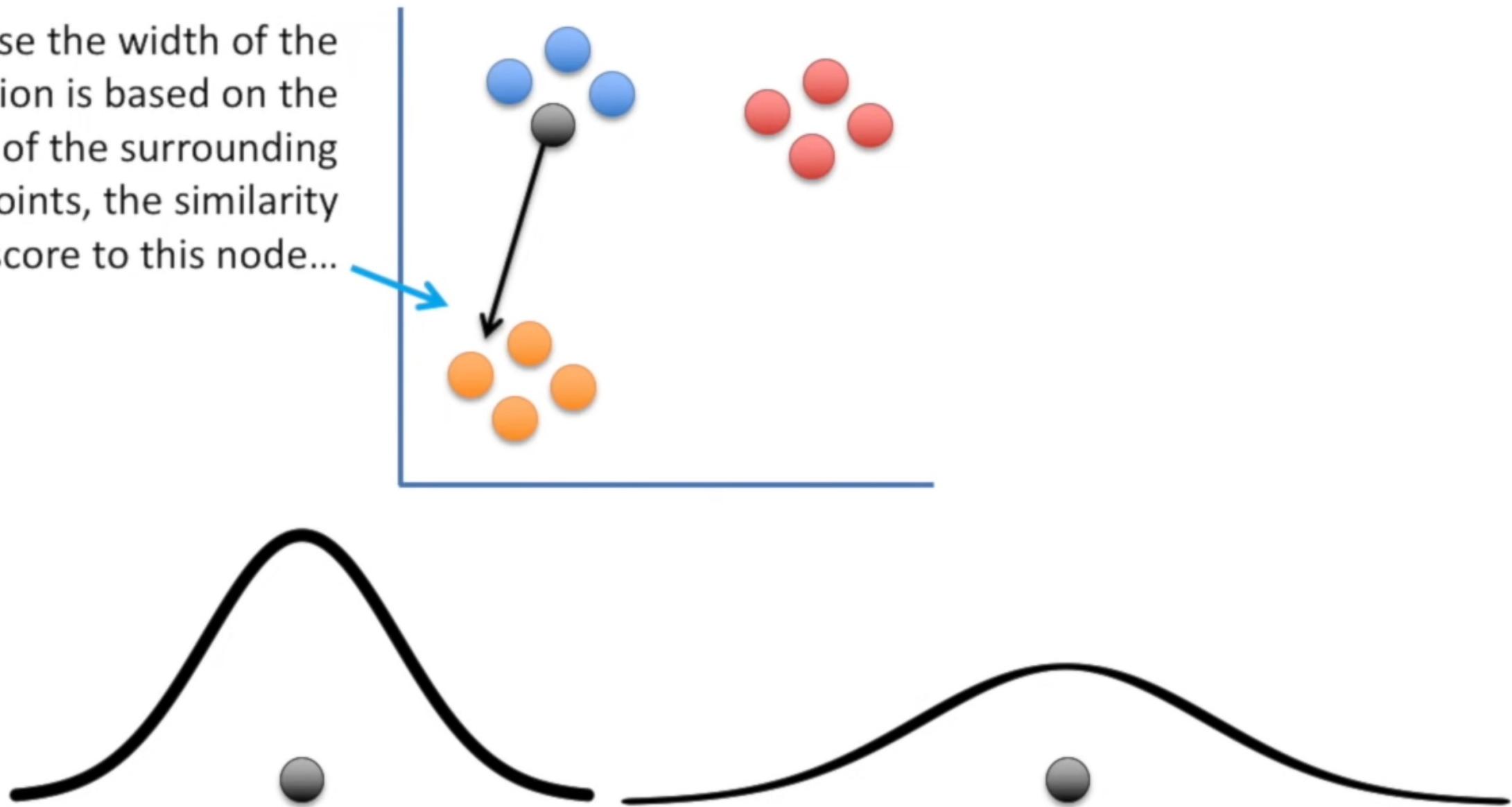


Now we do it for this point...

...and we do it for all the points.

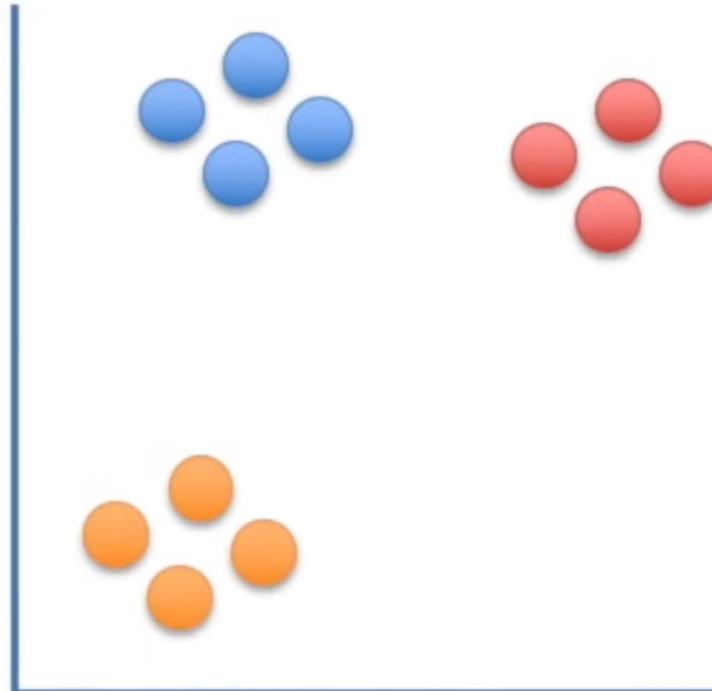


Because the width of the distribution is based on the density of the surrounding data points, the similarity score to this node...

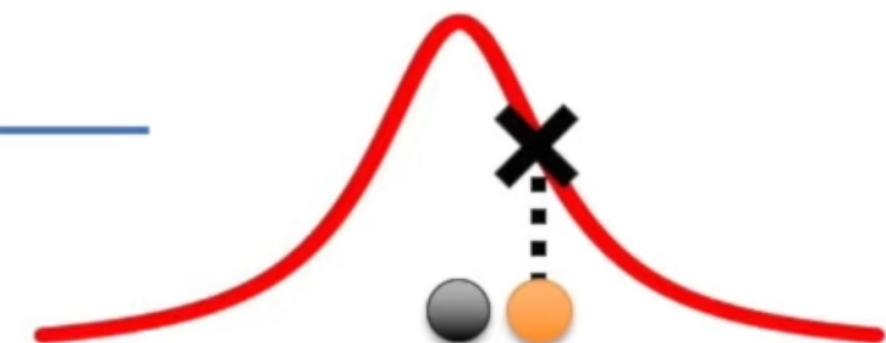


Just like before, that means picking a point...

...measuring a distance...

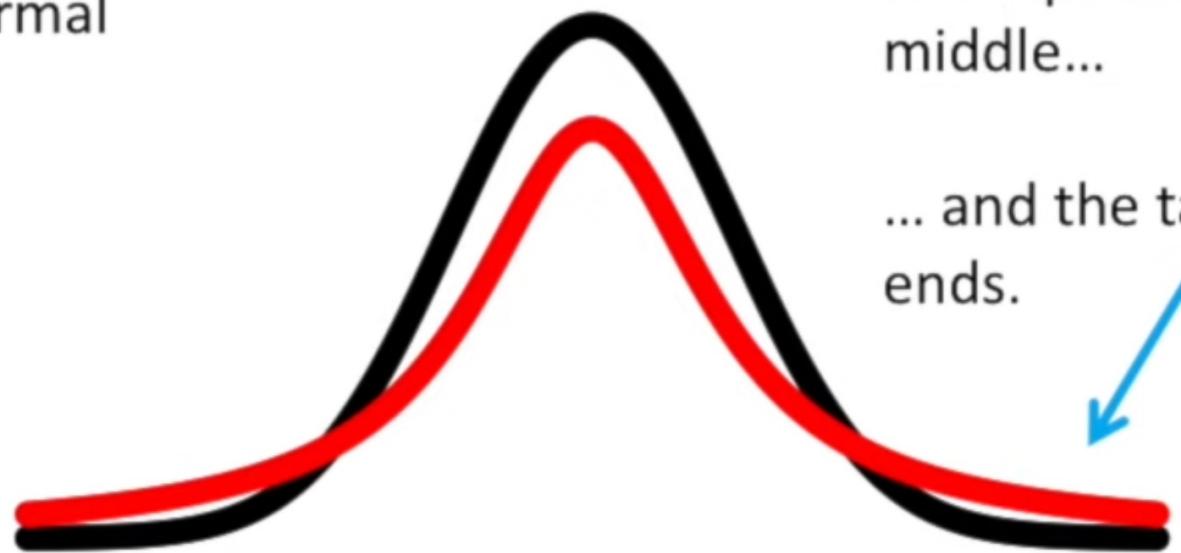


...and lastly, drawing a line from the point to a curve. However, this time we're using a "t-distribution".



