UNIVERSITA Machine Learning n m CO
DEGLI STUDI

DI PADOVA 2 O 2 4 2 0 2 5 ARTIFICIAL INTELLIGENCE, MACHINE
LEARNING AND CONTROL RESEARCH GROUP

agaenhaekl
o anlarbraEseh
ol G mmb} mw!})
pa A At
[

By o

i) fo0l 1

R

Lecture #04
orrelation &

ata
isualization

Gian Antonio Susto




Recap — Tabular Data (the ‘design matrix’) - x

n
observations:
the number
of times the
phenomenon
we need to
'describe'is -
available in
our data
through
historical
examples
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Recap — The Machine Learning pipeline

« Definition
« Expected Impact
» Evaluation metric

Conversion
Parsing
Aggregation
Alignment

Quality

» Reconciliation

Modelling

» Feature Extraction
« Building

« Missing data handlingj+ Evaluation/

« Denoising
Outlier detection

Preprocessing

Comparison

On-line
implementation
Business outcome
Improvement



Recap — Why use Statistics in ML?

Why Use Statistics in ML?

1. [Preprocessing] Data Understanding — Descriptive
statistics (mean, variance, distributions) help -
explOre and Clean data) Identlfylng patterns and Gareth James - Daniela Witten - Trevor Hastie -
O U t | | e I S . Robert Tibshirani - Jonathan Taylor

2. FPreprocessjng] Feature Engineering — Techniques
ike correlation analysis, PCA, and scaling rely on
statistical principles.

3. [Buildin LProbabinty & Uncertainty — ML often
deals with probabilistic models (e.g., Naive Bayes) with Al nython
and uncertainty estimation.

4, FBuiIding} Generalization & Inference — Concepts
ike overfitting, hypothesis testlng, and bias-
variance tradeoff come from statistics.

5. [Evaluation] Model Evaluation — Metrics like MSE,
AE, accuracy, precision, and recall are rooted in
statistical concepts.

@ Springer



Recap - Statisticalmoments in ML

Moments of a Random Variable X

1.First Moment (Mean) — Central Tendency

E[X] =u

The expected value of X, representing the average
outcome.

2.Second Moment (Variance) — Spread of Data
Var(X) = E[(X - u)?] = o2
Measures how far values of X deviate from the mean.

3.Third Moment (Skewness) — Asymmetry of Distribution
Skew(X) = E[(X -11)*] / 0°

Indicates whether the distribution leans right (negative
skew) or left (positive skew).

4.Fourth Moment (Kurtosis) — Tailedness of Distribution
Kurt(X) = E[(X -p)*] / o*

Measures how heavy or light the tails of the distribution are
compared to a normal distribution.




‘Recap’ — Statistical moments in ML

Normal Kurtosis (K = 3) - Mesokurtic
*The distribution has the same shape as the
normal distribution.

Positive Kurtosis
Leptokurtic

High Kurtosis (K > 3) - Leptokurtic

*Heavier tails than the normal distribution,

meaning more extreme values (outliers).

*The distribution is more "peaked" in the center Negative Kurtosis

and has longer tails.
Platykurti

Low Kurtosis (K < 3, K_excess < 0) - Platykurtic
Lighter tails than the normal distribution,
meaning fewer extreme values.

*The distribution is "flatter" in the center with
shorter tails.

Normal Distribution
Mesokurtic

4.Fourth Moment (Kurtosis) — Tailedness of Distribution
Kurt(X) = E[(X -u)*] / o*

Measures how heavy or light the tails of the distribution are
compared to a normal distribution.




