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Lecture #05
Multi-
dimensional Data
Visualization

Gian Antonio Susto




Before starting: Lab

Audio is not the best! We
are trying to find a
solution... in the
meantime: bring your
own headphones!




Recap — Tabular Data (the ‘design matrix’) - x

n
observations:
the number
of times the
phenomenon
we need to
'describe'is -
available in
our data
through
historical
examples

39
50

38
53

28
37
49
52
31
42
37
30
23
32
40
34
25
32
38
43
40
54
35
43

59

State-gov
Self-emp-not-inc
Private

Private

Private

Private

Private
Self-emp-not-inc
Private

Private

Private
State-gov
Private

Private

Private

Private
Self-emp-not-inc
Private

Private
Self-emp-not-inc
Private

Private
Federal-gov
Private

Private

pattributes (variables, features) potentially

related to the phenomenon under examination

77516
83311

215646
234721

338409
284582
160187
209642

45781
159449
280464
141297
122272
205019
121772
245487
176756
186824

28887
292175
193524
302146

76845
117037

109015

Bachelors
Bachelors
HS-grad
11th
Bachelors
Masters
9th
HS-grad
Masters
Bachelors
Some-college
Bachelors
Bachelors
Assoc-acdm
Assoc-voc
7th-8th
HS-grad
HS-grad
11th
Masters
Doctorate
HS-grad
9th

11th

HS-grad

13
13

13
14

5 Married-spouse-absent

14
13
10
13
13
12

\IQOLOAI:

14
16

0w N O

Never-married
Married-civ-spouse
Divorced
Married-civ-spouse
Married-civ-spouse
Married-civ-spouse

Married-civ-spouse
Never-married
Married-civ-spouse
Married-civ-spouse
Married-civ-spouse
Never-married
Never-married
Married-civ-spouse
Married-civ-spouse
Never-married
Never-married
Married-civ-spouse
Divorced
Married-civ-spouse
Separated
Married-civ-spouse
Married-civ-spouse

Divorced

Adm-clerical
Exec-managerial

Handlers-cleaners
Handlers-cleaners
Prof-specialty
Exec-managerial
Other-service
Exec-managerial
Prof-specialty
Exec-managerial
Exec-managerial
Prof-specialty
Adm-clerical
Sales

Craft-repair
Transport-moving
Farming-fishing
Machine-op-inspct
Sales
Exec-managerial
Prof-specialty
Other-service
Farming-fishing
Transport-moving

Tech-support

Not-in-family
Husband
Not-in-family
Husband
Wife

Wife
Not-in-family
Husband
Not-in-family
Husband
Husband
Husband
Own-child
Not-in-family
Husband
Husband
Own-child
Unmarried
Husband
Unmarried
Husband
Unmarried
Husband
Husband

Unmarried

White

White

White

Black

Black

White

Black

White

White

White

Black
Asian-Pac-Islander
White

Black
Asian-Pac-Islander
Amer-Indian-Eskimo
White

White

White

White

White

Black

Black

White

White

Male
Male

Male
Male

Female
Female
Female
Male
Female
Male
Male
Male
Female
Male
Male
Male
Male
Male
Male
Female
Male
Female
Male
Male

Female
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40
13

40
40

40
40
16
45
50
40
80
40
30
50
40
45
35
40
50
45
60
20
40
40

40

United-States
United-States
United-States
United-States
Cuba
United-States
Jamaica
United-States
United-States
United-States
United-States
India
United-States
United-States
?

Mexico
United-States
United-States
United-States
United-States
United-States
United-States
United-States
United-States

United-States

<=50K
<=50K
<=50K
<=50K
<=50K
<=50K
<=50K
>50K
>50K
>50K
>50K
>50K
<=50K
<=50K
>50K
<=50K
<=50K
<=50K
<=50K
>50K
>50K
<=50K
<=50K
<=50K
<=50K



sepal length (cm)

4.5 A

4.0 1

3.5 4

3.0 1

sepal width (cm)

2.54

2.01

petal length (cm)

1.0 1

petal width (cm)

0.5

Recap - 1D, 2D, 3D Plots... and then?
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Recap -1D, 2D, 3D Plots... and then?