A “t-distribution”...

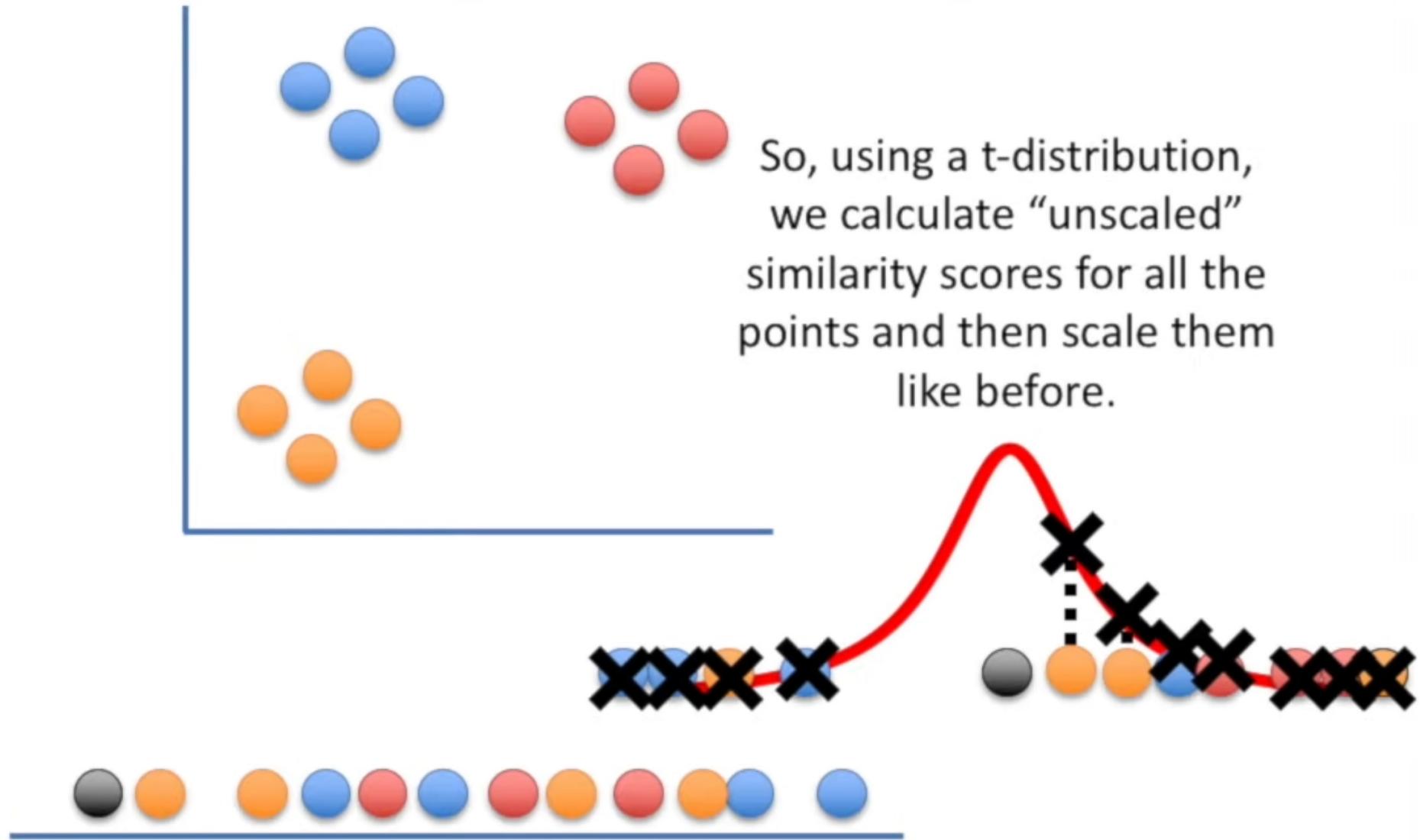
...is a lot like a normal distribution...

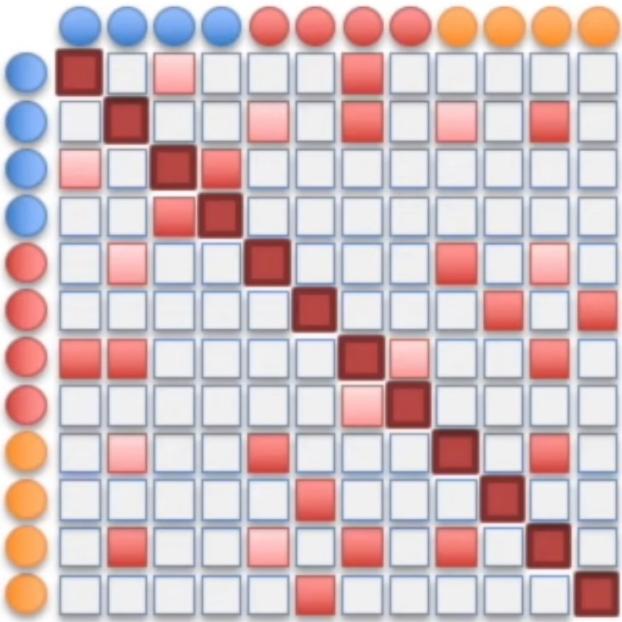


...except the “t” isn’t as tall in the middle...

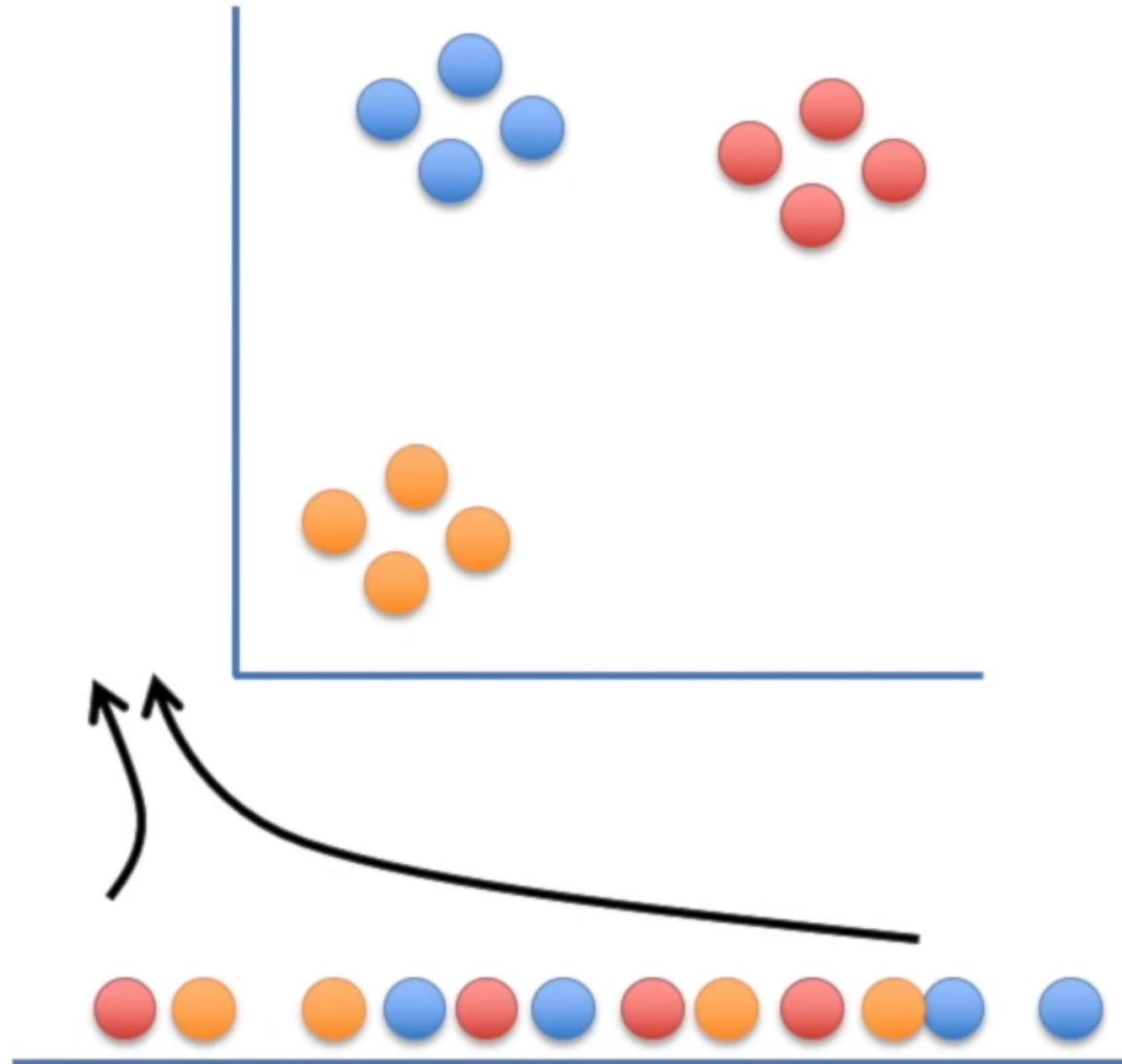
... and the tails are taller on the ends.