A numerical example

A n = 70dataset
X=[10,15,20,25,30,35,40,45,50,55]

Let’s compute the kurtosis:




A numerical example

A n = 70dataset
X=[10,15,20,25,30,35,40,45,50,55]

Let’s compute the kurtosis:

(10 — 32.5)* = 3013025.5625
(15 — 32.5)* = 938906.25
(20 — 32.5)* = 244140.625
(25 — 32.5)* = 31640.625

(30 — 32.5)* = 39.0625
(35 — 32.5)* = 39.0625
(40 — 32.5)* = 31640.625
(45 — 32.5)* = 244140.625
(50 — 32.5)* = 938906.25

(55 — 32.5)* = 3013025.5625



(10 — 32.5)* = 3013025.5625

A numerical example

A n =70dataset (20 — 32.5)* = 244140.625
X=[10,15,20,25,30,35,40,45,50,55] (25 — 32.5)" = 31640.625

(30 — 32.5)* = 39.0625

(15 — 32.5)* = 938906.25

Let’s compute the kurtosis:
(35 — 32.5)* = 39.0625

(40 — 32.5)* = 31640.625

(45 — 32.5)* = 244140.625

(50 — 32.5)* = 938906.25

The kurtosis is less than 3, so the distribution is platykurtic _ 4 _
(fewer "tails" compared to the normal distributilé)m).y (80 =820 = SO0 52
3013025.56 + 938906.25 + 244140.62 + 31640.62 + 39.06 + 39.06 + 31640.62 + 244140.62 + 938906.25 + 3013025.56 = 8282825

8282825 8282825
- 10-(206.25)2  42514.0625

Kurt(X)

1.8




Recap — Quartiles

Quartiles divide a dataset into four equal parts, Second Quartile Quartile

heI in to Unde stand the dSt b t'on and S ead First Ouancr. -Sver.ond Quarter Third Quarter Fourth Quarter
of the data. Stribut Pr 24, 25, 26, 27, 30, 32, 40, 44, 50, 52, 55, 57

Quartile Definitions: Q. Q, Q,

- Q7(First Quartile, 25%) — The value below which e L) - 7! /
25% of the data falls.

- @2(Second Quartile, 50%) — The median, the value

that splits the data into two equal halves.

- @3(Third Quartile, 75%) — The value below which

75% of the data falls.

- Interquartile Range (/@R) — The range between Q1

and @3, measuring the spread of the middle 50% of

the data:
IQR = Q3 — Q1

The median is used many times instead of the mean, P o e 25% of all

-

as it is a robust quantity w.r.t. ’outliers’ (strange E |
data) 3 x
1. quartile 3. quartile

2. quartile




Common convention (for the theoric
part of the exam): no interpolation!

Procedure:

- Order the array

- Compute the exact percentage

- Always take the closest number which percentage is AT

LEAST 25%/50%/75% forlQI/Q2AQ3respectively



Common convention (for the theoric
part of the exam): no interpolation!

Procedure:

- Order the array

- Compute the exact percentage

- Always take the closest number which percentage is AT

LEAST 25%/50%/75% forlQI/Q2AQ3respectively

10, 15, 20, 25, 30, 35, 40, 45, 50, 55

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%|



Common convention (for the theoric
part of the exam): no interpolation!

Procedure:

- Order the array

- Compute the exact percentage

- Always take the closest number which percentage is AT

LEAST 25%/50%/75% for E E respectively

10,15)20,25, 30| 3 45/50, 55|
10%, 20%,{30%,}40%, 50%60% |70%80%,/90%, 100%]



Common convention (for the theoric
part of the exam): no interpolation!

Procedure:

- Order the array

- Compute the exact percentage

- Always take the closest number which percentage is AT

LEAST 25%/50%/75% forlQI/Q2AQ3respectively

5,10, 15, 20, 25, 30, 35, 40, 45, 50, 55]

9.09%, 18.18%, 27.27%, 36.36%, 45.45%, 54.55%, 63.64%, 72.73%, 81.82%, 90.91%, 100%)|



Common convention (for the theoric
part of the exam): no interpolation!