There are several
technigques that allow to
visualize multi-
dimensional data (p > 3)!

We will see today:
- PCA
- t-SNE
- UMAP

PCA

PCA

.......

MNIST Digits

t-SNE

Fashion MNIST
t-SNE

,,,,,,,,,

UMAP




Principal Component Analysis (PCA)

Huge kudos to Joshua Starmer!



original data set

Principal
Component :
Analysis (PCA) 8

output from PCA

* PCA computes the sequence of mutually
orthogonal vectors that best fit the data,aka  “

the principal components. 2-
 We can use the first 2 or 3PCs to visualize S B G o
the data... lossy compression! 21

« PCA preserves global structure
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Mouse Mouse Mouse Mouse Mouse Mouse
1t 2 3 4 5 6

Gene1 10 11 8 3 1 2 If we only measure 1 gene,
_______________________________________________________________________________________ we can plot the data on a
number line...

55864 3 182
Low Values Gene 1 High Values



Mouse Mouse Mouse Mouse Mouse
1 2 3 4 5

...then we can plot the data on
a 2-Dimensional x/y graph.

9
2

©

Gene 1



‘Mouse Mouse Mouse Mouse Mouse
] : 3 : -

1

2

4

5

If we measured 3 genes, we
would add another axis to the
graph and make it look “3-D” (i.e.
3-dimensional)




Mouse Mouse Mouse Mouse Mouse

Mouse
Gene 1| 10 11 8 3 2
Gene 2 6 4 5 % 2.8 1

Gene 2

With the average
values, we can
calculate the center
of the data. »

-5 @

Gene 1



Gene 2

Relative positions
between data did not
changel

Now we’ll shift the data so
that the center is on top of
the origin (0,0) in the graph.

® o Gene 1



Gene 2

Now that the data are
centered on the origin, we
can try to fit a line to it.

To do this...

® > Gene 1



Gene 2

How to do this, will be
clearer from next
week! We provide now
an intuition.

Let’s rotate the line
that goes through the
origin

...then we rotate the line until
it fits the data as well is it
can, given that it has to go
through the origin.

Gene 1



Gene 2

Ultimately, this line fits
best...

‘--‘ """ Gene 1



Gene 2

... and then it can either
measure the distances from the
data to the line and try to find
the line that minimizes those
distances...

> Gene 1




Gene 2

Are these 2 concepts
equivalent?

...or it can try to find the
line that maximizes the
distances from the

projected points to the
origin. K <.

Gene 1




Gene 2

...we get a right angle between
the black dotted line and the
red dotted line.

K Gene 1



Gene 2

Since a (and thus a?)
doesn’t change...

b2 + c2
o0 b




Gene 2

...then b must get smaller.

a2 Cc2
o, b

Gene 1




Gene 2

...or maximize the distance from
the projected point to the origin.

az=hb2+c?

Gene 1



The reason I’'m making such a fuss
about this is that, intuitively, it
makes sense to minimize b, the

distance from the point to the line...

a2 {p?} c?

Gene 2

Gene 1



...but it’s actually easier to calculate c,
the distance from the projected point Gene 2
to the origin, so PCA finds the best
fitting line by maximizing the sum of
the squared distances from the
projected points to the origin.

ne @
TN b

Gene 1



Gene 2

...PCA projects the data onto it...

Gene 1




Gene 2

...and then measures the distance

from this point to the origin (let’s
call it dh)... \ TIA <.
dif |: |

1

Gene 1



d1

NOTE: I’'m going to
keep track of the
distances we measure
up here...

Gene 2

d1

Gene 1



di  d Gene 2

...and then PCA measures the
distance from this point to the

origin... \ﬂZ[ X <. ®

Gene 1



di d2 d3 dis ds ds

Gene 2

...and then PCA measures the
distance from this point to the
origin...