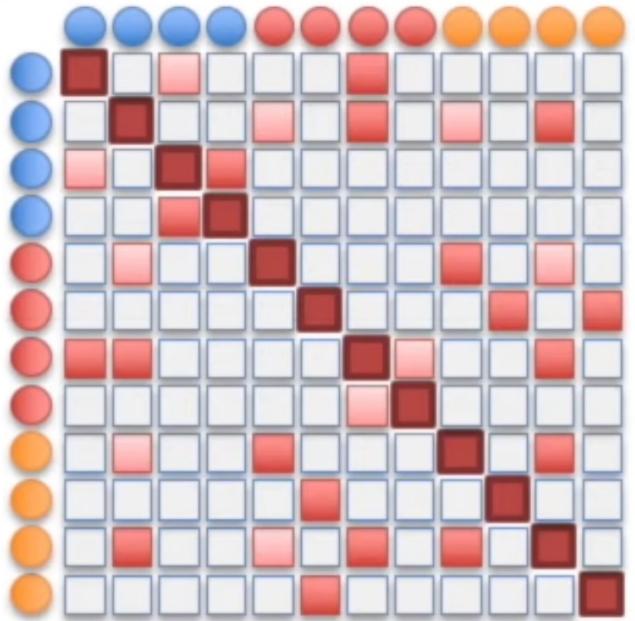
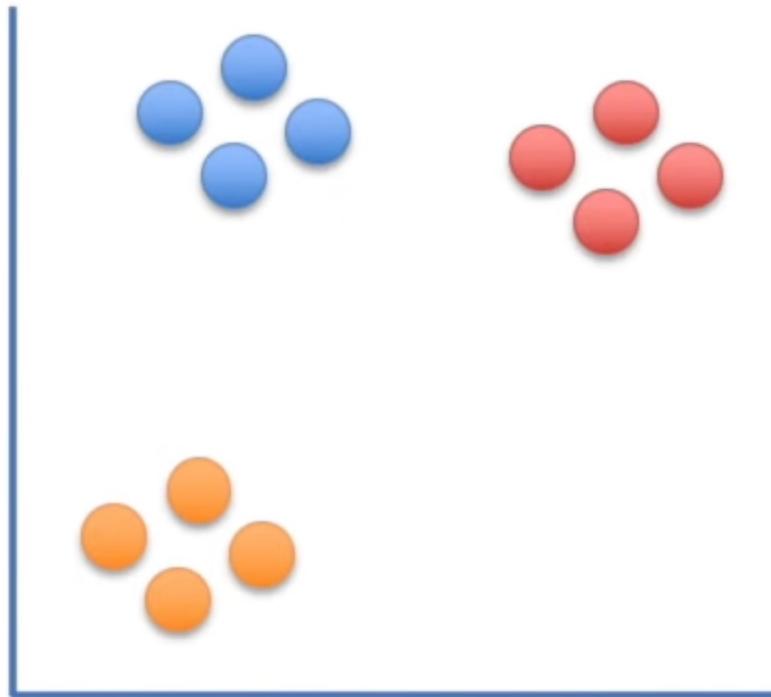
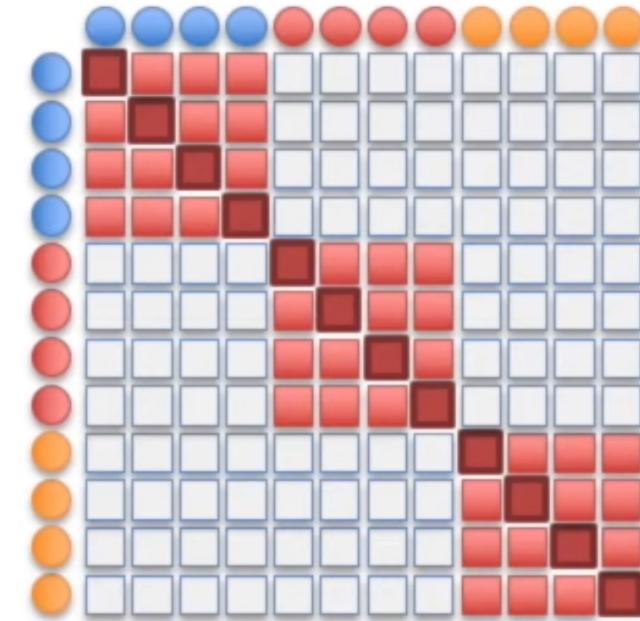
The “t-distribution” is the “t” in t-SNE.



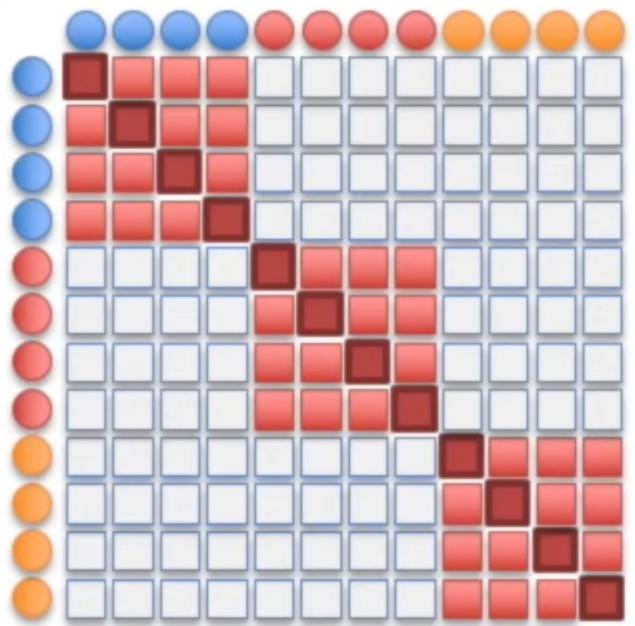
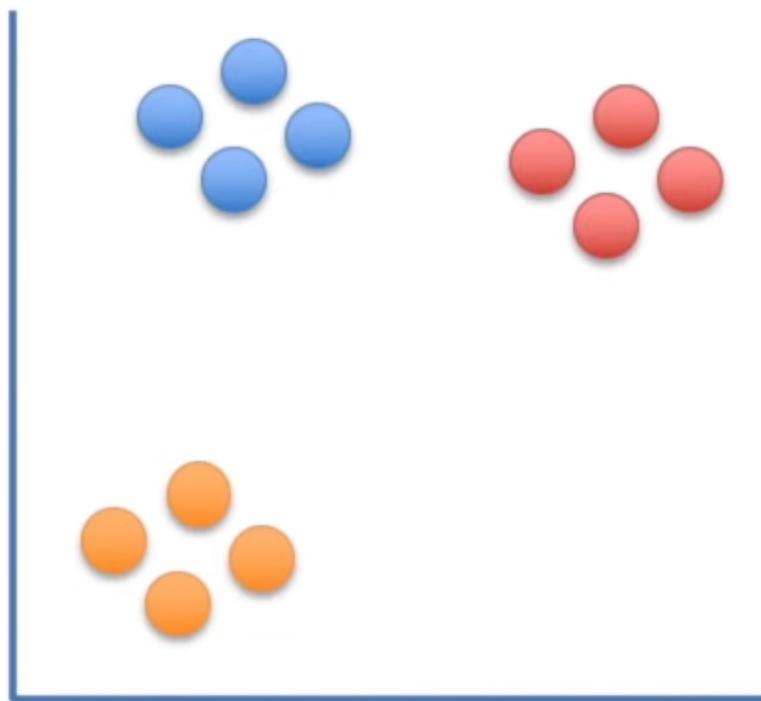
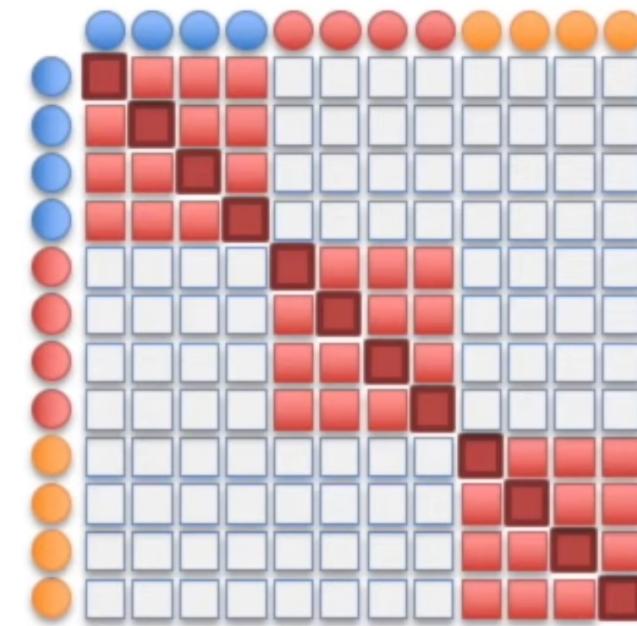