Procedure:

- Order the array

- Compute the exact percentage

- Always take the closest number which percentage is AT

LEAST 25%/50%/75% forlQI/Q2AQ3respectively

5,10,/15, R0, 25/30,35, 40,45, 50, 55]

9.09%, 18.18° 36.36%,45.45%,54.55%, 63.64%, 72.73%, 81.82%,90.91%, 100%




Recap - Statistical guantities in ML

- Understand a dataset
- Correct a dataset (filling missing data)

- Feature Engineering (extract quantities for

example from a time-series sensor)

- Reduce the dimensionality of a dataset (by

excluding variables with O variance)

- Optimize a dataset for ML (standardization)

i
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Raw Features

Feature 1

allill..
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Correlation



Correlation

Correlation is a statistical measure that
expresses the degree to which two
variables move inrelation to each other. It

vantifies the strength and direction of
their relationship.

Correlation values range from -1to 1.

* +1: Perfect positive correlation (when
one variable increases, the other
increases proportionally).

* 0: No correlation (no relationship
between the variables).

« -1: Perfect negative correlation (when
one variable increases, the other
decreases proportionally).

A}//‘ !
> - > >
Strong positive Weak positive Strong negative
correlation correlation correlation
A A
I

Weak negative
correlation

Moderate negative
correlation

No correlation



Pearson Correlation

The Pearson correlation coefficient (denoted as r) measures
the linear relationship between two variables Xand Y. It
quantifies how strongly and in which direction two variables

are related.
> (X — X)(Y; - Y)
V(X = X)2- /(Y - YY)

- The numerator represents the covariance between Xand Y.

- The denominator is the product of the standard deviations
of Xand Y.

T —



Pearson Correlation: a numerical example #01

X=[1,02, Y=[2-15 r= =X X1

V(X = X)? /(Y - Y)?




Pearson Correlation: a numerical example #01

X =11,0,2],

X =

Y =

1+0+2

Y = [2,-1,5]

S _ 1

T —

(X - X)(Y;-Y)

V(X = X)? /30 - Y )




Pearson Correlation: a numerical example #01

(X - X)(Y;-Y)

X=L02, Y=L = SR e v T

- 1+0+2 3

Y =

1-1=0 2 2-2=0

X; X, - X Y; Y, -V

1

0 0-1=-1 -1 -1-2=-3
2

2—-1=1 5 5—2=3

Y (Xi-X)(Y;-Y)=0+3+3=6



Pearson Correlation: a numerical example #01

X=[1,02, Y=[2-15 r= =X X1

V(X = X)? /30 - Y )

1+0+2 3

X = . §:1 S (X X)?P= (0 + (-1 +(1)?=0+1+1=2
Y_ 2_|_(_1)_|_5 B 9 _2 22141
N 3 N Y (¥ -Y)? = (0 +(-3)*+ (3)°
X, X, — X i Y, -V =04+94+9=18
1 1-1=0 2 2-2=0 VI8 — 4.94
0 0—1=-1 - ~1-2=-3 '
2 2-1=1 5 5-2=3

Y (Xi-X)(Y;-Y)=0+3+3=6



Pearson Correlation: a numerical example #01

X=01,02, Y=-15 | r- =&Y

V(X = X)? /30 - Y )

1+0+2 3

X = . §:1 S (X - X)? = (02 + (—1)* +(1)* =0+ 1+1=2
N 3 3 D (Y= Y)? = (0)* + (-3)* + (3)°
< % - - 0494018 X vs Y Plot
1 1-1=0 2 2—-2=0 \/T8:424
0 0—1=-1 1 —1-2=-3 '
2 2-1=1 5 5-2=3 _ 6
(1.41 x 4.24)
Y (Xi-X)(Y;-Y)=0+3+3=6 6
r=—-——=1.0

~ 5.98



Pearson Correlation: a numerical example

X =10,1,2,5], Y =1[4,1,3,0]