Gene 1




di2 d22 ds2 ds? ds?2 de?

Gene 2

The distances are squared so
that negative values...

Gene 1




d12 + d22 + d32 + d4? + d52 + de?

T

Gene 2

Then we sum up all
these squared
distances...

Gene 1




di2 + d22 + d32 + d4? + ds2? + de?2 = sum of squared distances|= SS(distances)

Gene 1




di2 + d2?2 + d32 + d4? + ds52 + de? = sum of squared distances = SS(distances)

...and we repeat until we end up
with the line with the largest sum
of squared distances between the F
projected points and the origin. *

® @. 2 s Gene 1



di2 + d22 + d32 + d42 + ds52 + de?2 = sum of squared distances = SS(distances)

Ultimately, we end up with
this line. It has the largest
SS(distances).

*“ """ Gene 1



Gene 2

This line is called Principal
Component 1. (PC1 for short.)

*_% """ Gene 1
| N



Gene 2

PC1 has a slope of 0.25

‘..-. “““ Gene 1



Gene 2

In other words,
for every 4 units
that we go out
along the Gene 1
axis...

‘.--. """" 4 Gene 1



Gene 2

...we go up 1 unit
along the Gene 2
axis.

‘.-. """" 4 Gene 1



Gene 2

That means that the data are
mostly spread out along the
Gene 1 axis...

...and only a little bit
spread out along the

Gene 2 axis. \

Gene 1




Gene 2
One way to think about PC1 is in

terms of a cocktail recipe...

To make PC1
Mix 4 parts Gene 1
with 1 part Gene 2

Pour over ice and serve! »

’.-‘ """ 4 Gene 1



Gene 2

One way to think about PC1 is in
terms of a cocktail recipe...

To make PC1
Mix 4 parts Gene 1

with 1 part Gene 2

The ratio of Gene 1 to Gene
2 tells you that Gene 1 is
more important when it
comes to describing how the
data are spread out..




To make PC1
Mix 4 parts Gene 1

with 1 part Gene 2

Terminology Alert!!!!
Mathematicians call this cocktalil
recipe a “linear combination” of

Genes 1 and 2.

Gene 2




; Gene 2
PCA is formally done

with normalized

vectors: the red vector
is normalized to 1

az = b2 + c2

az=42 + 12

a=J42+12 =4.12

4 Gene 1



Gene 2

PCA is formally done

with normalized
vectors: the red vector

is normalized to 1 All we have to do to
scale the triangle so
that the red line is 1
unit long is to divide
each side by 4.12.

Gene 1



Gene 2

412 - [42 412 =J(42+12)

4.12 4.12 4.122
R ER
4.12 4.12 419
For those of you keeping score, 12 1
here’s the math worked out that ——

shows that all we need to do is
divide all 3 sides by 4.12.

Gene 1



Gene 2

The new values change our
recipe...

To make PC1
Mix 0.97 parts Gene 1

with 0.242 parts Gene 2

...but the ratio is the same: we still — =
use 4 times as much Gene 1 as 12 ’
Gene 2. YRTi 0.242

Gene 1



Gene 2

Terminology Alert!!! This 1 unit
long vector, consisting of 0.97
parts Gene 1 and 0.242 parts

Gene 2, is called the “Singular
Vector” or the “Eigenvector”

for PC1.

‘.--Q """" Gene 1



Gene 2

Terminology Alert!!! This 1 unit
long vector, consisting of 0.97
parts Gene 1 and 0.242 parts

- To make PC1 Gene 2, is called the “Singular
Mix 0.97 parts Gene 1 Vector” or the “Eigenvector”
with 0.242 parts Gene 2 for PC1.
...and the proportions of each gene ®
are called “Loading Scores”. ® ..

Q.-'Q """" Gene 1



di2 + d22 + d32 + d4? + d52 + de?2 = sum of squared distances = SS(distances)

Also, while I'm at it, PCA calls
the average of the SS(distances)
for the best fit line the
Eigenvalue for PC1...