Like before, we end up with a matrix of similarity scores, but this matrix is a mess...



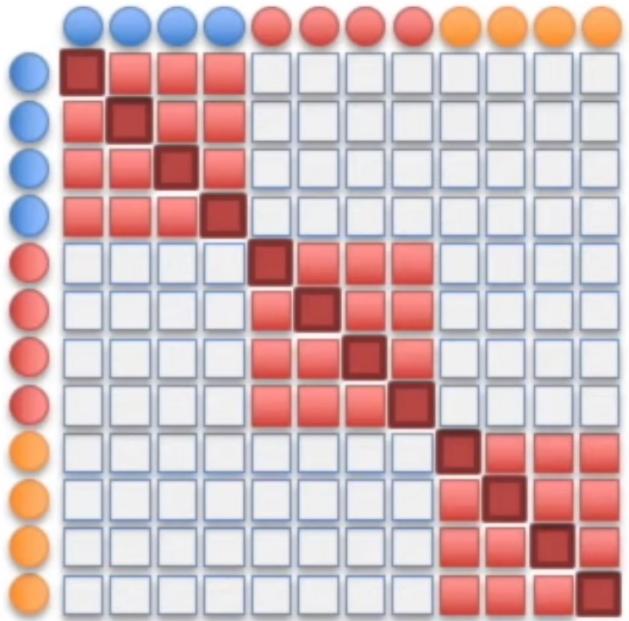
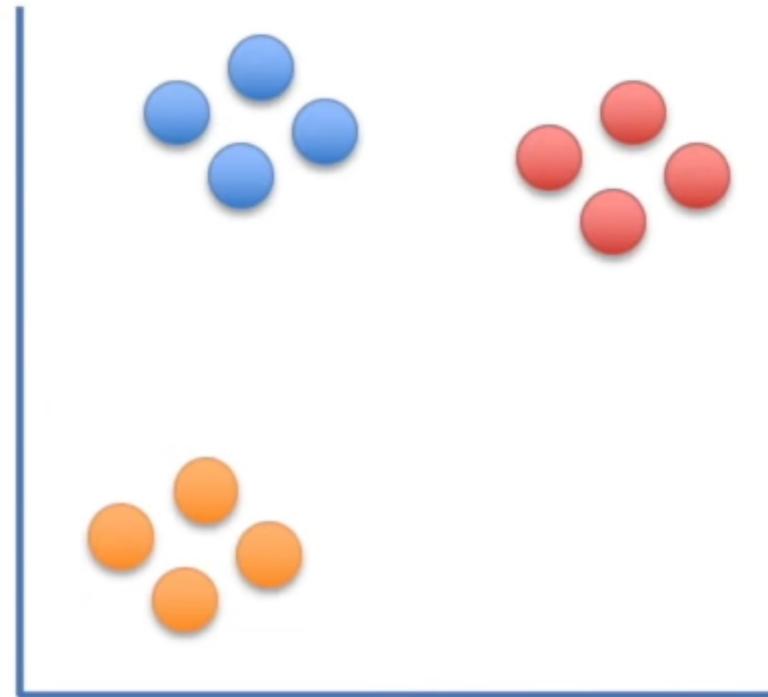
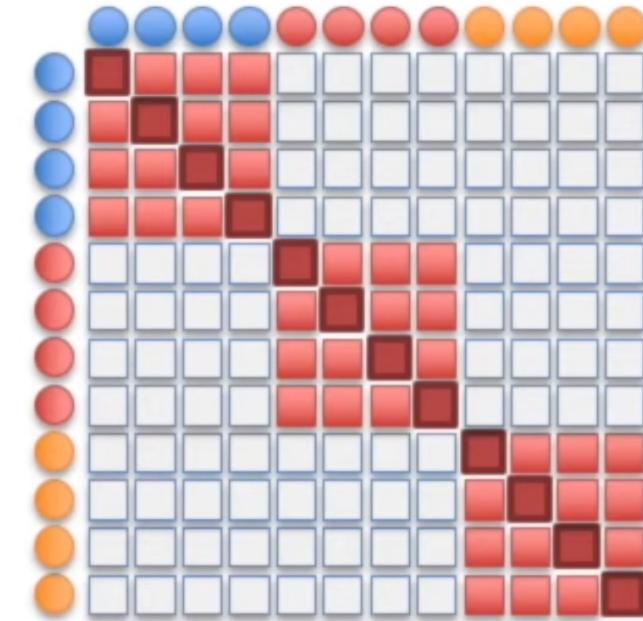


t-SNE moves the points a little bit at a time, and each step it chooses a direction that makes the matrix on the left more like the matrix on the right.

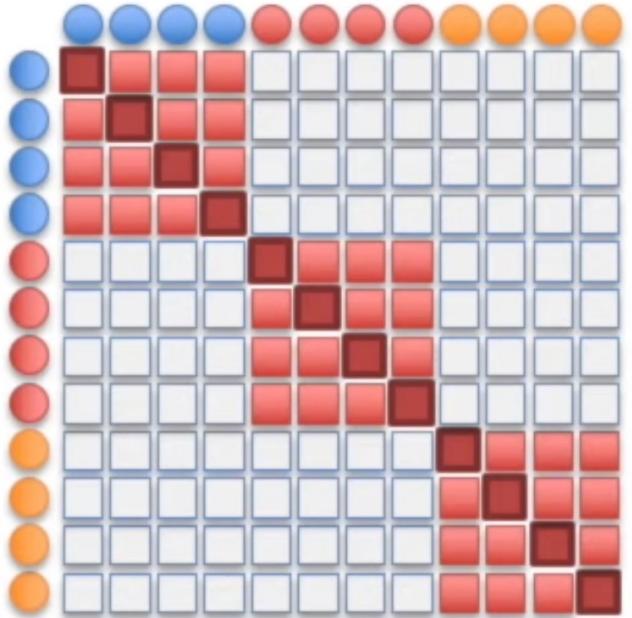
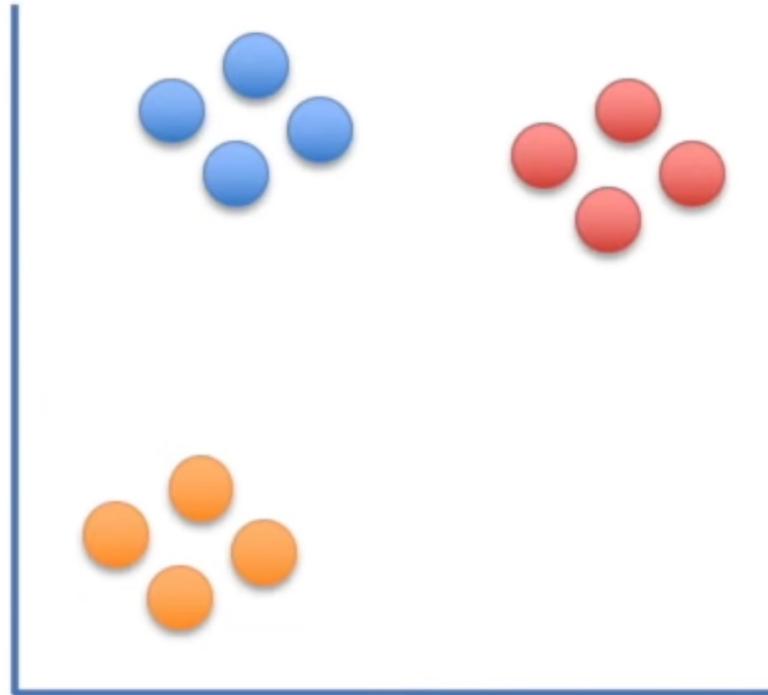
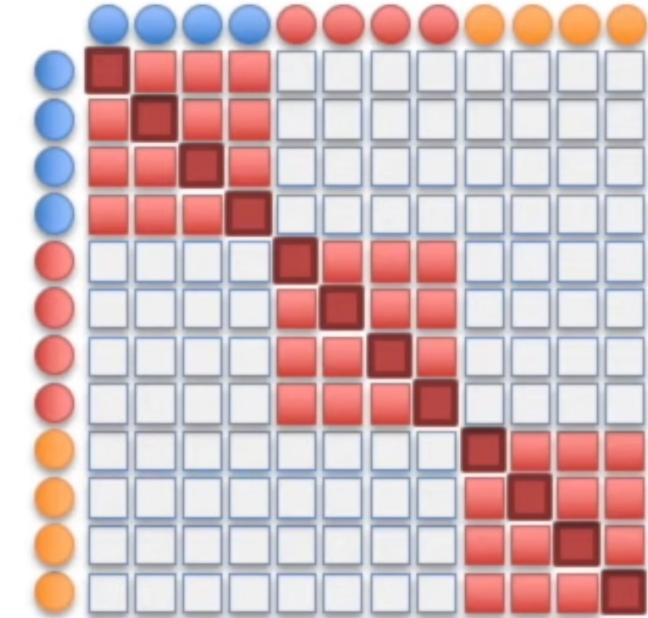