02



Pearson Correlation: a numerical example

X =100,1,2,5, Y =[4,1,3,0]

o 0+1+2+45 8

4 4
- 4+1+3+0 8
Y: :—:2

4 4
X Xi—X Y; Y- ¥
0 0-2=-2 4 4—-2=2
1 1-2=-1 1 1-2=-1
2 2-2=0 3 3—2=1
5 5—2=3 0 0—-2=-2

—44+140-6=-9

02



Pearson Correlation: a numerical example #02

X =10,1,2,5],

Y =[4,1,3,0]

= 8
X: —:2

4 4
- 4+1+3+0 8
Y: :—:2

4 4
X Xi—X Y; Y- ¥
0 0-2=-2 4 4—-2=2
1 1-2=-1 1 1-2=-1
2 2-2=0 3 3—2=1
5 5—2=3 0 0-2=-2

—44+140-6=-9

D (X = X)? = (=2 + (-1)* +(0)> + (3)
=4+1+0+9=14

V14 ~ 3.74
(Y=Y = (2 + (-1)* + (1)* + (-2)°

=4+1+1+4=10
v10 =~ 3.16



Pearson Correlation: a numerical example #02

D (X = X)? = (=2 + (-1)> + (0)* + (3)°

—44+1 — 14
X =10,1,2,5], Y =1[4,1,3,0] 1049
V14 ~ 3.74
_ 0+1+2+5 8 V)2 — (9)2 1 (—1)2 2 | (_9)2
g9t 1‘ + 2122 Z(Yz Y)' =2+ (-1)"+(1)"+(-2)
—44+14+14+4=10
?_4+1+3+0_8_2
B 4 T4 V10 ~ 3.16
X, X, ~ % Y, Y, 5 B . 9 X vs Y with Regression Line e
0 0-2=-2 4 4-2=2 ~ (3.74 x 3.16)
1 1-2=-1 1 1-9— -1 9 :
2 2-2=0 3 3_9-1 r——— ~—-0761 |
11.83
5 h—-—2=3 0 0—-2=-2
Y (X -X)(YVi-Y)=-4+140-6=—9




Other Correlations

There are other correlations, for example:
Spearman's Rank Correlation (p)

- Measures the monotonic relationship between
two variables (not necessarily linear).

- Instead of using actual values, it ranks the data
and calculates Pearson’s correlation on the
ranks.

Kendall’s Tau (1)

- Measures the degree of agreement between
two rankings.

- Based on concordant and discordant pairs
rather than numerical differences.

In this course, correlation = Pearson correlation!

Linear Data

Pearson

Correlation

<

Non-linear Data

S

Spearman

Correlation

0.96
509
0.96

Pearson

Correlation

0.76 X

/\

Spearman

Correlation




A real example of
strong positive
correlation

Nobel Laureates per 10 Million Population

Switzerland
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304
r=0.791
P<0.0001 Denrnark
Austria
hs Norway
20
==4== United Kingdom
15~
Linisert B W ireland B Germany
The Netherlands ™= States
==
10- =——= France
Belgiuml I l I
5 Poland l‘hAustralia
Greece\
Portugal 1 Italy
e E= _t_ Spain
o- - [l Japan
China Brazil
I T T T T T |
0 5 10
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A real example of
strong positive
correlation

Nobel Laureates per 10 Million Population

Switzerland

& Sweden

30-
r=0.791
P<0.0001 Befithart
Austria
hs Norway
20
== United Kingdom
15
United B N Ireland B Germa
ny
The Netherlands ™= States
S—]
10 == France
Belgiuml I I I
Canada Finland
5 Poland I*hAustralia
Greece\
Portugal i Italy
e E= _t_ Spain
o- - [l Japan
China Brazil
| T T T T T T T T T 1
0 5 10 15

Chocolate Consumption (kg/yr/capita)



Common Misconception: Correlation
does not imply causation

We think that - The truth may be:

@ (&)



Common Misconception: Correlation
does not imply causation

We think that - The truth may be:

@ (&)



Common Misconception:

does not imply causation

We think that - The truth may be:

Correlation

® & ©
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Number of people who drowned by falling into a pool
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Films Nicolas Cage appeared in

2000 2001 2002 2003 2004 2005 2006 2007

2000 2001 2002 2003 2004 2005 2006 2007

-®- Nicholas Cage -~ Swimming pool drownings

2008

2008

2009

2009

6 films

2 films

0 films




Common Misconception:

does not imply causation

We think that - The truth may be:

Correlation
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Popularity of the 'not sure if' meme
correlates with

The number of air traffic controllers in Montana

78 120.0

Pirate attacks globally

correlates with
Google searches for 'download firefox'
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o
Z = =
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0 1 I I 50 < g
2006 2008 2010 2018 2020 2022 115
I 1 I I 1 I 1
+-== Relative volume of Google searche (without 2009 2011 2013 2015 2017 2019 2021
quotes, in the United States) - Sou
) ] w (5loba ate Attack Count - Source: Statista
o= BLS estimate of air traffic controllers in Montana - Source: Bureau of ¢~ Global Fa At A o |
Larbor Statistics ®= Relative volume of Google searches for ‘download firefox' (Worldwide,
2006-2022 r=0917 r2=0 842 n<0 01 . tvlervinen com/snurious/correlation/5957 without quotes) - Source: Google Trends
The distance between Uranus and the moon Popularity of the first name Sarah
correlates with correlates with
Electricity generation in Japan Remaining Forest Cover in the Brazilian Amazon
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«--- Babies of all sexes born in the US named Sarah - Source: US Social Security



Latitude

Benefit of correlation in ML:
understanding ‘important’ variables

- In su
under
arere

nervised tasks we can
stand which features

evant

- Ex. California Housing

2 4

500000
population %

400000

[ 300000

median_house_value

- 200000

l

— 1 100000

-124 -122 -120 -118 -116 -114

Longitude

Variable

Medinc

HouseAge
AveRooms
AveBedrms
Population
AveOccup
Latitude
Longitude

MedHouseVal

Description

Median household income in the area (in tens of

thousands of dollars).

Median age of houses in the area (in years).

Average number of rooms per dwelling in the area.
Average number of bedrooms per dwelling in the area.
Total population in the area.

Average number of people per household in the area.
Geographic latitude of the area.

Geographic longitude of the area.

Median house value in the area (in hundreds of thousands

of dollars). This is the target variable in the dataset.




Correlation Matrix of California Housing Dataset

1.00
MedInc -0.12 0.33 -0.06 0.00 0.02 -0.08 -0.02
0.75
HouseAge - -0.12 -0.15 -0.08 -0.30 0.01 0.01 -0.11 0.11
AveRooms - 0.33 050
AveBedrms - -0.06 -0.25
Population - 0.00
-0.00
AveOccup - 0.02
-—-0.25
Latitude - -0.08
—-0.50
Longitude - -0.02
-0.75

MedHouseVal 0.11 0.15 -0.05 -0.02 -0.02 -0.14 -0.05
I I I I I I I

2 o) £ £ s S 3 = g

3 ) 8 S B 8 2 = 3

= 4 T o S = - =) >

3 v 5 a 2 3 5 S

T z 2 4 S

=



Benefit of correlation in ML: reduce
dataset size!

- If two variables have really

high correlation (in
absolute value, ie. also
really high negative
correlation) they are
containing the same
informative content!

-or the task, just one of
the two variables should
oe kept for efficiency and
for better ‘engineering’ of
a productive solutions

Feature_1

54.9671415301123

Feature_2

23.636499344142

Constant_Var

100

100

100

100

100

100

100

100

100



Now we have statisticalmoments
and correlation to understand a
dataset... is that enough?