Gene 1



di2 + d22 + d32 + d4? + d52 + de?2 = sum of squared distances = SS(distances)

SS(distances for PC1)

= Eigenvalue for PC1 ...and the square root of the
n-1 SS(distances) is called the
\J SS(distances for PC1) = Singular Value for PC1 Singular Value for PC1.

Gene 1

Under the hood of PCA * |

there is a procedure called .

‘Singular Value
Decomposition’




Gene 2

Because this is only a 2-D
graph, PC2 is simply the line
through the origin that is
perpendicular to PC1, without \,
any further optimization that has a B
to be done. ® ..

‘..-. """" : Gene 1



Gene 2

...and this means that the
recipe for PC2 is...

-1 Parts Gene 1

4 Parts Gene 2 \
@

Gene 1




Gene 2

This is the Singular
Vector for PC2 or the
Eigenvector for PC2.

-0.242 Parts Gene 1
0.97 Parts Gene 2

Gene 1



Gene 2

These are the Loading
Scores for PC2.

-0.242 Parts Gene 1
0.97 Parts Gene 2

They tell us that, in terms
of how the values are
projected onto PC2, Gene
2 is 4 times as important
as Gene 1.

"
a®
IIIII
at®
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Gene 1




di2 + d22 + d32 + d42 + ds2 + de?2 = sum of squared distances = SS(distances)

Lastly, the Eigenvalue for PC2 is

. the average of the sum of
=Sldtancesior TLS) = Eigenvalue for PC2 squares of the distances between
n-1 the projected points and the

origin.

e
at®
IIII
a®
at®

Gene 1




We simply rotate everything so

that PC1 is horizontal...
PC2

*x* ........ >< ..... ¢ PCH

X



...then we use the projected points
to find where the samples go in
the PCA plot. PC2

X



Remember the eigenvalues?

We got those by
projecting the data onto
PC2 the principal

SS(distances for PC1) = Eigenvalue for PC1  : components...

n-1 :
SS(distances for PC2) = Eigenvalue for PC2

n-1

....................................... PC1



Remember the eigenvalues?

..measuring the
PC2 distances to the
SS(distances for PC1) = Eigenvalue for PC1 : origin...

n-1

SS(distances for PC2) = Eigenvalue for PC2
n-1




Remember the eigenvalues?

v

SS(distances for PC1) = Eigenvalue for PC1
n-1

...then squaring
and adding them
together.

PC2

SS(distances for PC2) = Eigenvalue for PC2
n-1




Well, if you are familiar with the equation
for variation, you will notice Eigenvalues
are just measures of variation.

PC2
SS(distances for PC1) = Variation for PC1 :
n-1

SS(distances for PC2) = Variation for PC2
n-1

“mEnEn EEEEEEEEEEGEEEE RN NN EEEEEEEEEEEEE DD



For the sake of the example, imagine
that the Variation for PC1 = 15, and
the variation for PC2 = 3.

PC2
SS(distances for PC1) = Variation for PC1 :
n-1

SS(distances for PC2) = Variation for PC2
n-1

lllllllllllllllllllllllllllllllllllllll



For the sake of the example, imagine
that the Variation for PC1 = 15, and
the variation for PC2 = 3.

That means that the total variation
around both PCsis 15+ 3 =18...

PC2
SS(distances for PC1) = Variation for PC1 :
n-1

SS(distances for PC2) = Variation for PC2
n-




For the sake of the example, imagine
that the Variation for PC1 = 15, and
the variation for PC2 = 3.

That means that the total variation
around both PCs is 15 + 3 = 18...

PC2 ...and that means PC1 accounts
SS(distances for PC1) = Variation for PC1 for 15/ 18 = 0.83 = 83% of the
n-1 total variation around the PCs.
SS(distances for PC2) = Variation for PC2 l
n-1 :

TS N S PC1 (83%)



PC2 accounts for3 /18 =0.17 =

17% of the total variation around
the PCs. }

PC2 (17%)

Q..@ i T PC1 (83%)



TERMINOLOGY ALERT!!!! A Scree
Plot is a graphical representation of
the percentages of variation that each
PC accounts for.

