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Recap – Tabular  Data (the ‘design matrix’) - x

n
observations: 
the number 
of times the 

phenomenon 
we need to 
'describe' is 
available in 

our data 
through 

historical 
examples

p attributes (variables, features) potentially 
related to the phenomenon under examination



Recap – The Machine Learning pipeline 

Preprocessing



Recap – Why use Statistics in ML?
Why Use Statistics in ML?
1. [Preprocessing] Data Understanding – Descriptive 

statistics (mean, variance, distributions) help 
explore and clean data, identifying patterns and 
outliers.

2. [Preprocessing] Feature Engineering – Techniques 
like correlation analysis, PCA, and scaling rely on 
statistical principles.

3. [Building] Probability & Uncertainty – ML often 
deals with probabilistic models (e.g., Naïve Bayes) 
and uncertainty estimation.

4. [Building] Generalization & Inference – Concepts 
like overfitting, hypothesis testing, and bias-
variance tradeoff come from statistics.

5. [Evaluation] Model Evaluation – Metrics like MSE, 
MAE, accuracy, precision, and recall are rooted in 
statistical concepts.



Recap – Statistical moments in ML
Moments of a Random Variable X

1.First Moment (Mean) – Central Tendency
E[X] = μ
The expected value of X, representing the average 
outcome.

2.Second Moment (Variance) – Spread of Data
Var(X) = E[(X - μ)²] = σ²
Measures how far values of X deviate from the mean.

3.Third Moment (Skewness) – Asymmetry of Distribution
Skew(X) = E[(X - μ)³] / σ³
Indicates whether the distribution leans right (negative 
skew) or left (positive skew).

4.Fourth Moment (Kurtosis) – Tailedness of Distribution
Kurt(X) = E[(X - μ)⁴] / σ⁴
Measures how heavy or light the tails of the distribution are 
compared to a normal distribution.
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Normal Kurtosis (K = 3) - Mesokurtic
•The distribution has the same shape as the 
normal distribution.

High Kurtosis (K > 3) - Leptokurtic
•Heavier tails than the normal distribution, 
meaning more extreme values (outliers).
•The distribution is more "peaked" in the center
and has longer tails.

Low Kurtosis (K < 3, K_excess < 0) - Platykurtic
•Lighter tails than the normal distribution, 
meaning fewer extreme values.
•The distribution is "flatter" in the center with 
shorter tails.

‘Recap’ – Statistical moments in ML



A numerical example

A n = 10 dataset
X=[10,15,20,25,30,35,40,45,50,55]

Let’s compute the kurtosis:
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A numerical example

A n = 10 dataset
X=[10,15,20,25,30,35,40,45,50,55]

Let’s compute the kurtosis:

The kurtosis is less than 3, so the distribution is platykurtic
(fewer "tails" compared to the normal distribution).



Recap – Quartiles  
Quartiles divide a dataset into four equal parts, 
helping to understand the distribution and spread 
of the data.

Quartile Definitions:
- Q1 (First Quartile, 25%) – The value below which 
25% of the data falls.
- Q2 (Second Quartile, 50%) – The median, the value 
that splits the data into two equal halves.
- Q3 (Third Quartile, 75%) – The value below which 
75% of the data falls.
- Interquartile Range (IQR) – The range between Q1 
and Q3, measuring the spread of the middle 50% of 
the data:

The median is used many times instead of the mean, 
as it is a robust quantity w.r.t. ’outliers’ (strange 
data)



Common convention (for the theoric
part of the exam): no interpolation!

Procedure:
- Order the array
- Compute the exact percentage
- Always take the closest number which percentage is AT 

LEAST 25%/50%/75% for Q1/Q2/Q3 respectively
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Recap - Statistical quantities in ML
- Understand a dataset
- Correct a dataset (filling missing data)
- Feature Engineering (extract quantities for 

example from a time-series sensor)
- Reduce the dimensionality of a dataset (by 

excluding variables with 0 variance) 
- Optimize a dataset for ML (standardization)



Correlation



Correlation
Correlation is a statistical measure that 
expresses the degree to which two 
variables move in relation to each other. It 
quanti[es the strength and direction of 
their relationship.

Correlation values range from -1 to 1.
• +1: Perfect positive correlation (when 

one variable increases, the other 
increases proportionally).
• 0: No correlation (no relationship 

between the variables).
• -1: Perfect negative correlation (when 

one variable increases, the other 
decreases proportionally).
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Pearson Correlation
The Pearson correlation coefficient (denoted as r) measures 
the linear relationship between two variables X and Y. It 
quantifies how strongly and in which direction two variables 
are related.

- The numerator represents the covariance between X and Y.
- The denominator is the product of the standard deviations 
of X and Y.
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Pearson Correlation: a numerical example #01
20
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Pearson Correlation: a numerical example #01
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Pearson Correlation: a numerical example #01
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Pearson Correlation: a numerical example #01
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Pearson Correlation: a numerical example #01
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Pearson Correlation: a numerical example #02
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Pearson Correlation: a numerical example #02
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Pearson Correlation: a numerical example #02
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Pearson Correlation: a numerical example #02



Other Correlations
There are other correlations, for example: 
Spearman's Rank Correlation (ρ)
- Measures the monotonic relationship between 

two variables (not necessarily linear).
- Instead of using actual values, it ranks the data 

and calculates Pearson’s correlation on the 
ranks.