t-SNE moves the points a little bit at a time, and each step it chooses a direction that makes the matrix on the left more like the matrix on the right.

It uses small steps, because it's a little bit like a chess game and can't be solved all at once. Instead, it goes one move at a time.



...without it the clusters would all clump up in the middle and be harder to see.



...without it the clusters would all clump up in the middle and be harder to see.

t-SNE Perplexity

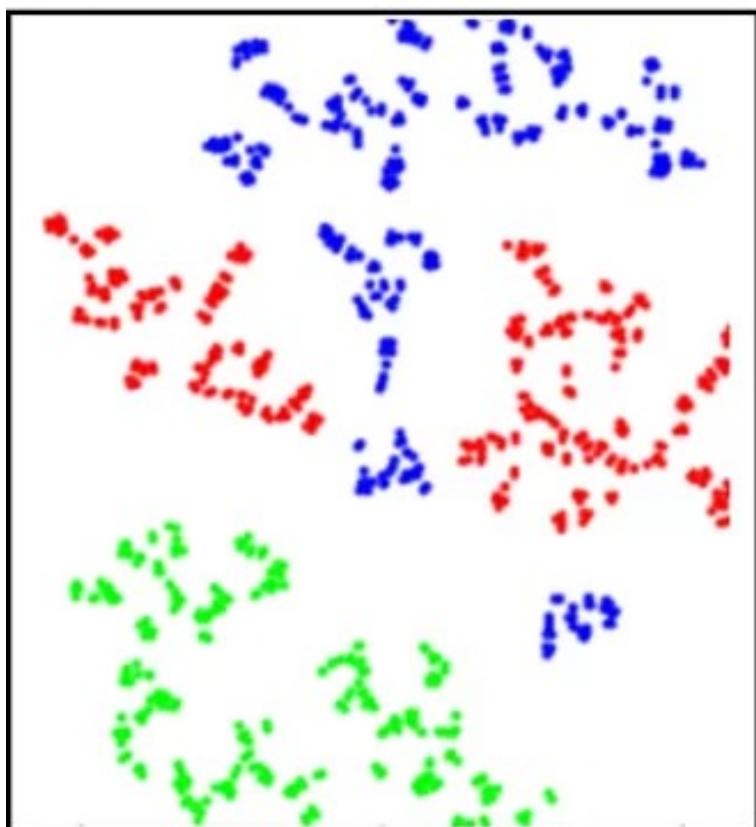
- There is an **hyperparameter** in the method, called ‘Perplexity’
- A hyperparameter in machine learning is a setting that you choose before training a model. It controls how the learning process works but is not learned from the data.
- Perplexity influences how the algorithm balances local and global structure in the lower-dimensional representation.
- Perplexity can be thought of as a smooth measure of the effective number of neighbors each point considers when constructing the low-dimensional embedding. It controls how much attention t-SNE pays to nearby versus distant points.

t-SNE Perplexity

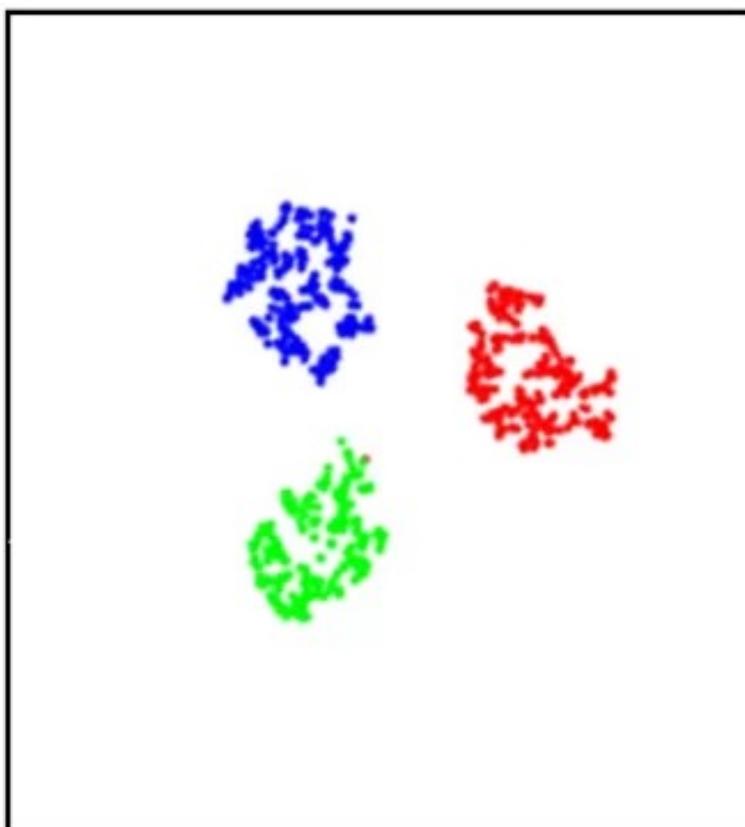
- There is an hyperparameter in the method, called ‘Perplexity’
- A hyperparameter in machine learning is a setting that you choose before training a model. It controls how the learning process works but is not learned from the data.
- Perplexity influences how the algorithm balances local and global structure in the lower-dimensional representation.
- Perplexity can be thought of as a smooth measure of the effective number of neighbors each point considers when constructing the low-dimensional embedding. It controls how much attention t-SNE pays to nearby versus distant points.