%0 PC2 (17%)

67.5

45

22.5

®
Q.0 i @ ... PC1 (83%)

PCA PC2



PCA with 3 variables (in this case, that means 3

genes) is pretty much the same as 2 variables...

‘Mouse Mouse Mouse Mouse Mouse

1 2 3 4 5

Mouse
6

S A

Gene 3

Gene 1

Gene 3



Pay attention: scaling is
something you typically Gene 2
have to do by hands

You center the data... Gene 3




Gene 2

Just like before, the
best fitting line is PC1. PC1 Gene 3




Gene 2

But the recipe for PC1
now has 3 ingredients...

0.62 Parts Gene 1
0.15 Parts Gene 2
0.77 Parts Gene 3
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0.62 Parts Gene 1

0.77 Parts Gene 3

In this case, Gene 3 is the most
important ingredient for PC1.
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Gene 2

You then find PC2, the next best fitting
line given that it goes through the
origin and it is perpendicular to PC1.




Gene 2

0.77 Parts Gene 1

.62 Parts Gene
0.15 Parts Gene 3
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In this case, Gene 1 is the most
important ingredient for PG2. ...

“““ ' Gene 1
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Gene 2

Lastly, we find PCS3, the
best fitting line that goes
through the origin and is

perpendicular to PC1 and PC1 Gene 3
PC2...
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Gene 2
If we had more genes, we’d just keep on

finding more and more principal
components by adding perpendicular lines
and rotating them...

In theory there is one per gene (or variable),

but in practice, the number of PCs is either PC1 Gene 3

number of variables or the number samples,
whichever is smaller.
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Once you have all of the principal
components figured out, you can use the
eigenvalues (i.e. SS(distance)) to determine
the proportion of variation that each PC
accounts for... PC1




80

60

40

PCA1

PC2 PC3

Here’s the scree plot...

P L]
*

uy
by
Ny

PC3 6% PC2 15%



80
That means that a 2-D graph, using just PC1
60 and PC2, would be a good approximation of
this 3-D graph since it would account for

" 94% of the variation in the data.

PC1 79%




Then we rotate so that PC1 is horizontal and
PC2 is vertical (this just makes it easier to
look at).

................ m xx*x PC1 79%

PC2 15%



etc...etc...

PC2 15%

PC179%



To review, we started

with an awkward 3-D

graph that was kind of
hard to read...

Gene 2

Gene 3

Gene 1



...lastly, we used PC1
and PC2 to draw a 2-
Dimensional graph with
the data.

.................‘ ................ .§ .................................. PC1 79%

: @
PC2 15%



‘Mouse Mouse Mouse Mouse Mouse Mouse
1 2 3 4 5 6

Gene1 10 11 8 3 2 1
| ; If we measured 4 genes per
Gene 2| 6 4 5 3 28 1 mouse, we wou!d not be able to
| | | draw a 4-dimensional graph of the
data...

..............................................................................................................................................................................................................




...In this case, PC1 and PC2
account for 90% of the variation,
SO we can just use those to draw

a 2-dimensional PCA graph.

PC1 PC2 |PC3 PC4



X PC1 65%

PC1 PC2 |PC3 PC4 PC2 25%

These two projected
points correspond to
Sample 2.



29
21.75
14.5
7.25
0

PC1

PC2 PC3 PC4

NOTE: If the scree plot looked like this,
where PC3 and PC4 account for a
substantial amount of variation, then just
using the first 2 PCs would not create a very
accurate representation of the data.
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Principal Component 2

First example in which standardization

matters! (California housing dataset)

PCA without Feature Scaling
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A high-
dimensional
example

p =197k (loci)

= 1387
(|nd|V|duaIS)

Genes mirror geography within Furope —Nature 2008 https://www.nature.com/articles/nature07331



https://www.nature.com/articles/nature07331

Issues with PCA

* PCA takes care of mapping distant objects far from
each other: local structure is not preserved!