We should still be careful about summary indicators

«” Anscombe’s Quartet
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We should still be careful about summary indicators

«” Anscombe’s Quartet

Each dataset has the same summary statistics (mean, standard deviation,
correlation), and the datasets are clearly different, and visually distinct.
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[1D Plots] Bar plots & Histograms

Bar Plot: A graph that represents categorical data using bars, where the height of
each bar corresponds to the count, mean, or another statistic of the category. Bars
are separate.

Histogram: A graph that represents the distribution of continuous data by
grouping values into bins and showing their frequency. Bars are touching since data
Is continuous.

Bar Plot: Avg Sepal Length per Species Histogram: Distribution of Sepal Length

Average Sepal Length (cm)
Frequency

setosa versicolor virginica 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Species Sepal Length (cm)



[1D Plots] Kernel Density Estimate (KDE)

KDE is a non-parametric technique 200+
for estimating the probability
density function (PDF) of a

continuous random variable. It 150 1
provides a smooth representation .|
of the data distribution, unlike
histograms, which use discrete bins. 1]

How KDE works:

- Places a kernel function K(e.g.,
Gaussian) at each data point

1.75 A

0.50 -

0.25 A

0.00

- Sums the contributions of all
kernels to estimate the density

- The bandwidth (A) controls how
spread out each kernel is.




[1D Plots] Kernel Density Estimate (KDE)

KDE is a non-parametric technique
for estimating the probability
density function (PDF) of a
continuous random variable. It
provides a smooth representation
of the data distribution, unlike
histograms, which use discrete bins.

How KDE works:

- Places a kernel function K(e.g.,
Gaussian) at each data point

- Sums the contributions of all
kernels to estimate the density

- The bandwidth (A) controls how
spread out each kernel is.

2.00 A

1.75 -

1.50 A

1.25 ~

1.00 A

0.75 A

0.50 A

0.25 A

0.00

When to Use KDE?
- When you want to estimate and visualize the
true distribution of data.

- When a histogram is too coarse or misleading.
- When comparing multiple distributions
smoothly.



[1D Plots] Box Plot (Box-and-Whisker Plot)

A Box Plot (or Box-and-Whisker Plot) is a_

graphical representation of the distribution

of a dataset based on five key summary T

statistics: l

« Minimum (QO) — The smallest data point ; 4
(excluding outliers). “Minimum®

(Q1 - 1.5*IQR)

« First Quartile (QQ1, 25th percentile) — The whisker

median of the lower half of the dataset.

Interquartile Range
(IQR)
| |

Q1 Median Q3

(25th Percentile) (75th Percentile)

Outliers

l

o0

"Maximum"
(Q3 + 1.5*IQR)

whisker

Median (Q2, 50th percentile) - The middle =~
value of the dataset.

Third Quartile (Q3, 75th Percentile) —The
median of the upper halr of the dataset.

Maximum (Q4) — The largest data point
(excluding outliers).

QOutliers are plotted as individual points
beé/%wg the "whiskers”, aka 1.5 x IQR from Q1
an :




[1D Plots] Box Plot (Box-and-Whisker Plot)

A Box Plot (or Box-and-Whisker Plot) is a

graphical representation of the distribution Interquartile Range
of a dataset based on five key summary Outliers R A
statistics: 1 l
@] |OO
«  Minimum (QO) — The smallest data point C{ |
(excluding outliers). "Minimum" _ "Maximum"
(Q1 -.1.5*IQR) Q1 Median Q3 (Q3 + .1.5*IQR)
° First Quartile (Q*], 25th percentile) _ The WhlSker (25th Percentile)  (75th Percentile) Wh|Sker

median of the lower half of the dataset.

« Median (Q2, 50th percentile) - The middle

value of the dataset.
. ' . When to Use Box Plot?
« Third Quartile (Q3, 75th|Percentlle) - The Detect (simple) outliers in your dataset.

median of the upper half of the dataset. Compare distributions between multiple
- Maximum (Q4) — The largest data point groups*.
(excluding outliers). Understand spread, skewness, and central

tendency in data.
Works well for non-normal and skewed data.