t-SNE Perplexity

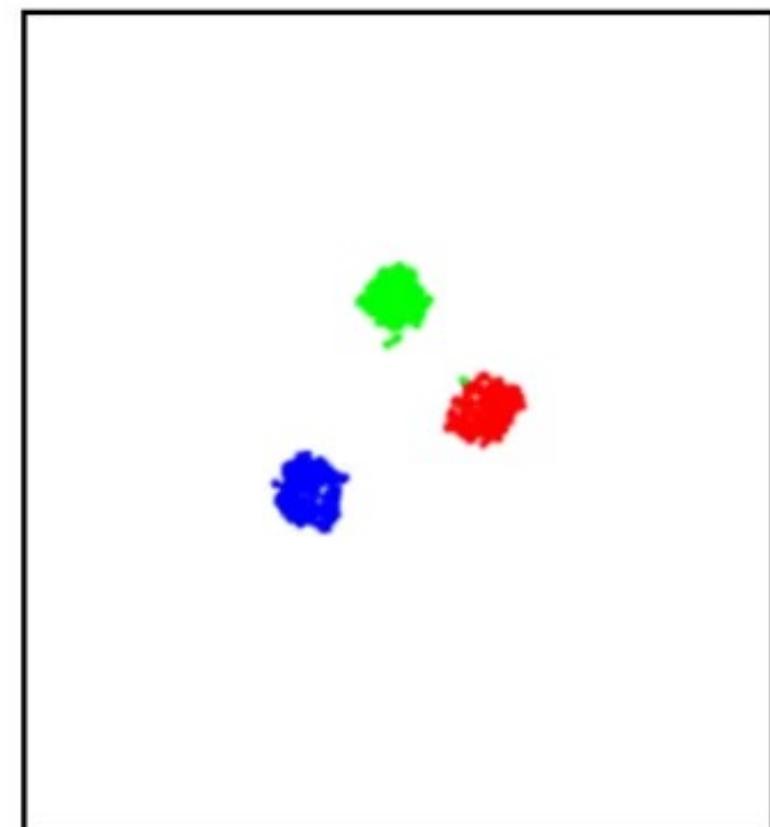
Perplexity = 10



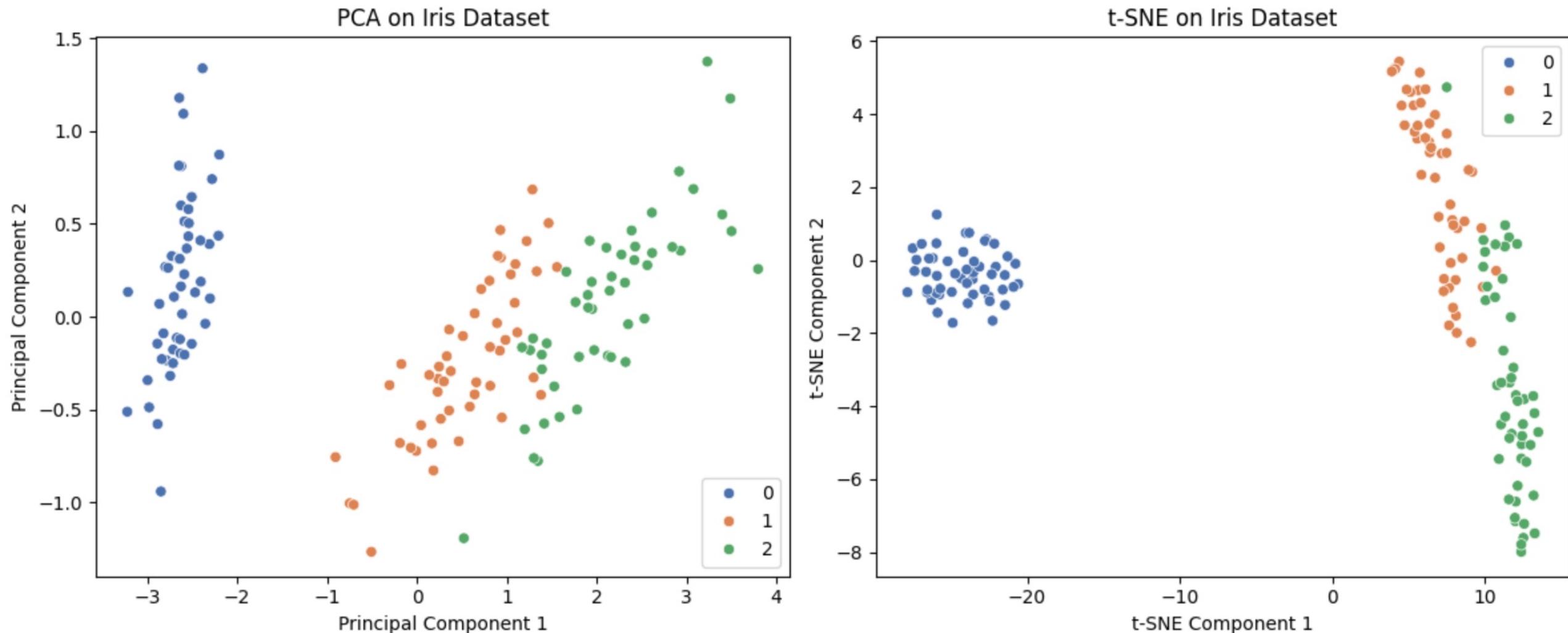
Perplexity = 30



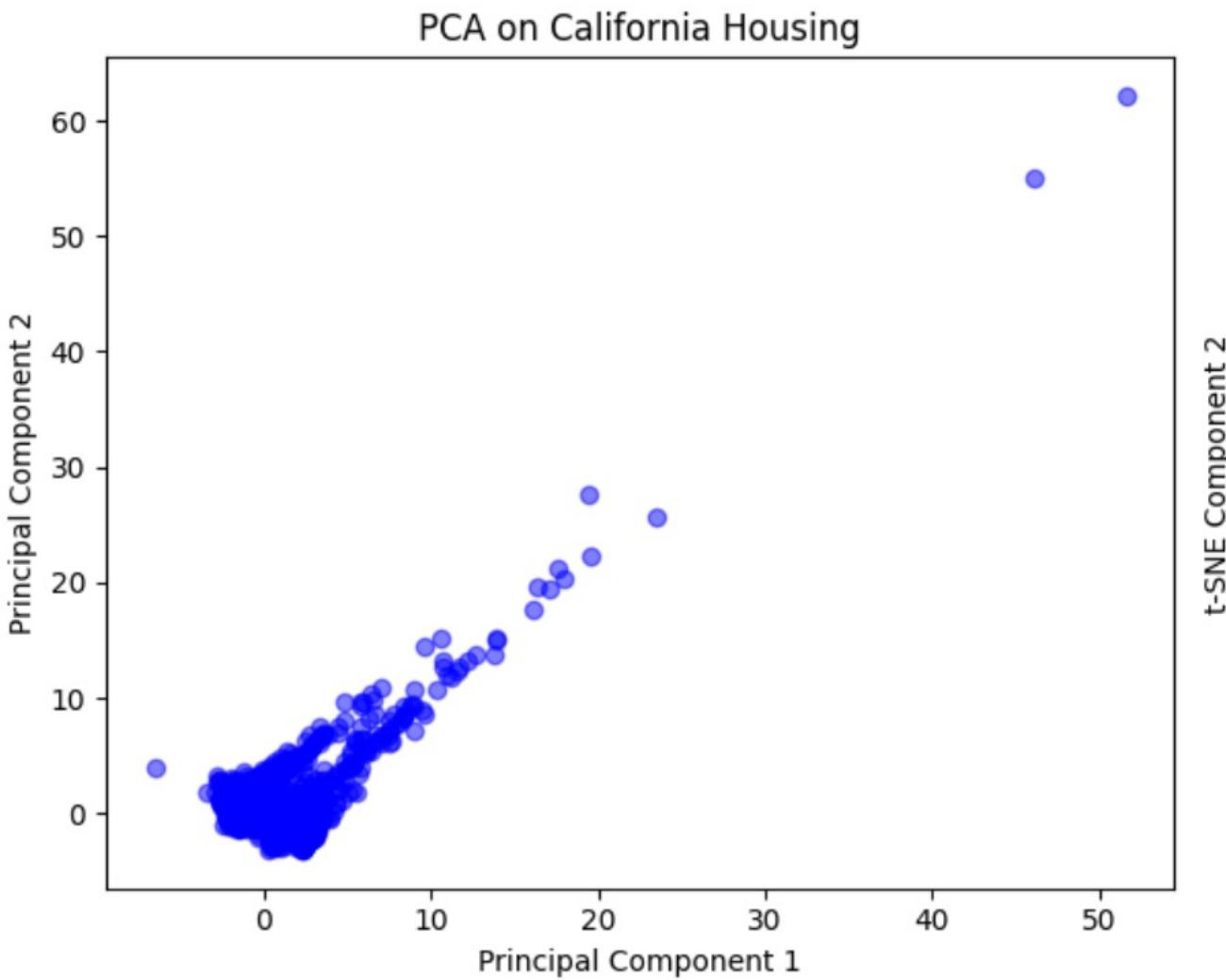
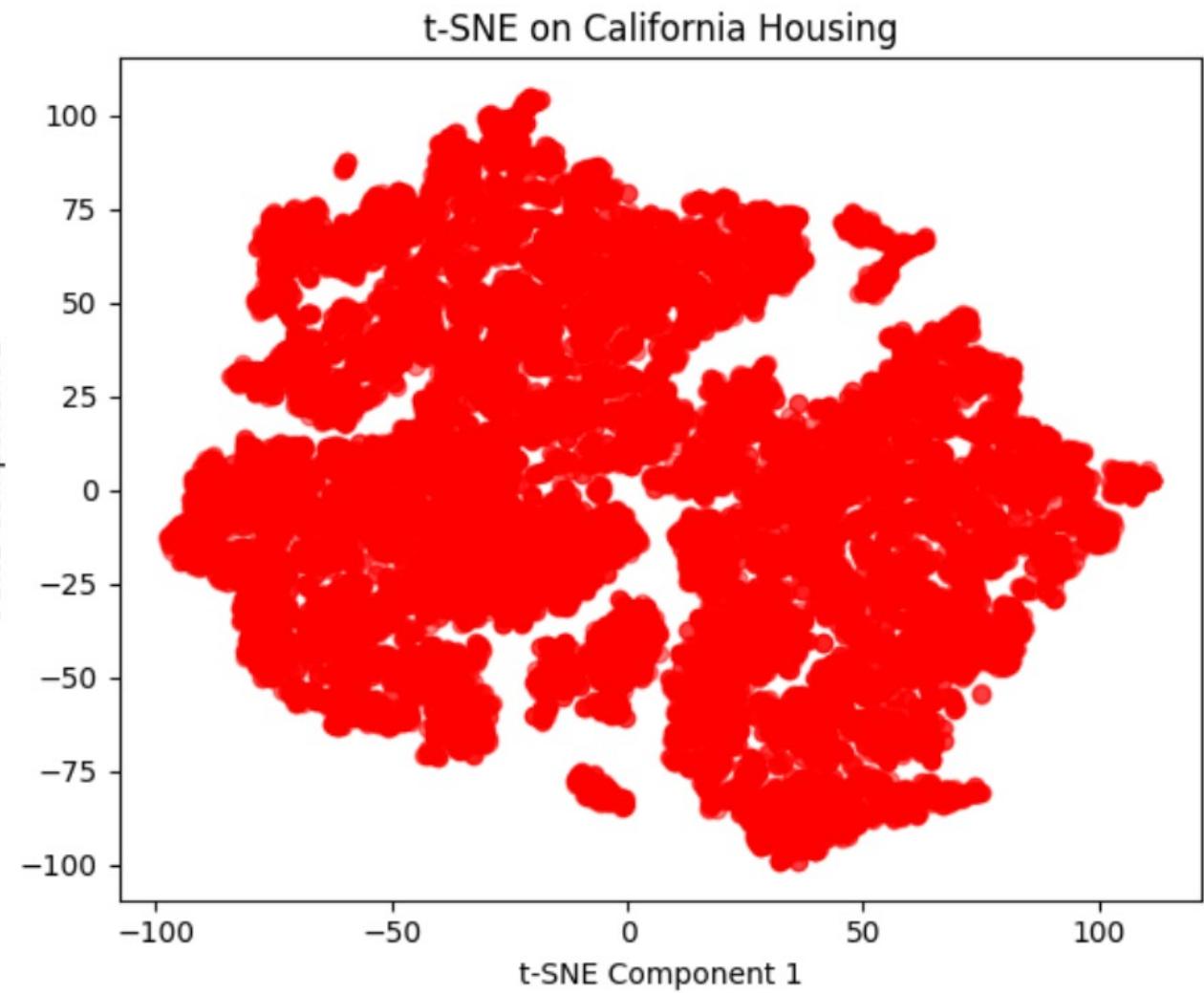
Perplexity = 90