 PCA does not take manifolds into account.

not take manifolds into account...

PCA projection

.PCA does




T-SNE

t-Distributed Stochastic Neighbor Embedding

Huge kudos to Joshua Starmer!



T-SNE in a nutshell

« T-distributed Stochastic Neighbor Embedding (2008).

* |[dea: map similar objects in the high dimensional space into
close points in a low dimensional space

« t-SNE Takes care of small local distances (focus on local
structure)

* Open-source code. For instance, it is available in scikit-learn.

van der Maaten, L. & Hinton, G. (2008). Visualizing Data using t-SNE . Journal of Machine Learning
Research, 9, 2579—260,
https://www.imlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf



https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

Theory behind T-SNE -1 (optional)

» Starting point: N high-dim objects x;, ..., Xy
« We consider this “distance” in high-dim space (it only cares
about local similarity):
o eap(=lm — a]*/20%)
=
7 Dk Zl;ék exp(—||zr — x1||?/207)

* If you look at it as a probability, it means that the probability
of picking two points is higher when they are closer




Theory behind T-SNE - 2 (optional)

 Actually, we consider this conditional distribution:
exp(— ||z — x;(|*/20:%)
i €OD(— || Ti — 2| /204%)

* We set the g; so that the conditional has a fixed perplexity
(fixed number of points in the mode of the Gaussian to
account for different densities of points in space)

Pjli =



Theory behind T-SNE — 3 (optional)

* We make the “distance” simmetric:
Pj|i T Pily
2N

- Now, let’s look at the target low dimensional space...

Pij —



Theory behind T-SNE - 4 (optional)

* We introduce a distance based on

Student-t distribution: 9.4
0.351
0.30F

- 0.25}

. A+ Ny —y; 1)~ b

1) . oN_7 0207
>k 2k (L + vk — will?) -

0. L0

Heavy tails, g;; should account for global structure, 0.05F
too... 0/00

=4 =3 =2 -1 0 1 2 3 4



Theory behind T-SNE -5 (optional)

- We want to make p;; and g;; as similar as possible, so the low
dim space has a similar structure. KL divergence:

KL(pllq) = ) _ >‘pmwg( )

* Intuition: i
 Large p_ij modelled by small g_ij? Big penalty: close points are
mapped to close points

« Small p_ij modelled by large g_ij? Small penalty: far points may end
up close in the low dimensional space

T-SNE mainly preserves local similarity structurel!




Here’s a basic 2-D
scatter plot.

Let’s do a walk through
of how t-SNE would
transform this graph...

...into a flat, 1-D plot
on a number line.




NOTE: If we just projected the data
onto one of the axes, we’d just get a
big mess that doesn’t preserve the
original clustering.



Think of this as a really
e o

-

el NUNTSE

What t-SNE does is find a way to project data into a low
dimensional space (in this case, the 1-D number line) so that
the clustering in the high dimensional space (in this case, the

2-D scatter plot) is preserved.



We’'ll start start with the
original scatter plot...

.. then we’ll put the -
points on the number line é‘ -

in @ random order.




Let’s figure out where to move this first point...

\ Should it move a little to the left or a little to the right?




Because it is part of this cluster...
...it wants to move closer to these

m points.




are far away in the scatter plot...

/N

W,..sothey push back.




In this case, the attraction is strongest, so the point moves a little to the right.

!

> VW w v @




mfe points attract...




m‘ese points attract...

v

...and this point repels a little bit.



So it moves a little to closer to the other orange points.

!




At each step, a point on the line is attracted to points it is near in
the scatter plot, and repelled by points it is far from...




At each step, a point on the line is attracted to points it is near in
the scatter plot, and repelled by points it is far from...




Now that we’ve seen the
what t-SNE tries to do, let’s
dive into the nitty-gritty
details of how it does what
it does.




Step 1: Determine the
“similarity” of all the points in
the scatter plot.

For this example, let’s
focus on determining
the similarities
between this point
and all of the other
points.




First, measure the
distance between
two points...