Outliers are plotted as individual points
be()j/czg?c)j the "whiskers”, aka 1.5 x IQR from Q1
an :

*We will use this a lot when evaluating model performances



[1D Plots] Violin Plot (KDE+Box Plot)

Combines the benefits of box plots and KDE plots (shows
both summary statistics and distribution).

Maximum (Qa4)

1 numeric variable

240 — Density plot
220 — / (width = frequency)
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[Tl
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Data set A



[1D Plots] Violin Plot (KDE+Box Plot)

Combines the benefits of box plots and KDE plots (shows
both summary statistics and distribution).

Works well for comparing multiple categories.

Maximum (Qa4)

1 numeric variable

240 — Density plot
290 — / (width = frequency)
200 —
7~
E 180 — ] <«—— Third quartile (Q3)
‘; 160 —
@ < .
8 140 < Median (Qz)
D 120- . .
o L1 +——— First quartile (Q1)
Y
£ 100+
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=
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|
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[2D Plot]
Correlation
heatmap

A correlation heatmap is a
visual representation of the
correlation matrix between
numerical variables in a
dataset. It helps to quickly
identify relationships
between variables using
color intensity.

Correlation Matrix of California Housing Dataset
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[2D Plot] Scatter Plot

A scatter plot is a visualization that shows the
relationship between two numerical
variables. Each point represents an
observation, with one variable on the X-axis
and the other on the Y-axis.
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[2D Plot] Scatter Plot

A scatter plot is a visualization that shows the
relationship between two numerical
variables. Each point represents an
observation, with one variable on the X-axis
and the other on the Y-axis.

- Shows trends, correlations, and patterns
between two variables.

- Reveals outliers that deviate from the
general trend.

- Can show linear, non-linear, or no
relationships.

- Can be enhanced with color, size, or
grouping to represent additional variables.

PetalLengthCm
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L/%D Plot] Scatterplot
atrix

A scatterplot matrix (also . B
called a pair plot) is a grid of ) T =
scatter plots that displays . |
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- Each cellin the matrix =l ' '
shows a scatter plot for i g
two variables "'} W SN b

- The diagonal often contains |
histograms or density plots
of individual variables

- Useful for detecting
correlations, trends,
clusters, and outliers in
multivariate data.
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L%D Plot] Scatterplot |
atrix

A scatterplot matrix (also .
called a pair plot) is a grid of ) :
scatter plots that displays
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L%D Plot] Scatterplot
atrix

A scatterplot matrix (also
called a pair plot) is a grid of
scatter plots that displays
pairwise relationships bétween
multiple numerical variables in
a dataset:

- Each cell in the matrix
shows a scatter plot for
two variables

- The diagonal often contains
histograms or density plots
of individual variables

- Useful for detecting
correlations, trends,
clusters, and outliers in
multivariate data.
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EI%D Plot] Scatterplot

6.0
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EI%D Plot] Scatterplot
atrix

Scatterplot can be extended to
3D data.

However:
Hard to Interpret

- When plottedin 2D,
relationships are easier to see.

- In 3D, overlapping points and
perspective distortions make

analysis harder.

Difficult to Compare Data Points

- In 2D, distances between
points are easy to measure.

- In 3D, points might look closer
or farther than they really are
due to the viewing-angle.

&0

2.0

6.0



W h a t e I S e? 39 State-gov 77516 Bachelors 13 Never-married Adm-clerical Not-in-family ~ White Male 2174 0 40 United-States <=50K
o 50 Self-emp-not-inc 83311 Bachelors 13 Married-civ-spouse Exec-managerial  Husband White Male 0 0 13 United-States <=50K