On the Iris dataset

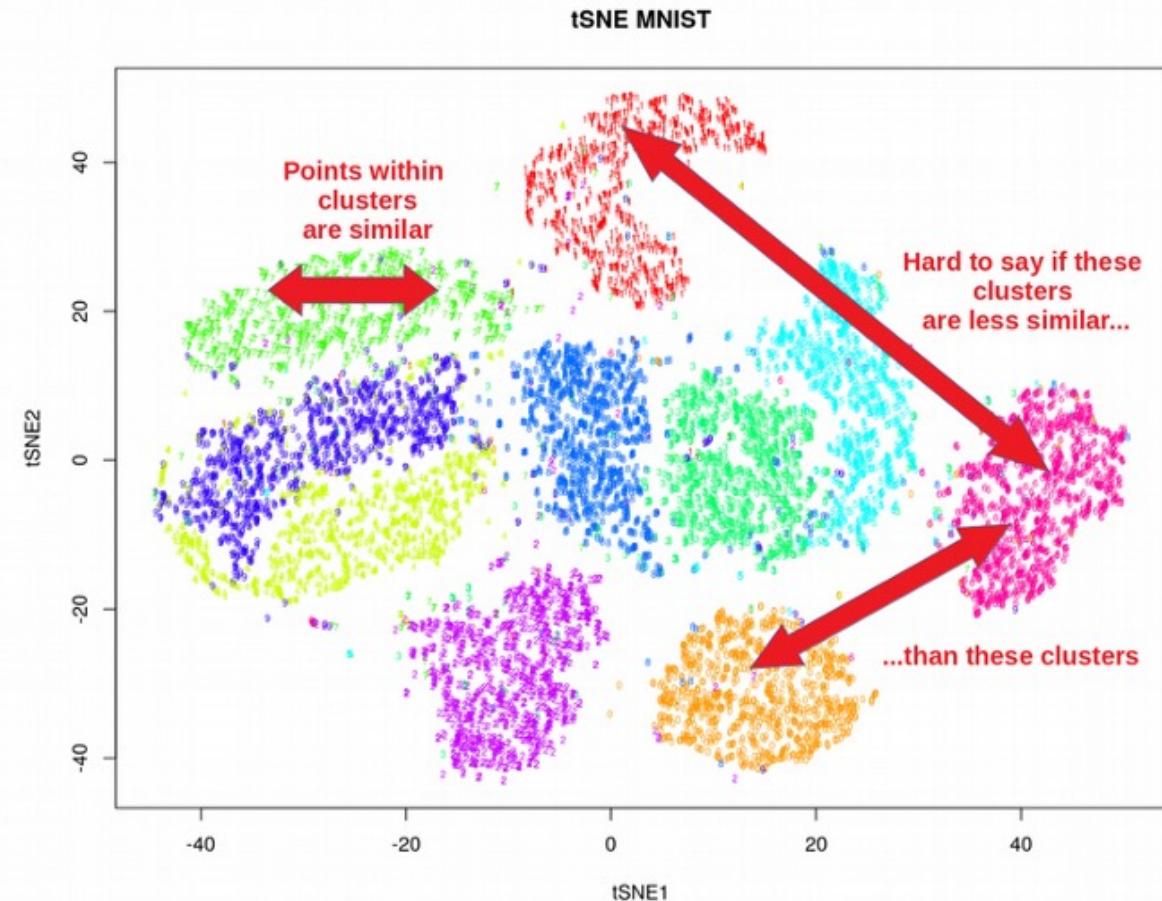


On the California Housing dataset



t-SNE Shortcomings

- Choice of perplexity is tricky!
- Be careful in interpreting t-SNE!!!
<https://distill.pub/2016/misread-tsne/>
- t-SNE does not scale well
- t-SNE does not preserve global data structure
- It's ok for data viz, not for feature extraction!



UMAP

Uniform Manifold Approximation and Projection

UMAP in a nutshell

- Uniform Manifold Approximation and Projection for Dimension Reduction (2018)
- Much faster than t-SNE
- Preserves global structure better than t-SNE

<https://github.com/lmcinnes/umap>

	t-SNE	UMAP
COIL20	20 seconds	7 seconds
MNIST	22 minutes	98 seconds
Fashion MNIST	15 minutes	78 seconds
GoogleNews	4.5 hours	14 minutes

https://www.youtube.com/watch?v=nq6iPZVUxZU&ab_channel=Enthousia%20t

Theory behind UMAP (quick overview)

- Based on algebraic topology and Riemannian geometry
- UMAP constructs a high dimensional, fuzzy graph representation of the data, then optimizes a low-dimensional graph to be as structurally similar as possible.