Kendall’s Tau (τ)
- Measures the degree of agreement between 

two rankings.
- Based on concordant and discordant pairs 

rather than numerical diRerences.
In this course, correlation = Pearson correlation!
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A real example of 
strong positive 
correlation



A real example of 
strong positive 
correlation



Common Misconception: Correlation 
does not imply causation

We think that  - The truth may be:

E2

E1

E

C
C

not 
visible!
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Benefit of correlation in ML: 
understanding ‘important’ variables
- In supervised tasks we can 
understand which features 
are relevant 
- Ex. California Housing

37
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BeneMt of correlation in ML: reduce 
dataset size! 

- If two variables have really 
high correlation (in 
absolute value, ie. also
really high negative 
correlation) they are 
containing the same 
informative content!

- For the task, just one of 
the two variables should 
be kept for efficiency and 
for better ‘engineering’ of 
a productive solutions
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Now we have statistical moments 
and correlation to understand a 
dataset… is that enough?
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We should still be careful about summary indicators 
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We should still be careful about summary indicators 
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The Datasauros 
Dozens
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The Datasauros 
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The Datasauros 
Dozens Visualizations 

(smart ones), may 
be really helpful



[1D Plots] Bar plots & Histograms
Bar Plot: A graph that represents categorical data using bars, where the height of 
each bar corresponds to the count, mean, or another statistic of the category. Bars 
are separate.

Histogram: A graph that represents the distribution of continuous data by 
grouping values into bins and showing their frequency. Bars are touching since data 
is continuous.



[1D Plots] Kernel Density Estimate (KDE)
KDE is a non-parametric technique 
for estimating the probability 
density function (PDF) of a 
continuous random variable. It 
provides a smooth representation 
of the data distribution, unlike 
histograms, which use discrete bins.

How KDE works:

- Places a kernel function K (e.g., 
Gaussian) at each data point

- Sums the contributions of all 
kernels to estimate the density

- The bandwidth (h) controls how 
spread out each kernel is.
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KDE is a non-parametric technique 
for estimating the probability 
density function (PDF) of a 
continuous random variable. It 
provides a smooth representation 
of the data distribution, unlike 
histograms, which use discrete bins.

How KDE works:

- Places a kernel function K (e.g., 
Gaussian) at each data point

- Sums the contributions of all 
kernels to estimate the density

- The bandwidth (h) controls how 
spread out each kernel is.

When to Use KDE?
- When you want to estimate and visualize the 
true distribution of data.
- When a histogram is too coarse or misleading.
- When comparing multiple distributions 
smoothly.



[1D Plots] Box Plot (Box-and-Whisker Plot)
A Box Plot (or Box-and-Whisker Plot) is a 
graphical representation of the distribution 
of a dataset based on five key summary 
statistics:

• Minimum (Q0) – The smallest data point 
(excluding outliers).

• First Quartile (Q1, 25th percentile) – The 
median of the lower half of the dataset.

• Median (Q2, 50th percentile) – The middle 
value of the dataset.

• Third Quartile (Q3, 75th percentile) – The 
median of the upper half of the dataset.

• Maximum (Q4) – The largest data point 
(excluding outliers).

Outliers are plotted as individual points 
beyond the "whiskers”, aka 1.5 x IQR from Q1 
and Q3.

whisker whisker
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When to Use Box Plot?
- Detect (simple) outliers in your dataset.
- Compare distributions between multiple 

groups*.
- Understand spread, skewness, and central 

tendency in data.
- Works well for non-normal and skewed data.

* We will use this a lot when evaluating model performances



[1D Plots] Violin Plot (KDE+Box Plot)
Combines the benefits of box plots and KDE plots (shows 
both summary statistics and distribution).



[1D Plots] Violin Plot (KDE+Box Plot)
Combines the beneMts of box plots and KDE plots (shows 
both summary statistics and distribution).

Works well for comparing multiple categories.



[2D Plot] 
Correlation 
heatmap
A correlation heatmap is a 
visual representation of the 
correlation matrix between 
numerical variables in a 
dataset. It helps to quickly 
identify relationships 
between variables using 
color intensity.



[2D Plot] Scatter Plot
A scatter plot is a visualization that shows the 
relationship between two numerical 
variables. Each point represents an 
observation, with one variable on the X-axis 
and the other on the Y-axis.



[2D Plot] Scatter Plot
A scatter plot is a visualization that shows the 
relationship between two numerical 
variables. Each point represents an 
observation, with one variable on the X-axis 
and the other on the Y-axis.

- Shows trends, correlations, and patterns 
between two variables.
- Reveals outliers that deviate from the 
general trend.
- Can show linear, non-linear, or no 
relationships.
- Can be enhanced with color, size, or 
grouping to represent additional variables.



[2D Plot] Scatterplot 
Matrix
A scatterplot matrix (also 
called a pair plot) is a grid of 
scatter plots that displays 
pairwise relationships between 
multiple numerical variables in 
a dataset:

- Each cell in the matrix 
shows a scatter plot for 
two variables

- The diagonal often contains 
histograms or density plots 
of individual variables

- Useful for detecting 
correlations, trends, 
clusters, and outliers in 
multivariate data.
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[3D Plot] Scatterplot 
Matrix
Scatterplot can be extended to 
3D data.

However:

Hard to Interpret

- When plotted in 2D, 
relationships are easier to see.

- In 3D, overlapping points and 
perspective distortions make 
analysis harder.

Difficult to Compare Data Points

- In 2D, distances between 
points are easy to measure.

- In 3D, points might look closer 
or farther than they really are 
due to the viewing angle.
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What else?
Multi-dimensional plots (lec. 
05): we are dealing with 
multi-dimensional data, and 
ML is to [nd multi-
dimensional relationships 
(not pairwise ones)

Plots for evaluation (later in 
the course): for examples

- Confusion matrix

- Area Under the Curve
(AUC)



Thank you!

Gian Antonio Susto 
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2024/2025