First, measure the

distance between —t=?

two points...
Then plot that - vv
distance on a -~

normal curve that is

centered on the
point of interest... \



First, measure the \tﬁ 6

distance between /P”

two points...
Then plot that - - ..lastly, draw a line from the
distance on a - hd point to the curve. The length

of that line is the “unscaled
similarity”.

normal curve that is

centered on the
point of interest... \




Now we calculate
the “unscaled
similarity” for this
pair of points.




Now we calculate
the “unscaled
similarity” for this

pair of points. ™ gy,

Etc. etc...




Ultimately, we measure
the distances between
all of the points and the
point of interest...

Plot them on the normal
curve...




Ultimately, we measure
the distances between
all of the points and the
point of interest...

Plot them on the normal
curve...

...and then measure the
distances from the points
to the curve to get the
unscaled similarity scores
with respect to the point
of interest.



The next step is to scale the
unscaled similarities so that
they add up to 1.




It has to do with something - .‘ -

| didn’t tell you earlier... -

...and to illustrate the concept, |
need to add a cluster that is half
as dense as the others.



% v e

The width of the normal -~
curve depends on the - -

density of data near the

_ . Less dense
point of interest. regions have
wider curves.




...s0 if these points...
have half the density as -
these points... t — > é

< ...and this curve...
is half as wide as

this curve...
_/k
@ de -

...then scaling the similarity scores will
make them the same for both clusters.




Here’s an example...

=0.24
N The “unscaled”

o similarity values

=0.05

This curve has a standard deviation = 1.

The “unscaled”

. . imilarity values ar
This curve has a standard deviation = 2. Simitarity values are

These points are twice as far from the middle.



To scale the similarity scores so they 0.24
S to & 0.24 +0.5
Score - 0.05
= Scaled Score - -
Sum of all scores .

These are the
same as these! ~,

0.12
0.12 +0.024

0.024




That implies that the scaled

similarity scores for this relatively

tight cluster...

...are the same for
this relatively loose
cluster!

0.24 - 0.82
0.24 + 0.5
0.05 - 0.18
0.24 + 0.5
0.12
=0.82
0.12 + 0.024
0.024
=0.18

0.12 + 0.024



We've calculated /7

similarity scores for this
point.




Now we do it for this /7

point...

...and we do it for all the
points.




Because the width of the -
distribution is based on the - - = -
density of the surrounding - -
data points, the similarity
score to this node...




...and lastly, drawing a line
from the point to a curve.
However, this time we’re
using a “t-distribution”.

Just like before, that means
picking a point...

...measuring a distance...

gty
00 000000000 ¢




A “t-distribution”...

..except the “t” isn’t as tall in the

...1s a lot like a normal .
middle...

distribution...

... and the tails are taller on the

ends. /

The “t-distribution” is the “t” in t-SNE.



-
- -
‘ . ‘. . So, using a t-distribution,
we calculate “unscaled”
similarity scores for all the
points and then scale them
- like before.

00 000000000 ©




o
W = High similarity
| = Low similarity

Like before, we end up
with a matrix of
similarity scores, but
this matrix is a mess...

)




- -

t-SNE moves the points a little bit at a time, and each step it
chooses a direction that makes the matrix on the left more like
the matrix on the right.




t-SNE moves the points a little bit at a time, and each step it
chooses a direction that makes the matrix on the left more like
the matrix on the right.

It uses small steps, because it’s a little bit like a chess game and can’t be
solved all at once. Instead, it goes one move at at time.










t-SNE Perplexity
* Thereisan _ in the method, called ‘Perplexity’

* Perplexity influences how the algorithm balances local and
global structure in the lower-dimensional representation.

 Perplexity can be thought of as a smooth measure of the
effective number of neighbors each point considers when
constructing the low-dimensional embedding. It controls how
much attention t-SNE pays to nearby versus distant points.



t-SNE Perplexity

* There is an hyperparameter in the method, called ‘Perplexity’

* A hyperparameter in machine learning is a setting that you
choose before training a model. It controls how the learning
process works but is not learned from the data.