McInnes et al., (2018). UMAP: Uniform Manifold Approximation and Projection. *Journal of Open Source Software*, 3(29), 861. <https://doi.org/10.21105/joss.00861>

UMAP vs t-SNE

With UMAP, each category is clustered (local structure), while similar categories tend to collocate (global structure)

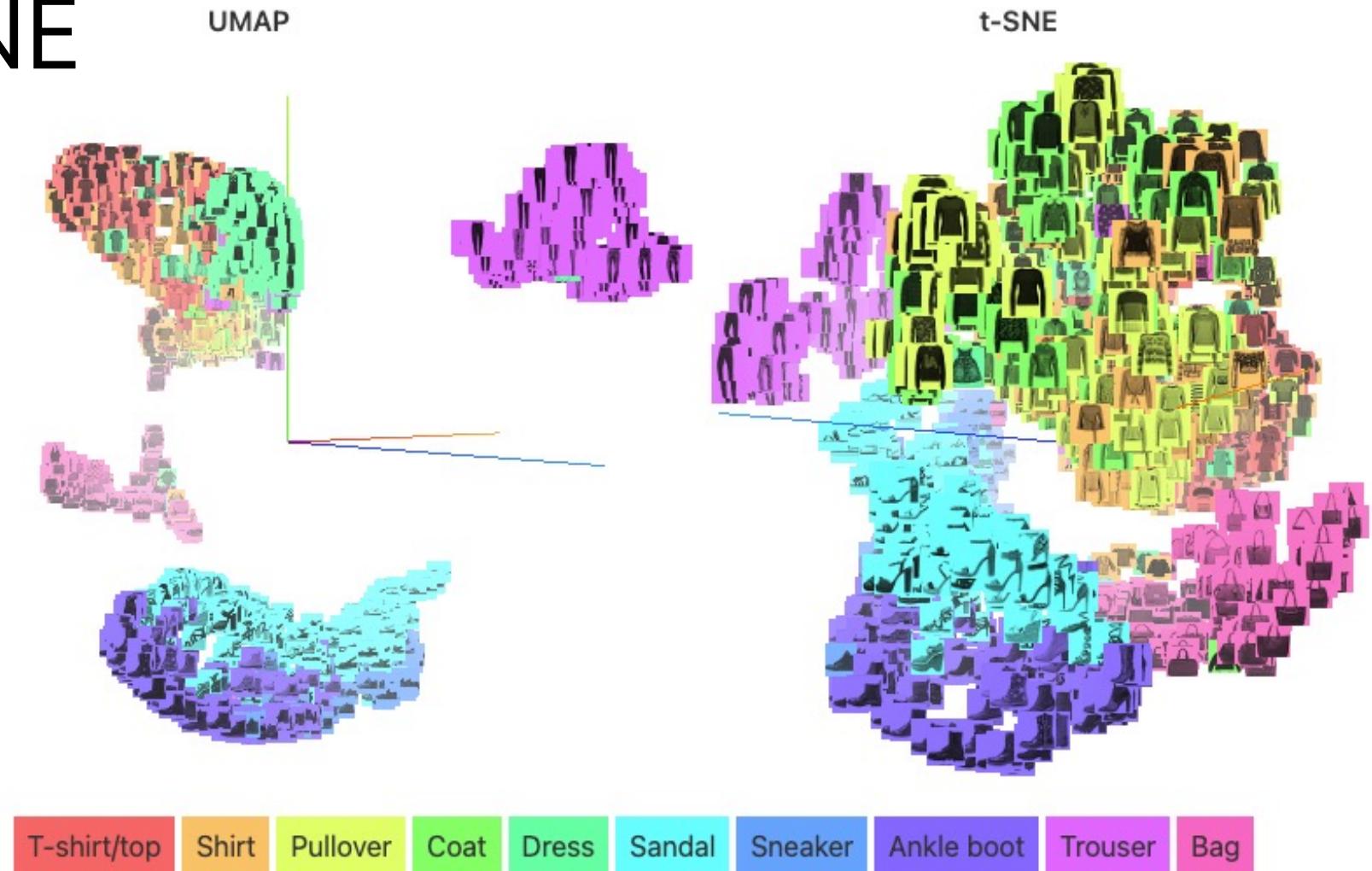
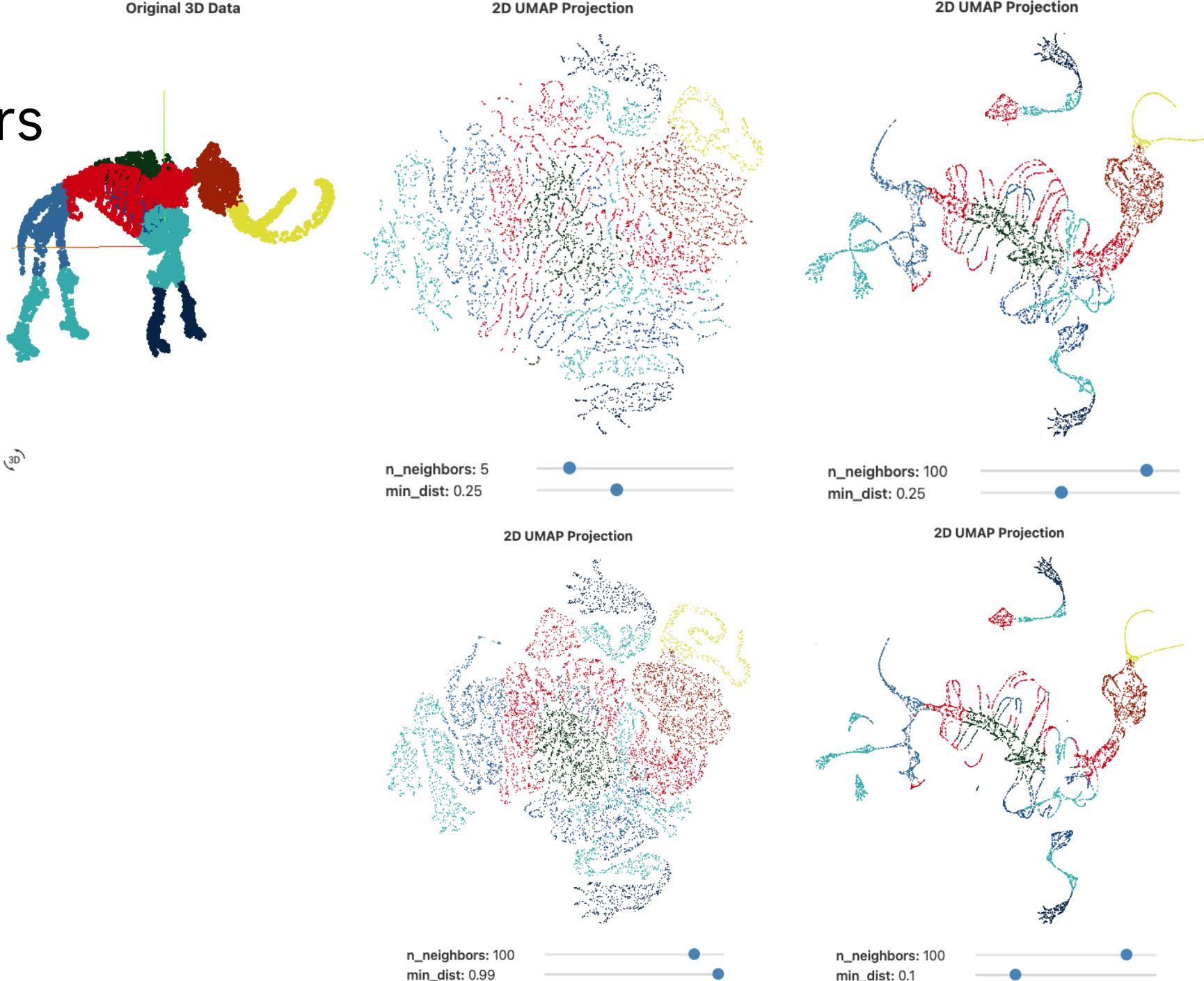


Figure 2: Dimensionality reduction applied to the Fashion MNIST dataset. 28x28 images of clothing items in 10 categories are encoded as 784-dimensional vectors and then projected to 3 using UMAP and t-SNE.

Input parameters

- **n_neighbours:** trade-off between preservation of local (low values) and global (high values) structure
- **min_dist:** minimum distance between points in low-dim space. Low values lead to more tightly packed embeddings



<https://pair-code.github.io/understanding-umap/>

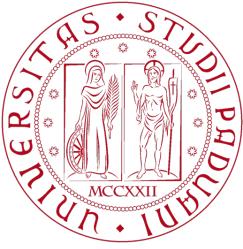
UMAP Pros & Cons

Cons:

- Hyperparameters choice is crucial
- Cluster sizes are not significant
- Distance between clusters might not mean anything
- Different results in different runs

Pros:

- **Faster** than tSNE
- More focus on **global structure**
- Viable tool for **feature engineering**



UNIVERSITÀ
DEGLI STUDI
DI PADOVA

Machine Learning

2024/2025

AMCO
ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

Thank you!

Gian Antonio Susto