38 Private 215646 HS-grad 9 Divorced Handlers-cleaners Not-in-family ~ White Male 0 0 40 United-States <=50K

53 Private 234721 1ith 7 Married-civ-spouse Handlers-cleaners Husband Black Male 0 0 40 United-States <=50K

28 Private 338409 Bachelors 13 Married-civ-spouse Prof-specialty Wife Black Female 0 0 40 Cuba <=50K

M ° M 37 Private 284582 Masters 14 Married-civ-spouse Exec-managerial ~ Wife White Female 0 0 40 United-States <=50K

U t I - I I I I e n S I O n a p Ot S e C . 49 Private 160187 9th 5 Married-spouse-absent  Other-service Not-in-family ~ Black Female 0 0 16 Jamaica <=50K

- 52 Self-emp-not-inc 209642 HS-grad 9 Married-civ-spouse Exec-managerial  Husband White Male 0 0 45 United-States >50K

O 5 . . . 31 Private 45781 Masters 14 Never-married Prof-specialty Not-in-family ~ White Female 14084 0 50 United-States >50K
We a re d e a | I n W I t h 42 Private 159449 Bachelors 13 Married-civ-spouse Exec-managerial  Husband White Male 5178 0 40 United-States >50K

hd 37 Private 280464 Some-college 10 Married-civ-spouse Exec-managerial  Husband Black Male 0 0 80 United-States >50K

o ° ° 30 State-gov 141297 Bachelors 13 Married-civ-spouse Prof-specialty Husband Asian-Pac-Islander  Male 0 0 40 India >50K

m U |t I — d I m e n S I O n a | d ata a n d 23 Private 122272 Bachelors 13 Never-married Adm-clerical Own-child White Female 0 0 30 United-States <=50K
’ 32 Private 205019 Assoc-acdm 12 Never-married Sales Not-in-family Black Male 0 0 50 United-States <=50K

° . ° 40 Private 121772 Assoc-voc 11 Married-civ-spouse Craft-repair Husband Asian-Pac-Islander  Male 0 0 40 ? >50K

M L I S to ﬁ n d m U |t I - 34 Private 245487 Tth-8th 4 Married-civ-spouse Transport-moving Husband Amer-Indian-Eskimo  Male 0 0 45 Mexico <=50K
25 Self-emp-not-inc 176756 HS-grad 9 Never-married Farming-fishing Own-child White Male 0 0 35 United-States <=50K

. R . R 32 Private 186824 HS-grad 9 Never-married Machine-op-inspct  Unmarried White Male 0 0 40 United-States <=50K

38 Private 28887 1ith 7 Married-civ-spouse Sales Husband White Male 0 0 50 United-States <=50K

d I I I . e n S I O n a | re | at I O n S h I pS 43 Self-emp-not-inc 292175 Masters 14 Divorced Exec-managerial Unmarried White Female 0 0 45 United-States >50K
40 Private 193524 Doctorate 16 Married-civ-spouse Prof-specialty Husband White Male 0 0 60 United-States >50K

M M 54 Private 302146 HS-grad 9 Separated Other-service Unmarried Black Female 0 0 20 United-States <=50K

n Ot p a I rW I S e O n e S 35 Federal-gov 76845 9th 5 Married-civ-spouse Farming-fishing Husband Black Male 0 0 40 United-States <=50K
43 Private 117037 1ith 7 Married-civ-spouse Transport-moving Husband White Male 0 2042 40 United-States <=50K

59 Private 109015 HS-grad 9 Divorced Tech-support Unmarried White Female 0 0 40 United-States <=50K

Plots for evaluation (later in
the course): for examples Confusion Matrix Perfect  ROG curve

classifier
Actual Label Oe

Better

. ° A B C ToFaI
- Confusion matrix edans
58 130 1044 ©
_ A 1.96% 4.4% 35.34% ©
Q =
- Area Under the Curve s %
kel 136 901
( AU C) g B 0 4.6% 30.5% o
S
& =
s 69 33 1009
2.34% 1.12% 34.16%
925 856 1173 2954
NOI Al 31.31% 28.98% 39.71% 100%

False positive rate
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Thank you!

Gian Antonio Susto