« Perplexity influences how the algorithm balances local and
global structure in the lower-dimensional representation.

 Perplexity can be thought of as a smooth measure of the
effective number of neighbors each point considers when
constructing the low-dimensional embedding. It controls how
much attention t-SNE pays to nearby versus distant points.




t-SNE Perplexity

Perplexity =10 Perplexity = 30 Perplexity = 90
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Principal Component 2

On the Iris dataset

PCA on Iris Dataset
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t-SNE Component 2

t-SNE on Iris Dataset
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On the California Housing dataset

PCA on California Housing
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t-SNE on California Housing
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t-SNE Shortcomings

tSNE MNIST

» Choice of perplexity is tricky!
* Be careful ininterpreting t- e (N
SNE!N! esminr IR
https://distill.pub/2016/misread =1 . " o]
-tsne/ Q«gé‘%/ ;
» t-SNE does not scale well | g '

* t-SNE does not preserve global o |
data structure RATE

40

Hard to say if these
clusters
are less similar...

20
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tSNE2
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...than these clusters

0
o
ey

* It’s ok for data viz, not for _ .
feature extraction!


https://distill.pub/2016/misread-tsne/
https://distill.pub/2016/misread-tsne/

UMAP

Uniform Manifold Approximation and Projection



UMAP in a nutshell

» Uniform Manifold
Approximation and
Projection for Dimension
Reduction (2018)

 Much faster than t-SNE

 Preserves global structure
better than t-SNE

https://github.com/Imcinnes/umap

t-SNE UMAP

20 seconds 7 seconds

22 minutes 98 seconds
15 minutes 78 seconds

4.5 hours 14 minutes

https://www.youtube.com/watch?v=
ngbiPZVUxZU&ab channel=Enthough
t



https://github.com/lmcinnes/umap
https://www.youtube.com/watch?v=nq6iPZVUxZU&ab_channel=Enthought
https://www.youtube.com/watch?v=nq6iPZVUxZU&ab_channel=Enthought
https://www.youtube.com/watch?v=nq6iPZVUxZU&ab_channel=Enthought

Theory behind UMAP (quick overview)

« Based on algebraic topology and Riemannian geometry

« UMAP constructs a high dimensional, fuzzy graph
representation of the data, then optimizes a low-dimensional
graph to be as structurally similar as possible.

Mclnnes et al., (2018). UMAP: Uniform Manifold Approximation and Projection. Journal of Open
Source Software, 3(29), 861. https://doi.org/10.21105/j0ss.00861



https://doi.org/10.21105/joss.00861

UMAP vs t-SNE

With UMAP, each
categoryis
clustered (local
structure), while
similar categories
tend to colocate
(global structure)

Figure 2: Dimensionality reduction applied to the Fashion MNIST dataset. 28x28 images of clothing items in 10
categories are encoded as 784-dimensional vectors and then projected to 3 using UMAP and t-SNE.

https://pair-code.qgithub.io/understanding-umap/



https://pair-code.github.io/understanding-umap/

Original 3D Data 2D UMAP Projection 2D UMAP Projection

¥,
s £ o :i

Input parameters

- n_neighbours:
trade-off between £
preservation of local o
(low values) and R s
global (high values) ~ © o e —
structure 2D UMAP Projection

- min_dist: minimum
distance between
points in low-dim
space. Low values
lead to more tightly
packed embeddings

https://pair-
code.qithub.io/understanding-umap/

n_neighbors: 100 ® n_neighbors: 100 o
min_dist: 0.99 L ] min_dist: 0.1 o


https://pair-code.github.io/understanding-umap/
https://pair-code.github.io/understanding-umap/

UMAP Pros & Cons

cons:

- Hyperparameters choice is crucial

- Cluster sizes are not significant

- Distance between clusters might not mean anything
- Different results in different runs

Pros:

- Faster than tSNE
- More focus on global structure
- Viable tool for feature engineering
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Thank you!

Gian Antonio Susto




